A. Puoti publications

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.


(download as a pdf)




Zanetti S & Puoti A (2016). Casein: From Wine Fining to Allergenic Food Regulations. Chap 5 in "Caseins: Properties, Functions and Health Implications" ed. Mendoza L, Nova Science Publishers Inc. Hauppauge NY (USA) ISBN: 978-1-63485-327-9, pp 103-128.




Fru MF & Puoti A (2014). Acquired resistance to monepantel in C. elegans - what about parasitic nematodes? Worm (online, 3:e29738). 

Rufener L, Bedoni N, Baur R, Rey S, Glauser DA, Bouvier J, Beech R, Sigel E & Puoti A (2013). acr-23 Encodes a monepantel-sensitive channel in Caenorhabditis elegans. PLoS Pathogens 9(8) e1003524. doi:10.1371/journal.ppat.1003524.




Zanetti S & Puoti A (2013). Sex determination in the Caenorhabditis elegans germline. Advances in Experimental Medicine and Biology 757: 41-69.

Zanetti S, Grinschgl S, Meola M, Belfiore M, Rey S, Bianchi P & Puoti A (2012). The sperm/oocyte switch in the C. elegans hermaphrodite is controlled through steady-state levels of the fem-3 mRNA. RNA 18:1385-1394.




Zanetti S, Meola M, Bochud A & Puoti A (2011). Role of the C. elegans protein MOG-2 in sex determination. meiosis, and splice site selection.  Developmental Biology 354: 232-241.

Passannante M, Marti CO, Pfefferli C, Moroni P, Kaeser-Pebernard S, Puoti A, Hunziker P, Wicky C & Müller F (2010). Different Mi-2 complexes for various developmental functions in Caenorhabditis elegans. PLoS ONE 5(10): e13681. 




Kasturi P, Zanetti S, Passannante M,  Saudan Z, Müller F & Puoti A (2010). The C. elegans sex determination protein MOG-3 functions in meiosis and binds to the CSL co-repressor CIR-1. Developmental Biology 344: 593-602.




Minasaki R, Puoti A & Streit A (2009) The DEAD-box protein MEL-46 is required in the germ line of the nematode Caenorhabditis elegans. BMC Developmental Biology 9: #35




Takacs-Vellai K, Vellai T, Puoti A, Passannante M, Wicky C, Streit A, Kovacs AL & Müller F (2005).  Inactivation of the autophagy gene bec-1 triggers apoptotic cell death in C. elegansCurr. Biol. 15: 1513-1517.




Belfiore M, Pugnale P, Saudan Z  Puoti A (2004) Roles of the C. elegans cyclophilin-like protein MOG-6 in MEP-1 binding and germline fates. Development 131: 2935-2945. 




Belfiore M, Mathies L, Pugnale P, Moulder G, Barstead R, Kimble J & A. Puoti A (2002) The MEP-1 Zn-finger protein acts with MOG DEAH-box proteins to control gene expression via the fem-3 3'UTR in C. elegansRNA 8: 725-739.




Puoti A, Pugnale P, Belfiore M,  Schläppi AC & Saudan Z (2001) RNA and Sex Determination in C. elegansEMBO Reports 2: 899-904.


2000 and before


Puoti A & Kimble J (2000)  The hermaphrodite sperm/oocyte switch requires the C. elegans homologs of PRP2 and PRP22. Proc. Natl. Acad. Sci. (USA) 97: 3276-3281.

Puoti A &  Kimble J (1999) The Caenorhabditis elegans sex determination gene mog-1 encodes a member of the DEAH-box protein family. Mol. Cell. Biol. 19: 2189-2197.

Mazroui R, Puoti A & Krämer A (1999) Splicing factor SF1 from Drosophila and Caenorhabditis: Presence of an N-terminal RS domain and requirement for viability. RNA 5: 1615-1631.

Zhang B, Gallegos M, Puoti A, Durkin E, Fields S, Kimble J & Wickens MP (1997) A conserved RNA binding protein that regulates sexual fates in the Caenorhabditis elegans germ line. Nature 390: 477-484.

Puoti A, Gallegos M, Zhang B, Wickens MP & Kimble J (1997) Controls of cell fate and pattern by 3'untranslated regions: the Caenorhabditis elegans sperm/oocyte decision. Cold Spring Harbor Symp. Quant. Biol. 62: 19-24.

