The Mi-2β nucleosome-remodelling protein LET-418 is targeted via LIN-1/ETS to the promoter of lin-39/Hox to regulate vulval development in *C. elegans*

Frédéric Guerry,
Institute of Zoology, Department of Biology, University of Fribourg, Switzerland

The mammalian and fly NuRD (nucleosome remodelling and histone deacetylase) complexes have been implicated in transcriptional repression through chromatin remodelling and histone modifications. During vulval development in *C. elegans*, an inductive RTK/Ras signalling pathway is antagonized by the inhibitory action of redundantly acting classes of synMuv genes. Some class B synMuv genes encode orthologs of NuRD complex components, including LET-418/Mi-2β, suggesting that regulation of chromatin structure, possibly by a NuRD-like complex, might be important for vulval cell-fate specification in *C. elegans*. We have found that *let-418* and *hda-1* antagonize the RTK/Ras pathway by negatively interfering with the transcription of the Hox gene *lin-39*, a key regulator for vulval development. LET-418 and HDA-1 control *lin-39* transcription by directly associating with its promoter. Moreover, targeting of LET-418 and HDA-1 to the promoter of *lin-39* depends on the transcription factor LIN-1/ETS, a direct downstream target of the inductive RTK/Ras signalling pathway.

These findings provide a direct link between RTK/Ras signalling and chromatin remodelling. They also show the molecular action of a synMuv gene and its target gene.

Thesis jury:
Prof. Dr. F. Müller, University of Fribourg (Switzerland), thesis director
Prof. Dr. A. Hajnal, University of Zürich (Switzerland), thesis expert
Dr. A. Puoti, University of Fribourg (Switzerland), thesis expert
Prof. Dr. J.-P. Métraux, University of Fribourg (Switzerland), president of the jury