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Abstract
On social media platforms, true and false information compete. Importantly,

some messages travel much further than others, even if they concern the same
topic. This fact is not reflected in models of social learning (or opinion formation)
in networks. Our model fills this gap by allowing different types of information
to have different decay factors and to be shared with different networks of people,
incorporating asymmetries in sharing behaviors. More “shareable” information then
dominates in the long run. This yields a substantial probability of misinformation,
in contrast to the special case of symmetry covered by the literature. Asymptotic
learning requires a perfect balance between two types of asymmetry: the product of
decay factor and largest eigenvalue in the respective signal sharing networks must
coincide. Approaching this balance reduces the speed of convergence and enables
social learning in the shorter term. Our analysis thus suggests that policy makers,
who do not know the true state, aim to mitigate asymmetries in signal sharing, e.g.
by weakening echo chambers or by fostering the shareability of cumbersome, boring
messages.
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“If it doesn’t spread, it’s dead.” (e.g. henryjenkins.org)

1 Introduction
Misinformation is thriving. This is problematic because it can lead people to make poor
decisions and hence generate various socially harmful outcomes, such as lower vaccina-
tion coverage or dangerous political developments (Burki, 2019; Pennycook and Rand,
2021). While there is an ongoing public and scientific debate about how prevalent mis-
information really is and to which extent it translates into decision making, there seems
to be broad consensus that misinformation exists and should be curbed (Lazer et al.,
2018; European Commission, 2018; Grinberg et al., 2019; Greene and Murphy, 2021). To
evaluate adequate policies in the fight against misinformation, the way it spreads has to
be properly understood. However, there are significant gaps between theoretical models
on how people learn from each other and empirical studies on how information spreads.

Models of social learning, which analyze the formation of beliefs on a given issue in so-
cial networks, implicitly assume that all signals are shared in the same manner (see, Golub
and Sadler, 2016; Grabisch and Rusinowska, 2020 for two surveys). In contrast, empirical
studies of information diffusion on social media platforms provide ample evidence that
some messages travel further and are shared in different parts of the network than other
messages (e.g. Cheng et al., 2014; Goel et al., 2016; Del Vicario et al., 2016; Vosoughi
et al., 2018; Johnson et al., 2020). The reason for such differences in “infectiousness”
or shareability seems to be underlying characteristics concerning the form (text, image,
video, ...) and content (emotionally loaded, surprising, disgusting, boring, ...) of a mes-
sage, similar to the study of “newsworthiness” in communication studies. Importantly,
differences in shareability also occur on the same issue, as it has been shown, e.g. re-
garding vaccination (Johnson et al., 2020). This is highly plausible if we consider that
signals supporting and questioning a certain claim may differ in form and certainly differ
in content, as e.g. messages supporting the claim that vaccines cause autism may create
a different emotional response than messages questioning it.

The goal of this paper is to study how such asymmetries in signal sharing affect
social learning and misinformation. We particularly consider two types of asymmetry
when agents share positive, i.e. supporting, and negative, i.e. questioning, signals on a
given issue: decay asymmetry and network asymmetry. First, positive and negative
signals need not be shared to the same extent (decay asymmetry). This is particularly
motivated by studies documenting that fact-checked false information travels significantly
further than fact-checked true information (Vosoughi et al., 2018; Juul and Ugander,
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2021). Second, positive and negative signals need not be shared with the same people
(network asymmetry). This is particularly motivated by studies documenting that some
type of information is shared more or less heavily in different parts of a given network,
e.g. some people are sharing more rumors while others are sharing more scientific papers
(Del Vicario et al., 2016; Zollo et al., 2017; Johnson et al., 2020). Decay asymmetry and
network asymmetry embody differences in shareability.

We propose the first model of social learning that admits such differences. It builds
on the social learning literature, where agents repeatedly share binary signals. Consider
an original network that consists of nodes that are interpreted as agents and links that
are interpreted as possible communication channels between these agents. The (sub)set
of links which is used to share positive signals on a given issue is captured by a symmetric
adjacency matrix and called the positive signal sharing network; likewise, we define the
negative signal sharing network as the (sub)set of links which is used to share negative
signals). Network asymmetry means technically that these two networks do not coincide,
which occurs, e.g. if two agents share positive signals while they do not share negative
signals on this issue. Moreover, we introduce decay asymmetry by two decay factors, one
for positive signals and one for negative signals, which admits that the two types of signals
may face different decay when shared. With this model, we investigate how network and
decay asymmetry drive the probability of misinformation. A particular focus is how the
results depend on network size, specifically, whether the probability of misinformation
converges to zero when the network grows large (asymptotic learning).

We first address the benchmark scenario that both asymmetries are absent. In this sce-
nario of symmetry, the probability of misinformation is bounded. Moreover, it converges
to zero with increasing network size under a mild condition. The condition is well-known
from the DeGroot model and means that there are no agents with excessive influence
(Golub and Jackson, 2010). Our analysis of the general case then reveals that the sym-
metry benchmark is a special case. We establish a threshold condition that determines
which mix of signals will be held in the long run. The condition compares the product of
decay factor and largest eigenvalue between the positive signal sharing network and the
negative signal sharing network. Asymptotic learning can only occur when the threshold
condition is exactly met. Even slight asymmetry is sufficient to cause one signal type to
fully dominate in the long run (as long as there is at least one of each signal initially),
reminding of the saying “If it doesn’t spread, it’s dead.” As a consequence, the long-run
probability of misinformation is substantial, even in large networks. The probability of
misinformation essentially equals the ex ante probability that the state with the more
shareable signals turns out to be true. We further show that agents can be ordered ac-
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cording to their ratio of eigenvector centralities in the two different networks. Those who
lean more to the more shareable signal type, i.e. those who are relatively more central
in the network that shares this signal type, are more prone to be misinformed. We then
extend the model to allow agents to have pair-specific relationships, which accommodates
heterogeneous subgroups, directed networks and idiosyncratic learning; and show that the
results still hold.

While our results provide reasons for misinformation to thrive, they also indicate how
misinformation could be mitigated. When asymmetries are mild, speed of convergence
is low. As a consequence, information aggregation does take place and the probability
of misinformation remains low in the short and medium term (before the more shareable
signal starts to dominate). To mitigate network asymmetry, additional links in the net-
work where the less shareable signal is shared help as they always increase its eigenvalue.
However, for a given number of links, smaller denser groups have a (much) stronger effect
on the largest eigenvalue than sparser larger groups: the echo chamber effect. Conversely,
we show by numerical examples that the required decay asymmetry favoring one type of
signal needed to compensate for the dominance of the other type of signal gets dispro-
portionately large with the existence of such echo chambers. Our results provide a new
perspective on measures against misinformation. They suggest as general policy impli-
cations that asymmetries in shareability should be identified and mitigated. Specifically,
this might mean to hamper the spread of sensational, catchy messages, e.g. by break-
ing the corresponding echo chambers, and to foster the spread of cumbersome, boring
messages, e.g. by making them more attractive to share.

The remainder of the paper is structured as follows. Section 2 relates it to the liter-
ature. We introduce the model in Section 3 and study the special case of symmetry as
a benchmark in Section 4. Section 5 presents the main results. We illustrate our results
in Section 6 and provide the extension in Section 7. We conclude by a discussion in
Section 8.

2 Related Literature
Our paper belongs to the literature on social learning (or opinion dynamics), where agents
repeatedly learn from their neighbors in a social network. If agents were fully Bayesian,
then perfect information aggregation would occur in any connected network (DeMarzo
et al., 2003; Mueller-Frank, 2013). However, Bayesian rationality is very demanding when
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it comes to learning in a network structure.1 The classic model of repeated linear updating
(DeGroot, 1974) has been studied intensively and it has been extended in many interesting
directions (Friedkin and Johnsen, 1990; DeMarzo et al., 2003; Golub and Jackson, 2010,
2012; Buechel et al., 2015; Grabisch et al., 2019; Banerjee et al., 2019). A main focus is
whether the long-run consensus opinion optimally aggregates the initially dispersed pieces
of information. This is satisfied, at least asymptotically, if there are no individuals with
excessive influence on the others (Golub and Jackson, 2010).2 Our main contribution
is to qualify this conclusion by additional conditions: there must be a balance between
different asymmetries (embodied by the products of decay factor and largest eigenvalue
which must coincide for both networks) and that an agent’s ratio of centralities between
the two networks must be moderate compared to the ratio of centrality concentration in
the two networks. Both additional conditions happen to be satisfied under symmetry, an
implicit assumption that is ubiquitous in the theoretical literature, but hard to justify
empirically.

To our knowledge, none of the existing models accommodates asymmetric treatment
of signals. Symmetric treatment of signals is related to so-called “label neutrality,” which
is an underlying assumption of the models in the literature and in fact a characterizing
feature of the DeGroot model (Molavi et al., 2018). We contribute, to our best knowledge,
the first model of social learning that relaxes label neutrality. We do so by addressing
network or decay asymmetry in signal sharing. As in the DeGroot model positive and
negative signals are mingled into continuous opinions, it is unclear to us how asymmetries
could be meaningfully introduced. Instead, we base our model on the baseline model
introduced in Sikder et al. (2020), which has the same properties as the DeGroot model
in the special case of symmetry, but keeps track of all signals at all times.

As we show, the consequences are drastic as either decay or network asymmetry fa-
voring one type of signal can be sufficient for misinformation. That is, not only is the
society’s long-run belief a suboptimal aggregation of the initial signals, but all members
of the society are likely misinformed and hence would make the wrong decision with high
probability. Similarly drastic conclusions are known in the literature only in the presence

1As experimental studies reveal, actual behaviors are less often consistent with Bayesian learning
than they are with simpler updating rules such as repeated averaging (Corazzini et al., 2012; Friedkin
and Bullo, 2017; Grimm and Mengel, 2020; Chandrasekhar et al., 2020).

2Other sufficient conditions are that there is at least one agent who is perfectly Bayesian (Mueller-
Frank, 2014); and that agents additionally receive a private signal in each period and treat this signal in
a Bayesian manner (Jadbabaie et al., 2012).
More generally, there are (relatively weak) conditions on non-Bayesian learning which are sufficient for

learning the true underlying state in the long run (Molavi et al., 2018).
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of forceful (or biased or stubborn) agents who, at some point, do not learn at all but still
heavily influence the other agents (Acemoglu et al., 2010; Grabisch et al., 2018; Azzimonti
and Fernandes, 2018; Rusinowska and Taalaibekova, 2019; Della Lena, 2019; Sikder et al.,
2020). The policy implications that can be drawn from these models rather suggest acting
on forceful agents and on fighting disinformation. Complementary to these insights, we
argue that the way signals are shared is crucial for avoiding misinformation. Even in the
absence of forceful agents, misinformation is likely and policy makers could act on signals’
shareability to fight it.

