Salivary Proteomics for Early Dementia Detection
Ece Eldem
Master thesis in Experimental Biomedical Research
Alzheimer's Disease (AD) is the most common form of dementia and a leading cause of
death in the aging population. There is currently no curative treatment for AD. Taken from its
multifactorial nature, this progressive chronic disease undergoes pathogenic processes
initiating long before the onset of the clinical symptoms. Hence, diagnosis is crucial to
prevent and treat AD as early as possible in the disease continuum. Still to date, the definite
and ultimate AD diagnosis remains the detection of amyloid-beta plaques (Aβ) and tau
neurofibrillary tangles (NFT) on post-mortem brains. Currently, the golden standard for
clinical diagnosis of AD consists of amyloid-beta and tau species detection in cerebrospinal
fluid (CSF) and positron emission tomography (PET) biomarkers. While these diagnostic
measures are highly accurate, they are invasive, costly, and typically requested after the
onset of the clinical symptoms. Besides the recent advancements of blood-based
biomarkers, saliva is increasingly considered as a potential alternative biofluid for non-
invasive diagnostics. Thus, we performed discovery proteomics followed by ELISA and
western blot procedures to analyze salivary proteome. Here we present the biochemical
validation of 2 salivary biomarkers, Transthyretin (TTR) and S100 Calcium Binding Protein
A8 (S100A8), which resulted in being differentially expressed in a proteomics discovery
pilot. In a cross-sectional clinical cohort composed of MCI, moderate AD, and age-matched
controls, we identify TTR as a potential differential diagnostic biomarker for MCI.

Prof. Dr. Jean-Marie Annoni & Dr. Lavinia Alberi Auber