Analysis III (Vorlesung mit Übungen)

  • Teaching

    Details

    Faculty Faculty of Science and Medicine
    Domain Mathematics
    Code UE-SMA.02131
    Languages German
    Type of lesson Exercise
    Lecture
    Level Bachelor
    Semester SA-2022

    Title

    French Analyse III (cours avec exercices)
    German Analysis III (Vorlesung mit Übungen)
    English Analysis III (lecture with exercises)

    Schedules and rooms

    Summary schedule Tuesday 13:15 - 15:00, Hebdomadaire, PER 08, Room 2.52 (Autumn semester)
    Thursday 10:15 - 12:00, Hebdomadaire, PER 08, Room 2.52 (Autumn semester)
    Friday 08:15 - 10:00, Hebdomadaire, PER 08, Room 2.73 (Autumn semester)
    Struct. of the schedule 2x2h de cours et 2h d'exercices par semaine
    Contact's hours 84

    Teaching

    Responsibles
    Teachers
    Description Vektorfelder, Differentialgleichungen, Pfaffsche Formen und Kurvenintegrale, holomorphe Funktionen, Lebesgue-Integral
    Training objectives On successful completion of the courses Analysis III and IV, students will be familiar with the language, essential facts and methods of real analysis, vector analysis, holomorphic functions, ordinary differential equations, conformal mapping, harmonic functions and the Dirichlet problem. They will be able to use this knowledge to plan, structure and perform calculations, and to employ, evaluate and discover lines of abstract reasoning necessary for the solution of moderately complex problems. They will be able to organize, explain and present their results in a professionally acceptable manner.
    Comments

    This course will be given using Moodle.

    Softskills
    No
    Off field
    No
    BeNeFri
    Yes
    Mobility
    Yes
    UniPop
    No

    Documents

    Bibliography

    https://homeweb.unifr.ch/ghanaatp/pub/analysis34-2022.html

  • Dates and rooms
    Date Hour Type of lesson Place
    20.09.2022 13:15 - 15:00 Cours PER 08, Room 2.52
    22.09.2022 10:15 - 12:00 Exercice PER 08, Room 2.52
    23.09.2022 08:15 - 10:00 Cours PER 08, Room 2.73
    27.09.2022 13:15 - 15:00 Cours PER 08, Room 2.52
    29.09.2022 10:15 - 12:00 Exercice PER 08, Room 2.52
    30.09.2022 08:15 - 10:00 Cours PER 08, Room 2.73
    04.10.2022 13:15 - 15:00 Cours PER 08, Room 2.52
    06.10.2022 10:15 - 12:00 Exercice PER 08, Room 2.52
    07.10.2022 08:15 - 10:00 Cours PER 08, Room 2.73
    11.10.2022 13:15 - 15:00 Cours PER 08, Room 2.52
    13.10.2022 10:15 - 12:00 Exercice PER 08, Room 2.52
    14.10.2022 08:15 - 10:00 Cours PER 08, Room 2.73
    18.10.2022 13:15 - 15:00 Cours PER 08, Room 2.52
    20.10.2022 10:15 - 12:00 Exercice PER 08, Room 2.52
    21.10.2022 08:15 - 10:00 Cours PER 08, Room 2.73
    25.10.2022 13:15 - 15:00 Cours PER 08, Room 2.52
    27.10.2022 10:15 - 12:00 Exercice PER 08, Room 2.52
    28.10.2022 08:15 - 10:00 Cours PER 08, Room 2.73
    03.11.2022 10:15 - 12:00 Exercice PER 08, Room 2.52
    04.11.2022 08:15 - 10:00 Cours PER 08, Room 2.73
    08.11.2022 13:15 - 15:00 Cours PER 08, Room 2.52
    10.11.2022 10:15 - 12:00 Exercice PER 08, Room 2.52
    11.11.2022 08:15 - 10:00 Cours PER 08, Room 2.73
    17.11.2022 10:15 - 12:00 Exercice PER 08, Room 2.52
    18.11.2022 08:15 - 10:00 Cours PER 08, Room 2.73
    22.11.2022 13:15 - 15:00 Cours PER 08, Room 2.52
    24.11.2022 10:15 - 12:00 Exercice PER 08, Room 2.52
    25.11.2022 08:15 - 10:00 Cours PER 08, Room 2.73
    29.11.2022 13:15 - 15:00 Cours PER 08, Room 2.52
    01.12.2022 10:15 - 12:00 Exercice PER 08, Room 2.52
    02.12.2022 08:15 - 10:00 Cours PER 08, Room 2.73
    06.12.2022 13:15 - 15:00 Cours PER 08, Room 2.52
    09.12.2022 08:15 - 10:00 Cours PER 08, Room 2.73
    13.12.2022 13:15 - 15:00 Cours PER 08, Room 2.52
    15.12.2022 10:15 - 12:00 Exercice PER 08, Room 2.52
    16.12.2022 08:15 - 10:00 Cours PER 08, Room 2.73
    20.12.2022 13:15 - 15:00 Cours PER 08, Room 2.52
    22.12.2022 10:15 - 12:00 Exercice PER 08, Room 2.52
    23.12.2022 08:15 - 10:00 Cours PER 08, Room 2.73
  • Assessments methods