Sharing behavior and signal accumulation in our model is closest to Sikder et al.
(2020), in which agents repeatedly share binary signals in a rather naïve way but with
Bayesian-style updating. These authors show that the introduction of confirmation bias
leads to polarization. While Sikder et al. (2020) mostly focus on regular graphs, we first
show for any connected network that misinformation in this baseline model is bounded
and converges to zero under mild conditions. We then generalize their baseline model to
any network structure and by introducing decay and network asymmetries depending on
the type of information shared. Our model is also related to Fernandes (2019) and a model
variation of Taalaibekova (2020, Chapter 3.3) who both consider agents who perceive or
receive more positive or more negative signals without being aware of it. Despite biased
reception or perception of signals, these agents still treat different signals in the same way,
while our agents share positive and negative information asymmetrically.3

The justification to consider asymmetries stems from various strands of empirical lit-
erature. Most importantly, empirical studies of information diffusion on social media
platforms including Facebook, LinkedIn, and Twitter document that the spread of infor-
mation items depends on the type of information (Cheng et al., 2014; Goel et al., 2016;
Vosoughi et al., 2018; Del Vicario et al., 2016; Johnson et al., 2020). The information
type may not only concern its form (news, videos, pictures, ...) but also its content
(e.g. emotional content, surprise, disgust, fear, ...), which both make some messages more
“infectious” than others (Juul and Ugander, 2021). Moreover, there is a long history
in communication studies investigating information value to determine which factors in-
fluence how “newsworthy” a certain news item is (e.g. Harcup and O’Neill, 2017). In
particular, news stories are more attractive if they are surprising, or contain particularly
good or bad news. Marketing studies have come to the same conclusions regarding the
importance of emotional content, may it be positive or negative, for a post to “go viral”
(e.g. Berger and Milkman, 2012). Finally, in the framework of the spread of competing

3Moreover, decay in a framework of naïve learning, has been considered recently by Grabisch et al.
(2021) who consider decay of social influence, while we consider decay of information.
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viruses, the rate at which people become infected and at which they recover determines
which virus will dominate, a result that is also motivated by the spread of information
(e.g. Prakash et al., 2012).

All of these strands of empirical literature show that the extent to which some piece
of information is shared depends on its properties that are summarized as “infectious-
ness”, “newsworthiness,” “virality”, or simply shareability. Moreover, they suggest that
shareability may well differ between messages that concern the same topic, which is the
motivation of our model.

3 A Model of Asymmetric Signal Sharing
Ingredients. There are n agents N = {1, ..., n} who talk about a binary issue. One
classic example is whether vaccines cause autism; new examples are popping up every
day. To model uncertainty, nature draws the true state with a commonly known prior
probability and then each agent receives a signal. Specifically, the true state θ ∈ {0, 1} is
drawn with prior probability b+ = P (θ = 1) ∈ (0, 1). As a convention, we call state θ = 1
the positive state and θ = 0 the negative state. Each agent i independently receives
signal si ∈ {0, 1} which matches the true state with probability ρ, i.e. P (si = 1|θ = 1) =
P (si = 0|θ = 0) = ρ ∈ (1

2 , 1). Conditional on the state, the signals are independent.
Continuing with our convention, we call signal 1, i.e. a signal that indicates state θ = 1,
a positive signal and 0 a negative signal. These two types of signals may differ in relevant
characteristics, e.g. information indicating that vaccine causes autism may be more or less
emotionally loaded than information indicating the opposite state.

Time is discrete t = 0, 1, 2, .... At time t = 0, the initial signals are received. At
each time step t > 0, agents communicate with their neighbors in a social network, as
specified below. We model this communication activity in a way that admits asymmetric
treatment of positive and negative signals since sharing behavior between these two types
of messages might differ.

When a signal is passed on from one agent to the next, it decays by δ+ ∈ (0, 1] if it is
positive and by δ− ∈ (0, 1] if it is negative. Decay can be either (i) due to senders who
only share a fraction δ+ of their signals, (ii) due to the signal’s ability to travel through
the communication channel where a fraction 1− δ+ gets lost, or (iii) due to the recipients
who discount the received signals by δ+.4 If, for any reason, δ+ 6= δ−, there is decay

4In Online Appendix C.2, we show that all three interpretations can be explicitly modeled and are
captured in a reduced form in our model with one parameter δ+. All Online Appendices are permanently
available here: www.berno.info under the name MisInfo_SupplementaryOnlineMaterial.pdf. In an ex-
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asymmetry.
Positive signals are shared in a network (N,A+), negative signals in a network (N,A−),

where A+ and A− are both symmetric n × n matrices with entries 0 or 1, i.e. adjacency
matrices representing each an undirected unweighted network. We assume that both
these networks are connected, which implies that the matrices are irreducible. As an
interpretation, consider one single original network consisting of all possible communica-
tion channels between the fixed set of agents. Then the (sub)set of links which are used
to share positive signals are represented by A+ and the (sub)set of links which are used
to share negative signals are represented by A−. If, for any reason, A+ 6= A−, there is
network asymmetry.

Signal Accumulation. Given these ingredients, we can now formulate how signals are
shared and accumulated. Let N+

i (t) denote number of positive signals of node i at time
t and let N+(t) be the (n× 1)-vector. The law of motion for positive signals is

N+(t) = (I + δ+A+)N+(t− 1). (1)

Hence, the number of agent i’s positive signals in a given period is the number of positive
signals i held in the previous period plus the number of positive signals that i′s neighbors
in network A+ held in the previous period discounted by δ+. For the negative signals the
law of motion and the notation is fully analogous. N−(t) is the vector of negative signals
and the law of motion is N−(t) = (I + δ−A−)N−(t − 1). Let N+(0) and N−(0) be the
vectors of initial signals, i.e. N+(0) = s and N−(0) = 1− s. Given the initial signals and
the law of motion, we can compute the number of signals of any agent at any time. The
signal accumulation for positive signals is

N+(t) = (I + δ+A+)ts. (2)

Technically, the entries in the matrix (I + δ+A+)t can be considered as the number of
walks of length t or smaller, when the network A+ is augmented by self-loops (ones on the
diagonal); thereby each walk is discounted by δ+ at any step, except when using a self-
loop. A less technical interpretation is that agents share all the positive signals that they
have with their neighbors in the positive signal sharing network; and whenever signals are
passed on only a fraction δ+ fully arrives at the recipient. And analogously for negative
signals.

tension of the model, we will study pair-specific decay factors, which admit heterogeneity in behavior of
senders, communication channels, or recipients (Section 7).
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Signal Mixes and Misinformation. An agent’s signal mix is the fraction of positive
signals that i holds, i.e.

xi(t) := N+
i (t)

N+
i (t) +N−i (t) , (3)

and the vector x(t) contains all agents’ signal mixes at time t.
To measure misinformation, we assess whether an agent has received more false signals

than true signals, where a signal is called true if it indicates the true state and false if it
indicates the other state. Hence, we consider an agent i to be misinformed if her signal
mix satisfies xi(t) < 0.5 when the true state is θ = 1 or if xi(t) > 0.5 when the true state is
θ = 0. Agents with xi(t) = 0.5 are considered as misinformed with probability 0.5. While
it is thinkable that an agent who is misinformed according to this definition still holds a
belief that is accurate, this is implausible for prior belief b+ = 0.5 and, for any prior belief,
it becomes less and less plausible over time. When xi(t) converges to a value not equal
to 0.5, then the difference between positive and negative signals grows arbitrarily large as
more and more signals are acquired. Hence, an agent who is misinformed according to our
definition, is prone to hold an inaccurate belief and to make a poor decision. We define
pMis
i (t) as agent i′s probability of misinformation at time t from an ex ante perspective,

i.e. before the true state and the initial signals are realized. Initially, at t = 0, an agent
is misinformed with probability pMis

i (0) = 1 − ρ < 0.5, as ρ is the probability that the
received signal matches the true state. The long-run probability of misinformation is
denoted by pMis

i (∞) := limt→∞ p
Mis
i (t) and will be characterized in the next sections.

Besides analyzing networks of given size n, we also study how the probability of
misinformation depends on the network size. For this purpose, we consider sequences of
growing networks (n→∞), where size-dependent quantities are denoted by an additional
index n, e.g. adjacency matrices are denoted by A+

n and A−n and the long-run probabilities
of misinformation are denoted by pMis

i,n (∞). At each element of such a sequence, the model
as defined above applies, while the prior b+ and the signal quality ρ stay unchanged and
the realization of true state and signals is independent across networks.

4 Benchmark: Misinformation under Symmetry
To assess the effects of decay and network asymmetry, a natural benchmark is, of course,
the special case of symmetry: δ+ = δ− =: δ and A+ = A− =: A. This is a generalization
of the baseline model introduced in Sikder et al. (2020), which our model nests for δ = 1.
In the original article by Sikder et al. (2020), the focus is on regular networks (N,A),
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that are characterized by each node having the same degree.5 Regular networks happen
to minimize the probability of misinformation, as our Proposition 1 below implies. More
importantly, this result shows that the probability of misinformation is always bounded
under symmetry. Let λ1 be the largest eigenvalue of A.6 Let c = (c1, ..., cn)> be its
corresponding eigenvector, normalized such that its components sum to one, i.e. Ac = λ1c

and ∑
i ci = 1.7 Entries in the eigenvector c are a measure of eigenvector centrality

(Bonacich, 1972; Friedkin, 1991).

Proposition 1 (Symmetry). Under symmetry, the long-run signal mix is a convex com-
bination of the initial signals sj with weights according to eigenvector centrality, i.e. for all
i, lim

t→∞
xi(t) = ∑n

j=1 cjsj. Therefore, the probability of long-run misinformation pMis
i (∞)

is bounded from above by 0.5. Moreover, if for some sequence of growing networks, in-
dexed by network size n, we have lim

n→∞
max
j=1,...,n

cj,n = 0, then the probability of long-run
misinformation converges to zero, i.e. for all i, lim

n→∞
pMis
i,n (∞) = 0.

