Big Data Methods
-
Teaching
Details
Faculty Faculty of Management, Economics and Social Sciences Domain Economics Code UE-EEP.00142 Languages English Type of lesson Lecture
Level Master Semester SP-2023 Schedules and rooms
Summary schedule Wednesday 17:15 - 20:00, Hebdomadaire (Spring semester)
Hours per week 3 Teaching
Teachers - Huber Martin
Assistants - Stoller Andreas
Description This course discusses quantitative methods for analyzing "big data", i.e. data sets that have either many observations or many variables or both. Firstly, the course covers flexible or "nonparametric" econometric methods for data with many observations, where "flexible" implies that the researcher aims at imposing as few behavioral assumptions as possible. These methods are often more accurate than standard approaches such as OLS, which assumes a linear relation between the explanatory and dependent variables that might not hold in reality.
Secondly, the course discusses so-called "machine learning" approaches to deal with data that include many variables, in order to optimally exploit the vast information provided in variables. Separating relevant from irrelevant information is key in a world with ever increasing data availability.
The following topics will be covered in the course:
* Flexible (non/semiparametric) vs. parametric statistical (or econometric) models
* Nonparametric regression methods: Kernel regression, series approximation, smoothing splines
* Methods for choosing smoothing and bandwidth parameters
* Testing: nonparametric specification and distribution tests
* Machine learning for prediction and causal analysis based on shrinkage and variable selection: Lasso and ridge regression
* Machine learning for prediction and causal analysis based on decision trees, bagged trees, and random forests
* Introduction to further machine learners: boosting, support vector machines, neural nets, and ensemble methods
The lecture is accompanied by 4 PC sessions based on the software package "R", in which the methods are applied to empirical data.Training objectives This course provides students with statistical methods for analyzing "big data" (data sets with many observations and/or variables) that are often more accurate than "standard" tools (such as OLS) hinging on rather restrictive behavioral assumptions. Students should understand the intuition of and differences between the various methods (but are not required to formally reproduce tedious proofs) and how to practically implement them in the statistical software package “R” in order to investigate real world data.
Condition of access Knowledge of introductory econometrics/statistics
Softskills Yes Softskills seats 10 Off field No BeNeFri Yes Mobility Yes UniPop No Documents
Bibliography J. Racine (2008): “Nonparametric Econometrics: A Primer”, Foundations and Trends in Econometrics, Vol. 3, No 1, pp. 1–88. https://www.nowpublishers.com/article/Details/ECO-009
G. James, D. Witten, T. Hastie, and R. Tibshirani (2013): An Introduction to Statistical Learning with Applications in R, Springer, New York. http://www-bcf.usc.edu/~gareth/ISL/
Further references are provided on the moodle site of the course. -
Dates and rooms
Date Hour Type of lesson Place 22.02.2023 17:15 - 20:00 Cours PER 21, Room B130 01.03.2023 17:15 - 20:00 Cours PER 21, Room B130 08.03.2023 17:15 - 20:00 Cours PER 21, Room B130 15.03.2023 17:15 - 20:00 Cours PER 21, Room B130 22.03.2023 17:15 - 20:00 Cours PER 21, Room B130 29.03.2023 17:15 - 20:00 Cours PER 21, Room B130 05.04.2023 17:15 - 20:00 Cours PER 21, Room B130 19.04.2023 17:15 - 20:00 Cours PER 21, Room B130 26.04.2023 17:15 - 20:00 Cours PER 21, Room B130 03.05.2023 17:15 - 20:00 Cours PER 21, Room B130 10.05.2023 17:15 - 20:00 Cours PER 21, Room B130 17.05.2023 17:15 - 20:00 Cours PER 21, Room B130 24.05.2023 17:15 - 20:00 Cours PER 21, Room B130 31.05.2023 17:15 - 20:00 Cours PER 21, Room B130 -
Assessments methods
