Partial differential equations

  • Teaching

    Details

    Faculty Faculty of Science and Medicine
    Domain Mathematics
    Code UE-SMA.04554
    Languages English
    Type of lesson Lecture
    Level Master
    Semester SS-2025

    Title

    French Equations aux dérivées partielles
    German Partielle Differenzialgleichungen
    English Partial differential equations

    Schedules and rooms

    Summary schedule Monday 13:15 - 15:00, Hebdomadaire (Spring semester)
    Tuesday 13:15 - 15:00, Hebdomadaire (Spring semester)
    Contact's hours 56

    Teaching

    Responsibles
    • Nicolussi Golo Sebastiano
    Teachers
    • Nicolussi Golo Sebastiano
    Description

     Stuy of Laplace, Heat and Wave equations; Fourier transform; Sobolev spaces

    Training objectives On successful completion of the course, students will be familiar with essential concepts, facts, methods and lines of reasoning in the field of Partial Differential Equations. They will be able to use the scientific literature in the field and to solve moderately complex problems.
    Comments

    Main Reference:
    Lawrence C. Evans, Partial differential equations, AMS;

    Other References:
    Michael E. Taylor, Partial differential equations I, Basic theory, AMS;
    Fritz John, Partial differential equations, Springer;
     

    Softskills No
    Off field No
    BeNeFri Yes
    Mobility Yes
    UniPop No
  • Dates and rooms
    Date Hour Type of lesson Place
    17.02.2025 13:15 - 15:00 Cours PER 23, Room 0.05
    18.02.2025 13:15 - 15:00 Cours PER 23, Room 0.05
    24.02.2025 13:15 - 15:00 Cours PER 23, Room 0.05
    25.02.2025 13:15 - 15:00 Cours PER 23, Room 0.05
    03.03.2025 13:15 - 15:00 Cours PER 23, Room 0.05
    04.03.2025 13:15 - 15:00 Cours PER 23, Room 0.05
    10.03.2025 13:15 - 15:00 Cours PER 23, Room 0.05
    11.03.2025 13:15 - 15:00 Cours PER 23, Room 0.05
    17.03.2025 13:15 - 15:00 Cours PER 23, Room 0.05
    18.03.2025 13:15 - 15:00 Cours PER 23, Room 0.05
    24.03.2025 13:15 - 15:00 Cours PER 23, Room 0.05
    25.03.2025 13:15 - 15:00 Cours PER 23, Room 0.05
    31.03.2025 13:15 - 15:00 Cours PER 23, Room 0.05
    01.04.2025 13:15 - 15:00 Cours PER 23, Room 0.05
    07.04.2025 13:15 - 15:00 Cours PER 23, Room 0.05
    08.04.2025 13:15 - 15:00 Cours PER 23, Room 0.05
    14.04.2025 13:15 - 15:00 Cours PER 23, Room 0.05
    15.04.2025 13:15 - 15:00 Cours PER 23, Room 0.05
    28.04.2025 13:15 - 15:00 Cours PER 23, Room 0.05
    29.04.2025 13:15 - 15:00 Cours PER 23, Room 0.05
    05.05.2025 13:15 - 15:00 Cours PER 23, Room 0.05
    06.05.2025 13:15 - 15:00 Cours PER 23, Room 0.05
    12.05.2025 13:15 - 15:00 Cours PER 23, Room 0.05
    13.05.2025 13:15 - 15:00 Cours PER 23, Room 0.05
    19.05.2025 13:15 - 15:00 Cours PER 23, Room 0.05
    20.05.2025 13:15 - 15:00 Cours PER 23, Room 0.05
    26.05.2025 13:15 - 15:00 Cours PER 23, Room 0.05
    27.05.2025 13:15 - 15:00 Cours PER 23, Room 0.05
  • Assessments methods

    Oral exam - SS-2025, Autumn Session 2025

    Assessments methods By rating
    Descriptions of Exams examen oral
  • Assignment
    Valid for the following curricula:
    Additional Courses in Sciences
    Version: ens_compl_sciences
    Paquet indépendant des branches > Specialized courses in Mathematics (Master level)

    Additional programme requirements for PhD studies [PRE-DOC]
    Version: 2020_1/v_01
    Additional programme requirements for PhD studies (Faculty of Science and Medicine) > Specialized courses in Mathematics (Master level)

    MSc in Mathematics [MA] 90
    Version: 2022_1/V_01
    MSc in Mathematics, lectures and seminars (from AS2020 on) > MSc-MA, lectures (from AS2018 on)

    Mathematics [3e cycle]
    Version: 2024_2/V_01
    Continuing education > Specialized courses in Mathematics (Master level)

    Mathematics [POST-DOC]
    Version: 2015_1/V_01
    Continuing education > Specialized courses in Mathematics (Master level)