The proofs of this proposition and of all other results are collected in Appendix A.
Proposition 1 means that misinformation under symmetry only occurs due to an unlucky
distribution of signals. It depends on the relative influence of each agent on the long-
run opinions, as measured by her entry in the largest eigenvector. In the best case, all
agents, who are by assumption equally well-informed, are equally influential.8 This is
satisfied in regular graphs, in which by definition every agent has the same degree. Then
the long-run signal mix of every agent exactly reflects the initial signal distribution, i.e.
lim
t→∞

xi(t) = 1
n

∑n
j=1 sj, which is just the mean of the initial signals. Hence, under symmetry

and when the network is regular, naïve agents who accumulate the same signals over and
over again can fare equally well as Bayesians would (as we discuss in Example C.1 in
Online Appendix C.1). In the worst case, there is a group of agents who are overly
influential (as discussed in Example C.2 in Online Appendix C.1).

The probability of misinformation in these two extreme cases is illustrated in Figure 1,
with the lowest and highest line (“Best” and “Worst”). In addition, the figure reports

5Sikder et al. (2020) find polarization in an extension of their model, in which they introduce agents
with confirmation bias.

6More precisely, λ1 is the largest positive eigenvalue of A and other eigenvalues of A might exist which
are as large in absolute value as λ1. For ease of reading, we usually omit ‘positive’ when addressing
largest positive eigenvalues.

7Recall that by assumption the adjacency matrix is symmetric. Hence, there is no need yet to distin-
guish between left-hand and right-hand eigenvectors.

8More generally, the requirement is a balance between idiosyncratic signal precision and social influence
(see, e.g. Buechel et al., 2015).
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the probability of misinformation from simulations with two classes of random networks:
Erdös-Rényi (ER), in which the probability of every link is fixed (p), and Barabasi-
Albert (BA) where in every step of constructing the network, m new links are created.
The thickness of the two lines represents the variation of misinformation that covers
50% of all simulation runs (from 25th to 75th percentile). Selecting parameters (p and
m) such that the two random networks have the same expected density, it is expected
that the probability of misinformation tends to be higher in the BA random networks
since their degree distribution is more skewed than that in ER random graphs. The
simulations confirm this. Moreover, Figure 1 illustrates that misinformation for the two
classes of random graphs is closer to the regular graph’s. In particular, we observe that
the probability of misinformation decreases with network size n. Relatedly, Proposition 1,
provides a formal condition for asymptotic learning: In a sequence of growing networks,
the probability of long-run misinformation vanishes if the largest eigenvector centrality
converges to zero.
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Figure 1: Misinformation under symmetry: comparing different network structures.

Notes: Signal precision ρ = 0.6. Number of nodes n = 10, ..., 100 on the x-axis. Random graph
parameters are set such that asymptotic average degree is 6 in these simulation runs. 1,000 simulation
runs per class of random network of a given size. Thickness of corresponding line represents variation
covering 50% of all outcomes (from 25th to 75th percentile).

The results in this section closely resemble those of the common DeGroot model of
naïve learning. In Online Appendix C.4, we describe the similarities and differences of
these two models and their results in some detail. Importantly, in the DeGroot model
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positive and negative signals are mingled into continuous opinions, while our model of
naïve learning keeps track of all signals. As a consequence, we can use our model to study
asymmetries in signal sharing, as we do next.

5 Results

5.1 Key Result

We now study how misinformation in the long run is affected by asymmetric treatment
of signals. Decay asymmetry is captured simply by its two parameters δ+ and δ−. For
network asymmetry, the adjacency spectrum of the two matrices A+ and A− matters.
Analogously to before, let λ+

1 be the largest eigenvalue of A+. Let c+ = (c+
1 , ..., c

+
n )>

be its corresponding eigenvector, normalized such that its components sum to one, i.e.
A+c+ = λ+

1 c
+ and ∑i c

+
i = 1. And likewise λ−1 and c− are the largest eigenvalue and its

normalized eigenvector of A−, i.e. A−c− = λ−1 c
− and∑i c

−
i = 1. Entries in the eigenvectors

c+, c− are the respective eigenvector centrality.

Proposition 2 (Key Result). Suppose that the initial distribution of signals contains at
least one positive and at least one negative signal.

1. If δ+λ+
1 < δ−λ−1 , then for all i and large t:

xi(t) ≈
c+
i

c−i

(
1 + δ+λ+

1
1 + δ−λ−1

)t ∑n
k=1(c−k )2∑n
k=1(c+

k )2

∑n
j=1 c

+
j sj

1−∑n
j=1 c

−
j sj

such that lim
t→∞

xi(t) = 0.

2. If δ+λ+
1 > δ−λ−1 , then for all i and large t:

xi(t) ≈ 1− c−i
c+
i

(
1 + δ−λ−1
1 + δ+λ+

1

)t ∑n
k=1(c+

k )2∑n
k=1(c−k )2

1−∑n
j=1 c

−
j sj∑n

j=1 c
+
j sj

such that lim
t→∞

xi(t) = 1.

3. If δ+λ+
1 = δ−λ−1 , then for all i:

lim
t→∞

xi(t) = 1

1 + c−i
c+
i

∑n
k=1(c+

k )2∑n
k=1(c−k )2

1−∑n
j=1 c

−
j sj∑n

j=1 c
+
j sj

∈ (0, 1).
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The proposition states that the combination of decay factor and largest eigenvalue,
δ+λ+

1 ≶ δ−λ−1 , determine which signals dominate in the long run, given that there is at
least one of each signals. Intuitively, the condition for Case 1, requires that the decay
factor for positive signals δ+ is low compared to the decay factor with negative signals δ−,
which means that positive signals are shared to a lower extent; and that the eigenvalue
λ+

1 of the positive signal sharing network A+ is low compared to λ−1 , which has the
interpretation that the agents are generally better connected in the negative signal sharing
network A−. In the knife-edge case, Case 3, decay and network asymmetry compensate
each other: δ+

δ−
= λ−1

λ+
1
; and the distribution of initial signals matters for the long-run signal

mixes. This case also nests the symmetry benchmark. While in the symmetric benchmark
the common decay factor δ did not affect the long-run opinions, decay factors δ+ and δ−

are crucial for the case distinction under asymmetry.
In Case 1, there are four factors that determine asymptotic behavior:

xi(t) ≈
c+
i

c−i︸︷︷︸
centrality ratio

·
(

1 + δ+λ+
1

1 + δ−λ−1

)t
︸ ︷︷ ︸

exponential decay

·
∑n
k=1(c−k )2∑n
k=1(c+

k )2︸ ︷︷ ︸
concentration ratio

·
∑n
j=1 c

+
j sj

1−∑n
j=1 c

−
j sj︸ ︷︷ ︸

signal averages

(4)

The first is agent-specific, the three latter factors are common for all agents in a given
society. The first factor shows that agent i’s characteristics enter her asymptotic signal
mix xi(t) via her ratio of eigenvector centrality in the positive signal sharing network over

her centrality in the negative signal sharing network: c+
i

c−i
. We will refer to this as i’s

centrality ratio. The second factor shows the exponential decay process, which depends
on the (information) decay factors δ+ and δ−, as well as on the largest eigenvalues of the
two networks. The next factor is the inverse ratio of the sums of squared centralities.
This can be considered as the relative concentration (or centralization) of the networks.
Indeed, the larger the sum of squared centralities, the more centrality is concentrated
on a few agents, while this sum is minimal in regular networks (where every agent’s
centrality is equal to 1

n
). The last factor is determined by weighted averages of the initial

signals, whereas the weights are the eigenvector centralities. The centrality ratio will
determine opinion diversity, the exponential decay will determine speed of convergence,
the weighted signal averages will determine the levels of the signal mixes. For Case 2, the
factor decomposition is analogous. In Case 3, opinion diversity is also determined by the
centrality ratio, whereas misinformation depends on the concentration ratio, as further
discussed below.
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5.2 Implications

Through the key result, we can derive implications regarding the probability of misinfor-
mation, the diversity of opinions, and the speed of convergence.

Probability of Misinformation. Trivially, when all signals happen to be correct,
which occurs with probability ρn, there is never misinformation, while when all signals
happen to be false, which occurs with probability (1−ρ)n, there is always misinformation.
All remaining cases are covered by Proposition 2. As a consequence, we receive the
following main result.

Corollary 1 (Probability of Misinformation). 1. If δ+λ+
1 < δ−λ−1 , then each agent i’s

probability of long-run misinformation is

pMis
i (∞) = (1− b+)(1− ρ)n + b+(1− ρn),

which is essentially b+ for large networks.

2. If δ+λ+
1 > δ−λ−1 , then each agent i’s probability of long-run misinformation is

pMis
i (∞) = (1− b+)(1− ρn) + b+(1− ρ)n,

which is essentially 1− b+ for large networks.

3. If δ+λ+
1 = δ−λ−1 ,

then an agent i’s probability of long-run misinformation is bounded by

pMis
i (∞) ≤ max{(1−b+)(1−ρ)n+b+(1−ρn), (1−b+)(1−ρn)+b+(1−ρ)n} < max{b+, 1−b+}.

The intuition behind the first two parts of Corollary 1 is simple. Consider Case 1.
According to Proposition 2, negative signals dominate in the long run given that there is
at least one negative signal initially. Hence, the probability of long-run misinformation
equals the the probability that the positive state is realized while there is at least one
negative signal, b+(1 − ρn), plus the probability that the negative state is realized while
there are only positive signals, (1−b+)(1−ρ)n. For growing network size n, this probability
converges (quickly) to b+. That is, when negative signals are more shareable (Case 1),
then the long-run probability of misinformation is essentially the probability that the true
state is the positive state.

For equal prior b+ = 0.5, a setting that many models in the literature focus on, the
probability of misinformation is essentially 0.5 in both Case 1 and Case 2. Hence, there is

14



substantial misinformation independent of whether positive or negative signals are more
shareable. The reason is that, despite the initially informative distribution of signals, one
of the two signals will fully dominate in the long run (“if it doesn’t spread, it’s dead”),
while both states are equally likely. For b+ > 0.5 (b+ < 0.5) misinformation is even more
likely in Case 1 (in Case 2). The interpretation is that the positive state has a higher ex
ante probability of being true (b+ > 0.5), while negative signals have a higher shareability
(Case 1). Such a scenario can naturally arise, e.g. because signals indicating the ex ante
less likely state are more sensational and hence tend to be shared more and decay less.
The opposite scenario is also well thinkable: It could be that the ex ante more likely state
is indicated by signals which are more plausible or for some other reason are shared more
and decay less. However, even then the probability of misinformation is converging to
b+ > 0 or 1− b+ > 0 and hence does not converge to zero for large networks.