Written exam - SP-2023, Session d'été 2023
Date 09.06.2023 17:00 - 18:30 Assessments methods By rating Descriptions of Exams Examination time: 90 Min. and participation in PC labs
Written exam - SP-2023, Session de rattrapage 2023
Date 01.09.2023 14:00 - 15:30 Assessments methods By rating Descriptions of Exams Examination time: 90 Min. and participation in PC labs
-
Assignment
Valid for the following curricula: BeNeFri - Sciences économiques et sociales
Version: 2018/SP_V01_SES_BeNeFri
Course > Master course offering for BeNeFri Students
Complementary learnings in SES or mobility students
Version: ens_compl_ses
Mster course offering for Mobility Students
Doc - Business Informatics
Version: 20210713
Elective courses > Wahlkurse UNIFR
Doc - Economics
Version: 2002/SA_V01
Cours a choix > Wahlkurse UNIFR
Doc - Economie quantitative
Version: 2002/SA_V01
Cours a choix > Wahlkurse UNIFR
Doc - Management
Version: 2002/SA_V01
Cours a choix > Wahlkurse UNIFR
Doc - Management in Nonprofit-Organisation
Version: 2002/SA_V01_60ECTS Théoriques
Elective courses > Wahlkurse UNIFR
Doc - Sciences sociales
Version: 2002/SA_V01
Cours a choix > Wahlkurse UNIFR
Doc - Sciences économiques et sociales
Version: 2002/SA_V01
Cours a choix > Wahlkurse UNIFR
European Studies 30 [MA]
Version: SA14_MA_PS_bil_v01
Enjeux économiques, politiques et sociaux en Europe > Modul "Economie" (Option A)
Ma - Accounting and Finance - 90 ECTS
Version: 2021/SA_V01
Course - 72 ECTS > Minimum 0 / maximum 1 optional master course offered at the University of Fribourg, if 72 ECTS not yet reached in the above modules > SES Master level coursesCourse - 72 ECTS > Modules "Data Analytics" and "Audit et Fiscalité": min. 3 courses > DAT: Data Analytics
Ma - Business Communication - Management - 90 ECTS
Version: 2022/SA_V02
Courses - 60 ECTS > Chosen Option > Management > 30 ECTS parmi les modules : > DIG: Managing Digitalisation
Ma - Business Communication : Business Informatics - 90 ECTS
Version: 2020/SA_V02
Courses - 60 ECTS > Option Group > Information Management > Cours > Modules management > DIG: Managing DigitalisationCourses - 60 ECTS > Option Group > Information Management > Cours > Modules management > DAT: Data Analytics
Ma - Business Communication : Economics - 90 ECTS
Version: 2021/SA_V02
Courses > Option Group > Economics > Elective courses - 18 ECTS > Kurse der Module Master Volkswirtschaftslehre, ohne die Module 4 und 9
Ma - Business Informatics - 90 ECTS
Version: 2020/SA-v01
Classes - min. 45 ECTS > Modules management - max. 15 ECTS > DIG: Managing DigitalisationClasses - min. 45 ECTS > Modules management - max. 15 ECTS > DAT: Data Analytics
Ma - Communication and Media Research - 90 ECTS
Version: 2015/SA_V01
Courses - 60 ECTS > Inter- and Transdisciplinary Perspectives > SES Master level courses
Ma - Communication and Society - 90 ECTS
Version: 2021/SA_V03
Forschungsbereiche > Inter- & Transdisciplinary Perspectives
Ma - Data Analytics & Economics - 90 ECTS
Version: 2020/SA-v01
Courses min 63 ECTS > Mandatory Modules (45 to 63 ECTS) > Module I: Data Analytics (Data)
Ma - Economics - 90 ECTS
Version: 2021/SA_V04
Le choix de l'option se fait par l'inscription au premier cours dans l'une des options possibles. > Quantitative Economics > Elective courses in Quantitative Economics > Courses from the SES faculty - max. 15 ECTS > SES Master level coursesLe choix de l'option se fait par l'inscription au premier cours dans l'une des options possibles. > Quantitative Economics > Elective courses in Quantitative EconomicsLe choix de l'option se fait par l'inscription au premier cours dans l'une des options possibles. > Quantitative EconomicsLe choix de l'option se fait par l'inscription au premier cours dans l'une des options possibles. > Sustainable Development and Social Responsibility > Elective courses in Sustainable Development and Social Responsibility > Ma - Elective courses in Political EconomyLe choix de l'option se fait par l'inscription au premier