

SDT-Models in R:

A Documentation of R-Code

for Fitting Signal Detection

Models

Dr. Siegfried Macho

University of Fribourg

Route de Faucigny 2

CH-1700 Fribourg,

Switzerland

email: siegfried.macho@unifr.ch

Date of last update: Friday, December 18, 2020

mailto:siegfried.macho@unifr.ch

Siegfried Macho: SDT Models in R i

Table of Contents

1. Introduction 1

2. Documentation of Principal Functions 2
2.1 Estimation of parameters 2
2.2 Computation of test statistics, standard errors of parameters, estimated probabilities and frequencies 6
2.3 Comparison of models 10
2.4 Computing information about parameters as well as fixed and equality constraints 11
2.5 Generating density and ROC plots 12
2.6 Functions for computing the area under the empirical ROC 14

2.6.1 Area under the empirical ROC curve using the trapezoid rule (Macmillan & Creelman, 2005): 15
2.6.2 Area under the empirical ROC curve using the method of Donaldson & Good (1996): 15
2.6.3 Area under the Gaussian ROC using principal component analysis (Vokey, 2016): 16
2.6.4 Area under ROC computed by the trapezoid rule plus an estimate of the standard error (Hanley &

McNeil, 1982). 17
2.6.5 Function for computing the standard error of the area under the empirical ROC (determined by

means of the trapezoid rule) [Hanley & McNeil, 1982]: 18

3. Description of the models 18
3.1 The standard Gaussian signal detection model (SDT) 18
3.2 The Gaussian signal detection model with the full set of free parameters (Gaussian) 22
3.3 The mixture model with each pair of signals represented by a mixture of three Gaussian distributions

(MIX.PD) 26
3.4 The mixture model with two normal distributions per signal (MIX.2) 31
3.5 The dual process signal detection model (DPSDT) 34
3.6 The double high-threshold model for modeling rating data (HT.n) 41
3.7 The bivariate Gaussian model of signal detection enabling violations of decisional separability on one

dimension (SDT.2D) 45
3.8 Mixture model of two bivariate Gaussian distributions per signal (SDT2D.MIX.2) 52
3.9 Gaussian SDT model for m-alternative forced choice data (mAFC) 56
3.10 Gaussian SDT model for k-alternative forced choice data with and without rating data (SDT.Rank) 58
3.11 Gaussian SDT model for k-alternative forced choice data with and without rating data including a

recollection and guessing component (HTSDT.Rank) and bias parameters for modeling position bias

(HTSDT.Bias.Rank) 63
3.11.1 The HTSDT-Rank model 63
3.11.2 The HTSDT-Bias-Rank model 67

3.12 Gaussian mixture SDT model for modeling k-alternative forced choice data with and without rating data

(MIX.Rank) including bias parameters for modeling position bias (MIX.Bias.Rank) 71
3.12.1 The MIX-Rank model 71
3.12.2 The MIX-Bias-Rank model 82

3.13 Gaussian SDT model with probabilistic response functions: GRM-SDT and ORM-SDT 86

4. Imposing constraints on parameters 92
4.1 Fixing values of parameters 92

4.1.1 Possible errors in specifying fixed constraints 93
4.2 Imposing equality constraints on parameters 93

4.2.1 Possible errors in specifying equality constraints 94
4.2.2 Restrictions on equality constraints for specific models 94

4.2.2.1 Model HT.n 94
4.3 Resolution of conflicting constraints 96
4.4 Specifying complex (nonlinear) functional constraints on parameters 96

4.4.1 Basic principles 96
4.4.2 Examples 99
4.4.3 Concluding remarks 104

5. Working Examples: SDT and Gaussian model 105

Siegfried Macho: SDT Models in R ii

5.1 Example 1: Fitting the SDT model to data involving two types of signals 105
5.1.1 Example 1-1: Fitting the standard SDT model to Yes/No data 105
5.1.2 Example 1-2: Fitting the symmetric SDT model to Yes/No data 111

5.2 Example 2: Fitting rating data 112
5.3 Example 3: Fitting data comprising four different types of signal distributions 116
5.4 Example 4: Specifying nonlinear constraints on parameters 119
5.5 Example 5: Fitting data with different number of response categories per signal 121
5.6 Example 6: Detecting problems of identification 125
5.7 List of example files for the SDT and Gaussian model 127

6. Working Examples: Gaussian mixture model (MIX.PD) 127
6.1 Example 1: Fitting the MIX.PD model to source monitoring data 127
6.2 Example 2: Fitting the MIX.PD model to associative recognition data 132

7. Working Examples: Gaussian mixture model with two distributions per signal (MIX.2) 137
7.1 Example 1: Fitting the MIX.2 model to data on the mirror effect 137
7.2 Example 2: Fitting the MIX.2 model to source monitoring data 142
7.3 Example 3: Fitting the MIX.2 model to data on associative recognition 148
7.4 Source files containing further examples 155

8. Working Examples: Dual process signal detection model (DPSDT) 156
8.1 Example 1: Fitting the DPSDT model to source monitoring data 156
8.2 Example 2: Fitting the DPSDT model to associative recognition data 160

9. Working Examples: High threshold model for rating data (HT.n) 163
9.1 Example 1: Fitting the HT.n model to exclusion-inclusion data 163
9.2 Example 2: Fitting the HT.n model to associative recognition data 167

10. Working Examples: Bivariate Gaussian model of signal detection (SDT.2D) 170
10.1 Example 1: Fitting the standard bivariate Gaussian model of signal detection 171
10.2 Example 2: Fitting the bivariate Gaussian model of signal detection with structural zeros 175
10.3 Example 3: Fitting the bivariate Gaussian model of signal detection with violations of decisional

separability 178
10.4 Example 4: Fitting the bivariate Gaussian model using a matrix for the pooling of data 179
10.5 Example 5: Robust estimation of decision bounds with pooled estimates 181
10.6 Example 6: Implementation of the CDP-SDT model 186
10.7 Source files containing further examples 189

11. Working Example: Mixture of two Bivariate Gaussian models (SDT2D.MIX.2) 189

12. Working Example: SDT model for m-alternative forced choice with bias (mAFC) 194

13. Working Example: SDT model for modeling forced choice and rating data (SDT.Rank) 197
13.1.1 SDT-Rank Example 1: Modeling pure forced choice with repeated choices 197
13.1.2 SDT-Rank Example 2: Joint modeling repeated forced choice and rating data 201
13.1.3 Files with SDT-Rank Examples 204

14. Working Examples: SDT model with recollection and guessing for modeling forced choice and rating

data with or without bias (HTSDT.Rank & HTSDT.Bias.Rank) 204
14.1 HTSDT.Rank examples 204

14.1.1 HTSDT-Rank Example 1: Modeling forced choice and rating data with standard restrictions 204
14.1.2 HTSDT-Rank Example 2: Modeling multiple forced choice data 206
14.1.3 HTSDT-Rank Example 3: Modeling multiple rating and multiple forced choice data simultaneously

 207
14.1.4 Files with HTSDT-Rank Examples 209

14.2 HTSDT-Bias-Rank example 210

Siegfried Macho: SDT Models in R iii

15. Working Example: Gaussian mixture SDT model for modeling forced choice and rating data with and

without position bias (MIX.Rank & MIX.Bias.Rank) 212
15.1 MIX.Rank Examples 212

15.1.1 MIX-Rank Example 1: Modeling forced choice and rating data 212
15.1.2 MIX-Rank Example 2: Modeling multiple forced choice data 213

15.2 MIX.Bias.Rank Example 215

16. Working Example: SDT models with probabilistic item response functions (IRF.Gauss) 217
16.1 List of example files forGaussian SDT models with probabilistic response functions 220

17. References 220

Siegfried Macho: SDT Models in R 1

1. Introduction

The SDT module consists of a set of functions that enable the fitting of various types of

models to signal detection data. Parameters and asymptotic standard errors, as well as test

statistics and model diagnostics are computed.

The entire module consists of two classes of source files:

1. Source files with general functions for estimating parameters and for computing various

statistics:

 SDT-Main.R This file contains the main functions described below.

 SDT-Auxiliary.R This file contains auxiliary functions used by the main

module.

2. Source files containing the R-code of the different models:

 SDT-SDT.R Standard Gaussian signal detection model

 SDT-MIX-PD.R Mixture model of three Gaussians for each pair of signal

 SDT-MIX-2.R Mixture model of two Gaussians for each signal (Generalized

version of SDT-MIX-PD)

 SDT-DPSDT.R Dual process signal detection model (DPSDT)

 SDT-HT-n.R Double high threshold model for rating data

 SDT-SDT-2D.R Bivariate Gaussian signal detection model

 SDT2D-MIX-2.R Mixture model of two bivariate Gaussians for each signal

(Bivariate version of SDT-MIX-2)

 SDT-mAFC.R Gaussian model for m-alternative forced choice task with bias

 SDT-Rank.R Gaussian SDT model for modeling ranking (m-AFC) and

rating data.

 HTSDT-Rank.R Gaussian SDT model with a recollection and guessing

component for modeling ranking (m-AFC) and rating data.

 HTSDT-Bias-Rank.R Gaussian SDT model with a recollection and guessing

component for modeling ranking (m-AFC) and rating data

with parameters representing position bias.

 MIX-Rank.R Gaussian mixture model for modeling ranking (m-AFC) and

rating data.

 MIX-Bias-Rank.R Gaussian mixture model for modeling ranking (m-AFC) and

rating data with parameters representing position bias.

 SDT-IRF-Gauss.R Gaussian SDT model with probabilistic item response

functions.

The two files of the first class (SDT-Main.R and SDT-Auxiliary.R), comprising the basic

estimation functions, have to be included into each application. The files of the second class

contain the R-code of specific models. By consequence, only the file with the model actually

Siegfried Macho: SDT Models in R 2

fitted has to be included. The inclusion of source files is performed by means of the R-

function source() (see the examples in Chapters 5–15).

Alternatively, instead of using the source() function to include the source files, one my

simply open each of the files that are required to perform the task (via the File menu option

of the R console).

The following R-packages are required:

numDeriv Contains functions for computing numerical gradients (Gilbert, 2006).

ellipse Computation of bivariate confidence regions (required only for the bivari-

ate models SDT-SDT-2D and SDT2D-MIX-2).

mvtnorm Computes the distribution functions of the bivariate Gaussian distributions

(required for the bivariate models SDT-SDT-2D and SDT2D-MIX-2).

npmlreg The function gqz() of the package computes the points and weights for

Gauss-Hermite quadrature (required for the models SDT-mAFC.R, SDT-

Rank.R, HTSDT-Rank.R, HTSDT-Bias-Rank.R, MIX-Rank.R, MIX-

Bias-Rank.R and SDT-IRF-Gauss.R).

A quick way to get acquainted with the functions of the modules consists in studying the

working examples first (Chapters 5–16), and to consult the other chapters for further infor-

mation. The different models are described in Chapter 3.

In case of questions, problems, and possible errors, respectively, please contact me.

2. Documentation of Principal Functions

The present chapter presents the main functions for estimating and evaluating models.

2.1 Estimation of parameters

Function call:
SDT.Estimate(par = NULL, data, Model.Id = "SDT", n = 2, fixed = NULL, ident

= NULL, functional = NULL, sym.gr = T, test = F, use.nlminb = T)

par Vector with starting parameters. If no parameter vector is specified a

vector of starting parameters is generated internally by the program.

 The order of parameters depends on the model to be estimated (cf., the

descriptions of the single models in Chapter 2.5)

data A data vector with observed frequencies: The data consist of response fre-

quencies of the different response categories for each of type of signal

presented.

Model.Id A model identification string. For the moment the following options are

available:

 "SDT" Standard signal detection model with N(0, 1) as the noise

distribution (= reference distribution) and a single set of decision

bounds (cf. the description of the model in Chapter 3.1).

 "Gaussian" Signal detection model with different decision bounds for each of

the different signal distributions. Without further constraints, this

model is not identified. (cf. the description of the model in Chapter

3.2).

Siegfried Macho: SDT Models in R 3

 "MIX.PD" Mixture model with each pair of signals (except for a possible

additional foil signal) being represented by means of a mixture of

three distributions (cf. the description of the model in Chapter 3.3).

 "MIX.2" Mixture model consisting of a mixture of two normal distributions

per signal; Without further constraints, this model is not identified.

(cf. the description of the model in Chapter 3.4).

 "DPSDT" Dual process signal detection model (cf. the description of the

model in Chapter 3.5).

 "HT.n" Double high-threshold model for modeling rating data for pairs of

signal (plus a possible additional foil signal) (cf. the description of

the model in Chapter 3.6).

 "SDT.2D" Bivariate Gaussian signal detection model (cf. the description of the

model in Chapter 3.7).

 "SDT2D.MIX.2" Mixture model consisting of a mixture of two bivariate normal

distributions per signal (cf. the description of the model in Chapter

3.8).

 "mAFC" SDT model for m-alternative forced choice data (cf. the description

of the model in Chapter 3.9).

 "SDT.Rank" SDT model for modeling forced choice (or ranking data) and rating

data (cf. the description of the model in Chapter 3.10).

 "HTSDT.Rank" SDT model for modeling forced choice (or ranking data) and rating

data, including a recollection and a guessing component (cf. the

description of the model in Chapter 3.11.1).

 "HTSDT.Bias.Rank" SDT model for modeling forced choice (or ranking data) and rating

data, including a recollection and a guessing component that enables

the estimation of position bias (cf. the description of the model in

Chapter 3.11.2).

 "MIX.Rank" SDT model for modeling forced choice (or ranking data) and rating

data, using a mixture model (cf. the description of the model in

Chapter 3.12.1).

 "MIX.Bias.Rank" SDT model for modeling forced choice (or ranking data) and rating

data, using a mixture model that enables the estimation of position

bias (cf. the description of the model in Chapter 3.12.2).

n Information about the model configuration whose structure depends on the model

estimated:

 1. Model SDT:

A list with configuration information (for details, cf. Chapter 3.1).

 2. Model Gaussian:

A list with configuration information (for details, cf. Chapter 3.2).

 3. Model DPSDT:

A list with configuration information (for details, cf. Chapter 3.5).

 4. Model SDT.2D and SDT2D.MIX.2:

n is a list with information about the configuration of the model (for details, cf.

Siegfried Macho: SDT Models in R 4

Chapter 3.7 and 3.8)

 5. Model mAFC:

n is a list with information about the configuration of the model. A detailed description

of the entries of the list may be found in Chapter 3.9.

 6. Model SDT.Rank:

n is a list with information about the configuration of the model. A detailed description

of the entries of the list may be found in Chapter 3.10.

 7. Model HTSDT.Rank and HTSDT.Bias.Rank:

n is also a list with information about the configuration of the model. The details of

this list are described in Chapter 3.11.

 8. Model MIX.Rank and MIX.Bias.Rank:

n is also a list with information about the configuration of the model. The details of

this list are described in Chapter 3.12.

fixed A 2p matrix specifying the values of the p fixed parameters in the first and

the positions of p fixed parameters within the parameter vector in the second

row of the matrix (for further details, cf. Chapter 4.1).

ident A 2q matrix specifying the positions of the source variables in the first row

and positions of the target variables in the second row, for each of the of q

equality constraints. The parameters whose positions are given in the second

row are equated to the parameters whose positions are presented in the first

row, in the same column (for further details, cf. Section 4.2).

functional A user defined function for specifying complex functional constraints on

parameters (for further details, cf. Chapter 4.4).

sym.gr A flag indicating the use of a symbolic gradient function.

If sym.gr = T the function assumes a symbolic gradient function in case of

functional constraints being present. In this case, a gradient function for the

functional constraints has to be specified by the user (for further details, cf.

Section 4.4).

If sym.gr = F a numerical approximation to the gradient function is

performed in case of functional constraints being specified.

test If this flag is set to TRUE a numeric gradient of the log likelihood at the

optimum is computed and compared to the symbolic gradient. The values of

both gradients are printed (cf. the examples). The function grad() of the

library numDeriv is used for computing the numeric gradient.

use.nlminb If use.nlminb = T (which is the default option) the nlminb() optimization

routine is called first. This is followed by a call or the the optimizer optim()

with the parameter vector resulting from the first estimation as start parameter.

 Comment: The optimization routine nlminb() seems to be more stable than

the routine optim(). However, nlminb() does not provide a

Hessian matrix. Thus, a second run using optim() is performed.

Return value: An optimization object, that is, a list with the following fields:

1. par Estimated parameter vector

2. value The negative of the log likelihood function

Siegfried Macho: SDT Models in R 5

3. counts Number of function evaluations

4. convergence 0 = convergence reached

5. message Message indicating the stopping condition for the estimation

process

6. hessian Observed information matrix

7. SDT.full.par The full parameter vector, including constraint or fixed

parameters

8. SDT.par.names Names of the parameters that appear in the output

9. SDT.par.names.est Names of the free parameters that were actually estimated

(these names appear in the output)

10. SDT.data Data vector

11. SDT.Model Model function for computing probabilities (cf. Chapter 2.5)

12. SDT.Model.Matrix.
Anal

Function computing the model matrix (i.e. matrix of partial

derivatives of the model probabilities with respect to para-

meters) analytically, taking the constraints on parameters into

account

13. SDT.Model.Matrix.
Num

Function computing the model matrix (i.e. matrix of partial

derivatives of the model probabilities with respect to para-

meters) numerically, taking into account the constraints

Comment: This functions is employed in case of no analytical

function being available

14. SDT.Model.Id Model identification string, for specifying the model

15. SDT.n The number of different types of signals (signal distributions)

or, alternatively a vector with the data points for the different

types of signals

16. SDT.Model.Name A string with the model description that appears in the output

17. SDT.gr.sym.len Length of either the symbolic of the numeric gradient at

optimum

18. SDT.fixed Matrix with fixed constraints

19. SDT.ident Matrix with equality constraints

20. SDT.functional Function specifying functional constraints

21. SDT.sym.gr Value of the flag indicating the computation of symbolic

gradients.

Siegfried Macho: SDT Models in R 6

Comments:

1. The first six entries are provided by the R function optim() whereas the residual entries,

with the prefix SDT are added by the function SDT.Estimate(). The entries are used by the

evaluation function SDT.Statistics() [cf. Chapter 2.2].

2. If functional constraints have been specified without a corresponding gradient function, the

following error message is emitted in case of sym.gr = T:
Error in computation of gradient: No gradient for functional constraints found:

Set Parameter sym.gr = F in function SDT.Estimate !

In this case, set sym.gr = F to enable the estimation with numerically computed derivati-

ves.

3. Estimation of parameters without a symbolic gradient is considerably slower. However, to

my knowledge, accuracy is not greatly affected.

Examples: cf. Chapter 5–15.

2.2 Computation of test statistics, standard errors of parameters, estimated probabili-

ties and frequencies

Function call:
SDT.Statistics(Opti, deci = 3, conf = .95, display.warning = T, control =

NULL)

Opti Optimization object (= the result of SDT.Estimate())

deci Number of decimal places in the output.

Conf Size of the confidence intervals for estimated parameters.

Display.warning Flag indicating whether a warning message should be

displayed in case of a rank deficient Hessian matrix

control A list with control information containing the following

entries

 LR Flag indicating whether to compute

likelihood ratio based (LR) confidence

intervals (LR = T)

 factr A factor determining the size of the limits of

the region where LR confidence bounds are

searched: This region is defined by:

estimate  factr(length of Wald confidence

interval

The default value is factr = 2.

 Tol Tolerance level for computing LR confidence

intervals (default: 1e-5).

 maxiter Maximal number of iterations for finding LR

confidence bounds (default: 50).

 target.par A vector with the numbers of the parameters

for which LR confidence intervals should be

constructed (Numbers refer to the positions

of parameters with respect to the full

Siegfried Macho: SDT Models in R 7

parameter vector).

Return value: An object (i.e. a list) comprising the following fields:

1. Model.description: A string with a short description of the model

2. Statistics: A vector containing general statistical information with the following entries:

(i) Maximum of the log-likelihood function: log L

(ii) The Pearson X2 statistic

(iii) The likelihood ratio statistic G2

(iv) The degrees of freedom df associated with the Pearson and likelihood ratio

statistic.

(v) The probability of () 22 Xdf 

(vi) The probability of () 22 Gdf 

(vii) Akaike’s information criterion: AIC = kL +− 2log2 (k = number of free

parameters)

(viii) Bayesian information criterion: BIC = NkL loglog2 +− (N = total number of

observations)

(ix) Consistent AIC with Fisher information (CAICF) [Bozdogan, 1987]:

CAICF = () ˆ2 log log 2 logL k N−  +  + + I

(Î = observed information matrix; Î denotes the determinant of Î)

(x) Scale dependent information complexity measure ICOMP (Bozdogan, 1988):

()
Σ

Σ ˆlog
ˆtrace

loglog2 −







+−=

k
kLICOMP

(Σ̂= estimated covariance matrix of parameters).

(xi) Scale invariant information complexity measure ICOMPR:

Ψ̂loglog2 −−= LICOMPR

(Ψ̂= estimated correlation matrix of parameters).

(xii) Number of free parameters

(xiii) Length of the gradient at the optimum: should be very small (ideally 0)

(xiv) Rank of Hessian matrix (should correspond to number of free parameters)

(xv) The condition number of the observed information matrix (Hessian matrix): The

condition number is defined as the ratio of the largest to the smallest non-zero

singular value of the matrix.

Comment: If the condition number is high (e.g. >5000), the results of the

estimation process may not be stable, that is, small changes in the data

may result in quite different estimates. In addition, some of the

estimated standard errors of parameters may be quite high (cf. Chapter

5.6).

(xvi) Column rank of the model matrix J (by computing the rank of JJ
T ). The rank

should be equal to the number of free parameters.

(xvii) The condition number of JJ
T  .

Siegfried Macho: SDT Models in R 8

Comment: According to McDonald and Krane (1979) the matrix JJ
T  is better

suited for detecting violations of local identification than the Hessian.

This is confirmed by the example in Chapter 5.6 (and by each of the

examples in the example files revealing problems of identification).

3. Free.parameters: Contains the estimated free parameters and, if the Hessian matrix is

positive definite, the asymptotic standard errors (SE) of estimated parameters, as well as

the lower and upper limits of the Wald confidence intervals.

If wanted, likelihood ratio based confidence intervals are computed too (for the SDT and

Gaussian model) [cf the examples in Chapter 5].

4. Full.parametervector: A pn matrix of the p parameters (including both free and restricted

ones) for the different types of signals and signal pairs, respectively.

Comment:

This section differs slightly for different types of models (see the examples in Chapter 5–

15.

5. SDT.measures: A list of various SDT measures their standard errors (computed by means

of the delta method) and confidence intervals.

Comment: These measures are available with the model “SDT” only, in case of no

functional constraints being specified.

d.a

222

1 1

2'2

s

s

s

s
a

d
d

+


=

+


=

 where:

sd ' = Differences between the means of the Gaussian distributions,

representing the first signal (whose mean is zero) and Signal s:

ssd ='

 2

1 = Variance of Gaussian distribution representing the first signal

(=1)

 2

s = Variance of Gaussian distribution representing the Signal s.

d.e

s

s
ed

+


=

1

2

zA















+


=








=

212
s

sa
z

d
A (area under the ROC curve)

where:

() represents the cumulative standard normal distribution

These measures are computed for each signal (other than the first signal) with respect to

the first signal.

Siegfried Macho: SDT Models in R 9

Principles underlying the computation of standard errors for specific SDT measures:

1. If both parameters (entering the measures) are fixed the computed standard error is

zero.

2. If only one parameter is fixed the standard error of the non-fixed parameter enters the

computation only.

3. In case of equality constraints the variances and covariances of the source parameter(s)

enter(s) the computation.

6. Data.and.Estimates: A 5 nRn matrix:

n = Number of signals (= signal distributions),

nR = Number of data points (= response categories) per signal.

The columns contain the following information:

Column 1: Observed frequencies (data points)

Column 2: Estimated frequencies (frequencies estimated by the model)

Column 3: Estimated probabilities

Column 4: Pearson residuals computed by means of the following formula:

ij

ijij

ij

f

f-f
r

ˆ

ˆ
= ,

where ijf denotes the observed frequency of Response Category I for Signal j and ijf̂

symbolizes the respective estimated frequency.

Column 5: Standardized Residuals that are asymptotically N(0, 1) distributed.

The computation of standardized residuals is based on the following result (cf. Agresti,

2002, p.589):

    () 




 −−

−
MMMMππI0r

T
T

00

1
,N ,

in words:

The vector of Pearson residuals r conforms to a normal distribution with mean 0 and co-

variance matrix (see above):

    () MMMMππIΣ
T

T

00 −−=
−1

.

Thus, in order to compute the vector of standardized residuals the vector of Pearson

residuals is multiplied by a diagonal matrix ()σD 1 :

() rσDr = 1standard ,

which amounts to dividing each element of r by the corresponding diagonal entry of Σ .