    Oral exam

    Assessments methods By rating
    Descriptions of Exams mündliche Prüfung
  • Assignment
    Valid for the following curricula:
    Additional Courses in Sciences
    Version: ens_compl_sciences
    Paquet indépendant des branches > Advanced courses in Mathematics (Bachelor level)

    Additional Programme Requirements to the MSc in Computer Science [MA]
    Version: 2022_1/V_01
    Supplement to the MSc in Computer science > Advanced courses in Mathematics (Bachelor level)

    Additional Programme Requirements to the MSc in Mathematics [MA]
    Version: 2022_1/V_01
    Supplement to the MSc in Mathematics > Advanced courses in Mathematics (Bachelor level)

    Additional TDHSE programme in Mathematics
    Version: 2022_1/V_01
    Additional TDHSE Programme Requirements for Mathematics 60 or +30 > Programme 60 or +30 > Additional Programme Requirements to Mathematics +30 > Additional TDHSE programme for Mathematics +30 (from AS2018 on)
    Additional TDHSE Programme Requirements for Mathematics 60 or +30 > Programme 60 or +30 > Additional Programme Requirements to Mathematics 60 > Additional TDHSE programme for Mathematics 60 (from AS2018 on)

    Mathematics 120
    Version: 2022_1/V_01
    BSc in Mathematics, Major, 2nd-3rd year > Math. br. principale, 2ème et 3ème années, oblig.

    Mathematics +30 [MA] 30
    Version: 2022_1/V_01
    Minor in Mathematics +30 (MATH+30 for 90 ECTS) > Mathematics +30, Module A (from AS2020 on)

    Mathematics 60 (MATH 60)
    Version: 2022_1/V_01
    Mathematics (MATH 60), minor 60 (from AS2020 on) > Mathematics, minor MATH60, elective courses (from AS2018 on)

    Mathematics [3e cycle]
    Version: 2015_1/V_01
    Continuing education > Advanced courses in Mathematics (Bachelor level)

    Mathematics [POST-DOC]
    Version: 2015_1/V_01
    Continuing education > Advanced courses in Mathematics (Bachelor level)

    Physics 150
    Version: 2022_1/V_01
    BSc in Physics, Major, 2nd-3rd year > Physics, Major 2nd year, mandatory TU (from AS2020)

    Pre-Master-Programme to the MSc in Mathematics [PRE-MA]
    Version: 2022_1/V_01
    Prerequisite to the MSc in Mathematics > Advanced courses in Mathematics (Bachelor level)