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With the advancement of Big Data and Natural Language Processing (NLP) technologies, extensive 
research into Knowledge Graphs (KGs) has been conducted. In a typical KG, such as Wikidata, entities are 
connected via relations. A popular approach to represent facts in KGs is to define them as triplets (head, 
relation, tail). For example, the fact Bern, capitalOf, Switzerland, is composed of two entities, Bern and 
Switzerland, connected by the relation capitalOf. Although KGs are effective in representing structured 
data, they cannot be used to train modern Machine Learning models which often require numerical input. To
tackle this issue, Knowledge Graph embeddings have been proposed. In our context, KG embeddings aim to
project entities and relations from a KG into a low-dimensional and continuous vector space. The main 
benefit of such a representation is that the resulting vectors can be subsequently used as input to Machine 
Learning pipelines. In this thesis, we first introduce popular Knowledge Graphs, as well as typical KG 
embedding models. After providing an overview of the applications and problems that can be tackled with 
KG embeddings, we present our own contributions to this research field. Specifically, we first propose a 
novel approach, called JOINER, to jointly learn KG embeddings from text and a Knowledge Graph by 
taking advantage of both large-scale unstructured content (text) and high-quality structured data (the 
Knowledge Graph). JOINER not only preserves co-occurrences between words in a text corpus and 
relations between entities in a Knowledge Graph, it also provides the flexibility to control the amount of 
information shared between the two data sources via regularization. We conduct a thorough evaluation of 
JOINER on three evaluation tasks (analogical reasoning, link prediction and relation extraction) using three 
different corpora, showing significant improvement on most tasks. Next, we present a new KG embeddings 
model, called HINGE, able to learn hyper-relational facts from KGs, which are facts containing not only a 
base triplet (head, relation, tail) but also associated key-value pairs. HINGE captures not only the primary 
structural information of the KG encoded in the triplets, but also the correlation between each triplet and its 
associated key-value pairs. Our extensive evaluation shows the superiority of HINGE on various link 
prediction tasks over KGs, outperforming not only the KG embedding methods learning from triplets only 
(by 0.81-41.45%), but also the methods learning from hyper-relational facts using an n-ary representation 
(by 13.2-84.1%). Additionally, we propose an end-to-end solution called RETA in order to tackle instance 
completion problems by suggesting relation-tail pairs given a head entity. RETA consists of two 
components: RETA-Filter and RETA-Grader. More precisely, RETA-Filter first generates a filtered list of 
candidates by extracting and leveraging the schema of a KG; RETA-Grader then evaluates and ranks the 
candidate pairs considering the plausibility of both the candidate triplet and its corresponding schema using 
a newly designed KG embedding model. We evaluate our methods against a sizable collection of state-of-
the-art techniques on three real-world KG datasets. Results show that our RETA-Filter generates of high-
quality candidate r-t pairs, outperforming the best baseline techniques while reducing by 10.61%-84.75% 
the candidate pool size under the same candidate quality guarantees. Moreover, our RETA-Grader also 
significantly outperforms state-of-the-art link prediction techniques on the instance completion task by 
16.25%-65.92% across different datasets. Finally, we address research questions raised in this thesis related 
to a number of Knowledge Graph embedding methods presented in the next sections. Additionally, we 
summarize the series of contributions we made in some of the core tasks tackled by Knowledge Graph 
embedding methods and conclude our thesis by discussing how to extend our proposed works.
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