Concerning Case 3, Corollary 1 provides an upper bound for the probability of mis-
information, showing that it is always weakly lower than in the worse case of Case 1 or
Case 2.9

We now study the conditions under which the probability of misinformation converges
to zero for large networks. Consider a sequence of growing networks, indexed by network
size n, as defined in the last paragraph of Section 3. Proposition 3 provides a necessary
condition and a set of sufficient conditions for asymptotic learning.

Proposition 3 (Asymptotic Learning). Consider a sequence of growing networks, indexed
by network size n.

1. If some agent i’s probability of long-run misinformation converges to zero ( lim
n→∞

pMis
i,n (∞) =

0), then the products of decay factor and largest eigenvalue of the two networks co-
incide from a certain point in time on, i.e. there is a natural number n∗ such that
δ+
n λ1(A+

n ) = δ−n λ1(A−n ) for all n > n∗.

2. For a fixed agent i the probability of long-run misinformation converges to zero
( lim
n→∞

pMis
i,n (∞) = 0) if the following three conditions are all satisfied:

(i) The products of decay factor and largest eigenvalue of the two networks coincide
from a certain point in time on, i.e. there is a natural number n∗ such that
δ+
n λ1(A+

n ) = δ−n λ1(A−n ) for all n > n∗.
9Indeed, there are networks where agents in Case 3 are equally prone to misinformation as in Case 1

(Case 2) because they always converge to a signal mix below (above) 0.5 given that there is at least one
signal of each type signal initially.
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(ii) Maximal eigenvector centrality in both networks converges to zero, i.e. lim
n→∞

max
j=1,...,n

c+
j,n =

0 and lim
n→∞

max
j=1,...,n

c−j,n = 0.

(iii) The agent’s centrality ratio over the two networks’ concentration ratio has all
accumulation points in the open interval

(
1−ρ
ρ
, ρ

1−ρ

)
, i.e. there is a positive real

number ε > 0 and an integer n∗∗ such that for all n ≥ n∗∗,

γi,n :=

c+
i,n

c−i,n∑n

k=1(c+
k,n

)2∑n

k=1(c−
k,n

)2

∈
[

1− ρ
ρ

+ ε,
ρ

1− ρ − ε
]
. (5)

In its first part Proposition 3 shows that asymptotic learning necessarily requires
that the condition of the knife-edge case, Case 3, is always satisfied after some point.
Otherwise, we would have infinitely many occurrences of Case 1 or Case 2, which would
imply that the sequence pMis

i,n (∞) would not converge to zero. In other words: If the two
types of asymmetry are not in perfect balance, then the probability of misinformation does
not vanish for any agent. The second part of Proposition 3 provides sufficient conditions
on top of this first requirement: (ii) all agents’ influence is vanishing; and (iii) the agent’s
centrality ratio, in relation to the networks’ concentration ratio, is in a moderate range.
To understand the last condition, consider an agent i with low centrality ratio (relative
to the concentration ratio), γi,n ≤ 1, which means that this agent leans more towards
negative signals than others. Now, if γi,n < 1−ρ

ρ
< 1, her tendency to negative signals

is not moderate and she will behave like all agents in Case 1, letting negative signals
dominate, and be misinformed with probability b+ in large networks. If, in contrast, her
tendency is moderate, 1−ρ

ρ
< γi,n < 1, and the two other conditions are satisfied, she will

incorporate signals of both kinds and eventually learn the true state with high probability.
Analogously for γi,n > 1. The condition on moderate centrality ratios is less demanding
for large ρ and it is always satisfied in the special case of symmetry, which implies γi,n = 1;
and the condition (i), that we are in Case 3, in the first place.

While long-run misinformation is bounded in the symmetric benchmark and converges
to zero for most networks when they become large (Section 4), introducing even slight
asymmetry is sufficient to induce substantial levels of long-run misinformation even for
large networks, as Corollary 1 and Proposition 3 in this subsection show.

Opinion Diversity. Proposition 2 already indicates that individual differences between

agent’s beliefs are driven by their centrality ratio c+
i

c−i
. The following corollary of it es-

tablishes this relation, considering two agents’ ratios of positive over negative signals,
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N+
i (t)

N−i (t)

/
N+

j (t)
N−j (t) .

10 Clearly, if an agent’s ratio of positive over negative signals is above an-
other agent’s ratio, then her signal mix is higher, i.e. closer to the positive state.

Corollary 2 (Centrality Ratios and Opinion Diversity). Suppose that the initial distri-
bution of signals contains at least one positive and at least one negative signal. Then the
ratio of two agents’ ratios of positive over negative signals converges to these agents’ ratio
of centrality ratios, i.e.

lim
t→∞

N+
i (t)

N−i (t)

/N+
j (t)

N−j (t) = c+
i

c−i

/c+
j

c−j
. (6)

Hence, an agent i with higher centrality ratio than another agent j has a higher asymp-
totic signal mix, i.e. if c+

i

c−i
>

c+
j

c−j
(or equivalently, γi > γj when using the definition from

Equation 5), then for large t, xi(t) > xj(t).

Corollary 2 applies to all three cases of Proposition 2. It means that, even if signal
mixes converge to consensus in Cases 1 and 2, they are ordered by their centrality ratios. In
Case 3, this order also holds and opinion diversity even persists in the limit, as Example 1
below will show.

Minimal opinion diversity is given in all networks where c+
i

c−i
is constant across agents,

which holds in particular, if A+ = A−. Corollary 2 then implies that all agents approach
the same signal mix and opinions converge to consensus. We have seen this in the sym-
metry benchmark (Section 4), where the positive and negative signal sharing network
coincide by assumption. In contrast, strong opinion diversity emerges in networks where
the centrality ratios differ strongly across agents. For example, consider two star net-
works (N,A+) and (N,A−) with different agents at the center. The ratio of one center is
c+

i

c−i
=
√
n−1
1 , the ratio of the other center c+

j

c−j
= 1√

n−1 . Hence, by Corollary 2, N+
i (t)

N−i (t)

/
N+

j (t)
N−j (t)

converges to n− 1. That is, agent i has asymptotically n− 1 times more positive signals
over negative signals than agent j. Again, this holds in all of the three cases, even if the
differences in signal mix vanish for large t.

With respect to misinformation, Corollary 2 first implies that if, for instance, the true
state is positive (θ = 1) and some agent i is misinformed in the long run xi(∞) < 0.5, then
all agents with lower centrality ratios must be as well. Moreover, agents with relatively low
centrality in the positive signals network, i.e. γi < 1, are more prone to be misinformed
in the long run if b+ >> 0.5. Comparative-statics further show that i’s probability of
misinformation is then weakly increasing in b+: as she leans towards negative signals,

10Notice that agent i’s ratio of positive over negative signals, N+
i

(t)
N−

i
(t) , can equivalently be written as

xi(t)
1−xi(t) .
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she is more often misinformed when the positive state is ex ante more likely.11 The
implications are analogous for agents with a relatively high centrality in the positive
signals network. Finally, the order of the signal mixes will have consequences for the
probability of misinformation in the shorter term as well.

Speed of Convergence. The motivation for studying misinformation is that agents
make decisions, which may be based on inaccurate information. If the point of decision
making is not far in the future, then the short or medium term opinion dynamics matter.
Speed of convergence can also be measured with the help of Proposition 2. For instance,
in Case 1, the speed of convergence is governed by the speed that the exponential decay
factor

(
1+δ+λ+

1
1+δ−λ−1

)t
converges to 0 (see also Eq. (4)). Looking for the half-life, as it is

standard for exponential decay processes, we define t1/2 as the number of periods it takes
for this quantity to fall to one half of its initial value. Thus, we obtain half-life in Cases 1
and 2 as another Corollary of Proposition 2.

Corollary 3 (Speed of Convergence). Suppose that δ+λ+
1 6= δ−λ−1 . Then half-life is

t1/2 = log(0.5)
log(τ) , with τ := 1 + min{δ+λ+

1 , δ
−λ−1 }

1 + max{δ+λ+
1 , δ

−λ−1 }
. (7)

Half-life will be large when δ+λ+
1 and δ−λ−1 are close to each other, i.e. when we are

close to Case 3. In some sense, Case 3 can be considered as unlikely because it is a special
case of the parameter space. Still, it is important to study this case for at least two
reasons. First, in the absence of asymmetry – the special case that has been studied in
the literature – we are in Case 3, as it was discussed in Section 4. Second, under certain
conditions, opinions in the short and medium term are well approximated by the analysis
of Case 3, even if this does not hold in the long run.12

Concerning misinformation, this might mean that the low levels of misinformation,
which are typical for Case 3, can be held for a while before the unfavorable long-run
properties of Cases 1 and 2 unfold.13 An illustration helps.

11It is possible that the probability of misinformation is increasing (decreasing) in b+ for all i. Typically
for Case 3, however, it will be increasing in b+ for some agents and decreasing in b+ for others, as some
agents’ centrality ratio will be above the concentration ratio and the other agents’ will be below.

12Conditions are discussed in Online Appendix C.3.
13Moreover, it seems to be a rule of thumb that this is particularly true for those with γi tending to the

signals which will not dominate in the long run: agents with moderate or moderately small γi in Case 2
and agents with moderate or moderately large γi in Case 1. The reasons is that, by Corollary 2, these
agents’ signal mixes tend to be less extreme than those of the agents who already lean toward the state
that has the more shareable signals.
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6 Illustration

6.1 Illustration of Key Result and Implications

Example 1 illustrates Proposition 2 and Cororallies 1-3.

Example 1. Consider five agents N = {1, 2, 3, 4, 5}. The positive signal sharing network
(N,A+) is the complete network, i.e. a+

ij = 1 for all i 6= j. The negative signal sharing
network (N,A−) is a star network with Agent 1 at the center, i.e. a−1j = a−j1 = 1 for all
j = 2, 3, 4, 5 and a−ij = 0 else.14 We fix the decay factor of negative signals to be δ− = 0.8,
whereas we vary the decay factor of the positive signals.

Proposition 2 distinguishes three cases based on the condition δ+λ+
1 ≶ δ−λ−1 . In the

complete network, we have λ+
1 = n−1 = 4. In the star network, we have λ−1 =

√
n− 1 = 2.

Hence, we are in Case 3 of Proposition 2 if δ+ = 0.4, in Case 1 if δ+ < 0.4, and in
Case 2 if δ+ > 0.4 (indeed, δ+λ+

1 = 0.4 · 4 = 0.8 · 2 = δ−λ−1 yields Case 3). The
corresponding dynamics of signal mixes is illustrated in Figure 2 for the signal distribution
s = (0, 0, 1, 1, 1) and for values of parameter δ+ close to the equality threshold of 0.4. The
first four panels belong to Case 1 of Proposition 2, where signal mixes converge to 0.
The last four panels belong to Case 2, where signal mixes converge to 1. The middle
panel induces Case 3 by setting δ+ = 0.4. Interestingly, in that case (δ+ = 0.4) Agent 1,
the center of the star network, receives more negative signals than positive signals as
x1(∞) < 0.5, which does not hold for the other agents as xi(∞) > 0.5 for i = 2, 3, 4, 5.

