Econometric Methods and Applications

  • Teaching

    Details

    Faculty Faculty of Management, Economics and Social Sciences
    Domain Economics
    Code UE-EEP.00496
    Languages English
    Type of lesson Lecture
    Level Master
    Semester SA-2022

    Schedules and rooms

    Summary schedule Monday 08:15 - 12:00, Hebdomadaire (Autumn semester)

    Teaching

    Teachers
    • Huber Martin
    Assistants
    • Stoller Andreas
    Description

    This course discusses several of the practically most relevant econometric/statistical methods for empirical research (e.g. in economics and social sciences) along with their underlying assumptions and properties. It also presents applications of these methods in real-world data using the statistical software “R (studio)”. The course consists of a lecture and 4 PC lab sessions. The topics covered in the lecture include:

    1. The difference between causation (e.g. education has a causal effect on wage) and correlation (subjects with higher education have higher wages, but this may be driven by other factors than education as for instance ability); the intuition of experiments for assessing causation.
    2. Linear regression (OLS - ordinary least squares) to assess the association of one or several variables (e.g. education, age,...) with an outcome of interest (e.g. wage).
    3. Quantile regression to conduct empirical analyses at particular outcome ranks (e.g. for the median earner in the wage distribution).
    4. Nonlinear regression (probit regression for binary outcomes like working vs. not working, tobit regression for censored outcomes).
    5. Instrumental variable regression and regression discontinuity designs under endogeneity.
    6. Panel data regression and “Differences-in-Differences” estimation when subjects are observed at several points in time.
    7. General concepts of estimation: M-estimators, maximum likelihood, and generalized methods of moments.
    8. Bootstrapping (resampling from the original data, e.g. for variance estimation).
    9. Time series regression, e.g. for modeling stock prices or GDP growth over time.

     

    As practical illustration, the PC lab sessions consider empirical examples, in which the different econometric methods are applied to various data sets using the statistical software R (studio).

    Training objectives

    The objectives are that students (1) get familiar with the econometric methods most commonly used in applied work, (2) understand the differences in the properties and assumptions of the various methods along with their advantages and disadvantages, and (3) can practically implement econometric methods to analyze real-world data.

    Softskills
    Yes
    Off field
    No
    BeNeFri
    Yes
    Mobility
    Yes
    UniPop
    No
    Auditor
    Yes

    Documents

    Bibliography

    Wooldridge, J. M. (2010): Econometric Analysis of Cross Section and Panel Data, 2nd edition, The MIT Press.

  • Dates and rooms
    Date Hour Type of lesson Place
    19.09.2022 08:15 - 12:00 Cours PER 21, Room A140
    26.09.2022 08:15 - 12:00 Cours PER 21, Room A140
    03.10.2022 08:15 - 12:00 Cours PER 21, Room A140
    10.10.2022 08:15 - 12:00 Cours PER 21, Room A140
    17.10.2022 08:15 - 12:00 Cours PER 21, Room A140
    24.10.2022 08:15 - 12:00 Cours PER 21, Room A140
    31.10.2022 08:15 - 12:00 Cours PER 21, Room A140
    07.11.2022 08:15 - 12:00 Cours PER 21, Room A140
    14.11.2022 08:15 - 12:00 Cours PER 21, Room A140
    21.11.2022 08:15 - 12:00 Cours PER 21, Room A140
    28.11.2022 08:15 - 12:00 Cours PER 21, Room A140
    05.12.2022 08:15 - 12:00 Cours PER 21, Room A140
    12.12.2022 08:15 - 12:00 Cours PER 21, Room A140
    19.12.2022 08:15 - 12:00 Cours PER 21, Room A140
  • Assessments methods

    Written exam - SA-2022, Session d'hiver 2023

    Date 13.01.2023 17:00 - 18:30
    Assessments methods By rating
    Descriptions of Exams

    Written exam 90'

    Written exam - SP-2023, Session de rattrapage 2023

    Date 21.08.2023 08:30 - 10:00
    Assessments methods By rating
    Descriptions of Exams

    Written exam 90'

  • Assignment
    Valid for the following curricula:
    BeNeFri - Sciences économiques et sociales
    Version: 2018/SP_V01_SES_BeNeFri
    Course > Master course offering for BeNeFri Students

    Complementary learnings in SES or mobility students
    Version: ens_compl_ses
    Mster course offering for Mobility Students

    Doc - Business Informatics
    Version: 20210713
    Elective courses > Wahlkurse UNIFR

    Doc - Economics
    Version: 2002/SA_V01
    Cours a choix > Wahlkurse UNIFR

    Doc - Economie quantitative
    Version: 2002/SA_V01
    Cours a choix > Wahlkurse UNIFR

    Doc - Management
    Version: 2002/SA_V01
    Cours a choix > Wahlkurse UNIFR

    Doc - Management in Nonprofit-Organisation
    Version: 2002/SA_V01_60ECTS Théoriques
    Elective courses > Wahlkurse UNIFR

    Doc - Sciences sociales
    Version: 2002/SA_V01
    Cours a choix > Wahlkurse UNIFR