Comment:

The matrix     () MMMMππH
T

T

00 −=
−1

 is the hat matrix, and HIΣ −= .

By consequence, ()iii hrr −= 1standard
, where ir is the i-th entry of r and ih is the i-th

diagonal entry of the hat matrix H .

The symbols have the following meaning:

Siegfried Macho: SDT Models in R 10

 ()σD 1 is a diagonal matrix with elements of the vector  Σσ diag11 = in

the main diagonal

 I is the identity matrix.

0π is the vector of the square roots of probabilities predicted by the

(true) model. For the actual computation this vector of probabilities

is replaced by the probability vector given by the estimated model.

 () JπDM = 01 is the scaled model matrix.

T
θ

π
J




=

is the Jacobian matrix of the partial derivatives of the estimated

probabilities π with respect to the model parameters θ .

 ()01 πD is a diagonal matrix with elements 01 π on the main diagonal.

Again, probabilities predicted by the esitamated model are used for

the computation instead of the »true« probabilities in 0π .

Example: cf. Chapter 5

Comments:

❑ If the Hessian matrix provided by the estimation routine is not positive definite a warning is

printed together with the computed rank, if display.warning = T. In addition, instead of

the standard deviations the values NA (Not Available) are printed.

❑ If the model matrix J is not of full column rank (evaluated by testing whether JJ
T  is

positive definite) and if display.warning = T a warning is printed even if the Hessian

matrix is positive definite. The matrix JJ
T  is usually a more reliable indicator of vio-

lations of local identification (cf. Chapter 5.6).

❑ If functional constraints are specified, the analytic computation of standardized residuals

requires a function computing the Jacobian matrix of the functional constraints, i.e. the

partial derivatives of the (constrained) parameters with respect to unconstrained parame-

ters. This function must be passed to the function defining the functional constraints in the

attribute “SDT.Jacobian” (cf. Chapter 4.4, and 5.4 for details).

If the function computing the Jacobian matrix of the functional constraints is not provided

or if the flag sym.gr has been set to F in the estimation procedure (thus preventing the

computation of the symbolic gradient and model matrix during the estimation of para-

meters), the model matrix and the resulting standardized residuals are computed numeri-

cally.

2.3 Comparison of models

The following routine enables the comparison of likelihood ratio statistics for two models

Function call:
SDT.Anova(SO.1, SO.2, deci = 3)

SO.1 A statistics object (returned by the function SDT.Statistics) associated

with Model 1

SO.2 A statistics object (returned by the function SDT.Statistics) associated

with Model 2.

deci Number of decimal places in the output.

Siegfried Macho: SDT Models in R 11

Return value: A 33 matrix with each row containing the following entries:

Row 1 G2 (likelihood ratio) statistic of Model 1 (first column).

 Df (degrees of freedom) associated with G2 of Model 1 (second column).

 P value associated with G2 and df for Model 1 (third column).

Row 2 G2 (likelihood ratio) statistic of Model 2 (first column).

 Df (degrees of freedom) associated with G2 of Model 2 (second column).

 P value associated with G2 and df for Model 2 (third column).

Row 3 G2 (difference likelihood ratio) statistic (first column).

 Df (difference in degrees of freedom associated with G2 (second column).

 P value associated with G2 and df (third column).

Example: cf. Chapter 5.3.

2.4 Computing information about parameters as well as fixed and equality constraints

The following function computes a list containing the names of parameters as well as fixed

and equality constraints. This function may be helpful for identifying the constraints specified

for the model.

Function call:
SDT.Parameter.Info(data = NULL, par = NULL, n = 2, Model.Id = “SDT”, fixed

= NULL, ident = NULL, deci = 3)

data A vector containing the data (not required if a parameter vector is passed for the

second argument par).

par A parameter vector (not required if a data vector is passed as the first argument

data).

N A list with configuration information or a number indicating the number of

different types of signals.

Model.Id A model identification string (for possible strings, cf. Chapter 2.1).

fixed A 2p matrix specifying the values of the p fixed parameters in the first and the

positions of p fixed parameters within the parameter vector in the second row of

the matrix (for further details, cf. Chapter 4.1).

ident A 2q matrix specifying the positions of the source variables in the first row

and positions of the target variables in the second row, for each of the of q

equality constraints. The parameters whose positions are given in the second

row are equated to the parameters whose positions are presented in the first row,

in the same column (for further details, cf. Section 4.2).

deci Number of decimal places.

Comment: If no vector is passed, neither for data nor for par, the function gives an error

message.

Return value: A list with two entries:
$Model A string denoting the model
$Parameters.and.Constraints A p5 matrix with p = number of parameters and the five

Siegfried Macho: SDT Models in R 12

columns providing the following information:

Column 1: name The column contains the names of the parameters

Column 2: par This columns contains the values of the parameters

Column 3: fixed.value  If a parameter is fixed the column contains the specified

fixed value.

 If the corresponding parameter is not fixed the string

--- is contained in the column.

 In case of a redundant probability that is fixed internally

by the model (for example by the model HT.n) the

column contains the string Redundant-p.

Column 4: ident.source  If the parameter is subjected to an equality constraint

(as a target) the name of the source of the equality con-

straint is contained in this column.

 In case of no equality constraint being specified for the

parameter the string --- is contained in the column.

Column 5: nr If the parameter is subjected to an equality constraint (as a

target) the number (=position) of the source of the equality

constraint is given. Otherwise nothing is contained in the

column.

Examples: cf. Chapters 5.1, 9.1, and 9.2.

2.5 Generating density and ROC plots

The following function may be used for plotting density and ROC curves of the model and

the data.

Function call:
SDT.Plot(Object, cols = NULL, ltys = NULL, labels = NULL, SDT.legend =

NULL, option)

Object An object containing the relevant information about the model. Two options

are available:

 1. The estimation object, i.e. the result of the function SDT.Estimate (cf.

Chapter 2.1);

 2. A list with the following entries:

Model.Id: A model identification string; To date the following strings

are valid:
 “SDT.2D”

 “SDT”

 “Gaussian”

 “MIX.PD”

 “MIX.2”

par: The full parameter vector;

n: Number of signals or list with the configuration information

(cf. Chapter 2.1)

counts: A vector with data, i.e. the frequencies of different response

categories [only relevant with option = “ROC+” or “zROC+”

(see below)].

cols A vector of length s (= number of signals) with numbers indicating colors of

Siegfried Macho: SDT Models in R 13

the different models. The following colors are available, indicated by the

numbers:

1 = “black”,

2 = “grey70”,

3 = “blue”,

4 = “red”,

5 = “cyan”,

6 = “darkgreen”,

7 = “magenta”,

8 = “yellow”

If no colors are specified the models are drawn in black.

ltys A vector of length s (= number of signals) with numbers indicating the line

types using the R convention:

1 = full line

2 = dotted

3 = dashed (etc.).

If no line types are specified, all line are drawn with Line Type 1

labels A character vector of length 2 with the labels for the x- and y-axis

SDT.legend A list with the following entries:

 pos = position of the legend (if not specified, the legend is placed in the

 upper, left corner of the plot).

If only the x coordinate is specified the y coordinate is computed

by the program.

 text = vector of text strings.

 cols = colors of the single entries of the legend [if not specified, the

 colors from the main graphics are used (cf. above, option cols)].

 ltys = line types used for legend (if not specified, the line types of the

 main graphic is used

Comment:

The option SDT.legend is not available for the SDT.2D model

Example:

SDT.legend = list(pos = c(5, 0.4), text = paste(“Signal”, 1:5),

cols = 1:5)

option NULL: Gaussian density curves are plotted (default option)

 "ROC": ROC curves are plotted, using the Gaussian distribution of the first

signal as noise distribution

 "ROC+" ROC curves plus data are plotted (data are either taken from the

optimization object or must be provided by means of the entry data

in the list with the data)

 "zROC": zROC curves are plotted, using the Gaussian distribution of the first

signal as noise distribution

 "zROC+": zROC curves plus data are plotted (data are either taken from the

optimization object or must be provided by means of the entry data

in the list with the data)

 In case of the SDT.2D model option may consist of a vector of numbers

indicating those pieces of the decision bounds that are not plotted.

Siegfried Macho: SDT Models in R 14

 The order of the pieces of the bounds is shown in Figure 1. For example, with

option = c(1, 10) the lower left horizontal and vertical pieces (with

respective numbers) are not plotted (see also the example in Chapter 10.5).

Comments:

❑ A line width of 2 is used by default;

❑ The decision bounds are drawn in grey80;

❑ The function for plotting 90 percent confidence regions of the bivariate Gaussian

distributions for the SDT.2D model requires the R-package ellipse.

Example 1:

Plot.Obj <- list(par = par.vec, n = n.data, Model.Id = “Gaussian”)

SDT.Plot(Plot.Obj, cols = 3:7, labels = c(“Memory Strength”, “Density”))

Figure 1: Order of decision bounds assumed by the argument option of the plot function..

Example 2:

cfg <- list(s = 4, k1 = 5, k2 = 5, ds = 2)

xy.labels <- c(“Low Frequency Signal”, “High Frequency Signal”)

Plot.Obj <- list(par = full.par, n = cfg, Model.Id = “SDT.2D”)

SDT.Plot(Plot.Obj, cols = 3:6, labels = xy.labels)

Types of plots for different models:

"SDT.2D" 90 percent confidence ellipses for the SDT-2D model are plotted as well as the

decision bounds (cf. Figure 17, Figure 18, and Figure 19).

"SDT"

"Gaussian"

"MIX.PD"

"MIX.2"

Density curves with decision bounds, ROC curves or zROC curves with and

without data are plotted.

2.6 Functions for computing the area under the empirical ROC

The following functions can be used to compute the area und the ROC (receiver operating

characteristic). The functions are located in the file SDT-Auxiliary.R.

-2 0 2 4 6

-2
0

2
4

6

Dimension 1

D
im

e
n
s
io

n
 2

4

11

7

1

5

8

2

6

9

3

10

13

12

15

14

17

16

Siegfried Macho: SDT Models in R 15

2.6.1 Area under the empirical ROC curve using the trapezoid rule (Macmillan & Creelman,

2005):

Function call:
ROC.Ag(FA, H, show.p = F, reverse = F)

FA Vector containing the frequencies of response categories for new / noise etc.

items, with response categories ordered from sure new/noise to sure

old/signal.

H Vector containing the frequencies of response categories for old / signal etc.

items, with response categories ordered from sure new/noise to sure

old/signal.

show.p Flag indicating whether intermediate results should be shown (show.p =

TRUE)

reverse Flag indicating that response categories are ordered from sure old/signal to

.sure new/noise.

Output:

The value of the area computed by the trapezoid rule.

Example (Macmillan & Creelman, 2005, p.57):

new.items <- c(30, 23, 37, 8, 2)

old.items <- c(4, 5, 15, 15, 61)

ROC.Ag(new.items, old.items, T)

Result:
0.8789

Comment: Cf. the example file: A.g (Area under the ROC trapezoidal).R

2.6.2 Area under the empirical ROC curve using the method of Donaldson & Good (1996):

Function call:
ROC.Ar(FA, H, probs = F, reverse = F, coll = T))

FA Vector containing the frequencies of response categories for new / noise etc.

items, with response categories ordered from sure new/noise to sure

old/signal.

H Vector containing the frequencies of response categories for old / signal etc.

items, with response categories ordered from sure new/noise to sure

old/signal.

probs Flag indicating whether probabilities are used as input (in the first two

arguments) instead of frequencies.

reverse Flag indicating that response categories are ordered from sure old/signal to

sure new/noise.

coll Flag indicating whether points on the ROC are collapsed (eliminated) in case

of improper ROCs.

Siegfried Macho: SDT Models in R 16

Output:

A list with two elements:

(1) A.r = The area A'r according to Donaldson & Good (1996)

(2) npt = Number of ROC points used for the computation.

Example (Donaldson & Good, 1996, p. 593):

new.items <- c(19, 31, 17, 32, 16, 13)

old.items <- c(5, 12, 9, 20, 23, 59)

ROC.Ar(new.items, old.items)

Result:
$A.r

[1] 0.7628946

$npt

[1] 5

Comment: Cf. the example file: A.r (Area under ROC Donaldson & Good).R

2.6.3 Area under the Gaussian ROC using principal component analysis (Vokey, 2016):

Function call:
ROC.PCA(FA, H, reverse = F, deci = NULL, correct = T)

FA Vector containing the frequencies of response categories for new / noise etc.

items, with response categories ordered from sure new/noise to sure

old/signal.

H Vector containing the frequencies of response categories for old / signal etc.

items, with response categories ordered from sure new/noise to sure

old/signal.

reverse Flag indicating that response categories are ordered from sure old/signal to

sure new/noise.

deci Number of decimal places used for result (if deci = NULL no rounding is

performed).

correct Use Laplace’s rule of succession for correction of possibly empty cells.

Output:

A list comprising the following elements:

(1) slope = slope of the first principal axis of the z-ROC,

(2) intercept = intercept of the first principal axis of the z-ROC,

(3) d.1 = d1 of Macmillan & Creelman (2005),

(4) d.2 = d2 of Macmillan & Creelman (2005),

(5) d.a = sensitivity measure da of Simpson & Fitter (1973),

(6) d.e = sensitivity measure de of Simpson & Fitter (1973),

(7) d.p = a new sensitivity measure of Vokey (2016),

(8) d.YNp = a new measure proposed by Vokey (2016),

(9) A.z = area under Gaussian ROC,

(10) A.zp = an alternative area measure based on d.YNp

(11) explained = variance explained by the first principal component.

Siegfried Macho: SDT Models in R 17

Example (Vokey, 2016, p.10):

new.items <- c(334, 99, 26, 42, 43, 47)

old.items <- c(81, 44, 26, 32, 66, 348)

ROC.PCA(new.items, old.items)

Result:
$slope

[1] 0.7172354

$intercept

[1] 1.228804

$d.2

[1] 1.228804

$d.1

[1] 1.71325

$d.a

[1] 1.412126

$d.e

[1] 1.326119

$d.p

[1] 1.453928

$d.YNp

[1] 1.028082

$A.z

[1] 0.8409872

$A.zp

[1] 0.8480444

$explained

[1] 0.9993234

Comment: Cf. the example file: PCA of ROC.R

2.6.4 Area under ROC computed by the trapezoid rule plus an estimate of the standard error

(Hanley & McNeil, 1982).

Function call:
Area.HanleyMcNeil(FA, H, show = F, neg.exp = F)

FA Vector containing the frequencies of response categories for new / noise etc.

items, with response categories ordered from sure new/noise to sure

old/signal.

H Vector containing the frequencies of response categories for old / signal etc.

items, with response categories ordered from sure new/noise to sure

old/signal.

show Flag indicating whether intermediate results should be displayed.

neg.exp Flag indicating whether a simplified formula assuming a negative exponential

model should be used for computing the estimated standard error of the area.

Output:

A list with two elements:

(1) W = area under the ROC computed by means of the trapezoid rule (that corresponds to

 the Wilcoxon statistic W);

(2) SE = estimated standard error of the estimated area.

Siegfried Macho: SDT Models in R 18

Example (Hanley & McNeil, 1982):

normal <- c(33, 6, 6, 11, 2)

abnormal <- c(3, 2, 2, 11, 33)

Area.HanleyMcNeil(normal, abnormal)

Result:
$W

[1] 0.8931711

$SE

[1] 0.03199041

Comment: Cf. the example file: Area (Hanley-McNeil).R

2.6.5 Function for computing the standard error of the area under the empirical ROC

(determined by means of the trapezoid rule) [Hanley & McNeil, 1982]:

Function call:
SE.Area.HanleyMcNeil(W, n.new, n.old)

W Area under the empirical ROC, determined by means of the trapezoid rule.

n.new Number of new / noise etc. trials.

n.old Number of old / signal etc. trials.

Output:

The computed standard error of the area.

Example (Hanley & McNeil, 1982):

Area <- 0.85

n.new <- 40

n.old <- 40

SE.Area.HanleyMcNeil(Area, n.new, n.old)

Result:
0.04373749

Comment: Cf. the example file: Area (Hanley-McNeil).R

3. Description of the models

3.1 The standard Gaussian signal detection model (SDT)

(1) Model structure:

See any text on signal detection models (e.g., Macmillan & Creelman, 2005; Wickens,

2002).

The noise distribution is N(0, 1), i.e., the standard normal distribution (with mean zero

and variance 1.0).

(2) Model identification string: "SDT"

This string can be passed to the function SDT.Estimate() with the argument Model.Id

(cf. Chapter 1). Due to the fact that the standard SDT model is the default model, no

argument has to be passed in case of using the standard SDT model.

(3) Name of the file containing the model:

The source code of the model is contained in the file: SDT-SDT.R.

Siegfried Macho: SDT Models in R 19

(4) Configuration information:

The configuration information is passed to the function SDT.Estimate() in the argument

n. The configuration information consists of a list with two entries:

 n.sdt = The number of signals (default: n.sdt = 2)

 restriction =
A string specifying the type of restrictions: The following options are

available:

 "no" No restrictions (=default)

 "equalvar"
The variance parameters of all Gaussian distributions

are set equal to 1.0.

Example:
n <- list(n.sdt = 4, restriction = "equalvar")

tells the estimation function that there are 4 types of signals and equality constraints on

variance parameters. By consequence the equal variance signal detection model with four

Gaussian models is fitted (see also the examples in Chapter 5.1).

Comment:

Partial matching of the string works also, for example, restriction = "equal" or

restriction = "EQUALVAR" lead to the same outcome.

(5) Order of parameters:

Parameters of the model are in the following order (passed to the function

SDT.Estimate()in the parameter par):

I. Two parameters characterizing the Gaussian signal distributions repeated for each

signal distribution, except for the noise distribution N(0, 1) whose parameters are

fixed.

(i) j = Mean of the Gaussian model representing signal distribution j.

(ii) j = Standard deviation of the Gaussian model representing signal distribution j.

Comment:

For the standard SDT model nj ,...,3,2= , since the mean and variance parameter of

the noise distribution (j = 1) are fixed and need not be specified.

II. ,,...,, 121 −Rttt = thresholds (decision bounds), where R is the number of response

categories.

 Help/Tip:

The function:
SDT.Parameter.Info(data = NULL, par = NULL, n = 2, Model.Id =

"SDT", fixed = NULL, ident = NULL, deci = 3)

displays the parameter configuration (a description of the parameters of the

function is given in Chapter 2.4):

Siegfried Macho: SDT Models in R 20

Example:

Given: The data of Ratcliff et al. (1994), Experiment 1, pure lists (4 types of

signals with 6 response categories per signal):

datavec <- c(477, 776, 527, 321, 258, 184, # Pure Strong New

 192, 401, 290, 267, 316, 442, # Pure Strong Old

 235, 649, 719, 442, 254, 156, # Pure Weak New

 151, 496, 480, 350, 221, 142) # Pure Weak Old

The sequence of commands:

n <- list(n.sdt = 4, restriction = “equal”)

PI <- SDT.Parameter.Info(data = datavec, n = n)

print(PI)

 results in the following output:

[1] “Standard SDT model with noise distribution N(0, 1), Number of

models: <4>, Type of restrictions: <equalvar>”

$Parameters.and.Constraints

 name par fixed.value ident.source Nr

1 Mean[2] 0.00 --- ---

2 Stddev[2] 1.00 1 <set> ---

3 Mean[3] 0.00 --- ---

4 Stddev[3] 1.00 1 <set> ---

5 Mean[4] 0.00 --- ---

6 Stddev[4] 1.00 1 <set> ---

7 t-1 -0.90 --- ---

8 t-2 -0.45 --- ---

9 t-3 0.00 --- ---

10 t-4 0.45 --- ---

11 t-5 0.90 --- ---

Comments:

❑ Note that no mean and standard deviation is provided for the first signal. These

parameters are assumed to have fixed values (0 and 1, respectively).

❑ Due to the specification of fixed constrains on variance parameters these

parameters are set equal to 1.0 as indicated by the symbol <set>.

(6) Order of input data:

The input data are response frequencies for the different response categories. The data for

the noise signal are presented first, followed by the data for the other signals. The order of

the data within each signal is from the highest noise (new) category (e.g. “sure noise” or

“sure new”) to the highest signal (old) category (e.g. “sure signal” or “sure old”).

Comment: The output presents the data in the same order.

(7) Model function:

The function for computing model probabilities:

SDT.SDT(par, n)

par Vector of parameters

n List with configuration information (see above).

Comment: The function can be used in isolation, e.g. for generating artificial data.

(8) Model matrix (analytical computation):

The model matrix (i.e., a mp matrix of partial derivatives of the model probabilities with

respect to the free parameters [m = number of generated probabilities (= number of data

points), p = number of free model parameters] is computed by the following function:

Siegfried Macho: SDT Models in R 21

SDT.SDT.Model.Matrix(par, n, fixed = NULL, ident = NULL, functional =

NULL)

par Vector of parameters

n List with configuration information (see above).

Fixed 2  q matrix of fixed constraints (cf. Chapter 4.1)

ident 2  r matrix of equality constraints (cf. Chapter 4.2)

functional Function implementing functional constraints. The function has to contain

the attribute “SDT.Jacobian” containing a function for computing the

Jacobian matrix of the functional constraints. If this function is not

available in case of functional constraints being specified, the function

computing the model matrix returns the value NULL. (For further details,

see Chapter 4.4)

Comment: The function can be used in isolation, e.g. for specific tests of the model.

(9) Model matrix (numerical computation):

The following function computes the model matrix numerically, using the function

jacobian() from the package NumDeriv.

SDT.SDT.Model.Matrix.Num(par, n, fixed = NULL, ident = NULL, functional

= NULL)

par Vector of parameters

n List with configuration information (see above).

Fixed 2  q matrix of fixed constraints (cf. Chapter 4.1)

ident 2  r matrix of equality constraints (cf. Chapter 4.2)

functional Function implementing functional constraints.

Comments:

❑ Contrary to the analytical counterpart this function does not require the specification

of a function computing the Jacobian matrix in case of functional constraints being

specified.

❑ The function is invoked for computing the model matrix in the function

SDT.Statistics() in the following situations:

(i) Functional constraints have been specified by the user without specifying a

function for computing the Jacobian of the constraints.

(ii) The flag sym.gr was set to FALSE in the estimation procedure thus preventing

the computation of symbolic derivatives.

(10) Hessian matrix:

The following function computes the Hessian matrix analytically:

SDT.Hessian(parvec, datavec, n.s, fixed = NULL, ident = NULL, functional

= NULL)

parvec Vector of parameters

datavec Data vector

n.s List with configuration information (see above).

Fixed 2  q matrix of fixed constraints (cf. Chapter 4.1)

ident 2  r matrix of equality constraints (cf. Chapter 4.2)

functional Function implementing functional constraints.

Siegfried Macho: SDT Models in R 22

(11) Examples:

See Chapter 5.1.1

3.2 The Gaussian signal detection model with the full set of free parameters (Gaussian)

(1) Model structure:

See any text on signal detection models (e.g., Macmillan & Creelman, 2005; Wickens,

2002).

(2) Model identification string: "Gaussian"

(3) Name of the file containing the model:

The source code of the model is contained in the file: SDT-SDT.R.

(4) Configuration information:

The configuration information is passed to the function SDT.Estimate() in the argument

n. The configuration information consists of a list with two entries:

n.sdt = 1. The number of signals (default: n.sdt = 2), or

2. A vector with the number of data points for each type of signal.

This enables the fitting of different numbers of data points for

different signals (cf. Chapter 5.5).

 restriction = A string specifying the type of restrictions. The following options are

available:

 "no" No restrictions are specified (the model with this

specification is not identified).

 "standard" Restrictions conforming to the standard unequal vari-

ance detection model with noise distribution: N(0, 1).

Thus the mean and variance of the first Gaussian dist-

ribution are set equal to 0.0 and 1.0 and the threshold

parameters assigned to the different Gaussian distribu-

tions are constrained to be equal.

As a result, the model with this option is identical to

the SDT model (cf. Chapter 3.1).

This restriction is the default option.

 "symmetric" Instead of setting the mean of the first distribution to

0.0 the mean of the first Gaussian distribution (the

noise distribution) is set minus to the mean of the

second distribution: 21 −= .

 "equalvar" The variance parameters of all Gaussian distributions

are set equal to 1.0, additionally to the standard rest-

rictions.

 "equalvar-

symmetric"

"equal-

symmetric"

The variance parameters of all Gaussian distributions

are set equal to 1.0, additionally to the symmetric rest-

rictions.

 "pairs" The following restrictions are set:

1. Gaussian distribution of model 1, 3, 5, … are set to

N(0, 1).

2. The decision bounds of Model 1 are set equal to

that of Model 2, those of Model 3 are set equal to

those of Model 3 etc. (always pairwise).

Siegfried Macho: SDT Models in R 23

 "pairs-

equalvar"
The following restrictions are set:

1. Mean parameters of the Gaussian distribution of

model 1, 3, 5, … are set to zero.