To illustrate opinion diversity, established in Corollary 2, we compute eigenvector
centralities: c+

1,2,3,4,5 = 1
5 , c

−
1 = 1

3 and c−2,3,4,5 = 1
6 . The centrality ratios c+

i

c−i
for the four

agents are hence (3
5 ,

6
5 ,

6
5 ,

6
5 ,

6
5). In words, the first agent has a smaller relative importance

in the positive network relative to the negative network than all other agents. The reason
is that this agent, as the center of the star network, is better connected in the negative
signal sharing network than the others, while all agents are equally well-connected in the
positive signal sharing network, the complete network. By Corollary 2, this implies that
this agent’s signal mix will asymptotically always be closer to 0 than those of the other
agents: x1(t) < xi(t), for i = 2, 3, 4, 5. In all panels of Figure 2 this can be observed
as Agent 1’s signal mix is below the others’ signal mix, even if they converge to 1 or
0. Finally, observe that, in line with Corollary 3, convergence is slower the closer the
parameter δ+ to the critical value that induces Case 3.

14For illustration purpose, one can think of five colleagues who discuss the rumour that their company
has been sold to a competitor. All of them share information that speak against this theory while they
exchange information supporting this claim with only one person, Agent 1.
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Let us now consider misinformation, as established by Corollary 1. For this purpose we
relax the assumption of a specific signal realization and return to the ex ante perspective.
Figure 3 shows the probability of misinformation over time for the setting b+ = 0.6 (i.e.
the positive state is slightly more likely than the negative state) and information quality
ρ = 0.8. In Case 3 the probability of misinformation decreases quickly and remains
on the low level. This is due to learning of each other’s signals with an aggregation
that is balanced. In contrast, in Case 1 the probability of misinformation will settle on
(1 − b+)(1 − ρ)n + b+(1 − ρn), which is generally close to b+ and only reduced by the
possibility that all initial signals are correct (which happens here relatively frequently as
n = 5 and ρ = 0.8). Likewise in Case 2, the probability of misinformation will settle
below 1− b+, which is better than in Case 1 because the positive state, which is reached
in Case 2, has a higher ex ante probability: b+ = 0.6. In both Case 1 and Case 2, the
long-run probability of misinformation is substantial. Importantly, even in Case 1 and 2,
there is a low level of misinformation that is quickly reached. How long this can be
sustained, then depends on the extent of asymmetry: the more moderate the asymmetry,
i.e. the closer we are to the threshold (which is here obtained at δ+ = 0.4), the longer
the low level of misinformation can be sustained. Moreover, we can observe that Agent 1,
who tends to negative signals, tends to more often misinformed than the other agents
in Case 1, where negative signals dominate eventually, but not in Case 2, where positive
signals dominate eventually.

Since Example 1 is restricted to n = 5, we finally look at some larger networks.

6.2 Decay Asymmetry vs. Network Asymmetry

To illustrate how additional links in the positive signal sharing network A+ can compen-
sate for decay favoring negative signals (or inversely), we use the following construction.
We generate a graph with 250 random links on n = 100 agents.15 We keep it and call it A
if it is connected. The network of negative signals is then fixed to A− = A. The network
of positive signals A+ also consists of all links in A, but has α+ additional links. Because,
by construction, A− is a subgraph of A+ (i.e. for each entry, a+

ij ≥ a−ij, and for some entry
a+
ij > a−ij) and both are connected, we have λ+

1 > λ−1 . There is hence network asymmetry
favoring positive signals. We also introduce decay asymmetry, this time favoring negative
signals, by fixing δ− = 1 and setting δ+ ∈ [0, 1).

While decay asymmetry is immediate, the intensity of network asymmetry depends
15These networks are like Erdős–Rényi random graphs with average degree of five.
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Figure 2: Illustration of results.

Notes: Dynamics of signal mixes in Example 1 over time. Agent 1, illustrated by the black dashed line,
is the center in the negative signal sharing network. The first four panels with δ+ < 0.4 belong to Case
1 of Proposition 2. The middle panel with δ+ = 0.4 yields Case 3. The last four panels with δ+ > 0.4
belong to Case 2.

not only on how many positive links are added (α+), but also on how they are added.
We compare two link generation processes: random and echo chamber. In the random
link generation process, we add the α+ additional links at random. In the echo chamber
process, each additional link is created in order to generate an increasingly large echo
chamber. The first additional link is generated between two random nodes, the second
between these two nodes and a third. The third link will either increase the connectedness
of the first three nodes, or, if all links are already present, create a link between a fourth
node and the first three, and so on until α+ links are added to the positive signal sharing
network.

In Figure 4, we show the ratio of decay factors needed to exactly compensate network
asymmetry. Network asymmetry is determined by a given ratio of links between A+ and
A−, using the two different link generation processes. In the lower left (upper right) of the
parameter space we are in Case 1 (Case 2) where negative (positive) signals eventually
dominate. The purple and black line show the points in the parameter space where
the threshold condition is met with equality. Near these lines misinformation can be
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Figure 3: Probability of Misinformation in Example 1.

Notes: Probability misinformation in Example 1 over time. Agent 1 is the center in the negative signal
sharing network. Agent 2-5 are in structurally equivalent positions. In each panel, the dotted lines
indicate the levels of the probability of misinformation initially and in the long run in Cases 1 and 2.

small in the short and medium term, while far away from this lines the probability of
misinformation is substantial, apart from the very first periods.

For example, if there are 20% more links in the positive network than in the negative
network and all links are created at random, then positive signals must face a decay of
roughly 0.8 to compensate it, as δ+

δ−
≈ 0.8 at the position where the bright line is at

1.2. If, however, the 20% additional positive links are arranged in an echo chamber, then
it takes twice the decay for negative signals compared with positive signals to achieve
a balanced sharing, as δ+

δ−
≈ 0.5 at the position where the black line is at 1.2. Hence,

network asymmetry produced by echo chambers causes misinformation and is hard to
compensate.
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Figure 4: Compensating decay asymmetry with network asymmetry.

Notes: Results based on 10’000 replications per setting. Each line represents a different additional link
generation process. The lines draw the median ratios of decay asymmetry that exactly compensate the
ratio of links between the A+ and A− networks, generating Case 3 of Proposition 2. For parameters at
the lower left (upper right) of a given line negative (positive) signals dominate. Parameters close to a
given line foster information aggregation in the short and medium term.

7 Extension: Heterogeneous Relations
In this section, we extend the model by defining decay factors that are pair-specific.
Formally, we consider two weighted graphs (N,M+) and (N,M−), where M+ and M−

are n × n matrices with entries m+
ij = δ+

ij ∈ (0, 1] or m+
ij = 0 and m−ij = δ−ij ∈ (0, 1] or

m−ij = 0. Like in the baseline model, a positive entry δ+
ij > 0 is the decay of information for

the pair ij, i.e. the fraction of positive signals that agent i receives when communicating
with agent j. Signal accumulation becomesN+(t) = (I+M+)N+(t−1) for positive signals
and likewise N−(t) = (I +M−)N−(t− 1) for negative signals. We extend the assumption
of connectedness by assuming here that both networks are strongly connected. In all other
aspects, the extended model is defined as the baseline model, introduced in Section 3.

This extension makes the model more flexible since it can accommodate many forms
of heterogeneity. First, it allows for every pair i, j to have a different quality of communi-
cation and hence a pair-specific decay factor. Second, networks can be directed such that
some agent i receives signals from another agent j, while j does not receive signals of i,
i.e. m+

ij = δij > 0 and m+
ji = 0. Third, it allows an agent i to face a stronger decay as a

receiver of information, i.e. δij < δkj for all linked j, k. This can incorporate in particular
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differences in discounting of received signals. Fourth, it allows for some agent i to face a
stronger decay than others as a sender of information, i.e. δji < δjk for and all linked j, k.
This could incorporate in particular differences in which a fraction of signals is shared.
These variations can be applied at the individual level to single agents, or more broadly
to groups of agents.

Even though this extension carries a rich array of new applications, our results neatly
generalize, as we show in Online Appendix B. A noteworthy difference is that left and
right eigenvectors do not coincide. Hence, we define right-hand eigenvector centrality
c+, c−, that is originally defined (Bonacich, 1987) and left-hand eigenvector centrality
d+, d− that determines social influence in the DeGroot model (Golub and Sadler, 2016).
Interestingly, we have lim

t→∞
N+

i (t)∑
j
N+

j (t) → c+
i and lim

t→∞
N−i (t)∑
j
N−j (t) → c−i , showing that the right-

hand eigenvectors capture which fraction of all positive, respectively negative, signals in
the society is asymptotically held by agent i. In contrast, the left-hand eigenvector d+

i

expresses which fraction of on average asymptotically held signals originated from agent i’s
initial signal. In other words: the right eigenvectors c+, c− determine the relations between
the asymptotic signal mixes of agents, while the left eigenvectors d+, d− determine the
effect of agents’ initial signals on the asymptotic signal mix, as Extended Proposition 2
and Extended Corollary 2 in the Online Appendix B demonstrate.

The generalization shows that it is not essential that the network is undirected or that
discounting is similar for different agents, while symmetry or asymmetry between positive
and negative networks is still crucial.

8 Discussion

8.1 Policy Implications

Our main result imply that the fight against misinformation is challenging. Slight asym-
metry is sufficient for substantial misinformation in the long run.16 Countervailing mea-
sures that do not reach the threshold condition, δ+λ+

1 = δ−λ−1 , eventually lead to the same
result. Countervailing measures that go beyond the threshold condition lead to substan-
tial misinformation as well. Achieving a perfect balance between sharing of negative and

16“Substantial” means that it does not converge to zero for large networks. The best case with substan-
tial misinformation is the scenario where the state which has higher ex ante probability, say the positive
state (b+ > 0.5), also has more shareable signals (δ+λ+

1 > δ−λ−1 ). Then the probability of long-run
misinformation is still 1− b+ in large networks.
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positive signals (i.e. hitting the threshold δ+λ+
1 = δ−λ−1 ) seems unrealistically hard.17 Our

analysis, however, also shows that it is still worthwhile to strive for such a balance. When
asymmetries are reduced, δ+λ+

1 ≈ δ−λ−1 , speed of convergence to one dominant signal is
slow, which enables information aggregation and low levels of misinformation in the short
and medium term. In the fight against misinformation hence the first step is to identify
asymmetry of the positive and negative messages regarding the issue. Consider an issue
for which positive signals are less shareable than negative signals, i.e. δ+λ+

1 << δ−λ−1 ,
because, say, they have a higher emotional content, are more sensational, are less boring,
are more plausible, come in a simpler form, or for some other reason. Then we can tackle
misinformation by moderating the asymmetry. Potential counter-measures address the
form of the message, the platforms’ feed algorithms, and the literacy of users.