May A, Puoti A, Gaeggeler HP, Horisberger JD & Rossier BC (1997) Early effect of aldosterone on the rate of synthesis of the epithelial sodium channel alpha subunit in A6 renal cells. J. Am. Soc. Nephrology 8: 1813-1832.

Beguin P, Wang XY, Firsov D, Puoti A, Claeys D, Horisberger JD & Geering K (1997). EMBO J 16: 4250-4260.

Puoti A, May A, Rossier BC & Horisberger JD (1997). Novel isoforms of the beta and gamma subunits of the Xenopus epithelial Na channel provide information about the amiloride binding site and extracellular sodium sensing. PNAS 94: 5949-5954.

May A, Puoti A & Rossier BC (1996). Transcriptional and translational regulation of the epithelial sodium channel by aldosterone in A6 kidney cells. Kidney Int. 50: 1783.

May A, Puoti A, Gaeggeler HP & Rossier BC (1996). Effect of aldosterone on mRNA abundance and rate of protein synthesis of the epithelial sodium channel in A6 kidney cell line. J. Am. Soc. Nephrology 7: AD190.

Puoti A, May A, Horisberger JD & Rossier BC (1995). The amiloride-sensitive epithelial Na-channel (ENAC) of Xenopus-leavis - Identifiocation of 2 novel genes, BETA-2 and GAMMA-2, expressed in kidney and lung. J. Am. Soc. Nephrology 6: 1028.

Sipos G, Puoti A & Conzelmenn A (1995). Biosynthesis of the side-chain of yeast glycosylphosphatidylinositol anchors is operated by novel mannosyltransferases located in the endoplasmic-reticulm and the Golgi-apparatus.  J Biol Chem. 270: 19709-19715.

Puoti A, May A, Canessa CM, Horisberger JD, Schild L & Rossier BC (1995).The highly selective low-conductance eoithelial Na channel of Xenopus-laevis A6 kidney-cells. Am. J. Physiol-Cell. Physiol. 269: C188-C197.

Horisberger JD, Puoti A, Canessa C & Rossier BC (1994). The amiloride receptor. Clinical Investigator 72: 695-697.

Puoti A, May A, Horisberger JD & Rossier BC (1994). Molecular-cloning and functional-analysis of the highly selective epithelial sodium-channel of Xenopus-laevis. J. Am. Soc. Nephrology 5: 297.

Sipos G, Puoti A & Conzelmenn A (1994). Glycosylphosphatidylinositol membrane anchors in Saccharomyces cerevisiae - absence of ceramides from complete precursor glycolipids. EMBO J 13: 2789-2796. 

Puoti A & Conzelmann A (1993). Characterization of abnormal free glycophosphatidylinositols accumulating in mutant lymphoma cells of class-B class-E, Class-F, and class-H. J Biol. Chem. 268: 7215-7224.

Puoti A & Conzelmann A (1992). Structural characterization of free glycolipids which are potential precursors for glycosylphosphatidylinositol anchors in mouse thyoma cell-lines. J. Biol. Chem. 267: 22673-22680.

Conzelmann A, Puoti A, Lester RL & Desponds C (1992). 2 Differenet types of lipid moieties are present in glycosylphosphatidylinositol-anchored membrane-proteins of Saccharomyces cerevisiae.  EMBO J 11: 157-166.

Puoti A, Desponds C, Fankhauser C & Conzelmann A (1991). Characterization of a glycolipid intermediate in the biosynthesis of glycophosphatidylinositol anchors accumulating in the THY-negative lymphoma line STA-B. J Biol. Chem. 266: 21051-21056.

Conzelmann A, Fankhauser C, Puoti A & Desponds C (1991). Biosynthesis of glycophosphoinosiztol anchors in Saccharonmyces-cerevisiaeCell Biol Int Reports 15: 863-873.

Puoti A, Desponds C & Conzelmann A (1991). Biosyntheis of mannosylinositolphosphoceramide in Saccharomyces-cerevisiae is dependent on genes-controlling the flow of secretory vesicles from the endoplasmic-reticulum to the Golgi. J. Cell Biol. 113: 515-525.