2. All variance parameters are set to 1.0.

3. The decision bounds of Model 1 are set equal to

that of Model 2, those of Model 3 are set equal to

those of Model 3 etc. (always pairwise).

 "standard-

pairs"
The following restrictions are set:

1. Gaussian distribution of model 1, 3, 5, … are set to

N(0, 1).

2. The decision bounds of the different models are

assumed to be equal.

 "standard-

pairs-

equalvar"

The following restrictions are set:

1. Mean parameters of the Gaussian distribution of

model 1, 3, 5, … are set to zero.

2. All variance parameters are set to 1.0.

3. The decision bounds of the different models are

assumed to be equal.

Examples:
n <- list(n.sdt = 2, restriction = "equal-symmetric")

tells the estimation function that there are 2 types of signals and equal variance sym-

metric restrictions should be set. By consequence, the equal variance signal detection

model with two Gaussian models is fitted, with the restriction: 21 −= (cf. the example

in Chapter 5.1.2).

Comments:

 Partial matching of the string works also, for example, restriction = "equal-

sym" or restriction = "EQUAL-SYM" lead to the same outcome.

 A demonstration of various restrictions may be found in the example source file:
SDT-Gauss (Parameter Information).R

(5) Order of parameters:

The parameters of the model are in the following order (passed to the function

SDT.Estimate()in the parameter par):

For each of the nj ,...,2,1= signal distribution the parameters are given in the following

order:

(i) j = Mean of the Gaussian model representing signal distribution j.

(ii) j = Standard deviation of the Gaussian model representing signal distribution j.

(iii) ,,...,, 1,21 −jRjjj ttt = thresholds (decision bounds), where jR = the number of responses

for signal j.

Comments:

(i) Contrary to the standard SDT model, the full set of parameters as well as the

threshold values have to be specified for each type of signal.

(ii) The Gaussian model enables the fitting of different number of data points for the

different types of signals.

Siegfried Macho: SDT Models in R 24

 Help/Tip:

The function:
SDT.Parameter.Info(data = NULL, par = NULL, n = 2, Model.Id =

"Gaussian", fixed = NULL, ident = NULL, deci = 3)

displays the parameter (a description of the parameters of the function is given in

cf. Chapter 2.4):

Example:

Given: The data of Ratcliff et al. (1994), Experiment 1, pure lists (2 types of

signals with 6 response categories per signal):

datavec <- c(477, 776, 527, 321, 258, 184, # Pure Strong New

 192, 401, 290, 267, 316, 442, # Pure Strong Old

 235, 649, 719, 442, 254, 156, # Pure Weak New

 151, 496, 480, 350, 221, 142) # Pure Weak Old

The sequence of commands:

n <- list(n.sdt = 4)

PI <- SDT.Parameter.Info(data = datavec, n = n, Model.Id =

"Gaussian")

print(PI)

 results in the following output:

$Model

[1] "Gaussian SDT model with freely estimable parameters for each

model, Number of models: <4>, Type of restrictions: <standard>"

$Parameters.and.Constraints

 name par fixed.value ident.source Nr

1 Mean[1] 0.00 0 <set> ---

2 Stddev[1] 1.00 1 <set> ---

3 t-1[1] -1.50 --- ---

4 t-2[1] -0.75 --- ---

5 t-3[1] 0.00 --- ---

6 t-4[1] 0.75 --- ---

7 t-5[1] 1.50 --- ---

8 Mean[2] 0.00 --- ---

9 Stddev[2] 1.00 --- ---

10 t-1[2] -1.50 --- t-1[1] <set> 3

11 t-2[2] -0.75 --- t-2[1] <set> 4

12 t-3[2] 0.00 --- t-3[1] <set> 5

13 t-4[2] 0.75 --- t-4[1] <set> 6

14 t-5[2] 1.50 --- t-5[1] <set> 7

15 Mean[3] 0.00 --- ---

16 Stddev[3] 1.00 --- ---

17 t-1[3] -1.50 --- t-1[1] <set> 3

18 t-2[3] -0.75 --- t-2[1] <set> 4

19 t-3[3] 0.00 --- t-3[1] <set> 5

20 t-4[3] 0.75 --- t-4[1] <set> 6

21 t-5[3] 1.50 --- t-5[1] <set> 7

22 Mean[4] 0.00 --- ---

23 Stddev[4] 1.00 --- ---

24 t-1[4] -1.50 --- t-1[1] <set> 3

25 t-2[4] -0.75 --- t-2[1] <set> 4

26 t-3[4] 0.00 --- t-3[1] <set> 5

27 t-4[4] 0.75 --- t-4[1] <set> 6

28 t-5[4] 1.50 --- t-5[1] <set> 7

Siegfried Macho: SDT Models in R 25

Comments:

❑ Due to the fact that no restrictions have been specified standard restrictions

which are the default are provided by the model. This is indicated by the

symbol <set>. On the lines with the mean Mean[1] and standard deviation

Stddev[1] of the first model.

❑ The equality constraints are indicated by the entries of the last columns. For

example the entry for Parameter 10:

10 t-1[2] -1.50 --- t-1[1] <set> 3

indicates that first threshold assigned with the second Gaussian model t-1[2]

was set equal to first threshold of the first Gaussian model t-1[1] which cor-

responds to Parameter 3.

(6) Order of data:

The input data are response frequencies for the different response categories. The data for

the noise signal are presented first, followed by the data for the other signals. The order of

the data within each signal is from the highest noise (new) category (e.g. “sure noise” or

“sure new”) to the highest signal (old) category (e.g. “sure signal” or “sure old”).

Comment: The output presents the data in the same order.

(7) Model function:

The function for computing model probabilities:

SDT.Gaussian(par, n)

par Vector of parameters

n List with configuration information (see above).

Comment: The function can be used in isolation, e.g. for generating artificial data.

(8) Model matrix (analytical computation):

The model matrix (i.e., a mp matrix of partial derivatives of the model probabilities with

respect to the free parameters [m = number of generated probabilities (= number of data

points), p = number of free model parameters] is computed by the following function:

SDT.Gaussian.Model.Matrix(par, n, fixed = NULL, ident = NULL, functional

= NULL)

par Vector of parameters

n List with configuration information (see above).

fixed 2  q matrix of fixed constraints (cf. Chapter 4.1)

ident 2  r matrix of equality constraints (cf. Chapter 4.2)

functional Function implementing functional constraints. The function has to contain

the attribute “SDT.Jacobian” containing a function for computing the

Jacobian matrix of the functional constraints. If this function is not

available in case of functional constraints being specified, the function

computing the model matrix returns the value NULL. (For further details,

see Chapter 4.4)

Comment: The function can be used in isolation, e.g. for specific tests of the model.

(9) Model matrix (numerical computation):

The following function computes the model matrix numerically, using the function

jacobian() from the package NumDeriv.

Siegfried Macho: SDT Models in R 26

SDT.Gaussian.Model.Matrix.Num(par, n, fixed = NULL, ident = NULL,

functional = NULL)

par Vector of parameters

n List with configuration information (see above).

Fixed 2  q matrix of fixed constraints (cf. Chapter 4.1)

ident 2  r matrix of equality constraints (cf. Chapter 4.2)

functional Function implementing functional constraints.

Comments:

❑ Contrary to the analytical counterpart this function does not require the specification

of a function computing the Jacobian matrix in case of functional constraints being

specified.

❑ The function is invoked for computing the model matrix in the function

SDT.Statistics() in the following situations:

(i) Functional constraints have been specified by the user without specifying a

function for computing the Jacobian of the constraints.

(ii) The flag sym.gr was set to FALSE in the estimation procedure thus preventing

the computation of symbolic derivatives.

(10) Example:

See Chapter 5.

3.3 The mixture model with each pair of signals represented by a mixture of three

Gaussian distributions (MIX.PD)

The mixture model enables one to model source monitoring data, like those of Hilford,

Glanzer, Kim, & DeCarlo (2002) or DeCarlo (2003a), as well as more complex data sets like

those of Kelley & Wixted (2001) on associative recognition (cf. Chapter 5.7).

(1) Model structure:

Figure 2 depicts the structure of the model for one pair j of signals.

The parameter
eftlj

 represents the probability of using the “left” Gaussian distribution

()2,'
left jjj dN − for modeling the response frequencies for the first signal of the pair,

whereas with probability
eft

1
lj

− the “middle” distribution ()2, jjN  is employed.

The parameter
rightj represents the probability of using the “right” Gaussian distribution

()2,'
right jjj dN + for modeling the response frequencies for the second signal of the pair,

whereas with probability
right

1 j− the “middle” distribution ()2, jjN  is employed.

This structure holds for each pair j ()Jj ,...,2,1= of stimuli.

Comment: The resulting mixture of densities is shown in Figure 3 (using parameter

estimates for the data of Hilford et al. (2002), Exp.2):

(2) Model identification string: “MIX.PD”

(3) Name of the file containing the model:

The source code of the model is contained in the file: SDT-MIX-PD.R.

(4) Order of parameters:

The parameters of the model are passed to the function SDT.Estimate() in the

parameter par in the following order:

Siegfried Macho: SDT Models in R 27

Signal 1 of

pair j

Signal 2 of

pair j

A. For each pair of signals (except for the first pair in case of no foil distribution being

present) the following 6 parameters have to provided in the following order:

(i) j = Mean of the “middle” Gaussian distribution for signal pair j.

(ii) j = Standard deviation of the “middle” as well as the “left” and “right” Gaussian

distributions for signal pair j.

(iii)
leftj = The probability of invoking the “left” Gaussian distribution for the first

signal of signal pair j.

(iv)
rightj = The probability of invoking the “right” Gaussian distribution for the second

signal of signal pair j.

(v) '

leftjd = Displacement of the “left” distribution with respect to the “middle” for the

first signal of signal pair j (cf. Figure 2).

(vi) '

rightjd = Displacement of the “right” distribution with respect to the “middle” for the

second signal of signal pair j (cf. Figure 2).

Figure 2: Structure of the MIX.PD model (mixture of three Gaussian distributions for each

pair of signals).

Siegfried Macho: SDT Models in R 28

B. After specification of the parameters for each signal pair the threshold parameters

have to be specified:

,,...,, 121 −Rttt = thresholds (decision bounds), where R is the number of response

categories per signal (assumed to be the same for each signal).

There are two different cases that have to be considered:

(i) An even number of signals is modeled: In this case, the mean and variance of the

middle Gaussian distribution for the first signal is assumed to be 0 and 1, respective-

ly. By consequence, the mean and the variance parameters for the first pair of signals

must not to be specified.

(ii) An uneven number of signals is given: In this case, the procedure assumes that the

first signal represents foils. The location and scale of the whole configuration is fixed

by assuming the mean and standard deviation of foil distribution to be 0 and 1,

respectively.

Figure 3: Mixture of densities based on the results of Hilford et al. (2002), Experiment 2

 Help/Tip:

The function SDT.MIX.PD.start.par(n, data) creates starting parameters for the

given number of signals n and the available data data.

The function MIX.PD.par.names(par, n) creates names of the parameters in par for

the number of signals n (that are also shown in the output).

Example:

Given: The data of Kelley and Wixted (2001), Experiment 1 (Two pairs of signals with

6 response categories per signal):

data <- c(198, 148, 210, 85, 49, 30, # Weak Items, rearranged

 72, 91, 167, 71, 71, 248, # Weak Items, intact

 305, 110, 126, 79, 45, 55, # Strong Items, rearranged

 19, 23, 36, 57, 81, 504) # Strong Items, intact

Siegfried Macho: SDT Models in R 29

The sequence of commands:
n <- 4

par <- SDT.MIX.PD.start.par(n, data)
#---

Alternatively, one can use the number of data points instead of

a data vector:

par <- SDT.MIX.PD.start.par(n, 6)
#---

data.frame(name = MIX.PD.par.names(par, n), par = par)

 results in the following output (Symbols on the right were added by hand):

 name par

1 p.left[1] 0.00 (
left1)

 2 p.right[1] 0.00 (
right1)

 3 d’.left[1] 1.00 (
'

1left
d)

 4 d’.right[1] 1.00 (
'

1rightt
d)

 5 Mean[2] 0.00 (2)

 6 Stddev[2] 1.00 (2)

 7 p.left[2] 0.00 (
left2)

 8 p.right[2] 0.00 (
right2)

 9 d’.left[2] 1.00 (
'

2left
d)

 10 d’.right[2] 1.00 (
'

2rightt
d)

 11 t-1 -1.50 (1t)

 12 t-2 -0.75 (2t)

 13 t-3 0.00 (3t)

 14 t-4 0.75 (4t)

 15 t-5 1.50 (5t)

Since the number of the signals is even (i.e. no foil signal is assumed to be present) the

parameter vector does not comprise the mean 1 and standard deviation 1 for

modeling the first pair (weak items). These are assumed to be fixed values: 01 = and

11 = .

(5) Order of data:

The data are response frequencies of different response categories for the different types

of signals. The signals are assumed to occur in pairs (e.g. intact vs. rearranged items or

items from two different sources, A and B). Additionally to the pairs the data of a foil

signal may be present. The data corresponding to the foil signal must be presented first.

Comment: The output presents the data in the same order.

(6) Model function:

The function for computing model probabilities:

SDT.MIX.PD(par, n, fixed = NULL, ident = NULL)

par Vector of parameters

Siegfried Macho: SDT Models in R 30

n Number of different types of signals (NOT types of pairs!).

fixed Matrix with fixed constraints. This matrix is required if fixed constraints on

probability parameters are specified. This is due to the fact that the model

computes the probability parameters form raw parameters (in vector par),

whereas fixed probabilities are specified as probabilities in the range [0, 1].

Ident Not used within the function (present for compatibility reasons only)

Comment: The function can be used in isolation, e.g. for generating artificial data.

(7) Model matrix (analytical computation):

The model matrix (i.e., a mp matrix of partial derivatives of the model probabilities with

respect to the free parameters [m = number of generated probabilities (= number of data

points), p = number of free model parameters] is computed by the following functions:

SDT.MIX.PD.Model.Matrix(par, n, fixed = NULL, ident = NULL, functional =

NULL)

par Vector of parameters

n Number of signal distributions (including the noise distribution)

fixed 2  q matrix of fixed constraints (cf. Chapter 4.1)

ident 2  r matrix of equality constraints (cf. Chapter 4.2)

functional Function implementing functional constraints. The function has to contain

the attribute “SDT.Jacobian” containing a function for computing the

Jacobian matrix of the functional constraints. If this function is not

available in case of functional constraints being specified, the function

computing the model matrix returns the value NULL. (For further details,

see Chapter 4.4)

Comment: The function can be used in isolation, e.g. for specific tests of the model.

(8) Model matrix (numerical computation):

The following function computes the model matrix numerically, using the function

jacobian() from the package NumDeriv.

SDT.MIX.PD.Matrix.Num(par, n, fixed = NULL, ident = NULL, functional =

NULL)

par Vector of parameters

n Number of signal distributions (including the noise distribution)

fixed 2  q matrix of fixed constraints (cf. Chapter 4.1)

ident 2  r matrix of equality constraints (cf. Chapter 4.2)

functional Function implementing functional constraints.

Comments:Contrary to the analytical counterpart this function does not require the speci-

fication of a function computing the Jacobian matrix in case of functional con-

straints being specified.

The function is also helpful for testing whether the analytical counterpart

works properly.

The function is invoked for computing the model matrix in the function

SDT.Statistics in the following situations:

(i) Functional constraints have been specified by the user without specifying

a function for computing the Jacobian of the constraints

Siegfried Macho: SDT Models in R 31

(ii) The flag sym.gr was set to FALSE in the estimation procedure thus

preventing the computation of symbolic derivatives.

(9) Probability parameters (Free vs. fixed):

The probability parameters within the vector of starting parameters are raw parameters

that can vary from - to +. These parameters are transformed internally to probabilities

by means of the logistic function:

()
()p

p

exp1

exp

+
= ,

where  denotes the computed probability and p symbolizes the raw parameter. Thus, a

starting parameter of p = 0 corresponds to a probability of  = 0.5.

If a probability parameter is fixed by the user to a specific value (say 1.0), then the value

provided is interpreted as a probability and not as a raw value. Thus, the program checks

whether a parameter is fixed or not. In the first case, the parameter is interpreted as a

fixed parameter whereas it is treated as a raw parameter that has to be transformed in the

second case.

(10) Example: See Chapter 5.7.

3.4 The mixture model with two normal distributions per signal (MIX.2)

(1) Model structure:

Figure 4 depicts the structure of the model for a single type of signal.

Figure 4: Structure of the MIX-2 model (mixture of two Gaussian distributions)

The parameter j indicates the probability of the first distribution ()2

11, jjN  , for each

type of signal j ()Jj ,...,2,1= .

For each type of signal a mixture of two distributions may be defined.

Comment: Without constraints on parameters the model is not identified.

(2) Model identification string: “MIX.2”

(3) Name of the file containing the model:

The source code of the model is contained in the file: SDT-MIX2.R.

Signal j

Siegfried Macho: SDT Models in R 32

(4) Order of parameters:

The parameters of the model are passed to the function SDT.Estimate()in the parameter

par. For each type of signal j the parameters are given in the following order:

(i) j = Probability (in raw format [see below]) of the first Gaussian distribution for

signal j.

(ii) 1j = Mean of the first Gaussian distribution for signal j.

(iii) 1j = Standard deviation of the first Gaussian distribution for signal j.

(iv) 2j = Mean of the second Gaussian distribution for signal j.

(v) 2j = Standard deviation of the second Gaussian distribution for signal j.

(vi) ,,...,, 1,21 −Rjjj ttt = thresholds (decision bounds), where R is the number of response

categories.

 Help/Tip:

The function SDT.MIX2.start.par(n, data) creates starting parameters for the given

number of signals n and the available data and the number of response categories per

signal, respectively data (cf. Chapter 3.1, 3.2, or 3.3).

The function MIX2.par.names(par, n) creates names of the parameters in par for

the number of signals n (that are also shown in the output).

(5) Order of data:

The data are response frequencies of the different response categories for the different

types of signals.

Comment: The output presents the data in the same order.

(6) Model function:

The function for computing model probabilities:

SDT.MIX2(par, n, fixed = NULL, ident = NULL)

par Vector of parameters

n Number of types of signals (= number of mixtures).

fixed Matrix with fixed constraints. This matrix is required if fixed constraints on

probability parameters are specified. This is due to the fact that the model

computes the probability parameters form raw parameters (in vector par),

whereas fixed probabilities are specified as probabilities in the range [0, 1].

ident Not used within the function (for compatibility reasons only)

Comment: The function can be used in isolation, e.g. for generating artificial data.

(7) Model matrix (analytical computation):

The model matrix (i.e., a mp matrix of partial derivatives of the model probabilities with

respect to the free parameters [m = number of generated probabilities (= number of data

points), p = number of free model parameters] is computed by the following functions:

SDT.MIX2.Model.Matrix(par, n, fixed = NULL, ident = NULL, functional =

NULL)

par Vector of parameters

n Number of signal distributions (including the noise distribution)

fixed 2  q matrix of fixed constraints (cf. Chapter 4.1)

Siegfried Macho: SDT Models in R 33

ident 2  r matrix of equality constraints (cf. Chapter 4.2)

functional Function implementing functional constraints. The function has to contain

the attribute “SDT.Jacobian” containing a function for computing the

Jacobian matrix of the functional constraints. If this function is not

available in case of functional constraints being specified, the function

computing the model matrix returns the value NULL. (For further details,

see Chapter 4.4)

Comment: The function can be used in isolation, e.g. for specific tests of the model.

(8) Model matrix (numerical computation):

The following function computes the model matrix numerically, using the function

jacobian() from the package NumDeriv.

SDT.MIX2.Matrix.Num(par, n, fixed = NULL, ident = NULL, functional =

NULL)

par Vector of parameters

n Number of signal distributions (including the noise distribution)

fixed 2  q matrix of fixed constraints (cf. Chapter 4.1)

ident 2  r matrix of equality constraints (cf. Chapter 4.2)

functional Function implementing functional constraints.

Comments:Contrary to the analytical counterpart this function does not require the speci-

fication of a function computing the Jacobian matrix in case of functional con-

straints being specified.

The function is also helpful for testing whether the analytical counterpart

works properly.

The function is invoked for computing the model matrix in the function

SDT.Statistics in the following situations:

(i) Functional constraints have been specified by the user without specifying

a function for computing the Jacobian of the constraints

(ii) The flag sym.gr was set to FALSE in the estimation procedure thus

preventing the computation of symbolic derivatives.

(9) Probability parameters (Free vs. fixed):

The probability parameters within the vector of starting parameters are raw parameters

that can vary from - to +. These parameters are transformed internally to probabilities

by means of the logistic function:

()
()p

p

exp1

exp

+
= ,

where  denotes the computed probability and p symbolizes the raw parameter. Thus, a

starting parameter of p = 0 corresponds to a probability of  = 0.5.

If a probability parameter is fixed by the user to a specific value (say 1.0), then the value

provided is interpreted as a probability and not as a raw value. Thus, the program checks

whether a parameter is fixed or not. In the first case, the parameter is interpreted as a

fixed parameter whereas it is treated as a raw parameter that has to be transformed in the

second case.

Siegfried Macho: SDT Models in R 34

(10) Example:

See Chapter 7.

3.5 The dual process signal detection model (DPSDT)

The DPSDT model is a hybrid model consisting of a high-threshold component and a signal

detection model. In memory research the threshold component may be interpreted as re-

presenting a discrete process of conscious recollection whereas the signal detection compo-

nent may be interpreted as representing a continuous process based on familiarity.

Concerning the present implementation, the model contains a recollection probability para-

meter  representing the probability of selecting a specific response category, whereas with

probability −1 the signal detection component determines the selection of the response

category (Figure 5). By default, the response category selected with probability  is the first

response category for the first signal and the last response category for the other signals.

However, is possible to change this assignment using the relevant option in the configuration

list.

The DPSDT enables one to model source monitoring data (cf. Chapter 8.1) as well as data on

associative recognition (cf. Chapter 8.2).

(1) Model structure:

For each signal j there is recollection component (represented by the recollection

probability j) and a SDT component. Figure 5 depicts the structure of the model for two

signals: Signal 1 and Signal j with the default assignment of the recollection probability to

response categories (lowest category for the first signal and highest response category for

the other signals).

The parameter 1 represents the probability of choosing the lowest confidence category

for the first signal. With probability of ()11 − the probabilities of the response categories

for the first signal are determined by the Gaussian distribution ()2

11,N .

The parameter j represents the probability of choosing the highest confidence category

for the Signal j ()Jj ,...,2= . With a probability of ()j−1 the probabilities of the re-

sponse categories for Signal j are determined by the Gaussian distribution ()2, jjN  .

(2) Model identification string: "DPSDT"

(3) Name of the file containing the model:

The source code of the model is contained in the file: SDT-DPSDT.R.

(4) Configuration information:

The configuration information is passed to the function SDT.Estimate() in the argument

n. The configuration information consists of the following entries:

Siegfried Macho: SDT Models in R 35

Figure 5: Structure of the DPSDT model (Dual process signal detection model).

 n.sdt = The number of signals (default: n.sdt = 2).

 rec.pos = A vector representing the response categories that are selected in case

of recollection. By default, for the first signal the first response

category is selected and for the other signals the last response

category is selected, for example with three signals and 6 response

categories per signal the default looks like this:

rec.pos = c(1, 6, 6).

 restriction = A string specifying the type of restrictions. The following options are

available:

 "no" No restrictions are specified (the model with this

specification is not identified).

Signal 1

lowest confidence

category

Signal j

(j > 1)

highest confidence

category

Siegfried Macho: SDT Models in R 36

 "standard" The following restrictions are set:

1. The Gaussian distribution of the first signal is

specified to be N(0, 1).

2. The variance parameters of the other

distributions are set to 0.12 = j .

3. The recollection parameter of the first signal is

set to 01 = .

4. The threshold parameters of all signals are set to

be equal for all signals:
J

iii

 Signal2 Signal1 Signal ===  ()1,1 −= Ri  .

Comments:

➢ This set of restrictions is the default setting.

➢ The restrictions implement a single high-

threshold model with signal detection

component.

 "standard-2" Same as "standard", yet without the restriction on

the recollection probability of the first model. Thus,

contrary the standard setting the recollection para-

meter of the first signal 1 is a free parameter.

The following restrictions are set:

1. The Gaussian distribution of the first signal is

specified to be N(0, 1).

2. The variance parameters of the other

distributions are set to 0.12 = j .

3. The threshold parameters of all signals are set to

be equal for all signals:
J

iii

 Signal2 Signal1 Signal ===  ()1,1 −= Ri  .

Comment:

The restrictions implement a double high-threshold

model with signal detection component.

 "standard-2-

eq"
Same as "standard-2", yet with the additional re-

striction of recollection probabilities of all models

being equal.

 The following restrictions are set:

1. The Gaussian distribution of the first signal is

specified to be N(0, 1).

2. The variance parameters of the other

distributions are set to 0.12 = j .