Concerning the form, an example of particular importance are scientific publications.
Most of them still exist only in article form and their complexity regularly constitutes a
high barrier for the general public. In the meantime, concurring information is created
in ways that is simple and easily shareable online via social media or messaging apps,
such as images, videos and news-like posts. Providers of scientific information are thus
not always fighting with the appropriate tools and should consider how to tailor their
message in a way that allows them to keep its informative integrity, while being easily
shareable. This could improve sharing of positive signals in both dimensions, reducing
decay (“δ+ ↑”) and increasing the number of people it is shared with (“λ+ ↑”), in order to
moderate the stipulated asymmetry above (that positive signals were less shareable than
negative signals).

Through feed algorithms, social media platforms strongly affect which information
we are confronted with. Such feed algorithms could reduce the push of messages that
are sensational, simple etc. and already shared heavily, but instead, more often select
messages that are rather boring, complicated, etc., and hence have not yet been shared
heavily. Users would then be confronted more often with opposing information and might
later than earlier commit to a one-sided view of the issue. However, such policies have
to be implemented and monitored with care as they can backfire.18 More easily, feed
algorithms that support echo chambers where only one type of information shared can be
altered to reduce network asymmetry.

17And even if this balance was achieved, there are additional conditions for vanishing misinformation
in the limit: moderate centrality ratios and vanishing influence, see Proposition 3.

18Users who have been exposed to debunking information regarding conspiracy theories have been
observed to consequently increase the intensity of their engagement with conspiracy posts (Zollo et al.,
2017).
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Finally, to fight asymmetric sharing of signals, people’s sharing behavior can be af-
fected by giving nudges and by education. Experiments find that simply asking people to
pause and reflect before sharing may decrease their intention to share false information
(Fazio, 2020). Stressing the importance of accuracy can have a similar effect (Pennycook
et al., 2021). Educating people to higher information literacy, which emphasizes the abil-
ity to navigate and locate information, to recognize opinion pieces or to search databases
(Livingstone et al., 2008), can make them less prone to misinformation (Jones-Jang et al.,
2021). Interestingly, a recent study finds that increasing acceptance of information from
credible news sources can have a much higher impact than reducing acceptance of infor-
mation from dubious news sources (Acerbi et al., 2022).

These suggestions for how to counter-act misinformation, are all from the perspective
of a policy maker that does not know the true state. If it would, the same measures could
be used to promote the correct signals and to hamper the spread of the false signals.
Of course, another approach is to increase the accuracy of information and to fact-check
messages, given there is such a technology. In our model this would result in a higher signal
quality ρ, which is slightly reducing misinformation, but qualitatively as problematic as
long as there are asymmetries.

8.2 Limitations

Separating decay and signal type. Our model assumes decay and networks to be
fully dependent on signal type. Agents share all positive, and respectively negative, signals
to the same extent and with the same people. More realistically, decay and signal sharing
networks would be idiosyncratic to the signal and only partly correlated to signal type.
For instance, negative signals on some issue might generally be more shareable (and hence
decay less and be shared with more people), but some positive signals might also be highly
shareable.

Extending our model to allow for idiosyncratic decay factors and signal sharing net-
works would generalize our main condition δ+λ+

1 ≶ δ−λ−1 to considering not the common
decay factors and networks, but the maximally realized product of decay factor and eigen-
value in this equation, i.e. the highest product among all positive signals and the highest
product among all negative signals. While gaining realism, this extension would not
fundamentally change our analysis and conclusions.

More Sophisticated Sharing Behavior. In our model, agents are assumed to be
naïve and the way they share signals is mechanic. Recently, alternative approaches to
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model the sequential sharing of messages by more sophisticated agents have been intro-
duced (e.g. Papanastasiou, 2020; Acemoglu et al., 2022). Incorporating asymmetry into
such models is left for future research.

Creation of Information. We study how given information on an issue is used without
studying the creation of information. First, knowledge is the product of scientific efforts of
many institutions, which will add new information into the system. This is not captured in
our model, but it is a reason why we emphasize knowledge usage in the short and medium
term, as in the long term, new information arrives. Second, messages are produced by
various institutions (companies, media outlets, governments, private persons,...) with
various goals. Both aspects, arrival of new information and existence of forceful agents,
have already been incorporated in the previous literature on social learning.

9 Conclusion
We have investigated asymmetric sharing of positive (supporting) and negative (question-
ing) information as a source of misinformation. Our results established that differences
in the decay factor and in the connectedness, as measured by the largest eigenvalues,
determine the long-run state a society reaches. Even slight asymmetries lead to substan-
tial levels of misinformation in the long run. Though it is clear from our discussion that
there is no silver bullet in the fight against misinformation, we can conclude that counter-
measures should consider signal-dependent sharing behaviors and moderate asymmetries
in signal sharing. This aspect has not yet been studied in the (theoretical) literature on
social learning, but may deserve more attention in the future.
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A Appendix: Proofs
This appendix contains the proofs of all results stated in the main text.19

A.1 Proof of Proposition 1

To prove Proposition 1, we apply Proposition 2, which is proven below. Using the result
of Case 3 of Proposition 2 and c+ = c− = c, we find that

lim
t→∞

xi(t) = 1

1 + c−i
c+
i

∑n
k=1(c+

k )2∑n
k=1(c−k )2

1−∑n
j=1 c

−
j sj∑n

j=1 c
+
j sj

= 1

1 +
1−∑n

j=1 cjsj∑n
j=1 cjsj

= 1∑n
j=1 cjsj + 1−∑n

j=1 cjsj∑n
j=1 cjsj

=
n∑
j=1

cjsj.

We now show that the probability of misinformation is bounded by 0.5, i.e. for θ = 1,
we have to show that

pMis
i (∞) = P (xi(∞) < 0.5) + 0.5P (xi(∞) = 0.5) ≤ 0.5 for all i,

while for θ = 0, we must prove

pMis
i (∞) = P (xi(∞) > 0.5) + 0.5P (xi(∞) = 0.5) ≤ 0.5 for all i.

Defining Tj := sj when θ = 1 and Tj := 1− sj when θ = 0, this amounts to showing that

P

 n∑
j=1

cjTj <
1
2

+ 1
2P

 n∑
j=1

cjTj = 1
2

 ≤ 1
2 , (A.1)

as, for all i, xi(∞) = ∑n
j=1 cjsj equals

∑n
j=1 cjTj when θ = 1 and 1−∑n

j=1 cjTj when θ = 0.
Due to their construction, the Tj are iid B(0, ρ)-distributed, independent of the true state
θ. In order to prove Equation (A.1), we also define the following quantities: pl(ρ) :=
P
(∑n

j=1 cjTj <
1
2

)
, pm(ρ) := P

(∑n
j=1 cjTj = 1

2

)
, and pu(ρ) := P

(∑n
j=1 cjTj >

1
2

)
, which

obviously sum to unity: pl(ρ) + pm(ρ) + pu(ρ) = 1 for all ρ. Using these, Equation (A.1)
can be restated as pl(ρ) + 1

2pm(ρ) ≤ 1
2 , which is equivalent to 2pl(ρ) + pm(ρ) ≤ 1 =

pl(ρ) + pm(ρ) + pu(ρ), which is in turn equivalent to pl(ρ) ≤ pu(ρ). This part of the proof
can therefore be completed by showing that indeed pl(ρ) ≤ pu(ρ) for all ρ > 1

2 . Due to
19Further appendices are provided as Supplementary Online Material, which is permanently available

here: www.berno.info under the name MisInfo_SupplementaryOnlineMaterial.pdf.
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∑n
j=1 cj(1 − Tj) = ∑n

j=1 cj −
∑n
j=1 cjTj = 1 − ∑n

j=1 cjTj, the condition ∑n
j=1 cjTj <

1
2 is

equivalent to ∑n
j=1 cj(1 − Tj) > 1

2 . As 1 − Tj takes the values 0 and 1 with probabilities
ρ and 1− ρ, respectively, we find that

pl(ρ) = P

 n∑
j=1

cjTj <
1
2

 = P

 n∑
j=1

cj(1− Tj) >
1
2

 = pu(1− ρ) ≤ pu(ρ),

where the inequality at the end holds true because 1−ρ < ρ, due to ρ > 1
2 . We thus have

shown that pl(ρ) ≤ pu(ρ), concluding the major part of the proof.
Finally, concerning the result for network size growing to infinity, the proof proceeds

along the lines of the proof of Lemma 1 of Golub and Jackson (2010), a well-established
result on the wisdom of crowds. In particular, for the term ∑n

j=1 cj,nTj,n, we first find
that its expected value is ρ, as all Tj,n have expectation ρ and ∑n

j=1 cj,n = 1. Similarly,
the term’s variance equals ρ(1− ρ)∑n

j=1 c
2
j,n, as the Tj,n are all independent with variance

ρ(1− ρ). Due to ∑n
j=1 c

2
j,n ≤ maxnj=1 cj,n

∑n
j=1 cj,n = maxnj=1 cj,n together with assumption

maxnj=1 cj,n
n→∞−→ 0, this variance converges to 0. With the help of Chebyshev’s inequality,

this ensures that ∑n
j=1 cj,nTj,n converges in probability to ρ > 0.5. Thus, the probability

of misinformation vanishes asymptotically.

A.2 Proof of Proposition 2

To begin the proof, we use the eigendecompositions of the real symmetric matrices
A+ and A−, writing them as A+ = Q+Λ+ (Q+)> and A− = Q−Λ− (Q−)>, respec-
tively, with Q+ and Q− being orthogonal matrices whose columns are eigenvectors of
A+ and A−, and Λ+ and Λ− being diagonal matrices whose entries are the eigenval-
ues of A+ and A−. From this, we have that I + δ+A+ = Q+ (I + δ+Λ+) (Q+)> and
I + δ−A− = Q− (I + δ−Λ−) (Q−)> as well as (I + δ+A+)t = Q+ (I + δ+Λ+)t (Q+)> and
(I + δ−A−)t = Q− (I + δ−Λ−)t (Q−)> for all t. Overall, this delivers
(
I + δ+A+

)t
=

n∑
i=1

(
1 + δ+λ+

i

)t
q+
i

(
q+
i

)>
,
(
I + δ−A−

)t
=

n∑
i=1

(
1 + δ−λ−i

)t
q−i
(
q−i
)>
,

with q+
i and q−i (i = 1, . . . , n) denoting the eigenvectors of A+ and A−, respectively.

