Big data infrastructures

  • Enseignement

    Détails

    Faculté Faculté des sciences et de médecine
    Domaine Informatique
    Code UE-SIN.07612
    Langues Anglais
    Type d'enseignement Cours
    Cursus Master
    Semestre(s) SA-2022

    Horaires et salles

    Horaire résumé Mercredi 14:15 - 17:00, Hebdomadaire, PER 21, salle C230 (Semestre d'automne)
    Struct. des horaires 3h par semaine durant 14 semaines
    Heures de contact 42

    Enseignement

    Responsables
    Enseignants
    Description

    This course focuses on conceptual and architectural issues related to the design and deployment of modern data management infrastructures in a Big Data context. It starts with a review of distributed transaction processing techniques, classical parallel databases systems and ACID-style semantics in shared-nothing architectures. The course then delves into modern wide-area data processing, with an emphasis on recent systems developed to solve large-scale problems using clusters of commodity machines. In this second part, the course covers distributed storage systems (such as Google's BigTable), wide-area hash-tables (like Cassandra), data-intensive computing platforms (Hadoop) and nosql systems. Hands on programming exercises using those platforms will be an important part of this course.

    This course focuses on conceptual and architectural issues related to the design and deployment of modern data management infrastructures in a Big Data context. It starts with a review of distributed transaction processing techniques, classical parallel databases systems and ACID-style semantics in shared-nothing architectures. The course then delves into modern wide-area data processing, with an emphasis on recent systems developed to solve large-scale problems using clusters of commodity machines. In this second part, the course covers distributed storage systems (such as Google's BigTable), wide-area hash-tables (like Cassandra), data-intensive computing platforms (Hadoop) and nosql systems. Hands on programming exercises using those platforms will be an important part of this course.

    Objectifs de formation

    Students will learn about classical distributed transaction processing and parallel database systems. They will get exposed to modern data management infrastructures deployed by current Web giants like Google or Yahoo! to power a wide range of Web services. Finally, they will understand the fundamental tradeoffs between consistency, availability and fault-tolerance for wide-area data processing on the Internet.

     

     

    Commentaire

    MSc-CS BENEFRI - (Code Ue: 63021 / Track: T6) The exact date and time of this course as well as the complete course list can be found at http://mcs.unibnf.ch/.

    Course and exam registration on ACADEMIA (not myunifr.ch). Please follow the instructions on https://mcs.unibnf.ch/organization/

    Softskills
    Non
    Hors domaine
    Non
    BeNeFri
    Oui
    Mobilité
    Oui
    UniPop
    Non
  • Dates et salles

    Cours online à cause des Info Days : 17.11. / 24.11.2021

    Date Heure Type d'enseignement Lieu
    21.09.2022 14:15 - 17:00 Cours PER 21, salle C230
    28.09.2022 14:15 - 17:00 Cours PER 21, salle C230
    05.10.2022 14:15 - 17:00 Cours PER 21, salle C230
    12.10.2022 14:15 - 17:00 Cours PER 21, salle C230
    19.10.2022 14:15 - 17:00 Cours PER 21, salle C230
    26.10.2022 14:15 - 17:00 Cours PER 21, salle C230
    02.11.2022 14:15 - 17:00 Cours PER 21, salle C230
    09.11.2022 14:15 - 17:00 Cours PER 21, salle C230
    16.11.2022 14:15 - 17:00 Cours PER 21, salle C230
    23.11.2022 14:15 - 17:00 Cours PER 21, salle C230
    30.11.2022 14:15 - 17:00 Cours PER 21, salle C230
    07.12.2022 14:15 - 17:00 Cours PER 21, salle C230
    14.12.2022 14:15 - 17:00 Cours PER 21, salle C230
    21.12.2022 14:15 - 17:00 Cours PER 21, salle C230
  • Modalités d'évaluation

    Examen écrit

    Mode d'évaluation Par note
  • Affiliation
    Valable pour les plans d'études suivants:
    BcMa - Data Analytics - 30 ECTS
    Version: 2020/SA-v01
    À choix 9 crédits ECTS > TMD: Technologies and Modelling for Digitalization
    À choix 9 crédits ECTS > Data Science

    BcMa - Informatique de gestion - 30 ECTS
    Version: 2020/SA_V01
    Cours > Modules informatique de gestion > TMD: Technologies and Modelling for Digitalization
    Cours > Modules informatique > Data Science

    Complément au doctorat [PRE-DOC]
    Version: 2020_1/v_01
    Complément au doctorat ( Faculté des sciences et de médecine) > UE de spécialisation en Informatique (niveau master)

    Enseignement complémentaire en sciences
    Version: ens_compl_sciences
    Paquet indépendant des branches > UE de spécialisation en Informatique (niveau master)

    Informatique [3e cycle]
    Version: 2015_1/V_01
    Formation continue > UE de spécialisation en Informatique (niveau master)

    Informatique [POST-DOC]
    Version: 2015_1/V_01
    Formation continue > UE de spécialisation en Informatique (niveau master)

    Ma - Business Communication : Informatique de gestion - 90 ECTS
    Version: 2020/SA_V01
    Cours - 60 ECTS > Groupe d'option > Informatique de gestion > Cours > Modules informatique > Data Science
    Cours - 60 ECTS > Groupe d'option > Informatique de gestion > Cours > Modules informatique de gestion > TMD: Technologies and Modelling for Digitalization

    Ma - Informatique de gestion - 90 ECTS
    Version: 2020/SA-v01
    Cours - min. 45 ECTS > Modules informatique de gestion - min. 22 ECTS > TMD: Technologies and Modelling for Digitalization
    Cours - min. 45 ECTS > Modules informatique/informatique de gestion > TMD: Technologies and Modelling for Digitalization
    Cours - min. 45 ECTS > Modules informatique/informatique de gestion > Data Science

    Ma - Informatique de gestion - 90 ECTS
    Version: 2019/SA_V01
    Cours - min. 45 ECTS > Modules informatique/informatique de gestion > TMD: Technologies and Modelling for Digitalization
    Cours - min. 45 ECTS > Modules informatique/informatique de gestion > Data Science
    Cours - min. 45 ECTS > Modules informatique de gestion - min. 22 ECTS > TMD: Technologies and Modelling for Digitalization