Econometric Methods and Applications
-
Teaching
Details
Faculty Faculty of Management, Economics and Social Sciences Domain Economics Code UE-EEP.00496 Languages English Type of lesson Lecture
Level Master Semester SA-2022 Schedules and rooms
Summary schedule Monday 08:15 - 12:00, Hebdomadaire (Autumn semester)
Teaching
Teachers - Huber Martin
Assistants - Stoller Andreas
Description This course discusses several of the practically most relevant econometric/statistical methods for empirical research (e.g. in economics and social sciences) along with their underlying assumptions and properties. It also presents applications of these methods in real-world data using the statistical software “R (studio)”. The course consists of a lecture and 4 PC lab sessions. The topics covered in the lecture include:
- The difference between causation (e.g. education has a causal effect on wage) and correlation (subjects with higher education have higher wages, but this may be driven by other factors than education as for instance ability); the intuition of experiments for assessing causation.
- Linear regression (OLS - ordinary least squares) to assess the association of one or several variables (e.g. education, age,...) with an outcome of interest (e.g. wage).
- Quantile regression to conduct empirical analyses at particular outcome ranks (e.g. for the median earner in the wage distribution).
- Nonlinear regression (probit regression for binary outcomes like working vs. not working, tobit regression for censored outcomes).
- Instrumental variable regression and regression discontinuity designs under endogeneity.
- Panel data regression and “Differences-in-Differences” estimation when subjects are observed at several points in time.
- General concepts of estimation: M-estimators, maximum likelihood, and generalized methods of moments.
- Bootstrapping (resampling from the original data, e.g. for variance estimation).
- Time series regression, e.g. for modeling stock prices or GDP growth over time.
As practical illustration, the PC lab sessions consider empirical examples, in which the different econometric methods are applied to various data sets using the statistical software R (studio).
Training objectives The objectives are that students (1) get familiar with the econometric methods most commonly used in applied work, (2) understand the differences in the properties and assumptions of the various methods along with their advantages and disadvantages, and (3) can practically implement econometric methods to analyze real-world data.
Softskills Yes Off field No BeNeFri Yes Mobility Yes UniPop No Auditor Yes Documents
Bibliography Wooldridge, J. M. (2010): Econometric Analysis of Cross Section and Panel Data, 2nd edition, The MIT Press.
-
Dates and rooms
Date Hour Type of lesson Place 19.09.2022 08:15 - 12:00 Cours PER 21, Room A140 26.09.2022 08:15 - 12:00 Cours PER 21, Room A140 03.10.2022 08:15 - 12:00 Cours PER 21, Room A140 10.10.2022 08:15 - 12:00 Cours PER 21, Room A140 17.10.2022 08:15 - 12:00 Cours PER 21, Room A140 24.10.2022 08:15 - 12:00 Cours PER 21, Room A140 31.10.2022 08:15 - 12:00 Cours PER 21, Room A140 07.11.2022 08:15 - 12:00 Cours PER 21, Room A140 14.11.2022 08:15 - 12:00 Cours PER 21, Room A140 21.11.2022 08:15 - 12:00 Cours PER 21, Room A140 28.11.2022 08:15 - 12:00 Cours PER 21, Room A140 05.12.2022 08:15 - 12:00 Cours PER 21, Room A140 12.12.2022 08:15 - 12:00 Cours PER 21, Room A140 19.12.2022 08:15 - 12:00 Cours PER 21, Room A140 -
Assessments methods
Written exam - SA-2022, Session d'hiver 2023
Date 13.01.2023 17:00 - 18:30 Assessments methods By rating Descriptions of Exams Written exam 90'
Written exam - SP-2023, Session de rattrapage 2023
Date 21.08.2023 08:30 - 10:00 Assessments methods By rating Descriptions of Exams Written exam 90'
-
Assignment
Valid for the following curricula: BeNeFri - Sciences économiques et sociales
Version: 2018/SP_V01_SES_BeNeFri
Course > Master course offering for BeNeFri Students
Complementary learnings in SES or mobility students
Version: ens_compl_ses
Mster course offering for Mobility Students
Doc - Business Informatics
Version: 20210713
Elective courses > Wahlkurse UNIFR
Doc - Economics
Version: 2002/SA_V01
Cours a choix > Wahlkurse UNIFR
Doc - Economie quantitative
Version: 2002/SA_V01
Cours a choix > Wahlkurse UNIFR
Doc - Management
Version: 2002/SA_V01
Cours a choix > Wahlkurse UNIFR
Doc - Management in Nonprofit-Organisation
Version: 2002/SA_V01_60ECTS Théoriques
Elective courses > Wahlkurse UNIFR
Doc - Sciences sociales