Denoting the vector of initial signals by s, we thus get:

N+(t) =
(
I + δ+A+

)t
N+(0) =

(
I + δ+A+

)t
s =

n∑
j=1

(
1 + δ+λ+

j

)t
q+
j

(
q+
j

)>
s,

N−(t) =
(
I + δ−A−

)t
N−(0) =

(
I + δ+A+

)t
(1− s) =

n∑
j=1

(
1 + δ−λ−j

)t
q−j
(
q−j
)>

(1− s).
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From this, we get for the numbers of positive signals at time t,

N+(t) =
(
1 + δ+λ+

1

)tq+
1

(
q+

1

)>
s+

n∑
j=2

(
1 + δ+λ+

j

1 + δ+λ+
1

)t
q+
j

(
q+
j

)>
s

 , (A.2)

and for the numbers of negative signals at time t,

N−(t) =
(
1 + δ−λ−1

)tq−1 (q−1 )> (1− s) +
n∑
j=2

(
1 + δ−λ−j
1 + δ−λ−1

)t
q−j
(
q−j
)>

(1− s)
 . (A.3)

Due to Perron-Frobenius theory, it is clear that
1 + δ+λ+

j

1 + δ+λ+
1

and
1 + δ−λ−j
1 + δ−λ−1

are both smaller
than 1 for j = 2, . . . , n, implying(

1 + δ+λ+
1

)−t
N+(t) t→∞−→ q+

1

(
q+

1

)>
s,
(
1 + δ+λ−1

)−t
N−(t) t→∞−→ q−1

(
q−1
)>

(1− s).

Now, using that q+
1 = c+

||c+||
= c+√

n∑
k=1

(
c+
k

)2
and q−1 = c−

||c−||
= c−√

n∑
k=1

(
c−k
)2

, we finally get:

(
1 + δ+λ+

1

)−t
N+(t) t→∞−→ c+ (c+)> s

n∑
k=1

(
c+
k

)2 = c+

n∑
j=1

c+
j sj

n∑
k=1

(
c+
k

)2 , (A.4)

(
1 + δ−λ−1

)−t
N−(t) t→∞−→ c−

(c−)> (1− s)
n∑
k=1

(
c−k
)2 = c−

n∑
j=1

c−j (1− sj)
n∑
k=1

(
c−k
)2 = c−

1−
n∑
j=1

c−j sj

n∑
k=1

(
c−k
)2 . (A.5)

With these general results at hand, we can address the three cases considered in Propo-
sition 2.

1. For
(

1 + δ+λ+
1

1 + δ−λ−1

)−t
xi(t), we get when δ+λ+

1 < δ−λ−1 (Case 1):

(
1 + δ+λ+

1
1 + δ−λ−1

)−t
xi(t) =

(
1 + δ+λ+

1
1 + δ−λ−1

)−t
N+
i (t)

N+
i (t) +N−i (t)

=

(
1 + δ+λ+

1

)−t
N+
i (t)(

1 + δ−λ−1
)−t (

N+
i (t) +N−i (t)

)
=

(
1 + δ+λ+

1

)−t
N+
i (t)(

1 + δ+λ+
1

1 + δ−λ−1

)t (
1 + δ+λ+

1

)−t
N+
i (t) +

(
1 + δ−λ−1

)−t
N−i (t)
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t→∞−→

c+
i

n∑
j=1

c+
j sj

n∑
k=1

(
c+
k

)2

c−i

1−
n∑
j=1

c−j sj

n∑
k=1

(
c−k
)2

= c+
i

c−i

n∑
k=1

(c−k )2

n∑
k=1

(c+
k )2

n∑
j=1

c+
j sj

1−
n∑
j=1

c−j sj
.

2. For
(

1 + δ−λ−1
1 + δ+λ+

1

)−t
(1− xi(t)), we get when δ+λ+

1 > δ−λ−1 (Case 2):

(
1 + δ−λ−1
1 + δ+λ+

1

)−t
(1− xi(t)) =

(
1 + δ−λ−1
1 + δ+λ+

1

)−t
N−i (t)

N+
i (t) +N−i (t)

=

(
1 + δ−λ−1

)−t
N−i (t)(

1 + δ+λ+
1

)−t (
N+
i (t) +N−i (t)

)
=

(
1 + δ−λ−1

)−t
N−i (t)(

1 + δ+λ+
1

)−t
N+
i (t) +

(
1 + δ−λ−1
1 + δ+λ+

1

)t (
1 + δ−λ−1

)−t
N−i (t)

t→∞−→

c−i

1−
n∑
j=1

c−j sj

n∑
k=1

(
c−k
)2

c+
i

n∑
j=1

c+
j sj

n∑
k=1

(
c+
k

)2

= c−i
c+
i

n∑
k=1

(c+
k )2

n∑
k=1

(c−k )2

1−
n∑
j=1

c−j sj

n∑
j=1

c+
j sj

.

3. Finally, when δ+λ+
1 = δ−λ−1 (Case 1), we get:

xi(t) =

(
1 + δ+λ+

1

)−t
N+
i (t)(

1 + δ+λ+
1

)−t
N+
i (t) +

(
1 + δ−λ−1

)−t
N−i (t)

t→∞−→

c+
i

n∑
j=1

c+
j sj

n∑
k=1

(
c+
k

)2

c+
i

n∑
j=1

c+
j sj

n∑
k=1

(
c+
k

)2 + c−i

1−
n∑
j=1

c−j sj

n∑
k=1

(
c−k
)2

= 1

1 + c−i
c+
i

n∑
k=1

(c+
k )2

n∑
k=1

(c−k )2

1−
n∑
j=1

c−j sj

n∑
j=1

c+
j sj

.
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A.3 Proof of Corollary 1

1. Due to the first part of Proposition 2, there are only two important cases that have
to be looked at: either all initial signals are equal to 1, entailing lim

t→∞
xi(t) = 1, or

at least one initial signal is 0, entailing lim
t→∞

xi(t) = 0. If the true state is 0, which
happens with probability 1 − b+, then long-run misinformation occurs if all initial
signals are equal to 1, and if the true state is 1, which happens with probability
b+, then long-run misinformation occurs if at least one initial signal is 0. Thus, the
probability of misinformation is given by the sum of (1−b+)(1−ρ)n, the probability
of state 0 occurring and leading to misinformation, and b+(1− ρn), the probability
of state 1 occurring and leading to misinformation.

2. Due to the second part of Proposition 2, there are only two important cases that
have to be looked at: either all initial signals are equal to 0, entailing lim

t→∞
xi(t) = 0,

or at least one initial signal is 1, entailing lim
t→∞

xi(t) = 1. If the true state is 0,
which happens with probability 1 − b+, then long-run misinformation occurs if at
least one initial signal is equal to 1, and if the true state is 1, which happens
with probability b+, then long-run misinformation occurs if all initial signal are 0.
Thus, the probability of misinformation is given by the sum of (1− b+)(1− ρn), the
probability of state 0 occurring and leading to misinformation, and b+(1− ρ)n, the
probability of state 1 occurring and leading to misinformation.

3. In order to prove

pMis
i (∞) ≤ max{(1− b+)(1− ρ)n + b+(1− ρn), (1− b+)(1− ρn) + b+(1− ρ)n},

we proceed as follows: we first rearrange the right-hand side as

(1− ρ)n +
(

1− ρn − (1− ρ)n
)

max{b+, 1− b+}

and observe that this term can be interpreted as the sum of the probability of all
agents’ initial signals being incorrect, (1−ρ)n, and the product of the probability of
the initial signal distribution being non-trivial, 1− ρn− (1− ρ)n, and the maximum
of the probabilities of the state being equal to 1 and 0, respectively. Our task thus
reduces to proving that the conditional probability of long-run misinformation given
non-trivially distributed initial signals is bounded by max{b+, 1− b+}. Conditional
on non-trivial signals and the state θ = 1, the probability of misinformation is given
by

P

(
c−i
c+
i

∑n
k=1(c+

k )2∑n
k=1(c−k )2

1−∑n
j=1 c

−
j sj∑n

j=1 c
+
j sj

> 1
)

+ 1
2P

(
c−i
c+
i

∑n
k=1(c+

k )2∑n
k=1(c−k )2

1−∑n
j=1 c

−
j sj∑n

j=1 c
+
j sj

= 1
)
,
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while, conditional on θ = 0, it is given by:

P

(
c−i
c+
i

∑n
k=1(c+

k )2∑n
k=1(c−k )2

1−∑n
j=1 c

−
j sj∑n

j=1 c
+
j sj

< 1
)

+ 1
2P

(
c−i
c+
i

∑n
k=1(c+

k )2∑n
k=1(c−k )2

1−∑n
j=1 c

−
j sj∑n

j=1 c
+
j sj

= 1
)
.

Defining Tj := 1 if sj = θ and Tj := 0 if sj 6= θ, the two conditional probabilities
above can be rearranged as

p1(ρ) := P

 n∑
j=1

 c−i c
−
j∑n

k=1

(
c−k
)2 +

c+
i c

+
j∑n

k=1

(
c+
k

)2

Tj < c−i∑n
k=1

(
c−k
)2


+ 1

2P

 n∑
j=1

 c−i c
−
j∑n

k=1

(
c−k
)2 +

c+
i c

+
j∑n

k=1

(
c+
k

)2

Tj = c−i∑n
k=1

(
c−k
)2


for θ = 1, while θ = 0 leads to

p0(ρ) := P

 n∑
j=1

 c−i c
−
j∑n

k=1

(
c−k
)2 +

c+
i c

+
j∑n

k=1

(
c+
k

)2

Tj < c+
i∑n

k=1

(
c+
k

)2


+ 1

2P

 n∑
j=1

 c−i c
−
j∑n

k=1

(
c−k
)2 +

c+
i c

+
j∑n

k=1

(
c+
k

)2

Tj = c+
i∑n

k=1

(
c+
k

)2


and the probability of misinformation conditional on non-trivially distributed initial
signals is given by b+p1(ρ) + (1 − b+)p0(ρ). For ρ = 0.5, the Tj have the same
distribution as 1 − Tj, and replacing Tj by 1 − Tj in one of the equations above
shows that p1(0.5) + p0(0.5) = 1. For ρ = 0.5, we therefore have

b+p1(ρ) + (1− b+)p0(ρ) = b+p1(0.5) + (1− b+)p0(0.5)
≤ max{b+, 1− b+}p1(0.5) + max{b+, 1− b+}p0(0.5)
= max{b+, 1− b+} (p1(0.5) + p0(0.5)) = max{b+, 1− b+}.

