Theory and numerics of ordered and disordered optical materials

  • Unterricht

    Details

    Fakultät Math.-Nat. und Med. Fakultät
    Bereich Physik
    Code UE-SPH.04741
    Sprachen Englisch
    Art der Unterrichtseinheit Vorlesung
    Kursus Master
    Semester SP-2022

    Zeitplan und Räume

    Vorlesungszeiten Dienstag 15:15 - 17:00, Wöchentlich
    Strukturpläne 2 hs hebdomadaires durant 14 semaines
    Kontaktstunden 28

    Unterricht

    Verantwortliche
    Dozenten-innen
    Beschreibung

    Abstract
    This course introduces both ordered and disordered optical materials, the theory underlying its fundamental optical properties and the numerical tools commonly used in its research. The main goal being to familiarize students with the state of the art in this field.

    Subjects
        • Elements of light scattering: Introduction to the basics of light scattering. Scattering by small particles. Scattering by spherical objects, an introduction to the Mie theory. Resonances, field distributions, near-field effects and its nanophotonics implications. Numerical codes for the Mie theory.
        • Photonic crystals (PCs): Photonic band structure (allowed and forbidden bands), light emission and transport in PCs, Density of states (DOS) and local density of states (LDOS) in PC's.
        • Numerical band structure determination: Planewave expansion method. Introduction to MPB (http://ab-initio.mit.edu/wiki/index.php/Main_Page) and hands-on examples.
        • Maxwell’s equation in the time domain: Finite difference Time Domain method. Numerical stability. Boundary conditions, common approaches. Introduction to MEEP (http://ab-initio.mit.edu/wiki/index.php?title=Meep) and hands-on examples.
        • Maxwell’s equations in the frequency domain: Extending the Mie theory; T-Matrix and multiple multipole expansions. The discrete dipole and coupled dipoles approximations. Discussion of other methods. Introduction to available software (DDSCAT, MSTM, etc).
        • Disorder in photonics: A gentle introduction to the radiative transfer equation. The diffusion approximation and relevant transport parameters. 
        • Optical Forces: Introduction to optical tweezers and interactions induced by random optical fields. Theory and numerics.

    Lernziele

    The objective of the course is to develop an insight on classical and advanced subjects in light transport. Students shall be familiar with the standard theoretical approaches to treat classical light-matter interaction in complex systems such as Mie scattering and its generalizations as well as the physics of photonic crystals (band theory) and the physics of disordered systems (light diffusion). On the other hand, some of the most widely adopted numerical approaches to solve electromagnetic radiation-matter interactions shall be presented as well as some freely avaiable software packages.
    In a nutshell, students will be able to practically solve many common problems found in modern photonics and understand the underlying physics.

    Bemerkungen

    Scientific programming skills are welcomed but not strictly necessary. 
    Having a reasonable understanding of basic electromagnetism is highly recommended.
    The evaluation is  pass/fail and it is based on the completion of a small project of light scattering to choose among several problems. Projects will be presented early in the course so that they can have a clear idea of the expected work load.

    Soft Skills
    Nein
    ausserhalb des Bereichs
    Nein
    BeNeFri
    Ja
    Mobilität
    Ja
    UniPop
    Nein

    Dokument

    Bibliographie

    Class notes and slides will be used together with some selected chapters of different books and relevant articles. In particular some parts of the following books might be useful.
        • “Light Scattering by Small Particles”, H.C. van de Hulst.
        • “Absorption and Scattering of Light by Small Particles”,  C.F Bohren, and D.R Huffman.
        • “Photonic Crystals: Molding the Flow of Light”, J.D. Joannopoulos, S.G. Johnson, J.N. Winn, and R.D Meade.
        • “Understanding the FDTD Method”, J. B. Schneider. Free on-line www.eecs.wsu.edu/~schneidj/ufdtd, 2010.
        • “Scattering of electromagnetic waves: numerical simulations”, L. Tsang, J. A. Kong, K-H Ding, and C.O. Ao.
        • “Principles of diffuse light propagation”, J. Ripoll.
        • “Optical Tweezers: Principles and Appilactions”. P. H. Jones, O. M. Maragó, and G. Volpe.

  • Einzeltermine und Räume
    Datum Zeit Art der Unterrichtseinheit Ort
    22.02.2022 15:15 - 17:00 Kurs PER 08, Raum 0.51
    01.03.2022 15:15 - 17:00 Kurs PER 08, Raum 0.51
    08.03.2022 15:15 - 17:00 Kurs PER 08, Raum 0.51
    15.03.2022 15:15 - 17:00 Kurs PER 08, Raum 0.51
    22.03.2022 15:15 - 17:00 Kurs PER 08, Raum 0.51
    29.03.2022 15:15 - 17:00 Kurs PER 08, Raum 0.51
    05.04.2022 15:15 - 17:00 Kurs PER 08, Raum 0.51
    12.04.2022 15:15 - 17:00 Kurs PER 08, Raum 0.51
    26.04.2022 15:15 - 17:00 Kurs PER 08, Raum 0.51
    03.05.2022 15:15 - 17:00 Kurs PER 08, Raum 0.51
    10.05.2022 15:15 - 17:00 Kurs PER 08, Raum 0.51
    17.05.2022 15:15 - 17:00 Kurs PER 08, Raum 0.51
    24.05.2022 15:15 - 17:00 Kurs PER 08, Raum 0.51
    31.05.2022 15:15 - 17:00 Kurs PER 08, Raum 0.51
  • Leistungskontrolle

    Bericht

    Bewertungsmodus Nach bestanden/nicht bestanden
    Beschreibung

    Presentation of a project at the end of the course.

  • Zuordnung
    Zählt für die folgenden Studienpläne:
    Ergänzende Lehrveranstaltungen in Naturwissenschaften
    Version: ens_compl_sciences
    Paquet indépendant des branches > UE für Vertiefungsstudium in Physik (Niveau Master)

    MSc in Physik [MA] 90
    Version: 2022_1/V_01
    MSc in Physik, Vorlesungen, Seminare und Projekte (ab HS2018) > MSc in Physik, Physik UE zur Wahl (ab HS2020)

    Physik +30 [MA] 30
    Version: 2022_1/V_01
    Zusatzfach in Physik +30 (PHYS+30 für 90 ECTS) > Physik PHYS+30, Zusatzfach, UE zur Wahl II (ab HS2020)

    Physik [3e cycle]
    Version: 2015_1/V_01
    Weiterbildung > UE für Vertiefungsstudium in Physik (Niveau Master)

    Physik [POST-DOC]
    Version: 2015_1/V_01
    Weiterbildung > UE für Vertiefungsstudium in Physik (Niveau Master)

    Zusatz LDM in Physik
    Version: 2022_1/V_01
    Zusatzfach LDS für Physik 60 oder +30 > Programm 60 oder +30 > Zusatz zum Programm Physik +30 > Physik PHYS+30, Zusatzfach, UE zur Wahl II (ab HS2020)

    Zusatz zum Doktorat [PRE-DOC]
    Version: 2020_1/v_01
    Zusatz zum Doktorat (Math.-Nat. und Med. Fakultät) > UE für Vertiefungsstudium in Physik (Niveau Master)