Theory and numerics of ordered and disordered optical materials

  • Enseignement

    Détails

    Faculté Faculté des sciences et de médecine
    Domaine Physique
    Code UE-SPH.04741
    Langues Anglais
    Type d'enseignement Cours
    Cursus Master
    Semestre(s) SP-2022

    Horaires et salles

    Horaire résumé Mardi 15:15 - 17:00, Hebdomadaire
    Struct. des horaires 2 hs hebdomadaires durant 14 semaines
    Heures de contact 28

    Enseignement

    Responsables
    Enseignants
    Description

    Abstract
    This course introduces both ordered and disordered optical materials, the theory underlying its fundamental optical properties and the numerical tools commonly used in its research. The main goal being to familiarize students with the state of the art in this field.

    Subjects
        • Elements of light scattering: Introduction to the basics of light scattering. Scattering by small particles. Scattering by spherical objects, an introduction to the Mie theory. Resonances, field distributions, near-field effects and its nanophotonics implications. Numerical codes for the Mie theory.
        • Photonic crystals (PCs): Photonic band structure (allowed and forbidden bands), light emission and transport in PCs, Density of states (DOS) and local density of states (LDOS) in PC's.
        • Numerical band structure determination: Planewave expansion method. Introduction to MPB (http://ab-initio.mit.edu/wiki/index.php/Main_Page) and hands-on examples.
        • Maxwell’s equation in the time domain: Finite difference Time Domain method. Numerical stability. Boundary conditions, common approaches. Introduction to MEEP (http://ab-initio.mit.edu/wiki/index.php?title=Meep) and hands-on examples.
        • Maxwell’s equations in the frequency domain: Extending the Mie theory; T-Matrix and multiple multipole expansions. The discrete dipole and coupled dipoles approximations. Discussion of other methods. Introduction to available software (DDSCAT, MSTM, etc).
        • Disorder in photonics: A gentle introduction to the radiative transfer equation. The diffusion approximation and relevant transport parameters. 
        • Optical Forces: Introduction to optical tweezers and interactions induced by random optical fields. Theory and numerics.

    Objectifs de formation

    The objective of the course is to develop an insight on classical and advanced subjects in light transport. Students shall be familiar with the standard theoretical approaches to treat classical light-matter interaction in complex systems such as Mie scattering and its generalizations as well as the physics of photonic crystals (band theory) and the physics of disordered systems (light diffusion). On the other hand, some of the most widely adopted numerical approaches to solve electromagnetic radiation-matter interactions shall be presented as well as some freely avaiable software packages.
    In a nutshell, students will be able to practically solve many common problems found in modern photonics and understand the underlying physics.

    Commentaire

    Scientific programming skills are welcomed but not strictly necessary. 
    Having a reasonable understanding of basic electromagnetism is highly recommended.
    The evaluation is  pass/fail and it is based on the completion of a small project of light scattering to choose among several problems. Projects will be presented early in the course so that they can have a clear idea of the expected work load.

    Softskills
    Non
    Hors domaine
    Non
    BeNeFri
    Oui
    Mobilité
    Oui
    UniPop
    Non

    Documents

    Bibliographie

    Class notes and slides will be used together with some selected chapters of different books and relevant articles. In particular some parts of the following books might be useful.
        • “Light Scattering by Small Particles”, H.C. van de Hulst.
        • “Absorption and Scattering of Light by Small Particles”,  C.F Bohren, and D.R Huffman.
        • “Photonic Crystals: Molding the Flow of Light”, J.D. Joannopoulos, S.G. Johnson, J.N. Winn, and R.D Meade.
        • “Understanding the FDTD Method”, J. B. Schneider. Free on-line www.eecs.wsu.edu/~schneidj/ufdtd, 2010.
        • “Scattering of electromagnetic waves: numerical simulations”, L. Tsang, J. A. Kong, K-H Ding, and C.O. Ao.
        • “Principles of diffuse light propagation”, J. Ripoll.
        • “Optical Tweezers: Principles and Appilactions”. P. H. Jones, O. M. Maragó, and G. Volpe.

  • Dates et salles
    Date Heure Type d'enseignement Lieu
    22.02.2022 15:15 - 17:00 Cours PER 08, salle 0.51
    01.03.2022 15:15 - 17:00 Cours PER 08, salle 0.51
    08.03.2022 15:15 - 17:00 Cours PER 08, salle 0.51
    15.03.2022 15:15 - 17:00 Cours PER 08, salle 0.51
    22.03.2022 15:15 - 17:00 Cours PER 08, salle 0.51
    29.03.2022 15:15 - 17:00 Cours PER 08, salle 0.51
    05.04.2022 15:15 - 17:00 Cours PER 08, salle 0.51
    12.04.2022 15:15 - 17:00 Cours PER 08, salle 0.51
    26.04.2022 15:15 - 17:00 Cours PER 08, salle 0.51
    03.05.2022 15:15 - 17:00 Cours PER 08, salle 0.51
    10.05.2022 15:15 - 17:00 Cours PER 08, salle 0.51
    17.05.2022 15:15 - 17:00 Cours PER 08, salle 0.51
    24.05.2022 15:15 - 17:00 Cours PER 08, salle 0.51
    31.05.2022 15:15 - 17:00 Cours PER 08, salle 0.51
  • Modalités d'évaluation

    Rapport

    Mode d'évaluation Par réussi/échec
    Description

    Presentation of a project at the end of the course.

  • Affiliation
    Valable pour les plans d'études suivants:
    Complément au doctorat [PRE-DOC]
    Version: 2020_1/v_01
    Complément au doctorat ( Faculté des sciences et de médecine) > UE de spécialisation en Physique offertes (niveau master)

    Enseignement complémentaire en sciences
    Version: ens_compl_sciences
    Paquet indépendant des branches > UE de spécialisation en Physique offertes (niveau master)

    Physique [3e cycle]
    Version: 2015_1/V_01
    Formation continue > UE de spécialisation en Physique offertes (niveau master)

    Physique [POST-DOC]
    Version: 2015_1/V_01
    Formation continue > UE de spécialisation en Physique offertes (niveau master)