This concludes the proof for ρ = 0.5. For ρ > 0.5, the assertion follows from the
fact that both p1(ρ) and p0(ρ) are decreasing in ρ, as the distribution of the Tj is
shifted to the right when ρ increases.

The last inequality, finally, follows easily from b+ and 1 − b+ both being bounded
by max{b+, 1− b+} and from 1− ρn + (1− ρ)n < 1, with the last inequality holding
due to ρ > 1

2 .
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A.4 Proof of Proposition 3

1. In order to prove the assertion, it is sufficient to show the following: If some agent i’s
probability of long-run misinformation converges to zero ( lim

n→∞
pMis
i,n (∞) = 0), then

the sets N1 := {n : δ+λ1(A+
n ) < δ−λ1(A−n )} and N2 := {n : δ+λ1(A+

n ) > δ−λ1(A−n )}
are both finite. Finiteness of the two sets will imply δ+λ1(A+

n ) = δ−λ1(A−n ) for all
n ≥ n∗ := max(N1 ∪N2) + 1.

First, let us assume that N1 was not finite, i.e., Case 1 would occur infinitely often.
Then N1 would contain an infinite sub-sequence n1 < n2 < n3 < ... such that
δ+λ1(A+

nm
) < δ−λ1(A−nm

) for all m = 1, . . . ,∞. For this sub-sequence, part i of
Corollary 1 would imply that i’s long-run probability of misinformation for network
size nm is pMis

i,nm
(∞) = (1−b+)(1−ρ)nm +b+(1−ρnm). This quantity would converge

to b+ > 0 for m → ∞. The existence of a sub-sequence that converges to a value
different from 0 contradicts the assumption that the original sequence converges to
0. Thus, N1 must be finite.

In a completely analogous way, one can see that N2 not being finite would imply the
existence of a sub-sequence n1 < n2 < n3 < ... such that δ+λ1(A+

nm
) > δ−λ1(A−nm

)
for all m = 1, . . . ,∞. In this case, we would have pMis

i,nm
(∞) = (1 − b+)(1 − ρnm) +

b+(1− ρ)nm for i’s long-run probability of misinformation for network size nm, and
this quantity would thus converge to 1 − b+ > 0 for m → ∞, again contradicting
the assumption that the original sequence converges to 0.

2. Condition (i) and Proposition 2 imply

xi(∞) = 1

1 +
c−i,n
c+
i,n

∑n
k=1(c+

k,n)2∑n
k=1(c−k,n)2

1−∑n
j=1 c

−
j,nsj∑n

j=1 c
+
j,nsj

As the sj are iid B(1, ρ)-distributed when θ = 1 and iid B(1, 1 − ρ)-distributed
when θ = 0, the variances of ∑n

j=1 c
−
j,nsj and ∑n

j=1 c
+
j,nsj are in any case equal to

ρ(1− ρ)∑n
j=1

(
c−j,n

)2
and ρ(1− ρ)∑n

j=1

(
c+
j,n

)2
, respectively. Due to ∑n

j=1

(
c−j,n

)2
≤

max
j=1,...,n

c−j,n
∑n
j=1 c

−
j,n = max

j=1,...,n
c−j,n and

∑n
j=1

(
c+
j,n

)2
≤ max

j=1,...,n
c+
j,n

∑n
j=1 c

+
j,n = max

j=1,...,n
c+
j,n,

condition (ii) implies that these variances shrink to 0. As ∑n
j=1 c

−
j,n = 1 and∑n

j=1 c
+
j,n = 1 imply that the expected values of ∑n

j=1 c
−
j,nsj and ∑n

j=1 c
+
j,nsj equal

ρ when θ = 1 and 1 − ρ when θ = 0, we find that ∑n
j=1 c

−
j,nsj and ∑n

j=1 c
+
j,nsj

converge in probability to ρ when θ = 1 and to 1− ρ when θ = 0.

When θ = 1, long-run misinformation is avoided if xi(∞) > 1
2 , which is equivalent

34



to
1−∑n

j=1 c
−
j,nsj∑n

j=1 c
+
j,nsj

<
c+
i,n

c−i,n

∑n
k=1(c−k,n)2∑n
k=1(c+

k,n)2 = γi,n. (A.6)

Condition (iii) implies that for n large enough, there exists ε > 0 such that γi,n ≥
1−ρ
ρ

+ ε. As 1−
∑n

j=1 c
−
j,nsj∑n

j=1 c
+
j,nsj

converges in probability to 1−ρ
ρ

when θ = 1, the probability

of 1−
∑n

j=1 c
−
j,nsj∑n

j=1 c
+
j,nsj

being smaller than 1−ρ
ρ

+ ε converges to 1, and thus the long-run
probability of misinformation shrinks to 0 when θ = 1.

When θ = 0, long-run misinformation is avoided if xi(∞) < 1
2 , which is equivalent

to
1−∑n

j=1 c
−
j,nsj∑n

j=1 c
+
j,nsj

>
c+
i,n

c−i,n

∑n
k=1(c−k,n)2∑n
k=1(c+

k,n)2 = γi,n. (A.7)

Condition (iii) implies that for n large enough, there exists ε > 0 such that γi,n ≤
ρ

1−ρ − ε. As
1−
∑n

j=1 c
−
j,nsj∑n

j=1 c
+
j,nsj

converges in probability to ρ
1−ρ when θ = 0, the probability

of 1−
∑n

j=1 c
−
j,nsj∑n

j=1 c
+
j,nsj

being larger than ρ
1−ρ − ε converges to 1, and thus the long-run

probability of misinformation shrinks to 0 when θ = 0, which concludes the proof.

A.5 Proof of Corollary 2

First of all, notice that N+
i (t)

N−i (t)

/
N+

j (t)
N−j (t) can be written as xi(t)(1−xj(t))

xj(t)(1−xi(t)) . We thus have to prove

that lim
t→∞

xi(t)(1−xj(t))
xj(t)(1−xi(t)) = c+

i c
−
j

c−i c
+
j

, which we will do by successively tackling the three cases
given in Proposition 2. For Case 1, we know that δ+λ+

1 < δ−λ−1 and

xi(t)
(

1 + δ−λ−1
1 + δ+λ+

1

)t
t→∞−→ c+

i

c−i

∑n
k=1(c−k )2∑n
k=1(c+

k )2

∑n
l=1 c

+
l sl

1−∑n
l=1 c

−
l sl

,

as well as xi(t) t→∞−→ 0 for all i. Trivially, thus, 1− xi(t) and 1− xj(t) each converge to 1.
For

xi(t)
xj(t)

=
xi(t)

(
1+δ−λ−1
1+δ+λ+

1

)t
xj(t)

(
1+δ−λ−1
1+δ+λ+

1

)t ,
we then find that it converges to

c+
i

c−i

∑n

k=1(c−
k

)2∑n

k=1(c+
k

)2

∑n

l=1 c
+
l
sl

1−
∑n

l=1 c
−
l
sl

c+
j

c−j

∑n

k=1(c−
k

)2∑n

k=1(c+
k

)2

∑n

l=1 c
+
l
sl

1−
∑n

l=1 c
−
l
sl

=
c+

i

c−i

c+
j

c−j

,

which proves the assertion for Case 1.
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For Case 2, we know that δ+λ+
1 > δ−λ−1 and

(1− xi(t))
(

1 + δ+λ+
1

1 + δ−λ−1

)t
t→∞−→ c−i

c+
i

∑n
k=1(c+

k )2∑n
k=1(c−k )2

∑n
l=1 c

−
l sl

1−∑n
l=1 c

+
l sl

.

as well as xi(t) t→∞−→ 1 for all i. Trivially, thus, xi(t) and xj(t) each converge to 1. For

1− xj(t)
1− xi(t)

=
(1− xj(t))

(
1+δ+λ+

1
1+δ−λ−1

)t
(1− xi(t))

(
1+δ+λ+

1
1+δ−λ−1

)t ,
we then find that it converges to

c−j
c+

j

∑n

k=1(c+
k

)2∑n

k=1(c−
k

)2

∑n

l=1 c
−
l
sl

1−
∑n

l=1 c
+
l
sl

c−i
c+

i

∑n

k=1(c+
k

)2∑n

k=1(c−
k

)2

∑n

l=1 c
−
l
sl

1−
∑n

l=1 c
+
l
sl

=
c+

i

c−i

c+
j

c−j

,

which proves the assertion for Case 2.
Finally, for the Case 3, we know that for all i

lim
t→∞

xi(t) = 1

1 + c−i
c+
i

∑n
k=1(c+

k )2∑n
k=1(c−k )2

1−∑n
l=1 c

−
l sl∑n

l=1 c
+
l sl

∈ (0, 1).

This immediately implies that

lim
t→∞

1− xi(t) =

c−i
c+
i

∑n
k=1(c+

k )2∑n
k=1(c−k )2

1−∑n
j=1 c

−
j sj∑n

l=1 c
+
l sl

1 + c−i
c+
i
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k=1(c+

k )2∑n
k=1(c−k )2
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j=1 c

−
j sj∑n

l=1 c
+
l sl

as well as

lim
t→∞

xi(t)
1− xi(t)

= c+
i

c−i

∑n
k=1(c−k )2∑n
k=1(c+

k )2

∑n
l=1 c

+
l sl

1−∑n
l=1 c

−
l sl

for all i, from which it easily follows that lim
t→∞

xi(t)(1−xj(t))
xj(t)(1−xi(t)) = c+

i c
−
j

c−i c
+
j

.

A.6 Proof of Corollary 3

We have already established that there is exponential decay according to
(

1+min{δ+λ+
1 ,δ
−λ−1 }

1+max{δ+λ+
1 ,δ
−λ−1 }

)t
.

Therefore, half-life t1/2 is determined by
(

1+min{δ+λ+
1 ,δ
−λ−1 }

1+max{δ+λ+
1 ,δ
−λ−1 }

)t1/2
= 0.5, which leads to

t1/2 = log(0.5)
log(τ) , with τ = 1+min{δ+λ+

1 ,δ
−λ−1 }

1+max{δ+λ+
1 ,δ
−λ−1 }

.
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