3. The recollection parameters of all models are

assumed to be equal: J=== 21

4. The threshold parameters of all signals are set to

be equal for all signals:
J

iii

 Signal2 Signal1 Signal ===  ()1,1 −= Ri  .

Siegfried Macho: SDT Models in R 37

 "standard-

pairs"
This option enables restriction for pairs of signals.

For pairs of signals the HT-1 model is specified.

Specifically, the following restrictions are set:

 1. The mean of the Gaussian distribution for the

first signal is set to zero 01 = .

 2. The recollection parameters of the first, third,

fifth, etc. (uneven number of signals) are

specified to be zero: 0= j (),...5,3,1=j .

 3. The variance parameters all distributions are set

to 0.12 = j ()Jj ,...,1= .

 4. The threshold parameters of all signals are set to

be equal for all signals:
J

iii

 Signal2 Signal1 Signal ===  ()1,1 −= Ri  .

Comment:

Works only with an equal number of signals.

 "standard-

pairs-eq"
Same as standard-pairs with the additional

restriction of all variance parameter of pairs being

the same. Specifically, the following restrictions are

set:

 1. The mean of the Gaussian distribution for the

first signal is set to zero 01 = .

 2. The recollection parameters of the first, third,

fifth, etc. (uneven number of signals) are

specified to be zero: 0= j (),...5,3,1=j .

 3. The variance parameters for pairs of distributions

are set to be equal:

0.12

2

2

1 == ,
2

4

2

3 = ,
2

6

2

5 = , etc.

 4. The threshold parameters of all signals are set to

be equal for all signals:
J

iii

 Signal2 Signal1 Signal ===  ()1,1 −= Ri  .

Comment:

Works only with an equal number of signals.

 "standard-

lure-pairs"
Same as standard-pairs with the additional

assumption that the first distribution represents

lures. Specifically, the following restrictions are set:

 1. The first Gaussian distribution (representing

lures is assumed to be N(0, 1).

 2. The recollection parameters of the second,

fourth, sixth, etc. (even number of signals) are

specified to be zero: 0= j (),...6,4,2=j .

Siegfried Macho: SDT Models in R 38

 3. The variance parameters all distributions are set

to 0.12 = j ()Jj ,...,1= .

 4. The threshold parameters of all signals are set to

be equal for all signals:
J

iii

 Signal2 Signal1 Signal ===  ()1,1 −= Ri  .

Comment:

Works only with an unequal number of signals.

 "standard-

lure-pairs-

eq"

Same as standard-pairs-eq with the additional

assumption of the first distribution representing

lures. Specifically, the following restrictions are set:

 1. The first Gaussian distribution (representing

lures is assumed to be N(0, 1).

 2. The recollection parameters of the second,

fourth, sixth etc. (even number of signals) are

specified to be zero: 0= j (),...6,4,2=j .

 3. The variance parameters for pairs of distributions

beginning from the second distribution are set to

be equal:
2

3

2

2 = ,
2

5

2

4 = , etc.

 4. The threshold parameters of all signals are set to

be equal for all signals:
J

iii

 Signal2 Signal1 Signal ===  ()1,1 −= Ri  .

Comment:

Works only with an unequal number of signals.

 "SDT" Restrictions conforming to the unequal variance

signal detection model:

1. All recollection parameters are fixed to zero:

0= j ()Jj ,...,1= .

2. The Gaussian distribution of the first signal is

specified to be N(0, 1).

3. The threshold parameters of all signals are set to

be equal for all signals:
J

iii

 Signal2 Signal1 Signal ===  ()1,1 −= Ri  .

 "SDT-EV" Restrictions conforming to the equal variance signal

detection model:

 1. All recollection parameters are fixed to zero:

0= j ()Jj ,...,1= .

 2. The Gaussian distribution of the first signal is

specified to be N(0, 1).

Siegfried Macho: SDT Models in R 39

 3. The variance parameters of all models are set to

0.12 = j ()Jj ,...,1= .

4. The threshold parameters of all signals are set to

be equal for all signals:
J

iii

 Signal2 Signal1 Signal ===  ()1,1 −= Ri  .

Examples:

The file DPSDT-3 (Parameter Information).R demonstrates each of the constraints.

(5) Order of parameters:

The parameters of the model are passed to the function SDT.Estimate() in the

parameter par in the following order:

For each of the J Gaussian models corresponding to the J signals ()Jj ,...,1= the follow-

ing parameters have to specified in the following order:

(i) j = The probability of recollecting a specified response category in case of Signal j.

(ii) j
 = Mean of the Gaussian distribution for Signal j.

(iii) j
 = Standard deviation of the Gaussian distributions for Signal j.

(iv) 121 ,...,, − R = thresholds (decision bounds), where R is the number of response

categories for each Signal j. (identical for each signal).

 Help/Tip:

The function SDT.Parameter.Info() can be used to display parameters as well as

restrictions (cf. the example file: DPSDT-3 (Parameter Information).R).

(6) Order of data:

The data are response frequencies of different response categories for the different types

of signals.

Comment: The output presents the data in the same order.

(7) Model function:

The function for computing model probabilities:

DPSDT.Probs(parvec, cfg, fixed = NULL, ident = NULL, with.p = T)

parvec Vector of parameters

cfg List with configuration information

fixed Matrix with fixed constraints. This matrix is required if fixed constraints on

probability parameters are specified. This is due to the fact that the model

computes the probability parameters form raw parameters (in vector par),

whereas fixed probabilities are specified as probabilities in the range [0, 1].

ident Not used within the function (present for compatibility reasons only).

with.p A flag indicating whether probabilities should be computed from raw para-

meters (with.p = T).

Comment: The function can be used in isolation, e.g. for generating artificial data.

(8) Model matrix (analytical computation):

The model matrix (i.e., a mp matrix of partial derivatives of the model probabilities with

respect to the free parameters [m = number of generated probabilities (= number of data

points), p = number of free model parameters] is computed by the following functions:

Siegfried Macho: SDT Models in R 40

DPSDT.Model.Matrix(full.par, cfg, fixed = NULL, ident = NULL, functional

= NULL)

full.par Full parameter vector

cfg List with configuration information

fixed 2  q matrix of fixed constraints (cf. Chapter 4.1)

ident 2  r matrix of equality constraints (cf. Chapter 4.2)

functional Function implementing functional constraints. The function has to contain

the attribute “SDT.Jacobian” containing a function for computing the

Jacobian matrix of the functional constraints. If this function is not

available in case of functional constraints being specified, the function

computing the model matrix returns the value NULL. (For further details,

see Chapter 4.4)

Comment: The function can be used in isolation, e.g. for specific tests of the model.

(9) Model matrix (numerical computation):

The following function computes the model matrix numerically, using the function

jacobian() from the package NumDeriv.

DPSDT.Matrix.Num(full.par, cfg, fixed = NULL, ident = NULL, functional =

NULL)

full.par Full parameter vector

cfg List with configuration information

fixed 2  q matrix of fixed constraints (cf. Chapter 4.1)

ident 2  r matrix of equality constraints (cf. Chapter 4.2)

functional Function implementing functional constraints.

Comments:Contrary to the analytical counterpart this function does not require the speci-

fication of a function computing the Jacobian matrix in case of functional con-

straints being specified.

The function is also helpful for testing whether the analytical counterpart

works properly.

The function is invoked for computing the model matrix in the function

SDT.Statistics in the following situations:

(i) Functional constraints have been specified by the user without specifying

a function for computing the Jacobian of the constraints

(ii) The flag sym.gr was set to FALSE in the estimation procedure thus

preventing the computation of symbolic derivatives.

(10) Probability parameters (Free vs. fixed):

The probability parameters within the vector of starting parameters are raw parameters

that can vary from - to +. These parameters are transformed internally to probabilities

by means of the logistic function:

()
()p

p

exp1

exp

+
= ,

where  denotes the computed probability and p symbolizes the raw parameter. Thus, a

starting parameter of p = 0 corresponds to a probability of  = 0.5.

Siegfried Macho: SDT Models in R 41

If a probability parameter is fixed by the user to a specific value (say 1.0), then the value

provided is interpreted as a probability and not as a raw value. Thus, the program checks

whether a parameter is fixed or not. In the first case, the parameter is interpreted as a

fixed parameter whereas it is treated as a raw parameter that has to be transformed in the

second case.

(11) Examples: See Chapter 8.

3.6 The double high-threshold model for modeling rating data (HT.n)

The HT.n model is a double high-threshold model with probabilities for modeling rating data.

The model may be conceived of as a non-parametric counterpart to the MIX.2 model (cf.

Chapter 3.4): Instead of using a mixture of parametric distributions a mixture of a Gaussian

and a discrete distribution is used for modeling the data. The discrete distribution is repre-

sented by n-1 probability parameters with n denoting the number of response categories.

The HT.n model enables one to model complex recognition data (cf. Chapter 9.1 and Chapter

9.2). Similarly to the MIX.2 model, without the imposition of restriction the HT.n model is

not identified.

(1) Model structure:

Figure 6 depicts the structure of the model for one signal.

The parameter j represents the mixing probability for Signal j, i.e., the probability that

the discrete process represented by the discrete distribution is invoked.

With a probability of ()j−1 the probabilities of the response categories for the signal are

determined by the Gaussian distribution ()2, jjN  .

(2) Model identification string: "HT.n"

(3) Name of the file containing the model:

The source code of the model is contained in the file: SDT-HT-n.R.

(4) Order of parameters:

The parameters of the model are passed to the function SDT.Estimate() in the

parameter par in the following order:

For each type of signal the following parameters have to provided in the following order:

(i) j = Mean of the Gaussian distribution for Signal pair j (except for the first signal).

(ii) j = Standard deviation of the Gaussian distributions for Signal j (except for the

first signal).

(iii) j = Parameter representing the mixing probability, i.e., the probability of using

the discrete distribution (instead of the Gaussian) for modeling the response distri-

bution.

(iv)
n

jjj  ,...,, 21
 = Probability parameters characterizing the discrete distribution (n =

number of response categories).

(v) ,,...,, 121 −nttt = Threshold parameters (decision bounds), where n is the number of

response categories per signal (assumed to be the same for each type of signal).

Siegfried Macho: SDT Models in R 42

Figure 6: Structure of the HT.n model (Two high-threshold model for rating data).

Comments:

 For the first signal no mean and variance parameter must be specified since these are

supplied by the module: 01 = and 11 = .

 One of the probability parameters is redundant. This redundancy will be treated

internally by the program. The redundant parameter must be included into the

parameter vector to allow for the possibility of specifying a constraint on this

parameter.

 Help/Tip:

The function SDT.HT.n.start.par(n, data, range.th = c(-1, 1)) creates

starting parameters for the given number of signals n and the available data data.

In case of data being a single number the value is interpreted as the number of

response categories per signal.

The parameter range.th enables the specification of different ranges for the thresholds

in the starting parameter. The first value indicates the value of the lowest and the

second parameter indicates the value of the highest threshold.

The function HT.n.par.names(par, n) creates names of the parameters in par for

the number of signals n (that are also shown in the output).

Example:

The sequence of commands:

par <- SDT.HT.n.start.par(2, 6)
data.frame(name = HT.n.par.names(par, n), par = par)

 results in the following output (Symbols on the right were added by hand):

 name par

 1 p[1] 0.00  1

 2 p-1[1] 0.00  1

1

 3 p-2[1] 0.00  2

1

 4 p-3[1] 0.00  3

1

Signal j

()2, jjN 

j

j−1

Response Category 1

Response Category 2

Response Category n

…

2

j

1

j

n

j

Siegfried Macho: SDT Models in R 43

 5 p-4[1] 0.00  4

1

 6 p-5[1] 0.00  5

1

 7 p-6[1] 0.00  6

1

 8 mean[2] 0.00  2

 9 stddev[2] 1.00  2

 10 p[2] 0.00  2

 11 p-1[2] 0.00  1

2

 12 p-2[2] 0.00  2

2

 13 p-3[2] 0.00  3

2

 14 p-4[2] 0.00  4

2

 15 p-5[2] 0.00  5

2

 16 p-6[2] 0.00  6

2

 17 t-1 -1.00  1t

 18 t-2 -0.50  2t

 19 t-3 0.00  3t

 20 t-4 0.50  4t

 21 t-5 1.00  5t

(5) Order of data:

The data are response frequencies of different response categories for the different types

of signals.

Comment: The output presents the data in the same order.

(6) Model function:

The function for computing model probabilities:

SDT.HT.n(par, n, fixed = NULL, ident = NULL)

par Vector of parameters

n Number of different types of signals.

Fixed Matrix with fixed constraints. This matrix is required if fixed constraints on

probability parameters are specified. This is due to the fact that the model

computes the probability parameters form raw parameters (in vector par),

whereas fixed probabilities are specified as probabilities in the range [0, 1].

ident Matrix with identity constraints

Comments:

1. The function can be used in isolation, e.g. for generating artificial data using raw

parameters from which probability parameters are computed.

2. There exists an alternative function SDT.HT.n.without(par, n, fixed = NULL,

ident = NULL) that assumes real probabilities as probability parameters instead of

raw parameters. By consequence, no computation of probability from raw parameters

ist performed.

Siegfried Macho: SDT Models in R 44

(7) Model matrix (analytical computation):

The model matrix (i.e., a mp matrix of partial derivatives of the model probabilities with

respect to the free parameters [m = number of generated probabilities (= number of data

points), p = number of free model parameters] is computed by the following functions:

SDT.HT.n.Model.Matrix(par, n, fixed = NULL, ident = NULL, functional =

NULL)

par Vector of parameters

n Number of signal distributions (including the noise distribution)

fixed 2  q matrix of fixed constraints (cf. Chapter 4.1)

ident 2  r matrix of equality constraints (cf. Chapter 4.2)

functional Function implementing functional constraints. The function has to contain

the attribute “ SDT.Jacobian” containing a function for computing the

Jacobian matrix of the functional constraints. If this function is not

available in case of functional constraints being specified, the function

computing the model matrix returns the value NULL. (For further details,

see Chapter 4.4)

Comment: The function can be used in isolation, e.g. for specific tests of the model.

(8) Model matrix (numerical computation):

The following function computes the model matrix numerically, using the function

jacobian() from the package NumDeriv.

SDT.HT.n.Model.Matrix.Num(par, n, fixed = NULL, ident = NULL, functional

= NULL)

par Vector of parameters

n Number of signal distributions (including the noise distribution)

fixed 2  q matrix of fixed constraints (cf. Chapter 4.1)

ident 2  r matrix of equality constraints (cf. Chapter 4.2)

functional Function implementing functional constraints.

Comments:Contrary to the analytical counterpart this function does not require the speci-

fication of a function computing the Jacobian matrix in case of functional con-

straints being specified.

The function is also helpful for testing whether the analytical counterpart

works properly.

The function is invoked for computing the model matrix in the function

SDT.Statistics in the following situations:

(i) Functional constraints have been specified by the user without specifying

a function for computing the Jacobian of the constraints

(ii) The flag sym.gr was set to FALSE in the estimation procedure thus

preventing the computation of symbolic derivatives.

Comment: The function can be used in isolation, e.g. for specific tests of the model.

Siegfried Macho: SDT Models in R 45

(9) Probability parameters (Free vs. fixed):

The probability parameters within the vector of starting parameters are raw parameters

that can vary from - to +. These parameters are transformed internally to probabilities

by means of the logistic function:

()
()p

p

exp1

exp

+
= ,

where  denotes the computed probability and p symbolizes the raw parameter. Thus, a

starting parameter of p = 0 corresponds to a probability of  = 0.5.

If a probability parameter is fixed by the user to a specific value (say 1.0), then the value

provided is interpreted as a probability and not as a raw value. Thus, the program checks

whether a parameter is fixed or not. In the first case, the parameter is interpreted as a

fixed parameter whereas it is treated as a raw parameter that has to be transformed in the

second case.

3.7 The bivariate Gaussian model of signal detection enabling violations of decisional

separability on one dimension (SDT.2D)

The SDT.2D model enables the modeling of two dimensional detection data. The module

contains the following features:

 Structural zeros may be specified;

 Violations of decisional separability on one dimension are allowed (cf. Ashby & Town-

send, 1986);

 A matrix for pooling, projecting, and weighing etc. of the data and estimates can be speci-

fied. In this case a marginal likelihood estimation is performed (in case of pooling the

data).

 An option for robust estimation of decision bounds is available. In case of this option

being set the model decision bounds are implemented via positive increments thus

ensuring the decision bounds to be ordered correctly. This option is required in case of

estimating model using a pooling matrix (cf. Chapter 10.5).

(1) Model structure:

The model is described in detail in Wickens (1992) and in Wickens & Olzak (1992).

Figure 17, Figure 18, and Figure 19 present graphical representations of the model with

four signals.

(2) Model identification string: "SDT.2D"

(3) Name of the file containing the model:

The source code of the model is contained in the file: SDT-SDT-2D.R.

(4) Configuration information:

The argument n of the function SDT.Estimate() is a list containing information about

the configuration of the model. The configuration list contains the following entries:

n.sdt: Number of signals (= number of Gaussian distributions);

Comment:

For compatibility purposes, instead of n.sdt the entry s can be used to indicate the number

of signals.

k1: Number of decision bounds on Dimension 1;

k2: Number of decision bounds on Dimension 2;

ds: Flag indicating violations of decisional separability (default: ds = 0).

Siegfried Macho: SDT Models in R 46

ds = 0: No violations of decisional separability;

ds = 1: Violations of decisional separability on Dimension 1;

ds = 2: Violations of decisional separability on Dimension 2;

struct.zero: Indices of those cells that are excluded from the process of estimation.

R: A response assignment matrix. This matrix enables the pooling of estimates

from different cells. The data vector, as well as the vector of estimated probabi-

lities is premultiplied by this matrix.

Comments:

 The data vector supplied has always to be of full length and the columns of matrix R

must be equal to the length of the data vector.

 The employment of matrix R enables the estimation of bivariate Gaussian models with

response selection (cf. DeCarlo, 2003b; Greene, 2008).

 For compatibility purposes, instead of n.sdt the entry s can be used to indicate the

number of signals.

conditional: A flag indicating whether a conditional estimation should be performed. If the

flag is set to TRUE, in case of structural zeros the residual probabilities for the

respective signal are renormalized to sum to 1.0.

restriction: A character string indicating the types of restrictions to be specified. Two or

more types of restrictions can be specified simultaneously. Currently, the

following options are available:

"st": This is the default option ("st" stands for ("standard"). In this case

the following identification restrictions are set by the program:

0.01211 == and 0.11211 == .

11 and
12 denote the two means and

11 and
12 denote the

standard deviations of the distribution of the first signal.

"v1" All variance parameters are set equal to 1.0

"r0" All correlations are set equal to 0.0

"er" All correlation parameters are restricted to be equal

"qu" rectangular configuration of Gaussians (only valid in case of four

Gaussian models)

"quvd" rectangular configuration of Gaussians plus identical variances per

dimension:
1121 = , 1232 = , 3141 = ,

2242 = . (only valid in

case of four Gaussian models). Figure 18 provides an illustration of

this restriction.

"no": No restriction is specified.

Comments:

 The restrictions are set additionally to those specified by the user. In case of conflict-

ing restrictions concnering the same parameter, the user specified restrictions get

precedence.

 If no standard restrictions are wanted the option restriction = "no" must be set

(since st is the default option).

 It seems useful to separate the string indicating different types of restrictions (cf. the

example below). However the program does not require this since it searches only for

the respective string (ignoring cases).

robust: Flag indicating the robust estimation of decision bounds, i.e., the decision

bounds are estimated as increments, in the following way:

Siegfried Macho: SDT Models in R 47

11 t= ,

()212 exp tt += ,

() ()3213 expexp ttt ++= ,

…

() () () ()kkk ttttt expexpexpexp 1321 +++++= − ,

where kttt ,,, 21  are the raw parameters that are modified by the optimizer,

whereas k ,,, 21  denote the decision bounds computed internally and used

for computing probabilities. This way of computing ensures the proper ordering

of decision bounds,

Comments:

 The output presents the computed decision bounds. In addition the standard errors of

the bounds are properly adjusted. By consequence the output is exactly identical

independently of whether the flag was set.

 The option has however an influence on restrictions imposed on decision bounds. Re-

strictions concern raw parameters only and not computed ones. Thus, if, for example,

two threshold parameter are set equal, the two decision bounds are not equal. Rather

the increments corresponding increments are equal.

 For a concrete example of estimating a model using the robust option cf. Chapter

10.5.

Example:

n <- list(s = 4, k1 = 6, k2 = 6, ds = 1, robust = T, restriction = "st-

v1-er-qu")

This list indicates the following setup for the SDT2D model:

 4 types signals;

 6 decision bounds on each dimension;

 Decisional separability on Dimension 1;

 Decision bounds are estimated robustly;

 The following types of restrictions are set by the program:

(i) Standard restrictions fixing the mean and standard deviation parameters of the

first Gaussian distribution to 0.0 and 1.0 respectively.

(ii) The variance parameters of each Gaussian model are set equal to 1.0.

(iii) The correlation parameters of the four Gaussian models are assumed to be equal.

(iv) A rectangular arrangement of the Gaussian distributions is assumed.

(A configuration of Gaussian models conforming to these restrictions is shown in

Figure 17).

(5) Order of parameters:

The parameters of the model are passed to the function SDT.Estimate() in the

parameter par in the following order:

A. For each type of signal (=Gaussian model) 5 parameters have to be provided in the

following order:

(i)
s

1 = First location parameter of the Gaussian distribution for Signal s;

(ii)
s

2 = Second location parameter of the Gaussian distribution for Signal s;

(iii)
s

1 = First standard deviation of the Gaussian distribution for Signal s;

Siegfried Macho: SDT Models in R 48

-2 0 2 4 6

-2
0

2
4

6

Dimension 1

D
im

e
n

s
io

n
 2

1 2 3

4 5 6

7 8 9

(iv)
s

2 = Second standard deviation of the Gaussian distribution for Signal s;

(v) s = Correlation parameter for the distribution representing Signal s.

B. The k1 decision bounds on Dimension 1, in case of no violations of decisional separa-

bility (ds = 0) make up the second part of the parameter vector.

In case of violations of decisional separability on Dimension 1 (ds = 1), ()121 + kk

decision bounds are required, where k2 is the number of decision bounds on Dimen-

sion 2.

The order of the decision bounds is illustrated in Figure 7. There are 31 =k and

22 =k decision bounds resulting in 6 response regions. () 9121 =+ kk decision

bounds have to be specified for Dimension 1. As shown in Figure 7, within each

region on Dimension 2 the bounds for Dimension 1 are specified.

Figure 7: SDT-2D model: Order of decision bounds in case of violations of decisional

separability on Dimension 1.

First the three bounds on Dimension 1 in the region (2

1, Dt− of Dimension 2 are

specified, where 2

1

Dt denotes the first decision bound on Dimension 2. Second the

three bounds in the region (2

2

2

1 , DD tt of Dimension 2 are specified. Finally the

three bounds in the regions ),2

2

Dt of Dimension 2 are specified.

C. The k2 decision bounds on Dimension 2, in case of no violations of decisional separa-

bility (ds = 0) make up the third part of the parameter vector.

In case of violations of decisional separability on Dimension 2 (ds = 2), ()112 + kk

decision bounds are required.

Siegfried Macho: SDT Models in R 49

-2 0 2 4 6

-2
0

2
4

6

Dimension 1

D
im

e
n

s
io

n
 2

1

2

3
4 5

6

7

8

Figure 8: SDT-2D model: Order of decision bounds in case of violations of decisional

separability on Dimension 2.

The order of the decision bounds is illustrated in Figure 8. Again, there are 31 =k and

22 =k decision bounds resulting in 6 response regions. () 8112 =+ kk decision

bounds have to be specified for Dimension 2. As shown in Figure 8, within each

region on Dimension 1 the bounds for Dimension 2 are specified.

First, the two bounds on Dimension 1 in the region (1

1, Dt− of Dimension 1 are spe-

cified, where
1

1

Dt denotes the first decision bound on Dimension 1. Second, the three

bounds in the region (1

2

1

1 , DD tt of Dimension 1 are specified. Third, three bounds in

the region (1

3

1

2 , DD tt of Dimension 1 are specified. Finally the three bounds in the

regions ),1

3

Dt of Dimension 1 are specified.

 Help/Tip:

The function SDT.Parameter.Info(n, Model.Id = "SDT.2D") provides the

possibility for inspection of the model parameters, where the configuration list is passed

to parameter n.