    Doc - Sciences économiques et sociales
    Version: 2002/SA_V01
    Cours a choix > Wahlkurse UNIFR

    Ma - Accounting and Finance - 90 ECTS
    Version: 2021/SA_V01
    Course - 72 ECTS > Modules "Data Analytics" and "Audit et Fiscalité": min. 3 courses > DAT: Data Analytics
    Course - 72 ECTS > Minimum 0 / maximum 1 optional master course offered at the University of Fribourg, if 72 ECTS not yet reached in the above modules > SES Master level courses

    Ma - Business Communication : Business Informatics - 90 ECTS
    Version: 2020/SA_V02
    Courses - 60 ECTS > Option Group > Information Management > Cours > Modules management > DAT: Data Analytics

    Ma - Business Communication : Economics - 90 ECTS
    Version: 2021/SA_V02
    Courses > Option Group > Economics > Mandatory courses

    Ma - Business Informatics - 90 ECTS
    Version: 2020/SA-v01
    Classes - min. 45 ECTS > Modules management - max. 15 ECTS > DAT: Data Analytics

    Ma - Communication and Media Research - 90 ECTS
    Version: 2015/SA_V01
    Courses - 60 ECTS > Inter- and Transdisciplinary Perspectives > SES Master level courses

    Ma - Communication and Society - 90 ECTS
    Version: 2021/SA_V03
    Forschungsbereiche > Inter- & Transdisciplinary Perspectives

    Ma - Data Analytics & Economics - 90 ECTS
    Version: 2020/SA-v01
    Courses min 63 ECTS > Mandatory Modules (45 to 63 ECTS) > Module I: Data Analytics (Data)

    Ma - Economics - 90 ECTS
    Version: 2021/SA_V04
    Le choix de l'option se fait par l'inscription au premier cours dans l'une des options possibles. > Business Economics > Elective courses in Business Economics > Wahlkurse der SES-Fakultät - max. 15 ECTS > SES Master level courses
    Le choix de l'option se fait par l'inscription au premier cours dans l'une des options possibles. > Sustainable Development and Social Responsibility > Elective courses in Sustainable Development and Social Responsibility > Elective courses of the SES Faculty - max. 15 ECTS > SES Master level courses
    Le choix de l'option se fait par l'inscription au premier cours dans l'une des options possibles. > Public Economics and Policy > Elective courses in Public Economics and Policy > Elective courses of the SES Faculty - max. 15 ECTS > SES Master level courses
    Le choix de l'option se fait par l'inscription au premier cours dans l'une des options possibles. > Quantitative Economics > Elective courses in Quantitative Economics > Courses from the SES faculty - max. 15 ECTS > SES Master level courses
    Mandatory courses
    Course selection for the Master WITHOUT options > Elective courses > Elective courses of the SES Faculty - max. 15 ECTS > SES Master level courses

    Ma - European Business - 90 ECTS
    Version: 2017/SA_v01
    Courses - 63 ECTS > Additional courses: Any Master courses of the Faculty of Economics and Social Sciences, as well as maximum 9 ECTS from all Master programmes of the University. > SES Master level courses

    Ma - International and European Business - 90 ECTS
    Version: 2021/SA_V01
    Courses > Additional courses: Any Master courses of the Faculty of Economics and Social Sciences, as well as maximum 9 ECTS from all Master programmes of the University. > SES Master level courses
    Courses > Modules > One complete module taken from the following list > Groupe d'élément de validation du Module DAT > DAT: Data Analytics

    Ma - Management - 90 ECTS
    Version: 2021/SA_V01
    Courses: min. 72 ECTS > Elective Courses : max. 18 ECTS > SES Master level courses
    Courses: min. 72 ECTS > Modules - min 54 ECTS > Groupe d'élément de validation du Module DAT > DAT: Data Analytics

    Ma - Management - 90 ECTS [MA]
    Version: 2017/SA_v01
    Courses: min. 63 ECTS > Cours facultatifs : max. 18 ECTS > SES Master level courses

    Ma - Marketing - 90 ECTS
    Version: 2021/SA_V02
    Courses > Elective Master courses from the whole university > SES Master level courses
    Courses > Groupe d'élément de validation du Module DAT > DAT: Data Analytics

    Ma - Public Economics and Public Finance - 90 ECTS
    Version: 2015/SA_V01_MA_VWL_DD
    Cours > Up to 45 ECTS credits must fulfill the conditions required for the specialisation, including the modules 1, 2 and 6 with a min. of 12 ECTS in each. > Module 6: Quantitative Economics

    MiMa - Business Informatics - 30 ECTS
    Version: 2020/SA_V01
    Cours > Modules management > DAT: Data Analytics

    MiMa - Data Analytics - 30 ECTS
    Version: 2020/SA-v01
    À choix 18 crédits ECTS

    MiMa - Economics - 30 ECTS
    Version: 2021/SA_V01
    Mandatory courses > Econometric Methods and Applications

    MiMa - Gestion d'entreprise - 30 ECTS
    Version: 2021/SA_V01
    Elective courses - 30 ECTS > DAT: Data Analytics