cours dans l'une des options possibles. > Sustainable Development and Social Responsibility > Elective courses in Sustainable Development and Social Responsibility > Elective courses of the SES Faculty - max. 15 ECTS > SES Master level coursesLe choix de l'option se fait par l'inscription au premier cours dans l'une des options possibles. > Public Economics and Policy > Elective courses in Public Economics and Policy > Ma - Elective courses in Political EconomyLe choix de l'option se fait par l'inscription au premier cours dans l'une des options possibles. > Public Economics and Policy > Elective courses in Public Economics and Policy > Elective courses of the SES Faculty - max. 15 ECTS > SES Master level coursesLe choix de l'option se fait par l'inscription au premier cours dans l'une des options possibles. > Business Economics > Elective courses in Business Economics > Ma - Elective courses in Political EconomyLe choix de l'option se fait par l'inscription au premier cours dans l'une des options possibles. > Business Economics > Elective courses in Business Economics > Wahlkurse der SES-Fakultät - max. 15 ECTS > SES Master level coursesCourse selection for the Master WITHOUT options > Elective courses > Ma - Elective courses in Political EconomyCourse selection for the Master WITHOUT options > Elective courses > Elective courses of the SES Faculty - max. 15 ECTS > SES Master level courses
Ma - European Business - 90 ECTS
Version: 2017/SA_v01
Courses - 63 ECTS > Additional courses: Any Master courses of the Faculty of Economics and Social Sciences, as well as maximum 9 ECTS from all Master programmes of the University. > SES Master level courses
Ma - Information Management - 90 ECTS
Version: 2019/SA_V01
Classes - min. 45 ECTS > Modules management - max. 15 ECTS > DIG: Managing Digitalisation
Ma - International and European Business - 90 ECTS
Version: 2021/SA_V01
Courses > Modules > One complete module taken from the following list > Groupe d'élément de validation du Module DAT > DAT: Data AnalyticsCourses > Modules > One complete module taken from the following list > Groupe d'élément de validation du Module DIG > DIG: Managing DigitalisationCourses > Additional courses: Any Master courses of the Faculty of Economics and Social Sciences, as well as maximum 9 ECTS from all Master programmes of the University. > SES Master level courses
Ma - Management - 90 ECTS
Version: 2021/SA_V01
Courses: min. 72 ECTS > Elective Courses : max. 18 ECTS > SES Master level coursesCourses: min. 72 ECTS > Modules - min 54 ECTS > Groupe d'élément de validation du Module DAT > DAT: Data AnalyticsCourses: min. 72 ECTS > Modules - min 54 ECTS > Groupe d'élément de validation du Module DIG > DIG: Managing Digitalisation
Ma - Management - 90 ECTS [MA]
Version: 2017/SA_v01
Courses: min. 63 ECTS > Cours facultatifs : max. 18 ECTS > SES Master level courses
Ma - Marketing - 90 ECTS
Version: 2021/SA_V02
Courses > Groupe d'élément de validation du Module DIG > DIG: Managing DigitalisationCourses > Groupe d'élément de validation du Module DAT > DAT: Data AnalyticsCourses > Elective Master courses from the whole university > SES Master level courses
Ma - Public Economics and Public Finance - 90 ECTS
Version: 2015/SA_V01_MA_VWL_DD
Cours > Up to 45 ECTS credits must fulfill the conditions required for the specialisation, including the modules 1, 2 and 6 with a min. of 12 ECTS in each. > Module 6: Quantitative Economics
MiMa - Business Informatics - 30 ECTS
Version: 2020/SA_V01
Cours > Modules management > DIG: Managing DigitalisationCours > Modules management > DAT: Data Analytics
MiMa - Data Analytics - 30 ECTS
Version: 2020/SA-v01
À choix 18 crédits ECTS
MiMa - Economics - 30 ECTS
Version: 2021/SA_V01
Elective courses > Ma - Elective courses in Political Economy
MiMa - Gestion d'entreprise - 30 ECTS
Version: 2021/SA_V01
Elective courses - 30 ECTS > DIG: Managing DigitalisationElective courses - 30 ECTS > DAT: Data Analytics