Example:

The order of parameters for the model in Figure 7 can be inspected by using of the

following sequence of commands:

cfg <- list(s = 1, k1 = 3, k2 = 2, ds = 1)

Erg <- SDT.Parameter.Info(n = cfg, Model.Id = "SDT.2D")

print(Erg)

 The output looks like this (symbols on the right were added):

$Parameters.and.Constraints

 name par fixed.value ident.source Nr

 1 Mean.1[1] 0 0 <set> ---
1

1

Siegfried Macho: SDT Models in R 50

 2 Mean.2[1] 0 0 <set> ---
1

2

 3 Stddev.1[1] 1 1 <set> ---
1

1

 4 Stddev.2[1] 1 1 <set> ---
1

2

 5 Corr[1] 0 --- ---
1

 6 t.D1-1[D2 = 1] -1 --- --- (
1

2
12 ,,1

D

tD Dt
−=

 7 t.D1-2[D2 = 1] 0 --- --- (
1

2
12 ,,2

D

tD Dt
−=

 8 t.D1-3[D2 = 1] 1 --- --- (
1

2
12 ,,3

D

tD Dt
−=

 9 t.D1-1[D2 = 2] -1 --- --- (
1

2
2

2
12 ,,1

D

ttD DDt
=

 10 t.D1-2[D2 = 2] 0 --- --- (
1

2
2

2
12 ,,2

D

ttD DDt
=

 11 t.D1-3[D2 = 2] 1 --- --- (
1

2
2

2
12 ,,3

D

ttD DDt
=

 12 t.D1-1[D2 = 3] -1 --- --- )
1

2
22 ,,1

D

tD Dt
=

 13 t.D1-2[D2 = 3] 0 --- --- )
1

2
22 ,,2

D

tD Dt
=

 14 t.D1-3[D2 = 3] 1 --- --- )
1

2
22 ,,3

D

tD Dt
=

 15 t.D2-1 -1 --- ---
2

1

D
t

 16 t.D2-2 1 --- ---
2

2

D
t

(6) Order of data:

The data are response frequencies of different response categories for the different types

of signals.

Figure 9 illustrates the ordering of the input data assumed by the model. This ordering

corresponds to the ordering of the estimated probabilities and frequencies provided by the

model.

Figure 9 illustrates that the data »move faster« on Dimension 2 than on Dimension 1.

Comment: The output presents the data in the same order.

(7) Model function:

The function for computing model probabilities:

SDT.SDT2D(parvec, cfg, fixed = NULL, ident = NULL)

parvec The vector of parameters

cfg A list with information concerning the configuration of the model (for a detailed

description of the entries of this list, see Chapter 2.1).

fixed Matrix with fixed constraints. This parameter is not used. It is provided for

compatibility purpose only.

Ident Matrix with identity constraints. This parameter is not used. It is provided for

compatibility purpose only.

Comment: The function can be used in isolation, e.g. for generating artificial data.

Siegfried Macho: SDT Models in R 51

-2 0 2 4 6

-2
0

2
4

6

Dimension 1

D
im

e
n
s
io

n
 2

1

2

4

5

6 9

11

3 12

10 7

8

Figure 9: SDT-2D model: Order of data and estimated probabilities and frequencies.

(8) Model matrix (analytical computation):

The model matrix (i.e., a mp matrix of partial derivatives of the model probabilities with

respect to the free parameters [m = number of generated probabilities (= number of data

points), p = number of free model parameters] is computed by the following functions:

SDT.SDT2D.Model.Matrix(full.par, cfg, fixed = NULL, ident = NULL,

functional = NULL)

full.par Vector of parameters

cfg A list with information about the configuration (for a detailed description

of the entries of this list, see Chapter 2.1).

fixed 2  q matrix of fixed constraints (cf. Chapter 4.1)

ident 2  r matrix of equality constraints (cf. Chapter 4.2)

functional Function implementing functional constraints. The function has to contain

the attribute “ SDT.Jacobian” containing a function for computing the

Jacobian matrix of the functional constraints. If this function is not

available in case of functional constraints being specified, the function

computing the model matrix returns the value NULL. (For further details,

see Chapter 4.4)

Comment: The function can be used in isolation, e.g. for specific tests of the model.

(9) Model matrix (numerical computation):

The following function computes the model matrix numerically, using the function

jacobian() from the package NumDeriv.

SDT.SDT2D.Model.Matrix.Num(full.par, cfg, fixed = NULL, ident = NULL,

functional = NULL)

par Vector of parameters

cfg A list with information about the configuration (for a detailed description

of the entries of this list, see Chapter 2.1).

fixed 2  q matrix of fixed constraints (cf. Chapter 4.1)

ident 2  r matrix of equality constraints (cf. Chapter 4.2)

Siegfried Macho: SDT Models in R 52

functional Function implementing functional constraints.

Comments: Contrary to the analytical counterpart this function does not require the

specification of a function for computing the Jacobian matrix in case of

functional constraints being specified.

The function is also helpful for testing whether the analytical counterpart

works properly.

The function is invoked for computing the model matrix in the function

SDT.Statistics in the following situations:

(i) Functional constraints have been specified by the user without

specifying a function for computing the Jacobian of the constraints

(ii) The flag sym.gr was set to FALSE in the estimation procedure thus

preventing the computation of symbolic derivatives.

The function can be used in isolation, e.g. for specific tests of the model.

3.8 Mixture model of two bivariate Gaussian distributions per signal (SDT2D.MIX.2)

The SDT2D.MIX.2 model enables the modeling of two-dimensional detection data by means

of a mixture of two bivariate Gaussian distributions per signal. The module contains the

following features:

 Structural zeros may be specified;

 Violations of decisional separability on one dimension are allowed (cf. Ashby & Town-

send, 1986);

 A matrix for pooling, projecting, and weighing etc. of the data and estimates can be speci-

fied. In this case a marginal likelihood estimation is performed (in case of pooling the

data).

 An option for robust estimation of decision bounds is available. In case of this option

being set the model decision bounds are implemented via positive increments thus

ensuring the decision bounds to be ordered correctly. This option is required in case of

estimating model using a pooling matrix (cf. Chapter 10.5). However, if this option is set,

the usual specification of fixed and equality constraints does not work for decision bounds.

(1) Model structure:

Figure 10 depicts the structure of the model for a single signal (for a more complex

example, cf. Figure 23 on p.194).

(2) Model identification string: “SDT2D.MIX.2”

(3) Name of the file containing the model:

The source code of the model is contained in the file: SDT2D-MIX-2.R.

(4) Configuration information:

The argument n of the function SDT.Estimate() is a list containing information about

the configuration of the model. The configuration list contains the following entries:

s: Number of signals (= number of Gaussian distributions);

k1: Number of decision bounds on Dimension 1;

k2: Number of decision bounds on Dimension 2;

ds: Flag indicating violations of decisional separability (default: ds = 0).

ds = 0: No violations of decisional separability;

ds = 1: Violations of decisional separability on Dimension 1;

ds = 2: Violations of decisional separability on Dimension 2;

Struct.zero: Indices of those cells that are excluded from the process of estimation.

Siegfried Macho: SDT Models in R 53

R: A response assignment matrix. This matrix enables the pooling of estimates from

different cells. The data vector, as well as the vector of estimated probabilities is

premultiplied by this matrix.

Comments:

 The data vector supplied has always to be of full length and the columns of matrix R

must be equal to the length of the data vector.

 The employment of matrix R enables the estimation of bivariate Gaussian models with

response selection (cf. DeCarlo, 2003b; Greene, 2008).

conditional: A flag indicating whether a conditional estimation should be performed. If the

flag is set to TRUE, in case of structural zeros the residual probabilities for the

respective signal are renormalized to sum to 1.0.

standard: Flag indicating whether the standard restrictions for fixing the location and scale

of the configuration is used: 01211 == and 11211 == ,

where
11 and

12 denote the two means and
11 and

12 denote the standard

deviations of the distribution of the first signal.

Standard = TRUE: The restrictions are set by the program. Thus they need not

be specified by the user (This is the default option if no value for standard was

specified);

standard = FALSE: The constraints necessary for identification have to be

specified by the user.

Comment:

If the restrictions have been specified by the user the option standard is

ignored (i.e., the specification of the user is employed).

Robust: Flag indicating the robust estimation of decision bounds, i.e., the decision

bounds are estimated as increments, in the following way:

11 t= ,

()212 exp tt += ,

() ()3213 expexp ttt ++= ,

…

() () () ()kkk ttttt expexpexpexp 1321 +++++= − ,

where kttt ,,, 21  are the raw parameters that are modified by the optimizer,

whereas k ,,, 21  denote the decision bounds computed internally and used

for computing probabilities. This way of computing ensures the proper ordering

of decision bounds,

Comments:

 The output presents the computed decision bounds. In addition the standard errors of

the bounds are properly adjusted. By consequence the output is exactly identical

independently of whether the flag was set.

 The option has however an influence on restrictions imposed on decision bounds. Re-

strictions concern raw parameters only and not computed ones. Thus, if, for example,

two threshold parameter are set equal, the two decision bounds are not equal. Rather

the increments corresponding increments are equal.

 For a concrete example of estimating a model using the robust option cf. Chapter

10.5.

Siegfried Macho: SDT Models in R 54

Example:

n <- list(s = 4, k1 = 6, k2 = 6, ds = 1, robust = T)

This list indicates the following setup for the SDT2D-MIX-2 model:

(11) 4 types signals;

(12) 6 decision bounds on each dimension;

(13) Decisional separability on Dimension 1;

(14) Decision bounds are estimated robustly;

(15) Standard restrictions are used (due to a missing specification, standard = T).

(5) Order of parameters:

The parameters of the model are passed to the function SDT.Estimate() in the

parameter par in the following order:

A. For each type of signal (=Gaussian model) 11 parameters have to be provided in the

following order:

(i) s = Probability weight for the first of the two bivariate distributions

(ii)
s

x1
 = Location parameter on x-dimension of the first Gaussian distribution for

Signal s;

(iii)
s

y1
 = Location parameter on y-Dimension of the first Gaussian distribution for

Signal s;

(iv)
s

x1
 = Scale parameter on x-dimension of the first Gaussian distribution for

Signal s;

(v)
s

y1
 = Scale parameter on y-dimension of the first Gaussian distribution for

Signal s;

(vi)
s

1 = Correlation parameter for the first Gaussian distribution for Signal s.

(vii)
s

x2
 = Location parameter on x-dimension of the second Gaussian distribution

for Signal s;

(viii)
s

y2
 = Location parameter on y-Dimension of the second Gaussian distribution

for Signal s;

(ix)
s

x2
 = Scale parameter on x-dimension of the second Gaussian distribution for

Signal s;

(x)
s

y2
 = Scale parameter on y-dimension of the second Gaussian distribution for

Signal s;

(xi)
s

2 = Correlation parameter for the second Gaussian distribution for Signal s.

B. The k1 decision bounds on Dimension 1, in case of no violations of decisional separa-

bility (ds = 0) make up the second part of the parameter vector.

In case of violations of decisional separability on Dimension 1 (ds = 1), ()121 + kk

decision bounds are required, where k2 is the number of decision bounds on Dimen-

sion 2.

The order of the decision bounds is illustrated in Figure 7. There are 31 =k and

22 =k decision bounds resulting in 6 response regions. () 9121 =+ kk decision

bounds have to be specified for Dimension 1. As shown in Figure 7, within each

region on Dimension 2 the bounds for Dimension 1 are specified.

Siegfried Macho: SDT Models in R 55

Figure 10: Structure of the SDT-MIX-2 model (mixture of two bivariate Gaussian distribu-

tions).

Example:

Given the following configuration:

❑ 1 signal;

❑ 3 decision bounds on Dimension 1 (x-dimension);

❑ 2 decision bounds on Dimension 2 (y-dimension);

❑ No violation of decision separability.

The following sequence of commands:

cfg <- list(s = 1, k1 = 3, k2 = 2, ds = 0)

Erg <- SDT.Parameter.Info(n = cfg, Model.Id = "SDT2D.MIX.2")

print(Erg)

provides an output of the ordering (as well as of the starting values) of the parameters:

$Model

[1] "Bivariate Gaussian 2 Mixture model: No violations of decisional

separability [STANDARD RESTRICTIONS]"

$Parameters.and.Constraints

 name par fixed.value ident.source Nr

1 p[1] 0.0 --- ---

2 Mean.x[1.1] 0.0 <set> 0 ---

3 Mean.y[1.1] 0.0 <set> 0 ---

4 Stddev.x[1.1] 1.0 <set> 1 ---

5 Stddev.y[1.1] 1.0 <set> 1 ---

6 Corr[1.1] 0.0 --- ---

7 Mean.x[1.2] -0.1 --- ---

8 Mean.y[1.2] -0.1 --- ---

9 Stddev.x[1.2] 1.0 --- ---

10 Stddev.y[1.2] 1.0 --- ---

11 Corr[1.2] 0.0 --- ---

12 t.D1-1 -1.0 --- ---

13 t.D1-2 0.0 --- ---

14 t.D1-3 1.0 --- ---

15 t.D2-1 -1.0 --- ---

16 t.D2-2 1.0 --- ---

Signal s

Siegfried Macho: SDT Models in R 56

Comments:

1. The first number of the in the square brackets indicates the number of the model,

and the second one (if present) indicates the Gaussian distribution. For instance,

Mean.x[1.2] is the mean parameter on the x-dimension of the second Gaussian

distribution for Signal 1.

2. The symbol <set> 0 etc. indicates that the parameter is set by default to the values

0, and similar for the other parameters. These constraints are provided by the pro-

gram in order to make the model identifiable. The provision of standard constraints

by the program can suppressed by specifying the option standard = F in the con-

figuration list. In this case, the constraints for making the model identifiable have to

provided by the user.

 3. For further information on the function SDT.Parameter.Info(), cf. Chapter 2.4.

(6) Order of the input data:

The order of the input data and of the estimated frequencies is identical to that of the

SDT-2D model (cf. Figure 9).

3.9 Gaussian SDT model for m-alternative forced choice data (mAFC)

The mAFC model enables the modeling of m-alternative forced choice data with bias, assum-

ing that the signal distribution of the m alternatives conform to Gaussian distributions.

(1) Model structure:

The model is described in DeCarlo (2012). The implemented model is slightly more

general by enabling the estimation of a variance parameter for the signal distribution of

the target alternative.

(2) Model identification string: "mAFC"

(3) Name of the file containing the model:

The source code of the model is contained in the file: SDT-mAFC.R.

(4) Configuration information:

The argument n of the function SDT.Estimate() is a list containing information about

the configuration of the model. The list contains the following entries:

s: Number of conditions (default: s = 1).

m: Number of possible alternatives (the specification of this entry is obligatory).

npt: Number of quadrature points (default: npt = 25).

quad: Method of quadrature: "aGH" = adaptive Gauss-Hermite or "GH" = Gauss-

Hermite quadrature (default: quad = "GH").

Example:

n <- list(s = 2, m = 3, npt = 35, quad = "GH")

This list indicates the following setup for the mAFC model:

(16) 2 experimental conditions;

(17) 3 possible alternatives;

(18) 35 quadrature points;

(19) Gauss-Hermite quadrature.

Alternatively, n may be a single integer that specifies the number of alternatives in the set

of possible alternatives.

(5) Order of parameters:

The parameters of the model are passed to the function SDT.Estimate() in the

parameter par in the following order:

Siegfried Macho: SDT Models in R 57

For each experimental conditions the following m + 1 parameters have to be specified in

the following order:

(i) S = Mean of the target signal distribution (i.e., the alternative with the signal). The

means of the other distributions are assumed to be zero.

(ii) S = Variance parameter of the target signal distribution. The variances of the other

distributions are assumed to be one.

(iii) m ,,1  = 1−m bias parameters for the intervals 1 to m. The bias parameter of the

last interval is assumed to be zero.

Example:

Given the following configuration:

➢ 2 experimental conditions,

➢ 4 alternatives,

The following sequence of commands:

cfg <- list(s = 2, m = 4)

Erg <- SDT.Parameter.Info(n = cfg, Model.Id = "mAFC")

print(Erg)

provides an output of the ordering (as well as of the starting values) of the parameters:

$Model

[1] "4-AFC Model with Bias, Assuming Gaussian Distributions, Number of

Models: 2"

$Parameters.and.Constraints

 name par fixed.value ident.source Nr

1 d'[1] 0.5 --- ---

2 sd[1] 1.0 --- ---

3 b1[1] 0.0 --- ---

4 b2[1] 0.0 --- ---

5 b3[1] 0.0 --- ---

6 d'[2] 0.5 --- ---

7 sd[2] 1.0 --- ---

8 b1[2] 0.0 --- ---

9 b2[2] 0.0 --- ---

10 b3[2] 0.0 --- ---

Comments:

1. d' denotes S , the mean of the target signal distribution;

 2. sd denotes S , the variance of the target signal distribution;

 3. b1 denotes the bias
1 of the first interval (the alternative presented first);

 4. b2 denotes the bias
2 of the second interval (the alternative presented first);

 5. b3 denotes the bias 3 of the third interval (the alternative presented first);

 6. The numbers in square brackets denote the experimental conditions.

(7) Order of the input data:

For each experimental condition a vector of mm  data have to be specified: in the follow-

ing order:

Siegfried Macho: SDT Models in R 58

➢ Choice frequencies of the m alternatives with the target alternative in the first interval.

➢ Choice frequencies of the m alternatives with the target alternative in the second

interval.

…

➢ Choice frequencies of the m alternatives with the target alternative in the m-th interval.

Example: Cf. Chapter 12.

3.10 Gaussian SDT model for k-alternative forced choice data with and without rating

data (SDT.Rank)

The SDT-Rank model enables the simultaneous modeling of multiple sets of k-alternative

forced choice data alone or together with multiple sets of rating data. The different sets of

forced choice data may comprise forced choices with different numbers of distractors. The set

of reating models can be used to model rating data with different response categories. The

model implements actually two different types of repeated AFC models, a parallel and a seri-

al one.

(1) Model structure of the AFC models:

A. Parallel version:

The probability of choosing the target alternative out of k alternatives in trial j (or

alternatively the probability that the target alternative has rank j ()kj ,,2,1 = is given by

the equation (cf. Equation 6 on p. 468 of Kellen, Klauer, & Singmann, 2012):

()  ()  ()


−

−−
−









−

−
= dxxxx

j

k
SS

jk

NN

j

NNj ,,,1
1

1 1

where:

j denotes the probability that the old stimulus (or target stimulus) is in

position j;

k represents the number of alternatives presented;

()NNx  , denotes the cumulative Gaussian distribution with mean N and standard

deviation N (using standard restrictions: 0=N and 1=N);

()SSx  , symbolizes the Gaussian density with mean S and standard deviation S .

B. Serial version:

The serial version assumes a task with repeated forced choices where after each choice of

a non-target the erroneously selected item is eliminated from the set of items. For examp-

le, assuming 4 alternatives (the target and three distractors), all four items are presented at

the beginning. If a non-target item is selected this item is removed reducing the task to a

3-AFC task (the target item and two distractors). As soon as the target item is selected, the

task ends. The whole task may thus be conceived of as a series of AFC task with a reduc-

tion of the number of alternatives in each step (if a non-target is selected).

The associated model can thus be represented by means of a processing tree:

Siegfried Macho: SDT Models in R 59

where:

k denotes the number of alternatives at the beginning of the selection;
 k

1 denotes the probability that the old stimulus (or target stimulus T) is selected;

T the target item was selected;

T the non-target item was selected.

(2) Model structure of the Rating parts:

The model for modeling the rating data corresponds to the unequal variance signal

detection (UVSDT) model (cf. Chapter 3.1).

(3) Model identification string: "SDT.Rank"

(4) Name of the file containing the model:

The source code of the model is contained in the file: SDT-Rank.R.

(5) Configuration information:

The argument n of the function SDT.Estimate() is a list containing information about

the configuration of the model. The list contains the following entries:

n.sdt A 2×k matrix indicating the number of Gaussians and the number of

response categories for the k rating models:

 The first row indicates the number of Gaussian distributions of the

rating model.

 The second row indicates the number of response categories.

Comment: It is possible to simply provide a vector as an argument, e.g.

n.sdt = c(2, 6, 2, 4).

This is transformed to a matrix with the first row containing the entries [2, 2] and the

second row containing the entries [6, 4]. This tells the program that there are two different

types of rating data:

(a) Rating data with two types of stimuli and 6 response categories, and

(b) Rating data with two types of stimuli and 4 response categories.

model A vector of strings of "P" and "S" indicating the ranking models that are

used for the different data sets. "P" indicates a parallel model and "S"

denotes a serial model (default: model="P").

k.rg: A vector with the number of alternatives for the different data sets.

j.rg: A vector with the number of relevant rank positions that are computed for

the different ranking models. The numbers may be integers between 2

and k.rg. The default value is k.rg.

k-AFC

(k-1)-AFC

T

…

2-AFC

(k-2)-AFC

T

T

T

Siegfried Macho: SDT Models in R 60

npt: Number of quadrature points for Gauss-Hermite quadrature (default: npt

= 30).

restriction: A string indicating the type of restrictions to be set. There are two

possibilities:

standard: standard restrictions of identification constraints (see below).

equal: standard restrictions plus equality restrictions on means and

standard deviations fopr all Gaussians (ranking & rating).

no: No restrictions.

(default restriction = standard).

rating: A flag indicating whether only ranking data are to be modeled (rating =

F) or ranking as well as rating data (default: rating = T)

Example 1:

cfg <- list(n.sdt = c(2, 6, 2, 4), model = c("P", "S"), k.rg = c(4, 3),

rating = T, restriction = "equal")

This list indicates the following setup for the SDT.Rank model:

1. There are two rating models with 2 Gaussian distributions each. For the first model

there are 6 response categories and for the second model there are 4 response catego-

ries;

2. Two different ranking models for the two data sets are used: For the first set a parallel

model is applied and for the second one a serial model is applied;

3. Two ranking data (or repated AFC data) sets with 4 and 3 alternatives;

4. Ranking and rating data are modeled.

5. Standard + Equality restrictions are set.

(6) Order of parameters:

The parameters of the model are passed to the function SDT.Estimate() in the

parameter par in the following order (if no parameter vector is provided, the model

generates a vector of starting parameters):

A. For each forced choice model four parameters have to be specified:

(i) N = Mean parameter of the new distribution (non-target distribution).

(ii) N = Variance parameter of the new distribution (non-target).

(iii) S = Mean parameter of the old distribution (target distribution).

(iv) S = Variance parameter of the old distribution (target distribution).

B. For each rating model of the SDT component the following parameters have to be

specified (for each Gaussian):

(i)  = Mean parameter of the Gaussian distribution (for each Gaussian of the

 model).

(ii)  = Variance parameter of the old distribution (for each Gaussian in the model).

C. After the specification of the Gaussian parameters for each Gaussian of the rating

model, the threshold parameters of the rating model (in case of rating data being

modeled) have to be specified:

m ,,1  threshold parameters.

The paraemters in B and C are repeated for each rating model.

If rating = F, i.e. no rating data are modeled, only parameters in A have to be specified.

Siegfried Macho: SDT Models in R 61

Example 1:

The following sequence of commands:

cfg <- list(n.sdt = c(2, 6, 2, 4), model = c("P", "S"), k.rg = c(4,

3), rating = T, restriction = "equal"))

PI <- SDT.Parameter.Info(n = cfg, Model.Id = "SDT.Rank")

print(PI)

provides the following output:

$Model

[1] "SDT ranking and rating model: Number of Gaussians within SDT

models: <<2,6>, <2,4>> Model types: <P,S> Number of ranking-

alternatives: <4,3> Number of ranking-positions: <4,3> Number of

quadrature points: <30> Restrictions: <equal>"

$Parameters.and.Constraints

 name par fixed.value ident.source Nr

1 [P-1] Mean.1 0.00 0 <set> ---

2 [P-1] Stddev.1 1.00 1 <set> ---

3 [P-1] Mean.2 0.50 --- ---

4 [P-1] Stddev.2 1.00 --- ---

5 [S-2] Mean.1 0.00 0 <set> ---

6 [S-2] Stddev.1 1.00 1 <set> ---

7 [S-2] Mean.2 0.50 --- [P-1] Mean.2 <set> 3

8 [S-2] Stddev.2 1.00 --- [P-1] Stddev.2 <set> 4

9 [SDT-1] Mean.1 0.00 0 <set> ---

10 [SDT-1] Stddev.1 1.00 1 <set> ---

11 [SDT-1] Mean.2 0.00 --- [P-1] Mean.2 <set> 3

12 [SDT-1] Stddev.2 1.00 --- [P-1] Stddev.2 <set> 4

13 [SDT-1] c-1 -0.50 --- ---

14 [SDT-1] c-2 -0.25 --- ---

15 [SDT-1] c-3 0.00 --- ---

16 [SDT-1] c-4 0.25 --- ---

17 [SDT-1] c-5 0.50 --- ---

18 [SDT-2] Mean.1 0.00 0 <set> ---

19 [SDT-2] Stddev.1 1.00 1 <set> ---

20 [SDT-2] Mean.2 0.00 --- [P-1] Mean.2 <set> 3

21 [SDT-2] Stddev.2 1.00 --- [P-1] Stddev.2 <set> 4

22 [SDT-2] c-1 -0.50 --- ---

23 [SDT-2] c-2 0.00 --- ---

24 [SDT-2] c-3 0.50 --- ---

Comments:

1. [P-1] indicates that the first ranking model is a parallel model;

[S-2] indicates that the second ranking model is a serial model.