Version: 2002/SA_V01
Cours a choix > Wahlkurse UNIFR
Doc - Sciences économiques et sociales
Version: 2002/SA_V01
Cours a choix > Wahlkurse UNIFR
Ma - Accounting and Finance - 90 ECTS
Version: 2021/SA_V01
Course - 72 ECTS > Modules "Data Analytics" and "Audit et Fiscalité": min. 3 courses > DAT: Data AnalyticsCourse - 72 ECTS > Minimum 0 / maximum 1 optional master course offered at the University of Fribourg, if 72 ECTS not yet reached in the above modules > SES Master level courses
Ma - Business Communication : Business Informatics - 90 ECTS
Version: 2020/SA_V02
Courses - 60 ECTS > Option Group > Information Management > Cours > Modules management > DAT: Data Analytics
Ma - Business Communication : Economics - 90 ECTS
Version: 2021/SA_V02
Courses > Option Group > Economics > Mandatory courses
Ma - Business Informatics - 90 ECTS
Version: 2020/SA-v01
Classes - min. 45 ECTS > Modules management - max. 15 ECTS > DAT: Data Analytics
Ma - Communication and Media Research - 90 ECTS
Version: 2015/SA_V01
Courses - 60 ECTS > Inter- and Transdisciplinary Perspectives > SES Master level courses
Ma - Communication and Society - 90 ECTS
Version: 2021/SA_V03
Forschungsbereiche > Inter- & Transdisciplinary Perspectives
Ma - Data Analytics & Economics - 90 ECTS
Version: 2020/SA-v01
Courses min 63 ECTS > Mandatory Modules (45 to 63 ECTS) > Module I: Data Analytics (Data)
Ma - Economics - 90 ECTS
Version: 2021/SA_V04
Le choix de l'option se fait par l'inscription au premier cours dans l'une des options possibles. > Business Economics > Elective courses in Business Economics > Wahlkurse der SES-Fakultät - max. 15 ECTS > SES Master level coursesLe choix de l'option se fait par l'inscription au premier cours dans l'une des options possibles. > Sustainable Development and Social Responsibility > Elective courses in Sustainable Development and Social Responsibility > Elective courses of the SES Faculty - max. 15 ECTS > SES Master level coursesLe choix de l'option se fait par l'inscription au premier cours dans l'une des options possibles. > Public Economics and Policy > Elective courses in Public Economics and Policy > Elective courses of the SES Faculty - max. 15 ECTS > SES Master level coursesLe choix de l'option se fait par l'inscription au premier cours dans l'une des options possibles. > Quantitative Economics > Elective courses in Quantitative Economics > Courses from the SES faculty - max. 15 ECTS > SES Master level coursesMandatory coursesCourse selection for the Master WITHOUT options > Elective courses > Elective courses of the SES Faculty - max. 15 ECTS > SES Master level courses
Ma - European Business - 90 ECTS
Version: 2017/SA_v01
Courses - 63 ECTS > Additional courses: Any Master courses of the Faculty of Economics and Social Sciences, as well as maximum 9 ECTS from all Master programmes of the University. > SES Master level courses
Ma - International and European Business - 90 ECTS
Version: 2021/SA_V01
Courses > Additional courses: Any Master courses of the Faculty of Economics and Social Sciences, as well as maximum 9 ECTS from all Master programmes of the University. > SES Master level coursesCourses > Modules > One complete module taken from the following list > Groupe d'élément de validation du Module DAT > DAT: Data Analytics
Ma - Management - 90 ECTS
Version: 2021/SA_V01
Courses: min. 72 ECTS > Elective Courses : max. 18 ECTS > SES Master level coursesCourses: min. 72 ECTS > Modules - min 54 ECTS > Groupe d'élément de validation du Module DAT > DAT: Data Analytics
Ma - Management - 90 ECTS [MA]
Version: 2017/SA_v01
Courses: min. 63 ECTS > Cours facultatifs : max. 18 ECTS > SES Master level courses
Ma - Marketing - 90 ECTS
Version: 2021/SA_V02
Courses > Elective Master courses from the whole university > SES Master level coursesCourses > Groupe d'élément de validation du Module DAT > DAT: Data Analytics
Ma - Public Economics and Public Finance - 90 ECTS
Version: 2015/SA_V01_MA_VWL_DD
Cours > Up to 45 ECTS credits must fulfill the conditions required for the specialisation, including the modules 1, 2 and 6 with a min. of 12 ECTS in each. > Module 6: Quantitative Economics
MiMa - Business Informatics - 30 ECTS
Version: 2020/SA_V01
Cours > Modules management > DAT: Data Analytics
MiMa - Data Analytics - 30 ECTS
Version: 2020/SA-v01
À choix 18 crédits ECTS
MiMa - Economics - 30 ECTS
Version: 2021/SA_V01
Mandatory courses > Econometric Methods and Applications
MiMa - Gestion d'entreprise - 30 ECTS
Version: 2021/SA_V01
Elective courses - 30 ECTS > DAT: Data Analytics