Agenda

23
nov

Option Return Predictability with Machine Learning and Big Data

Ouvert au grand public Conférence
23.11.2021 17:15 - 18:45
Présentiel

Séminaire de recherche
Drawing upon more than 12 million observations over the period from 1996 to 2020, we find that allowing for nonlinearities significantly increases the out-of-sample performance of option and stock characteristics in predicting future option returns. Besides statistical significance, the nonlinear machine learning models generate economically sizeable profits in the long-short portfolios of equity options even after accounting for transaction costs. Although option-based characteristics are the most important standalone predictors, stock-based measures offer substantial incremental predictive power when considered alongside option-based characteristics. Finally, we provide compelling evidence that option return predictability is driven by informational frictions, costly arbitrage, and option mispricing.


Quand? 23.11.2021 17:15 - 18:45
Où? PER 22 D230
Bd de Pérolles 90, 1700 Fribourg 
Intervenants Pr. Florian Weigert (Université de Neuchâtel)
Contact Chaire de Chaire de Finance et Gouvernance d'Entreprise
En savoir plus  Vers le site
Pièces jointes
Retour à la liste