2. Mean.1 denotes N , the mean of the new (non-target) distribution for each

model;

3. Stddev.1 denotes N , the variance of the new (non-target) distribution for each

model;

 4. Mean.2 denotes S , the mean of the signal (target) distribution for each model;

 5. Stddev.2 denotes S , the variance of the old (target) distribution for each model.

Siegfried Macho: SDT Models in R 62

6. Due to the fact that restriction = "equal" the following restrictions were set:

(i) The mean and the standard deviation of the first Gaussian distribution (re-

presenting non-targets) are set to 0 and 1.

(ii) The mean and standard deviation of the Gaussians (representing targets) in the

second model (as well as of all further models are set equal to the parameter of

the Gaussian of the target distribution of first AFC model.

7. The values in column par are the values of the starting parameters (for the estimate-

on procedure).

Example 2:

The following sequence of commands:

cfg <- list(n.sdt = c(2, 6), model = c("S", "P", "S"), k.rg = c(4, 3,

4), rating = T)

P <- SDT.Parameter.Info(n = cfg, Model.Id = "SDT.Rank")

provides an output of the ordering (as well as of the starting values) of the parameters:

$Model

[1] "SDT ranking model: Model types: <S,P,S> Number of ranking-

alternatives: <4,3,4> Number of ranking-positions: <4,3,4> Number of

quadrature points: <30> Restrictions: <standard>"

$Parameters.and.Constraints

 name par fixed.value ident.source Nr

1 [S-1] Mean.1 0.0 0 <set> ---

2 [S-1] Stddev.1 1.0 1 <set> ---

3 [S-1] Mean.2 0.5 --- ---

4 [S-1] Stddev.2 1.0 --- ---

5 [P-2] Mean.1 0.0 0 <set> ---

6 [P-2] Stddev.1 1.0 1 <set> ---

7 [P-2] Mean.2 0.5 --- ---

8 [P-2] Stddev.2 1.0 --- ---

9 [S-3] Mean.1 0.0 0 <set> ---

10 [S-3] Stddev.1 1.0 1 <set> ---

11 [S-3] Mean.2 0.5 --- ---

12 [S-3] Stddev.2 1.0 --- ---

Comments:

1. Now there are three sets of ranking data:

[S-1] indicates that the first model (for modeling the first data set) is a parallel

model;

[P-2] indicates that the second model (for modeling the second data set) is a serial

model;

[S-3] indicates that the third model (for modeling the third data set) is a serial

model.

2. Due to the fact that restriction = standard (by default) the following re-

strictions were set:

The mean and the standard deviation of the first Gaussian distribution (representing

non-targets) are set to 0 and 1 for each model.

3. Due to the fact that only the ranking data are modeled (rating = F), no parameters

for the rating model are shown, despite the fact that a rating model was specified in

the configuration.

Siegfried Macho: SDT Models in R 63

(7) Order of the input data:

The input data have to be provided in the following order:

❑ For each of the AFC models the frequencies of the j possible ranks of the target item

(signal item) have to be provided. The first number corresponds to the number of

cases with the target ranked on the first position (or selected first), the second number

corresponds to the number of cases with the target ranked on the second position (or

selected second), etc.

The number of evaluated positions is given in j.rg. The number of alternatives, given

in k.rg, does not determine the number of data points.

❑ Frequencies of the response categories for each type of stimulus for each rating SDT

model are provided.

Example: Cf. Chapter 13.

3.11 Gaussian SDT model for k-alternative forced choice data with and without rating

data including a recollection and guessing component (HTSDT.Rank) and bias

parameters for modeling position bias (HTSDT.Bias.Rank)

The HTSDT-Rank model is an extension of the SDT-Rank model. It enables the modeling of

k-alternative forced choice data from different conditions with or without rating data. Thus,

the model enables one to model data from different k-alternative forced choice tasks. The

model enables the specification of a recollection component.

The HTSDT-Bias-Rank model is an extension of the basic model that includes, in addition,

parameters for modeling position bias. In the following both models are described.

3.11.1 The HTSDT-Rank model

(1) Model structure:

The probability of choosing the target alternative out of k alternatives in trial j (or alternatively

the probability that target alternative has rank j ()kj ,,2,1 = is given by the equation:

() () ()

() () () ()

1

1

1 , , 1

1
1 1 , , , 2, ,

1

k

R R N N S S

j
j k j

R N N N N S S

p p x x dx j

k
p x x x dx j k

j


−

−


− −

−


 + −          =  


 = 

−     −   −             =      − 





where:

Rp denotes the probability of recollection of an old item;

j denotes the probability that the old stimulus (or target stimulus) is in position j;

k represents the number of alternatives presented;

(),N Nx   denotes the cumulative Gaussian distribution with mean N and standard

deviation N (using standard restrictions: 0=N and 1=N);

(),S Sx   symbolizes the Gaussian density with mean S and standard deviation S .

The rating component corresponds to the DPSDT model (cf. Figure 5 on p.35)

(2) Model identification string: "HTSDT.Rank"

(3) Name of the file containing the model:

The source code of the model is contained in the file: HTSDT-Rank.R.

Siegfried Macho: SDT Models in R 64

(4) Configuration information:

The argument n of the function SDT.Estimate() is a list containing information about the

configuration of the model. This list comprises the following entries:

n.sdt A 2 × n matrix where each column represents the number of Gaussian distributions

(corresponding to the number of signals) of the DPSDT rating model and the

number of response categories.

Example:
n.sdt = matrix(c(2, 6, 2, 4), nr = 2)

indicates the presence of two rating DPSDT models, the first with 2 signals

(Gaussian distributions) and 6 response categories, and the second with 2 signals

and 4 response categories.

Alternatively,
n.sdt = c(2, 6, 2, 4)

can be used. The program transforms the vector to the matrix.

k.rg The number of alternatives from which to select the old alternative of the ranking

DPSDT model.
j.rg The number of selections from the set of k alternatives.
 k.rg and j.rg are either single numbers or, in case of more than one set of k-AFC

data vectors of number.

If j.rg has not be specified, it is assumed to be equal to k.rg.

Example 1: cfg = list(k.rg = 4, j.rg = 2)

In this case only one set of forced choice data is present. The model assumes that

there are two data points:

1. number of cases with the target alternative chosen as the first one;

2. number of cases with the target alterntive not chosen.

Note that k.rg = 4 indicates that 4 alternatives are presented on each trial: the

target alternative together with three distractors.

 Example 2: cfg = list(k.rg = c(4, 3, 2), j.rg = c(3, 3, 2))

In this case three sets of forced choice data are present. The model assumes that

there are eight data points (the sum of the values in j.rg):

1. The counts of the three possible positions of the target alternative in the first data

set;

2. The counts of the three possible positions of the target alternative in the second

data set;

3. The counts of the two possible positions of the target alternative in the third data

set.

Note that k.rg = c(4,3,2) indicates that 4 alternatives are presented on each trial

for the first data set (the target alternative and three distracters), 3 alternatives are

presented for the second data set (the target and 2 distracters), and 2 alternatives are

presented for the third data set (the target plus one distracter).

npt = 30 The number of quadrature points for Gaussian quadrature

Siegfried Macho: SDT Models in R 65

restriction

=

"standard"

A string permitting the specification of different types of restrictions:

"standard": Standard restrictions are set. These comprize the following

restrictions:

1. The means of the first Gaussian distributions of each ranking and

rating DPSDT model are fixed to 0.0.

2. The standard deviation parameters of the first Gaussian distribu-

tions of each ranking and rating DPSDT model are fixed to 1.0.

3. The recollection parameters associated with the first Gaussian in

each rating DPSDT model is fixed to zero.

"equal": In addition to the standard restrictions the mean parameters of all

Gaussain models (not fixed) are set to be equal. The same is gtrue

for the standard deviation parameters.

"UVSDT": Restrictions are set to simulate the unequal variance SDT model.

"EVSDT": Restrictions due to the equal variance SDT model are set.

"no": No restrictions are set.

Comments:

 It does not matter whether capital letters or not are use. Thus "equal" or

"Equal" lead to the same result.

 If no string is provided or the string does not match any of the above strings

standard restrictions are set.
rating =T A flag indicating whether rating data should be estimated. If the flag is set to FALSE

k-AFC data are modeled only (No rating data).

Example: cfg = list(n.sdt = c(2, 6, 2, 4), k.rg = c(4, 3), restriction =
"equal")

1. Rating data from two conditions are assumed, one with 6 and one with 4 response

categories. For each condition there are 2 types of stimuli and, by consequence, to

Gaussian distributions.

2. Forced choice data from 4-AFC and 3-AFC (with repeated choices or ranking) are

assumed.

3. The restrictions are set to be equal.

Comment: The other entries in the list are filled in by the program resulting in:

 j.rg = c(4, 3)

 npt = 30
 rating = T

(5) Parameters:

The parameters of the model are passed to the function SDT.Estimate() in the parameter par

in the following order (if no parameter vector is provided, the model generates a vector of

starting parameters):

A. For each of the forced choice data set the model comprises the following 5 parameters:

(i)
AFC

Rp = Probability of recollection;

(ii) AFC

N = Mean parameter of the non-target (distracter) distribution;

(iii) AFC

N = Variance parameter of the non-target distribution;

(iv) AFC

S = Mean parameter of the target distribution;

(v) AFC

S = Variance parameter of the target distribution.

Siegfried Macho: SDT Models in R 66

B. For each Gaussian model of each DPSDT model of the rating component, the model

comprises the following 3 parameters:

(i) Ratingp = Probability of recollection;

(ii) Rating = Mean parameter of the Gaussian distribution;

(iii) Rating = Standard error of the Gaussian distribution;

C. For each rating SDT model
r ,,1  separating the 1+r response categories. These para-

meters follow to the recollection and Gaussian parameters of the rating DPSDT model (for

each DPSDT model specified (cf. the examples).

Comment: If rating = F, i.e. no rating data are modeled, only parameters (i) to (v) are

relevant.

Example 1: Given: The following configuration information:

cfg = list(n.sdt = c(2, 6, 2, 4), k.rg = c(4, 3), restriction = "standard")

The function HTSDTParameter.Info(cfg) provides the following output:

$Model

[1] "HTSDT ranking and rating model: Number of Gaussians within SDT models:

<<2,6>, <2,4>> Model types: <P,P> Number of ranking-alternatives: <4,3>

Number of ranking-positions: <4,3> Number of quadrature points: <30>

Restrictions: <standard>"

$Parameters.and.Constraints

 name par fixed.value ident.source Nr

1 Recollection (Rank 1) 0.00 --- ---

2 Mean.1 (Rank 1) 0.00 0 <set> ---

3 Stddev.1 (Rank 1) 1.00 1 <set> ---

4 Mean.2 (Rank 1) 0.50 --- ---

5 Stddev.2 (Rank 1) 1.00 1 <set> ---

6 Recollection (Rank 2) 0.00 --- ---

7 Mean.1 (Rank 2) 0.00 0 <set> ---

8 Stddev.1 (Rank 2) 1.00 1 <set> ---

9 Mean.2 (Rank 2) 0.50 --- ---

10 Stddev.2 (Rank 2) 1.00 1 <set> ---

11 [SDT-1][Gauss-1] Recollection 0.00 0 <set> ---

12 [SDT-1][Gauss-1] Mean 0.00 0 <set> ---

13 [SDT-1][Gauss-1] Stddev 1.00 1 <set> ---

14 [SDT-1][Gauss-2] Recollection 0.00 --- ---

15 [SDT-1][Gauss-2] Mean 0.50 --- ---

16 [SDT-1][Gauss-2] Stddev 1.00 1 <set> ---

17 [SDT-1] c-1 -0.50 --- ---

18 [SDT-1] c-2 -0.25 --- ---

19 [SDT-1] c-3 0.00 --- ---

20 [SDT-1] c-4 0.25 --- ---

21 [SDT-1] c-5 0.50 --- ---

22 [SDT-2][Gauss-1] Recollection 0.00 0 <set> ---

23 [SDT-2][Gauss-1] Mean 0.00 0 <set> ---

24 [SDT-2][Gauss-1] Stddev 1.00 1 <set> ---

25 [SDT-2][Gauss-2] Recollection 0.00 --- ---

26 [SDT-2][Gauss-2] Mean 0.50 --- ---

27 [SDT-2][Gauss-2] Stddev 1.00 1 <set> ---

28 [SDT-2] c-1 -0.50 --- ---

29 [SDT-2] c-2 0.00 --- ---

30 [SDT-2] c-3 0.50 --- ---

Siegfried Macho: SDT Models in R 67

This reveals the order of the parameters (first column), the values of the start parameters

(second column) and the fixed parameters with the fixed values (third column). There are no

identity constraints.

Example 2: Given: The following configuration information:

cfg = list(n.sdt = c(2, 6, 2, 4), k.rg = c(4, 3), restriction = "equal")

The function HTSDTParameter.Info(cfg) provides the following output:
$Model

[1] "HTSDT ranking and rating model: Number of Gaussians within SDT models: <<2,6>,

<2,4>> Model types: <P,P> Number of ranking-alternatives: <4,3> Number of ranking-

positions: <4,3> Number of quadrature points: <30> Restrictions: <equal>"

$Parameters.and.Constraints

 name par fixed.value ident.source Nr

1 Recollection (Rank 1) 0.00 --- ---

2 Mean.1 (Rank 1) 0.00 0 <set> ---

3 Stddev.1 (Rank 1) 1.00 1 <set> ---

4 Mean.2 (Rank 1) 0.50 --- ---

5 Stddev.2 (Rank 1) 1.00 1 <set> ---

6 Recollection (Rank 2) 0.00 --- Recollection (Rank 1) <set> 1

7 Mean.1 (Rank 2) 0.00 0 <set> ---

8 Stddev.1 (Rank 2) 1.00 1 <set> ---

9 Mean.2 (Rank 2) 0.50 --- Mean.2 (Rank 1) <set> 4

10 Stddev.2 (Rank 2) 1.00 1 <set> ---

11 [SDT-1][Gauss-1] Recollection 0.00 0 <set> ---

12 [SDT-1][Gauss-1] Mean 0.00 0 <set> ---

13 [SDT-1][Gauss-1] Stddev 1.00 1 <set> ---

14 [SDT-1][Gauss-2] Recollection 0.00 --- Recollection (Rank 1) <set> 1

15 [SDT-1][Gauss-2] Mean 0.50 --- Mean.2 (Rank 1) <set> 4

16 [SDT-1][Gauss-2] Stddev 1.00 1 <set> ---

17 [SDT-1] c-1 -0.50 --- ---

18 [SDT-1] c-2 -0.25 --- ---

19 [SDT-1] c-3 0.00 --- ---

20 [SDT-1] c-4 0.25 --- ---

21 [SDT-1] c-5 0.50 --- ---

22 [SDT-2][Gauss-1] Recollection 0.00 0 <set> ---

23 [SDT-2][Gauss-1] Mean 0.00 0 <set> ---

24 [SDT-2][Gauss-1] Stddev 1.00 1 <set> ---

25 [SDT-2][Gauss-2] Recollection 0.00 --- Recollection (Rank 1) <set> 1

26 [SDT-2][Gauss-2] Mean 0.50 --- Mean.2 (Rank 1) <set> 4

27 [SDT-2][Gauss-2] Stddev 1.00 1 <set> ---

28 [SDT-2] c-1 -0.50 --- ---

29 [SDT-2] c-2 0.00 --- ---

30 [SDT-2] c-3 0.50 --- ---

This reveals the order of the parameters (first column), the values of the start parameters (se-

cond column) and the fixed parameters with the fixed values (third column). The last columns

reveals the identity constraints: The recollection and mean parameters representing the second

signal of each DPSDT models (ranking and raing) are set to be equal.

Comment: Examples showing the result of setting the restrictions to restriction = "UVSDT"

and restriction = "EVSDT" are found in the example file:
HTSDT-Rank (Ex.1 Parameters & restrictions I AFC & Rating).R

3.11.2 The HTSDT-Bias-Rank model

The HTSDT-Bias-Rank model is an extension of the HTSDT-Rank model that enables the

modeling of position bias. Thus the model comprises k bias parameters with k equal to the

numbers of choice alternatives presented. In addition,

Siegfried Macho: SDT Models in R 68

(1) Model structure:

The probability of choosing the target alternative out of k alternatives in trial j (or alterna-

tively the probability that target alternative has rank j ()kj ,,2,1 = is given by the equa-

tion:

() ()  () ()

()kj

dxxbbxbbxpp
k

p SS

C Cn Sm

NNjmNNjnGRGj

,,2,1

,,,11
1

C\

=










+−+−−−−+=    


−   

where:

S is the set of k-1 ranks excluding rank j, i.e. the rank of the target alternative:

 kjjS ,,1,1,,1  +−=

 is the set of all possible selections of j-1 ranks from the set S.

C is a variable denoting selections in the set  .

nb , mb are bias parameters corresponding to the positions of the ranks n and m.

jb is the bias parameter corresponding to the position of the target alternative.

Rp denotes the probability of recollection of an old item;

Gp denotes the probability of pure guessing;

j denotes the probability that the old stimulus (or target stimulus) is in position

j;

k represents the number of alternatives presented;

()NNx  , denotes the cumulative Gaussian distribution with mean N and standard

deviation N (using standard restrictions: 0=N and 1=N);

()SSx  , symbolizes the Gaussian density with mean S and standard deviation S .

(2) Model identification string: "HTSDT.Bias.Rank"

(3) Name of the file containing the model:

The source code of the model is contained in the file: HTSDT-Rank.R.

(4) Configuration information:

Same as for HTSDT.Rank (see above, Chapter 3.11.1).

(5) Order of parameters:

The parameters of the model are passed to the function SDT.Estimate() in the parameter

par in the following order (if no parameter vector is provided, the model generates a

vector of starting parameters):

A. For each of the forced choice data set the model comprises the following 6 parameters:

(i)
AFC

Rp = Probability of recollection;

(ii) AFC

Gp = Probability of pure guessing;

(iii) AFC

N = Mean parameter of the non-target (distracter) distribution;

(iv) AFC

N = Variance parameter of the non-target distribution;

(v) AFC

S = Mean parameter of the target distribution;

(vi) AFC

S = Variance parameter of the target distribution.

B. For each forced choice data set the model comprises, the model comprises the k bias

parameters kbbb ,,, 21  , representing position bias.

Siegfried Macho: SDT Models in R 69

C. For each Gaussian model of the rating component, the model comprises the following

5 parameters:

(i)
SDT

Rp = Probability of recollection;

(ii) SDT

Gp = Probability of pure guessing;

(iii) SDT = Guessing bias parameter indicating, in case of pure guessing, the proba-

bility selecting the most uncertain new category;

Comment: The residual probability mass of pure guessing is assigned to

the most uncertain old category (in case of an even number

of response categories).

In case of an uneven number of categories the the whole

»guessing mass« is assigned to the middle category. In this

case, the bias parameter has to be fixed to an arbitrary value

between 0 and 1.

(iv) SDT

N = Mean parameter of the non-target (distracter) distribution;

(v) SDT

N = Variance parameter of the non-target distribution;

(vi) SDT

S = Mean parameter of the target distribution;

(vii) SDT

S = Variance parameter of the target distribution;

D. r threshold parameter
r ,,1  separating the 1+r response categories.

Comment: If rating = F, i.e. no rating data are modeled, only parameters in A and B

are required.

 Example: Cf. the example in the subsequent section.

(6) Types of restrictions:

Similar to the HTSDT.Rank model the HTSDT.Bias.Rank model enables the specification

of three types of restrictions (standard, SDT, and extended) according to the same

principles (cf. the description and examples in Chapter 3.11.1).

There is only one difference: The last bias parameter is fixed to zero. The following

example illustrates the

Example (Multiple AFC models, Standard restrictions):

The following sequence of commands:
cfg <- list(j.rg = c(4, 3, 2), rating = F)

Erg <- SDT.Parameter.Info(n = cfg, Model.Id = "HTSDT.Bias.Rank")

print(Erg)

exhibits the standard fixed and equality constraint with three forced choice models:

$Parameters.and.Constraints

 name par fixed.value ident.source Nr

1 Recollection (Rank 1) 0 --- ---

2 Guessing (Rank 1) 0 0 <set> ---

3 Mean.1 (Rank 1) 0 0 <set> ---

4 Stddev.1 (Rank 1) 1 1 <set> ---

5 Mean.2 (Rank 1) 0 --- ---

6 Stddev.2 (Rank 1) 1 1 <set> ---

7 Bias.1 (Rank 1) 0 --- ---

8 Bias.2 (Rank 1) 0 --- ---

9 Bias.3 (Rank 1) 0 --- ---

10 Bias.4 (Rank 1) 0 0 <set> ---

Siegfried Macho: SDT Models in R 70

11 Recollection (Rank 2) 0 --- Recollection (Rank 1) <set> 1

12 Guessing (Rank 2) 0 0 <set> ---

13 Mean.1 (Rank 2) 0 0 <set> ---

14 Stddev.1 (Rank 2) 1 1 <set> ---

15 Mean.2 (Rank 2) 0 --- Mean.2 (Rank 1) <set> 5

16 Stddev.2 (Rank 2) 1 1 <set> ---

17 Bias.1 (Rank 2) 0 --- ---

18 Bias.2 (Rank 2) 0 --- ---

19 Bias.3 (Rank 2) 0 0 <set> ---

20 Recollection (Rank 3) 0 --- Recollection (Rank 1) <set> 1

21 Guessing (Rank 3) 0 0 <set> ---

22 Mean.1 (Rank 3) 0 0 <set> ---

23 Stddev.1 (Rank 3) 1 1 <set> ---

24 Mean.2 (Rank 3) 0 --- Mean.2 (Rank 1) <set> 5

25 Stddev.2 (Rank 3) 1 1 <set> ---

26 Bias.1 (Rank 3) 0 --- ---

27 Bias.2 (Rank 3) 0 0 <set> ---

Comments:

❑ The bias parameters are denoted Bias.1, Bias.2, etc. and are positioned at the end

of each model with the first model comprising 4, the second model 3 and the final

model 2 bias parameters.

❑ The last bias parameter of each model is fixed to zero (e.g. Parameter #10)

❑ Otherwise, the same restrictions are specified in the same way as for the model

without bias parameters.

(7) Order of the input data:

The input data have to be provided to the program in the following order:

❑ For each of the forced choice models, the frequencies of the j possible ranks of the

target item has to be provided, for each of the k possible positions of the target within

the set of presented alternatives:

The first j numbers correspond to the j rankings of the target when the target item is

presented in the first position.

The second j numbers correspond to the j rankings of the target when the target item is

presented in the second position, and so on.

Thus for each model jk  frequencies have to be specified.

❑ Frequencies of the n response (rating) categories for the non-target class have to be

provided, from the highest new confidence category to highest old confidence cate-

gory;

❑ For each of the target classes, frequencies of the n response categories have to be given

from the highest new confidence category to highest old confidence category.

Example (Order of input data for the HTSDT-Bias-Rank model):

Consider 2 forced choice models with 4 alternatives each. For the first model each of the

possible positions of the target are specified. For the second model the counts of the last

two positions of the target have been pooled together. By consequence, for the first forced

choice model 16 data points have to be supplied whereas for the second forced choice

model 12 data point must be supplied.

In addition, ratings with 6 response categories for old and new items are provided:

Siegfried Macho: SDT Models in R 71

cfg <- list(k.rg = c(4, 4), j.rg = c(4, 3))

datavec <- c(210, 68, 68, 54, # AFC-Model 1, Target on Position 1

 193, 98, 60, 49, # AFC-Model 1, Target on Position 2

 198, 101, 55, 46, # AFC-Model 1, Target on Position 3

 169, 88, 82, 61, # AFC-Model 1, Target on Position 4

 180, 79, 141, # AFC-Model 2, Target on Position 1

 184, 86, 130, # AFC-Model 2, Target on Position 2

 190, 100, 110, # AFC-Model 2, Target on Position 3

 185, 86, 129, # AFC-Model 2, Target on Position 4

 432, 341, 309, 262, 185, 71, # Rating data (new)

 179, 220, 238, 256, 257, 450) # Rating data (old)

3.12 Gaussian mixture SDT model for modeling k-alternative forced choice data with

and without rating data (MIX.Rank) including bias parameters for modeling

position bias (MIX.Bias.Rank)

The MIX-Rank and the MIX-Bias-Rank model are another extension of the SDT-Rank mo-

del. They enable the modeling of k-alternative forced choice data from different conditions

with or without rating data. Thus, the model enable one to model data from different k-

alternative forced choice tasks, combined with data from a rating task using a mixture of

Gaussian distributions.

Similar to the HTSDT-Rank model (cf. Chapter 3.11) there are two versions of the model:

The MIX-Rank model assumes that no position bias is present, wehereas MIX-Bias-Rank

comprises bias parameters for modeling position bias. In the following both models are

described.

3.12.1 The MIX-Rank model

The model enables the specification of a mixture of Gaussian distributions.

(1) Model structure:

The probability of choosing the target alternative out of k alternatives in trial j (or alterna-

tively the probability that target alternative has rank j ()kj ,,2,1 = is given by the equa-

tion:

()  ()  ()

() ()  ()  ()




−

−−



−

−−

−








−

−
−+

−








−

−
=

dxxxx
j

k
p

dxxxx
j

k
p

weakweak

strongstrong

TT

j

NN

jn

NNstrong

TT

j

NN

jn

NNstrongj

,,1,
1

1
1

,,1,
1

1

1

1

where:

j denotes the probability that the old stimulus (or target stimulus) is in

position j;

k represents the number of alternatives presented;

strongp
 denotes the probability of applying the strong non-target distribution;

()NNx  ,
 denotes the cumulative Gaussian distribution with mean N and

standard deviation N of the non-target distribution (using standard

restrictions: 0=N and 1=N);

Siegfried Macho: SDT Models in R 72

()
strongstrong TTx  , symbolizes the Gaussian density with mean

strongT
 and standard

deviation
strongT

 .It represents the non-target distribution resulting in high

discriminability.

()
weakweak TTx  , symbolizes the Gaussian density with mean

weakT
 and standard deviation

weakT
 .It represents the non-target distribution resulting in low

discriminability (In most applications 0=
weakT

 and . 1=
weakT

).

Comment: The part of the model for modeling the rating data is identical to that of the MIX.2

model (cf. Chapter 3.4)

(2) Model identification string: "MIX.Rank"

(3) Name of the file containing the model:

The source code of the model is contained in the file: MIX-Rank.R.

(4) Configuration information:

The argument n of the function SDT.Estimate() is a list containing information about the

configuration of the model. This list comprises the following entries:

n.sdt The number of Mixture models (corresponding to the number of different

types of stimuli) making up the SDT component with each mixture model

comprising two Gaussian models that make up the mixture (default: n.sdt =

2).
k.rg The number of alternatives from which to select the old alternative
j.rg The number of selections from the set of k alternatives.

k.rg and j.rg are either single numbers or, in case of more than one set of k-AFC data

vectors of number:

Example 1: cfg = list(k.rg = 4, j.rg = 3)

In this case only one set of forced choice data is present. The model assumes that

there are three data points:

1. number of cases with the target alternative chosen as the first one;

2. number of cases with the target alternative chosen at the second one;

3. number of cases with the target alterntive chosen as the third or fourth one.

Note that k.rg = 4 indicates that 4 alternatives are presented on each trial: the

target alternative together with three distractors.

Example 2: cfg = list(k.rg = c(4, 3, 2), j.rg = c(3, 3, 2))

In this case three sets of forced choice data are present. The model assumes that

there are eight data points (the sum of the values in j.rg):

1. The counts of the three possible positions of the target alternative in the first

data set;

2. The counts of the three possible positions of the target alternative in the

second data set;

3. The counts of the two possible positions of the target alternative in the third

data set.

Note that k.rg = c(4,3,2) indicates that 4 alternatives are presented on each

trial for the first data set (the target alternative and three distracters), 3 alterna-

tives are presented for the second data set (the target and 2 distracters), and 2

alternatives are presented for the third data set (the target plus one distracter).

Siegfried Macho: SDT Models in R 73

npt = 30 The number of quadrature points for Gaussian quadrature
restriction

= "standard"
A string permitting the specification of different types of restrictions:

"standard": Standard restrictions are set.

"SDT": Restrictions are set to simulate the unequal variance SDT mo-

del.

"extended": Restriction of an extended model allowing for unequal varian-

ces are set.

"no": No restrictions are set.

Comments:

1. Partial strings and capital letters are allowed, e.g. "Ext" or "EXTENDED"

indicate extended restrictions.

2. If no string is provided or the string does not match any of the above

strings standard restrictions are set.

3. Without specifying restrictions the model is not identified.

rating =T A flag indicating whether rating data should be estimated. If the flag is set to

FALSE k-AFC data are modeled only (No rating data).

The program also accepts a single number or an incomplete list:

A single number n is interpreted as k.rg = j.rg = n. The other entries of the list assume

their default values. In case of an incomplete list, the default values are always supplied by the

program.

Example: cfg = 4

The list is internally completed by the program to:

cfg = list(n.sdt = 2, k.rg = 4, j.rg = 4, npt = 30, restriction =

"standard", rating = T)

This indicates the following setup for the HTSDT.Rank model:

❑ 2 Gaussian mixture models making up the SDT component;

❑ 4 alternatives are presented in the forced choice task;

❑ 4 rank positions (first and rest) of the target item are considered;

❑ 30 Gaussian quadrature points are used for evaluating the integral;

❑ The model with standard restrictions is set;

❑ k-AFC as well as rating data are modeled.

(5) Order of parameters:

The parameters of the model are passed to the function SDT.Estimate() in the parameter

par in the following order (if no parameter vector is provided, the model generates a

vector of starting parameters):

A. For each of the forced choice data set the mixture model comprises the following 7 pa-

rameters:

(i)
AFC

strongp = The probability of applying the strong target distribution (resulting in a

high discriminability);

(ii) AFC

N = Mean parameter of the non-target (distracter) distribution;

(iii) AFC

N = Variance parameter of the non-target distribution;

(iv)
AFC

Tweak
 = Mean parameter of the weak target distribution;

(v)
AFC

Tweak
 = Variance parameter of the weak target distribution.

Siegfried Macho: SDT Models in R 74

(vi) AFC

Tstrong
 = Mean parameter of the strong target distribution;

(vii) AFC

Tstrong
 = Variance parameter of the strong target distribution.

B. For each Gaussian model of the rating component, the model comprises the following 5

parameters:

(i) SDT

strongp = The probability of applying the strong target distribution (resulting in a

high discriminability);

(ii) SDT

N = Mean parameter of the non-target (distracter) distribution;

(iii) SDT

N = Variance parameter of the non-target distribution;

(iv) SDT

T = Mean parameter of the target distribution.

(v)
SDT

T = Variance parameter of the target distribution

C. r threshold parameter
r ,,1  separating the 1+r response categories.

Comment: If rating = F, i.e. no rating data are modeled, only parameters (i) to (vii) are

required.

 Example: Cf. the examples in the subsequent section.

(6) Types of restrictions:

Similar to the HTSDT-Rank and HTSDT-Bias-Rank model, the MIX-Rank model enables

the specification of three types of restrictions (standard, SDT, and extended) by means of

providing the relevant string to the restriction option in the configuration file.

The function:

MIX.Rank.Restriction(cfg, fixed, ident)

generates a list with comprising the matrices fixed and ident. The first one corresponds

to the matrix of fixed constraints whereas the second one represents the matrix of identity

constraints. The function provides a convenient way to relax some of the standard

constraints. One first uses the function to generate the matrices of fixed and equality

constraints and then eliminates some of the constraints.

The matrices of fixed and identity constraints generated automatically are combined with

the matrices of fixed and identity constraints passed in the second and third argument of

the function MIX.Rank.Restriction(). By consequence the matrices in the output

contain both the constraints generated automatically by the procedure as well as the

constraints specified by the user.

However, in case of redundancy, for instance, if the same parameter is involved in a con-

straint specified by the user as well as in an automatically generated constraints, the speci-

fication of the user gets precedence, i.e., the parameter generated by the program is re-

moved from the matrix of constraints whereas the user specified constraint is kept.

In the following the three different types of restrictions with different configurations are

illustrated.

Configuration A: One forced choice model only:

1. Standard restrictions consist of the following fixed constraints (no equality constraints

are specified):

0.0= AFC

N (Mean of the non-target distribution);

0.1=AFC

N (Standard deviation of the non-target distribution);

0.0=AFC

Tweak
 (Mean of the weak target distribution);

Siegfried Macho: SDT Models in R 75

0.1=AFC

Twaek
 (Standard deviation of the weak target distribution);

0.1=AFC

Tstrong
 (Standard deviation of the strong target distribution).

Example (Single AFC model, Standard restrictions):

The following sequence of commands:

cfg <- list(j.rg = 4, rating = F)

Erg <- SDT.Parameter.Info(n = cfg, Model.Id = "MIX.Rank")

print(Erg)

provides an output of the ordering and starting values of the parameters, as well as of

the fixed constraints for a model containing one forced choice model and no SDT part:

$Parameters.and.Constraints

 name par fixed.value ident.source Nr

1 p.mix (Rank 1) 0.0 --- ---

2 Mean.0 (Rank 1) 0.0 0 <set> ---

3 Stddev.0 (Rank 1) 1.0 1 <set> ---

4 Mean.1 (Rank 1) 0.0 0 <set> ---

5 Stddev.1 (Rank 1) 1.0 1 <set> ---

6 Mean.2 (Rank 1) 0.5 --- ---

7 Stddev.2 (Rank 1) 1.0 1 <set> ---

Comments:

❑ The restrictions set as indicated by the label <set>.

❑ The values in the column par are the starting values of the parameters in case

of no constraint being imposed on the parameter (where the value 0.0 for the

mixture probability parameter p.mix is a raw value that is transformed to the

probability p = .5)

❑ The resulting model comprises two free parameters: The recollection parameter
AFC

strongp as well as the mean AFC

Tstrong
 of the strong target distribution are free para-

meters. With 4-AFC data there are 3 independent data points. In this case, the

model with standard restrictions can be fitted and tested.

2. SDT restrictions comprise the following set of fixed constraints:

0.1=AFC

strongp (Probability of recollection)

0.0= AFC

N (Mean of the non-target distribution);

0.1=AFC

N (Standard deviation of the non-target distribution);

0.0=AFC

Tweak
 (Mean of the weak target distribution);

0.1=AFC

Twaek
 (Standard deviation of the weak target distribution);

Example (Single AFC model, SDT restrictions):

The following sequence of commands:

cfg <- list(j.rg = 4, rating = F, restriction = "SDT")

Erg <- SDT.Parameter.Info(n = cfg, Model.Id = "MIX.Rank")

print(Erg)

provides the following output:

Siegfried Macho: SDT Models in R 76

$Parameters.and.Constraints

 name par fixed.value ident.source Nr

1 p.mix (Rank 1) 0.0 1 <set> ---

2 Mean.0 (Rank 1) 0.0 0 <set> ---

3 Stddev.0 (Rank 1) 1.0 1 <set> ---

4 Mean.1 (Rank 1) 0.0 0 <set> ---

5 Stddev.1 (Rank 1) 1.0 1 <set> ---

6 Mean.2 (Rank 1) 0.5 --- ---

7 Stddev.2 (Rank 1) 1.0 --- ---

3. Extended restrictions comprise the following set of fixed constraints:

0.0= AFC

N (Mean of the non-target distribution);

0.1=AFC

N (Standard deviation of the non-target distribution);

0.1=AFC

Twaek
 (Standard deviation of the weak target distribution);

0.1=AFC

Tstrong
 (Standard deviation of the weak target distribution);

Thus, with extended restrictions the mixture probability as well as the mean of the

weak and strong target distribution are free parameters.

Example (Single AFC model, Extended restrictions):

The following sequence of commands:

cfg <- list(j.rg = 4, rating = F, restriction = "extended")

Erg <- SDT.Parameter.Info(n = cfg, Model.Id = "MIX.Rank")

print(Erg)

provides the following output:

$Parameters.and.Constraints

 name par fixed.value ident.source Nr

1 p.mix (Rank 1) 0.0 --- ---

2 Mean.0 (Rank 1) 0.0 0 <set> ---

3 Stddev.0 (Rank 1) 1.0 1 <set> ---

4 Mean.1 (Rank 1) 0.0 --- ---

5 Stddev.1 (Rank 1) 1.0 1 <set> ---

6 Mean.2 (Rank 1) 0.5 --- ---

7 Stddev.2 (Rank 1) 1.0 1 <set> ---

Configuration B: Multiple forced choice models:

In case of multiple forced choice data being modeled simultaneously, equality constraints

between parameters of different forced choice models are specified, additionally to the

fixed constraints described above.

1. Standard restrictions comprise the following equality constraints between forced

choice models:
AFC

strongp (Probability of recollection)

AFC

Tstrong
 (Mean of the strong target distribution)

Example (Multiple AFC models, Standard restrictions):

The following sequence of commands:

cfg <- list(j.rg = c(4, 3, 2), rating = F)

Erg <- SDT.Parameter.Info(n = cfg, Model.Id = "MIX.Rank")

print(Erg)

exhibits the standard fixed and equality constraint with three forced choice models:

$Parameters.and.Constraints

 name par fixed.value ident.source Nr

Siegfried Macho: SDT Models in R 77

1 p.mix (Rank 1) 0.0 --- ---

2 Mean.0 (Rank 1) 0.0 0 <set> ---

3 Stddev.0 (Rank 1) 1.0 1 <set> ---

4 Mean.1 (Rank 1) 0.0 0 <set> ---

5 Stddev.1 (Rank 1) 1.0 1 <set> ---

6 Mean.2 (Rank 1) 0.5 --- ---

7 Stddev.2 (Rank 1) 1.0 1 <set> ---

8 p.mix (Rank 2) 0.0 --- p.mix (Rank 1) <set> 1

9 Mean.0 (Rank 2) 0.0 0 <set> ---

10 Stddev.0 (Rank 2) 1.0 1 <set> ---

11 Mean.1 (Rank 2) 0.0 0 <set> ---

12 Stddev.1 (Rank 2) 1.0 1 <set> ---

13 Mean.2 (Rank 2) 0.5 --- Mean.2 (Rank 1) <set> 6

14 Stddev.2 (Rank 2) 1.0 1 <set> ---

15 p.mix (Rank 3) 0.0 --- p.mix (Rank 1) <set> 1

16 Mean.0 (Rank 3) 0.0 0 <set> ---

17 Stddev.0 (Rank 3) 1.0 1 <set> ---

18 Mean.1 (Rank 3) 0.0 0 <set> ---

19 Stddev.1 (Rank 3) 1.0 1 <set> ---

20 Mean.2 (Rank 3) 0.5 --- Mean.2 (Rank 1) <set> 6

21 Stddev.2 (Rank 3) 1.0 1 <set> ---

Comments:

❑ The last column indicates the equality constraints. For example, Parameter 8, repre-

senting the mixture probability of the second forced choice model is set equal to

Parameter 1 (representing the mixture probability of the first forced choice model.

This is indicated by the entry p.mix (Rank 1) <set> in the next to last column in

the 8th row.

Similarly, the mixture probability parameter of the third model (Parameter 15) is set

equal to the mixture probability parameter of the first forced choice model.

 ❑ Dashed lines indicate the borders between parameters from different models.

 ❑ The values under the header par are the values of the starting parameters.

2. SDT restrictions comprise the following equality constraints between forced choice

models:

AFC

Tstrong
 (Mean of the weak target distribution)

AFC

Tstrong
 (Standard deviation of the strong target distribution

Example (Multiple AFC models, SDT restrictions):

The following sequence of commands:

cfg <- list(j.rg = c(4, 3, 2), rating = F, restriction = "SDT")

Erg <- SDT.Parameter.Info(n = cfg, Model.Id = "MIX.Rank")

print(Erg)

exhibits the fixed and equality constraint for three forced choice models with SDT

restrictions:

$Parameters.and.Constraints

 name par fixed.value ident.source Nr

1 p.mix (Rank 1) 0.0 1 <set> ---

2 Mean.0 (Rank 1) 0.0 0 <set> ---

3 Stddev.0 (Rank 1) 1.0 1 <set> ---

4 Mean.1 (Rank 1) 0.0 0 <set> ---

5 Stddev.1 (Rank 1) 1.0 1 <set> ---

6 Mean.2 (Rank 1) 0.5 --- ---

7 Stddev.2 (Rank 1) 1.0 ---

Siegfried Macho: SDT Models in R 78

8 p.mix (Rank 2) 0.0 1 <set> ---

9 Mean.0 (Rank 2) 0.0 0 <set> ---

10 Stddev.0 (Rank 2) 1.0 1 <set> ---

11 Mean.1 (Rank 2) 0.0 0 <set> ---

12 Stddev.1 (Rank 2) 1.0 1 <set> ---

13 Mean.2 (Rank 2) 0.5 --- Mean.2 (Rank 1) <set> 6

14 Stddev.2 (Rank 2) 1.0 --- Stddev.2 (Rank 1) <set> 7

15 p.mix (Rank 3) 0.0 1 <set> ---

16 Mean.0 (Rank 3) 0.0 0 <set> ---

17 Stddev.0 (Rank 3) 1.0 1 <set> ---

18 Mean.1 (Rank 3) 0.0 0 <set> ---

19 Stddev.1 (Rank 3) 1.0 1 <set> ---

20 Mean.2 (Rank 3) 0.5 --- Mean.2 (Rank 1) <set> 6

21 Stddev.2 (Rank 3) 1.0 --- Stddev.2 (Rank 1) <set> 7

3. Extended restrictions comprise the following equality constraints between forced

choice models:
AFC

strongp (Probability of recollection)

AFC

Tweak
 (Mean of the weak target distribution)

AFC

Tstrong
 (Mean of the strong target distribution)

Example (Multiple AFC models, Extended restrictions):

The following sequence of commands:

cfg <- list(j.rg = c(4, 3, 2), rating = F, restriction = "extended")

Erg <- SDT.Parameter.Info(n = cfg, Model.Id = "MIX.Rank")

print(Erg)

exhibits the standard fixed and equality constraint for three forced choice models with

extended restrictions:

$Parameters.and.Constraints

 name par fixed.value ident.source Nr

1 p.mix (Rank 1) 0.0 --- ---

2 Mean.0 (Rank 1) 0.0 0 <set> ---

3 Stddev.0 (Rank 1) 1.0 1 <set> ---

4 Mean.1 (Rank 1) 0.0 --- ---

5 Stddev.1 (Rank 1) 1.0 1 <set> ---

6 Mean.2 (Rank 1) 0.5 --- ---

7 Stddev.2 (Rank 1) 1.0 1 <set> ---

8 p.mix (Rank 2) 0.0 --- p.mix (Rank 1) <set> 1

9 Mean.0 (Rank 2) 0.0 0 <set> ---

10 Stddev.0 (Rank 2) 1.0 1 <set> ---

11 Mean.1 (Rank 2) 0.0 --- Mean.1 (Rank 1) <set> 4

12 Stddev.1 (Rank 2) 1.0 1 <set> ---

13 Mean.2 (Rank 2) 0.5 --- Mean.2 (Rank 1) <set> 6

14 Stddev.2 (Rank 2) 1.0 1 <set> ---

15 p.mix (Rank 3) 0.0 --- p.mix (Rank 1) <set> 1

16 Mean.0 (Rank 3) 0.0 0 <set> ---

17 Stddev.0 (Rank 3) 1.0 1 <set> ---

18 Mean.1 (Rank 3) 0.0 --- Mean.1 (Rank 1) <set> 4

19 Stddev.1 (Rank 3) 1.0 1 <set> ---

20 Mean.2 (Rank 3) 0.5 --- Mean.2 (Rank 1) <set> 6

21 Stddev.2 (Rank 3) 1.0 1 <set> ---

Configuration C: Multiple forced choice models together with the SDT model for rating

data:

In case of rating data being modeled additionally to the forced choice data the fixed and

equality constraints for the forced choice models are as discussed above. In addition the

following fixed constraints are added_

Siegfried Macho: SDT Models in R 79

(a) For the first mixture model, representing the non-target stimulus class, each of the

parameters is fixed, specifically:
SDT

strongp (Probability of recollection)

SDT

N (Mean of the non-target distribution)

SDT

N (Standard deviation of the non-target distribution)

SDT

T (Mean of the target distribution)
SDT

T (Standard deviation of the target distribution)

(b) For the other Gaussian models, representing the target stimuli equality constraints are

imposed according to the restrictions specified.

1. Standard restrictions comprise the following fixed as well as equality constraints

between forced choice and the Gaussian (non-target) mixture models:

Fixed constraints:

0.0=SDT

N (Mean of the non-target distribution)

0.1=SDT

N (Standard deviation of the non-target distribution)

0.1=SDT

T (Standard deviation of the target distribution)

Equality constraints:
AFC

strong

SDT

strong pp = (Mixture probability)

AFC

T

SDT

T strong
= (Mean of the target distribution)

Example (Multiple AFC models with SDT rating model, Standard restrictions):

The following sequence of commands:

datavec <- rep(0, 19)

cfg <- list(j.rg = c(4, 3), rating = T)

Erg <- SDT.Parameter.Info(n = cfg, Model.Id = "MIX.Rank")

print(Erg)

exhibits the standard fixed and equality constraint with two forced choice and two

mixture SDT models:

$Parameters.and.Constraints

 name par fixed.value ident.source Nr

1 p.mix (Rank 1) 0.00 --- ---

2 Mean.0 (Rank 1) 0.00 0 <set> ---

3 Stddev.0 (Rank 1) 1.00 1 <set> ---

4 Mean.1 (Rank 1) 0.00 0 <set> ---

5 Stddev.1 (Rank 1) 1.00 1 <set> ---

6 Mean.2 (Rank 1) 0.50 --- ---

7 Stddev.2 (Rank 1) 1.00 1 <set> ---

8 p.mix (Rank 2) 0.00 --- p.mix (Rank 1) <set> 1

9 Mean.0 (Rank 2) 0.00 0 <set> ---

10 Stddev.0 (Rank 2) 1.00 1 <set> ---

11 Mean.1 (Rank 2) 0.00 0 <set> ---

12 Stddev.1 (Rank 2) 1.00 1 <set> ---

13 Mean.2 (Rank 2) 0.50 --- Mean.2 (Rank 1) <set> 6

14 Stddev.2 (Rank 2) 1.00 1 <set>

15 p.mix (Mix 1) 0.00 1 <set> ---

16 Mean.0 (Mix 1) 0.00 0 <set> ---

17 Stddev.0 (Mix 1) 1.00 1 <set> ---

18 Mean.1 (Mix 1) 0.50 0 <set> ---

19 Stddev.1 (Mix 1) 1.00 1 <set>

Siegfried Macho: SDT Models in R 80

20 p.mix (Mix 2) 0.00 --- p.mix (Rank 1) <set> 1

21 Mean.0 (Mix 2) 0.00 0 <set> ---

22 Stddev.0 (Mix 2) 1.00 1 <set> ---

23 Mean.1 (Mix 2) 0.50 --- Mean.2 (Rank 1) <set> 6

24 Stddev.1 (Mix 2) 1.00 1 <set> ---

25 c[1] -0.50 --- ---

26 c[2] -0.25 --- ---

27 c[3] 0.00 --- ---

28 c[4] 0.25 --- ---

29 c[5] 0.50 --- ---

Comments:

❑ In this example a pseudo data vector has to be passed to the function:
SDT.Parameter.Info

since otherwise the model is unable to compute the number of response categories

for the rating model.

❑ Similarly to the previous example, dashed lines are used to mark separation of

parameters of different models as well as of decision bounds.

❑ Due to the fact that the number of Gaussian SDT rating models was not specified in

the configuration list (via the n.sdt option) the program assumes two models.

2. SDT restrictions comprise the following fixed as well as equality constraints between

forced choice and the mixture SDT models:

Fixed constraints:

0.1=SDT

strongp (Mixture probability)

0.0=SDT

N (Mean of the non-target distribution)

0.1=SDT

N (Standard deviation of the non-target distribution)

Equality constraints:
AFC

T

SDT

T strong
= (Mean of the (strong) target distribution)

AFC

T

SDT

T strong
= (Standard deviation of the (strong) target distribution)

Example (Multiple AFC models with SDT rating model, SDT restrictions):

The following sequence of commands:

datavec <- rep(0, 19)

cfg <- list(j.rg = c(4, 3), rating = T, restriction = "SDT")

Erg <- SDT.Parameter.Info(n = cfg, Model.Id = "MIX.Rank")

print(Erg)

exhibits the fixed and equality constraint with two forced choice and two mixture SDT

models with SDT restrictions:

$Parameters.and.Constraints

 name par fixed.value ident.source Nr

1 p.mix (Rank 1) 0.00 1 <set> ---

2 Mean.0 (Rank 1) 0.00 0 <set> ---

3 Stddev.0 (Rank 1) 1.00 1 <set> ---

4 Mean.1 (Rank 1) 0.00 0 <set> ---

5 Stddev.1 (Rank 1) 1.00 1 <set> ---

6 Mean.2 (Rank 1) 0.50 --- ---

7 Stddev.2 (Rank 1) 1.00 --- ---

Siegfried Macho: SDT Models in R 81

8 p.mix (Rank 2) 0.00 1 <set> ---

9 Mean.0 (Rank 2) 0.00 0 <set> ---

10 Stddev.0 (Rank 2) 1.00 1 <set> ---

11 Mean.1 (Rank 2) 0.00 0 <set> ---

12 Stddev.1 (Rank 2) 1.00 1 <set> ---

13 Mean.2 (Rank 2) 0.50 --- Mean.2 (Rank 1) <set> 6

14 Stddev.2 (Rank 2) 1.00 --- Stddev.2 (Rank 1) <set> 7

15 p.mix (Mix 1) 0.00 1 <set> ---

16 Mean.0 (Mix 1) 0.00 0 <set> ---

17 Stddev.0 (Mix 1) 1.00 1 <set> ---

18 Mean.1 (Mix 1) 0.50 0 <set> ---

19 Stddev.1 (Mix 1) 1.00 1 <set> ---

20 p.mix (Mix 2) 0.00 1 <set> ---

21 Mean.0 (Mix 2) 0.00 0 <set> ---

22 Stddev.0 (Mix 2) 1.00 1 <set> ---

23 Mean.1 (Mix 2) 0.50 --- Mean.2 (Rank 1) <set> 6

24 Stddev.1 (Mix 2) 1.00 --- Stddev.2 (Rank 1) <set> 7

25 c[1] -0.50 --- ---

26 c[2] -0.25 --- ---

27 c[3] 0.00 --- ---

28 c[4] 0.25 --- ---

29 c[5] 0.50 --- ---

3. Extended restrictions comprise the following fixed as well as equality constraints

between forced choice and the Gaussian (non-target) SDT models:

Fixed constraints:

0.1=SDT

N (Standard deviation of the non-target distribution)

0.1=SDT

T (Standard deviation of the target distribution)

Equality constraints:
AFC

strong

SDT

strong pp = (Mixture probability)

AFC

T

SDT

N weak
= (Mean of the (weak) target distribution)

AFC

T

SDT

T strong
= (Mean of the (strong) target distribution)

Example (Multiple AFC models with SDT rating model, extended restrictions):

The following sequence of commands:

datavec <- rep(0, 19)

cfg <- list(j.rg = c(4, 3), rating = T, restriction = "extended")

Erg <- SDT.Parameter.Info(n = cfg, Model.Id = "MIX.Rank")

print(Erg)

exhibits the fixed and equality constraint with two forced choice and two mixture SDT

models with extended restrictions:

$Parameters.and.Constraints

 name par fixed.value ident.source Nr

1 p.mix (Rank 1) 0.00 --- ---

2 Mean.0 (Rank 1) 0.00 0 <set> ---

3 Stddev.0 (Rank 1) 1.00 1 <set> ---

4 Mean.1 (Rank 1) 0.00 --- ---

5 Stddev.1 (Rank 1) 1.00 1 <set> ---

6 Mean.2 (Rank 1) 0.50 --- ---

7 Stddev.2 (Rank 1) 1.00 1 <set> ---

Siegfried Macho: SDT Models in R 82

8 p.mix (Rank 2) 0.00 --- p.mix (Rank 1) <set> 1

9 Mean.0 (Rank 2) 0.00 0 <set> ---

10 Stddev.0 (Rank 2) 1.00 1 <set> ---

11 Mean.1 (Rank 2) 0.00 --- Mean.1 (Rank 1) <set> 4

12 Stddev.1 (Rank 2) 1.00 1 <set> ---

13 Mean.2 (Rank 2) 0.50 --- Mean.2 (Rank 1) <set> 6

14 Stddev.2 (Rank 2) 1.00 1 <set> ---

15 p.mix (Mix 1) 0.00 1 <set> ---

16 Mean.0 (Mix 1) 0.00 0 <set> ---

17 Stddev.0 (Mix 1) 1.00 1 <set> ---

18 Mean.1 (Mix 1) 0.50 0 <set> ---

19 Stddev.1 (Mix 1) 1.00 1 <set> ---

20 p.mix (Mix 2) 0.00 --- p.mix (Rank 1) <set> 1

21 Mean.0 (Mix 2) 0.00 --- Mean.1 (Rank 1) <set> 4

22 Stddev.0 (Mix 2) 1.00 1 <set> ---

23 Mean.1 (Mix 2) 0.50 --- Mean.2 (Rank 1) <set> 6

24 Stddev.1 (Mix 2) 1.00 1 <set> ---

25 c[1] -0.50 --- ---

26 c[2] -0.25 --- ---

27 c[3] 0.00 --- ---

28 c[4] 0.25 --- ---

29 c[5] 0.50 --- ---

(7) Order of the input data:

The input data have to be provided to the program in the following order:

❑ For each of the forced choice models, the frequencies of the j possible ranks of the

target item has to be provided: The first number corresponds to the number of cases

with the target ranked on the first position, the second number corresponds to the

number of cases with the target ranked on the second position, and so on. The number

of counts has to correspond to the numbers specified in j.rg.

❑ Frequencies of the n response (rating) categories for the non-target class have to be

provided, from the highest new confidence category to highest old confidence cate-

gory;

❑ For each of the target classes, frequencies of the n response categories have to be given

from the highest new confidence category to highest old confidence category.

Example: Cf. the example at the end of Chapter 3.11.1.

3.12.2 The MIX-Bias-Rank model

The MIX-Bias-Rank model is an extension of the MIX-Rank model that enables the model-

ing of position bias. Thus the model comprises k bias parameters with k equal to the numbers

of choice alternatives presented. In addition,

(1) Model structure:

The probability of choosing the target alternative out of k alternatives in trial j (or alterna-

tively the probability that target alternative has rank j ()kj ,,2,1 = is given by the equa-

tion:

()  () ()

() ()  () ()

()kj

dxxbbxbbxp

dxxbbxbbxp

weakweak

strongstrong

TT

C Cn Sm

NNpmNNpnstrong

TT

C Cn Sm

NNpmNNpnstrongj

,,2,1

,,,11

,,,1

C\

C\

=










+−+−−−+










+−+−−=

   

   



−   



−   

where:

Siegfried Macho: SDT Models in R 83

j denotes the probability that the old stimulus (or target stimulus) is in

position j;

k represents the number of alternatives presented;

S is the set of 1−k positions excluding position p, i.e. the position of the

target alternative:  kppS ,,1,1,,1  +−=

 is the set of all possible selections of 1−p positions from the set S.

C is a variable denoting selections in the set  .

strongp
 denotes the probability of applying the strong non-target distribution;

()NNx  ,
 denotes the cumulative Gaussian distribution with mean N and

standard deviation N of the non-target distribution (using standard

restrictions: 0=N and 1=N);

()
strongstrong TTx  , symbolizes the Gaussian density with mean

strongT
 and standard

deviation
strongT

 .It represents the non-target distribution resulting in high

discriminability.

()
weakweak TTx  , symbolizes the Gaussian density with mean

weakT
 and standard deviation

weakT
 .It represents the non-target distribution resulting in low

discriminability (In most applications 0=
weakT

 and . 1=
weakT

).

nb , mb are bias parameters corresponding to the positions of the ranks n and m.

pb is the bias parameter corresponding to the position of the target

alternative.

(2) Model identification string: "MIX.Bias.Rank"

(3) Name of the file containing the model:

The source code of the model is contained in the file: MIX-Bias-Rank.R.

(4) Configuration information:

Same as for MIX.Rank (see Chapter 3.12.1).

(5) Order of parameters:

The parameters of the model are passed to the function SDT.Estimate() in the parameter

par in the following order (if no parameter vector is provided, the model generates a

vector of starting parameters):

A. For each of the forced choice data set the model comprises the following 7 parameters:

(i)
AFC

strongp = The probability of applying the strong target distribution (resulting in a

high discriminability);

(ii) AFC

N = Mean parameter of the non-target (distracter) distribution;

(iii) AFC

N = Variance parameter of the non-target distribution;

(iv)
AFC

Tweak
 = Mean parameter of the weak target distribution;

(v)
AFC

Tweak
 = Variance parameter of the weak target distribution;

(vi) AFC

Tstrong
 = Mean parameter of the strong target distribution;

Siegfried Macho: SDT Models in R 84

(vii) AFC

Tstrong
 = Variance parameter of the strong target distribution.

B. For each forced choice data set the model comprises, the model comprises the k bias

parameters kbbb ,,, 21  , representing position bias.

C. For each Gaussian mixture model of the rating component, the model comprises the

following 5 parameters:

(i) SDT

strongp = The probability of applying the strong target distribution (resulting in a

high discriminability);

(ii) SDT

N = Mean parameter of the non-target (distracter) distribution;

(iii) SDT

N = Variance parameter of the non-target distribution;

(iv)
SDT

T = Mean parameter of the target distribution;

(v)
SDT

T = Variance parameter of the target distribution.

(vi) r threshold parameter
r ,,1  separating the 1+r response categories.

Comment: If rating = F, i.e. no rating data are modeled, only parameters (i) to (vii) are

required.

 Example: Cf. the examples in the subsequent section.

(6) Types of restrictions:

Similar to the MIX.Rank model the MIX.Bias.Rank model enables the specification of

three types of restrictions (standard, SDT, and extended) with the same principles (cf. the

description and examples in Chapter 3.12.1).

There is only one difference: The last bias parameter is fixed to zero. The following

example illustrates the

Example (Multiple AFC models, Standard restrictions):

The following sequence of commands:
cfg <- list(j.rg = c(4, 3, 2), rating = F)

Erg <- SDT.Parameter.Info(n = cfg, Model.Id = "MIX.Bias.Rank")

print(Erg)

exhibits the standard fixed and equality constraint with three forced choice models:

$Parameters.and.Constraints

 name par fixed.value ident.source Nr

1 p.mix (Rank 1) 0.0 --- ---

2 Mean.0 (Rank 1) 0.0 0 <set> ---

3 Stddev.0 (Rank 1) 1.0 1 <set> ---

4 Mean.1 (Rank 1) 0.0 0 <set> ---

5 Stddev.1 (Rank 1) 1.0 1 <set> ---

6 Mean.2 (Rank 1) 0.5 --- ---

7 Stddev.2 (Rank 1) 1.0 1 <set> ---

8 Bias.1 (Rank 1) 0.0 --- ---

9 Bias.2 (Rank 1) 0.0 --- ---

10 Bias.3 (Rank 1) 0.0 --- ---

11 Bias.4 (Rank 1) 0.0 0 <set> ---

12 p.mix (Rank 2) 0.0 --- p.mix (Rank 1) <set> 1

13 Mean.0 (Rank 2) 0.0 0 <set> ---

14 Stddev.0 (Rank 2) 1.0 1 <set> ---

15 Mean.1 (Rank 2) 0.0 0 <set> ---

16 Stddev.1 (Rank 2) 1.0 1 <set> ---

17 Mean.2 (Rank 2) 0.5 --- Mean.2 (Rank 1) <set> 6

18 Stddev.2 (Rank 2) 1.0 1 <set> ---

19 Bias.1 (Rank 2) 0.0 --- ---

20 Bias.2 (Rank 2) 0.0 --- ---

21 Bias.3 (Rank 2) 0.0 0 <set> ---

Siegfried Macho: SDT Models in R 85

22 p.mix (Rank 3) 0.0 --- p.mix (Rank 1) <set> 1

23 Mean.0 (Rank 3) 0.0 0 <set> ---

24 Stddev.0 (Rank 3) 1.0 1 <set> ---

25 Mean.1 (Rank 3) 0.0 0 <set> ---

26 Stddev.1 (Rank 3) 1.0 1 <set> ---

27 Mean.2 (Rank 3) 0.5 --- Mean.2 (Rank 1) <set> 6

28 Stddev.2 (Rank 3) 1.0 1 <set> ---

29 Bias.1 (Rank 3) 0.0 --- ---

30 Bias.2 (Rank 3) 0.0 0 <set> ---

Comments:

❑ The bias parameters are denoted Bias.1, Bias.2, etc. and are positioned at the end

of each model with the first model comprising 4, the second model 3 and the final

model 2 bias parameters.

❑ The last bias parameter of each model is fixed to zero (e.g. Parameter #11)

❑ Otherwise, the same restrictions are specified in the same way as for the model

without bias parameters.

(7) Order of the input data:

The input data have to be provided to the program in the following order:

❑ For each of the forced choice models, the frequencies of the j possible ranks of the

target item has to be provided, for each of the k possible positions of the target within

the set of presented alternatives:

The first j numbers correspond to the j rankings of the target when the target item is

presented in the first position.

The second j numbers correspond to the j rankings of the target when the target item is

presented in the second position, and so on.

Thus for each model jk  frequencies have to be specified.

❑ Frequencies of the n response (rating) categories for the non-target class have to be

provided, from the highest new confidence category to highest old confidence cate-

gory;

❑ For each of the target classes, frequencies of the n response categories have to be given

from the highest new confidence category to highest old confidence category.

Example (Order of input data for the MIX-Bias-Rank model):

Consider 2 forced choice models with 4 alternatives each. For the first model each of the

possible positions of the target are specified. For the second model the counts of the last

two positions of the target have been pooled together. By consequence, for the first forced

choice model 16 data points have to be supplied whereas for the second forced choice

model 12 data point must be supplied.

In addition, ratings with 6 response categories for old and new items are provided:
cfg <- list(k.rg = c(4, 4), j.rg = c(4, 3))

datavec <- c(210, 68, 68, 54, # AFC-Model 1, Target on Position 1

 193, 98, 60, 49, # AFC-Model 1, Target on Position 2

 198, 101, 55, 46, # AFC-Model 1, Target on Position 3

 169, 88, 82, 61, # AFC-Model 1, Target on Position 4

 180, 79, 141, # AFC-Model 2, Target on Position 1

 184, 86, 130, # AFC-Model 2, Target on Position 2

 190, 100, 110, # AFC-Model 2, Target on Position 3

 185, 86, 129, # AFC-Model 2, Target on Position 4

 432, 341, 309, 262, 185, 71, # Rating data (new)

 179, 220, 238, 256, 257, 450) # Rating data (old)

Siegfried Macho: SDT Models in R 86

3.13 Gaussian SDT model with probabilistic response functions: GRM-SDT and ORM-

SDT

The GRM-SDT (SDT model with graded response function) and the ORM-SDT (SDT with

ordinal Rasch response function) employ probabilistic response models instead of the deter-

ministic one of the common SDT model. The latent distributions of the decision variables are

the same as for the Gaussian SDT model, i.e. normal distributions.

Siegfried Macho: SDT Models in R 87

(1) Model structure:

Two different response models are implemented:

(a) Samejima’s (1969, 1997, 2010) graded response model:

The response process is characterized by the following equations:

The conditional probability of selecting a response category greater or equal to k

()1, ,k K=
, given a fixed value of the latent decision variable is given by the fol-

lowing equation:

()
()

()
1

1

exp
*

1 exp

k

k

P R k
−

−

    −    =
 +    −   ,

Where R represents the given response,  denotes the value on the latent decision

axis (latent signal strength),  is a slope parameter (discrimination parameter), and

1k −
 is a difficulty parameter for selecting a response category greater or equal to k.

Similar to the thresholds separating response regions in SDT models, the 1K −

difficulty parameters are ordered: 1 2 1K −      .

The grader response model replaces the step functions of the traditional SDT model:

() 1

1

1
*

0

k

k

P R k
−

−

   
  = 

   

by the smoother sigmoidal function of the above equation. With  →  the graded

response model of the first equation turns into the deterministic response process,

given by the second equation of the standard SDT model for ordinal responses (cf.

Macmillan & Creelman, 2005; Wickens, 2002).

The conditional probability of selecting response category k results from the differ-

ence between the conditional probabilities given by Equation 1:

()
()

() ()
()

1 * 1 1

* * 1 2,3, , 1

*

P R k k

P R k P R k P R k k K

P R k k K

 −  +   =


=  =   −  +   = −

    = .

(b) The ordinal Rasch model based on the partial credit model (Masters, 1982, 2010;

Masters & Wright, 1984; Muraki, 1992):

This conditional probability is provided by the following equation:

 ()
()

()

exp
* 1 , , 1

1 exp

k k

k k

P R k R k k
    −  = +   + =

 +    −  
,

where R represents the given response,  denotes the value on the latent decision

axis, k is a slope parameter (discrimination parameter) associated with the

transition from response category k to 1k + . Finally, k is a difficulty parameter

related to the transition from response category k to 1k + . The probability of select-

ing response category k is given be the following equation (for a derivation, see, for

example, Masters, 1982):

Siegfried Macho: SDT Models in R 88

()

()

()

()

1 1

2 2

1 1

2

1 1

2 2

1
1

1 exp

exp

2,3, ,

1 exp

K l

i i

l i

k

i i

i

K l

i i

l i

k

P R k

k K

− −

= =

− −

=

− −

= =


 =   

 +    −   
   


=  =  
   −  

   =
  

+    −   
  

 



 

.

Contrary to the graded response model, the step difficulty parameters 1 2 1, , , K −  

need not be ordered. In addition, the discrimination parameters 1 2 1, , , K −   need

not be the same.

The unconditional probability of ()P R k= is given by taking the expectation with

respect to the distribution of the latent decision variable :

() () () ()2E , dk P R k P R k P R k



−

  = = = =  = =         ,

where ()2,    denotes the density function of the normal distribution with mean 

and variance 2 .

The integration is performed numerically using Gauss-Hermite quadrature.

(2) Model identification string: "IRF.Gauss"

This string can be passed to the function SDT.Estimate() with the argument Model.Id

(cf. Chapter 1).

(3) Name of the file containing the model:

The source code of the model is contained in the file: SDT-IRF-Gauss.R.

(4) Configuration information:

The configuration information is passed to the function SDT.Estimate() in the argument

n. The configuration information consists of a list with the following entries:

 n.sdt = The number of signals (default: n.sdt = 2)

 model =

Type of probabilistic item response model:

 ORM = Ordinal Rasch model (partial credit model)

 GRM = Graded response model

[Default = "ORM"]

 restriction =
A string specifying the type of restrictions: The following options are

available:

 "NO" No restrictions

"STANDARD"  The mean and variance parameter of the first Gaus-

sian are fixed to 0 = and 1 = .

 The discrimination parameters are all fixed to 1.

(Default option)

"STANDARD-

EQUAL-A"

 The mean and variance parameter of the first Gaus-

sian are fixed to 0 = and 1 = .

 The discrimination parameters are set to be equal.

Siegfried Macho: SDT Models in R 89

 "EQUAL-A" The discrimination parameters are set to be equal.

"EQUAL-S"  The mean parameter of the first Gaussian model is

equal to 0.

 The standard deviation parameters are set to be equal

to 1.0 for all Gaussian models.

"EQUAL-AS"  The mean parameter of the first Gaussian model is

equal to 0.

 The standard deviation parameters are set to be equal

to 1.0 for all Gaussian models.

 The discrimination parameters are set to be equal.

"EQUAL-S-

FIX-A"

 The mean parameter of the first Gaussian model is

equal to 0.

 The standard deviation parameters are set to be equal

to 1.0 for all Gaussian models.

 The discrimination parameters are fixed at 1.0.

npt = Number of quadrature points for Gauss-Hermite quadrature (default =

35).

Comment: In case of great values of the discrimination parameters it is

useful to use much more quadrature points.

robust = TRUE or FALSE. In case of TRUE the ordering of the thresholds is

guaranteed (only relevant with model GRM). [default = FALSE]

Example:
cfg <- list(n.sdt = 4, restriction = "STANDARD-EQUAL-A")

tells the estimation function that there are 4 types of signals and the specified restrictions

are the standard restrictions on the Gaussian models as well as equal discrimination

parameters for each threshold (see above).

The resulting configuration list cfg looks like this:

$n.sdt

[1] 4

$restriction

[1] "STANDARD-EQUAL-A"

$npt

[1] 35

$model

[1] "ORM"

$robust

[1] FALSE

(5) Order of parameters:

Parameters of the model are in the following order (passed to the function

SDT.Estimate()in the parameter par):

I. Two parameters characterizing the Gaussian signal distributions repeated for each

signal distribution 1,2,3,...,j n= .

(iii) j = Mean of the Gaussian model representing signal distribution j.

(iv) j = Standard deviation of the Gaussian model representing signal distribution j.

Siegfried Macho: SDT Models in R 90

II. ,,...,, 121 −Rttt = thresholds (decision bounds), where R denotes the number of response

categories.

III. 1 2 1, ,..., ,Ra a a − = discrimination parameters, where R denotes the number of response

categories.

 Help/Tip:

The function:
SDT.Parameter.Info(data = NULL, par = NULL, n = 2, Model.Id =

"SDT", fixed = NULL, ident = NULL, deci = 3)

displays the parameter configuration (a description of the parameters of the

function is given in Chapter 2.4):

Example:

Given: The data of Ratcliff et al. (1994), Experiment 1, pure strong items (2 types

of signals with 6 response categories per signal):

datavec <- c(477, 776, 527, 321, 258, 184, # Pure Strong New

 192, 401, 290, 267, 316, 442) # Pure Strong Old

The sequence of commands:

cfg <- list(n.sdt = 2)

PI <- SDT.Parameter.Info(data = datavec, n = cfg, Model.Id =

"IRF.Gauss")

print(PI)

 results in the following output:

$Model

[1] "Gaussian SDT model with probabilistic item response functions

<Model = ORM>, <Restriction = STANDARD>, <Robust thresholds =

FALSE>, <Number of quadrature points = 35>"

$Parameters.and.Constraints

 name par fixed.value ident.source Nr

1 [SDT-1] Mean 0.00 0 <set> ---

2 [SDT-1] Stddev 1.00 1 <set> ---

3 [SDT-2] Mean 0.00 --- ---

4 [SDT-2] Stddev 1.00 --- ---

5 c[1] -0.50 --- ---

6 c[2] -0.25 --- ---

7 c[3] 0.00 --- ---

8 c[4] 0.25 --- ---

9 c[5] 0.50 --- ---

10 a[1] 1.00 1 <set> ---

11 a[2] 1.00 1 <set> ---

12 a[3] 1.00 1 <set> ---

13 a[4] 1.00 1 <set> ---

14 a[5] 1.00 1 <set> ---

Comment: Standard restrictions are set:

❑ The mean and the standard deviation of the first signal distribution are fixed to

0 and 1.

❑ The discrimination parameters are fixed to 1.0.

Siegfried Macho: SDT Models in R 91

(6) Order of input data:

The input data are response frequencies for the different response categories. The data for

the noise signal are presented first, followed by the data for the other signals. The order of

the data within each signal is from the highest noise (new) category (e.g. “sure noise” or

“sure new”) to the highest signal (old) category (e.g. “sure signal” or “sure old”).

Comment: The output presents the data in the same order.

(7) Model functions:

The functions for computing model probabilities of the graded response model and the

ordinal Rasch model are, respectively:

IRF.GRM.Gauss(parvec, cfg, fixed = NULL, ident = NULL)

IRF.ORM.Gauss(parvec, cfg, fixed = NULL, ident = NULL)

parvec vector of parameters

cfg list with configuration information (see above).

fixed matrix of fixed constraints (not used).

ident matrix of identity constraints (not used).

Comment: The function can be used in isolation, e.g. for generating artificial data.

(8) Model matrix (analytical computation):

The model matrix (i.e., a mp matrix of partial derivatives of the model probabilities with

respect to the free parameters [m = number of generated probabilities (= number of data

points), p = number of free model parameters] is computed by the following function:

IRF.Gauss.Model.Matrix(full.par, cfg, fixed = NULL, ident = NULL,

functional = NULL)

full.par Full vector of parameters

cfg List with configuration information (see above).

fixed 2  q matrix of fixed constraints (cf. Chapter 4.1)

ident 2  r matrix of equality constraints (cf. Chapter 4.2)

functional Function implementing functional constraints. The function has to contain

the attribute "SDT.Jacobian" containing a function for computing the

Jacobian matrix of the functional constraints. If this function is not

available in case of functional constraints being specified, the function

computing the model matrix returns the value NULL. (For further details,

see Chapter 4.4)

Comment: The function can be used in isolation, e.g. for specific tests of the model.

(9) Model matrix (numerical computation):

The following function computes the model matrix numerically, using the function

jacobian() from the package NumDeriv.

IRF.Gauss.Matrix.Num(full.par, cfg, fixed = NULL, ident = NULL,

functional = NULL)

full.par Full vector of parameters

cfg List with configuration information (see above).

fixed 2  q matrix of fixed constraints (cf. Chapter 4.1)

ident 2  r matrix of equality constraints (cf. Chapter 4.2)

functional Function implementing functional constraints.

Siegfried Macho: SDT Models in R 92

Comments:

❑ Contrary to the analytical counterpart this function does not require the specification

of a function computing the Jacobian matrix in case of functional constraints being

specified.

❑ The function is invoked for computing the model matrix in the function

SDT.Statistics() in the following situations:

(i) Functional constraints have been specified by the user without specifying a

function for computing the Jacobian of the constraints.

(ii) The flag sym.gr was set to FALSE in the estimation procedure thus preventing

the computation of symbolic derivatives.

4. Imposing constraints on parameters

The following types of constraints on parameters may be specified:

1. Parameters may be fixed to specific values.

2. Equality constraints may be imposed on them.

3. Arbitrary functional constraints may be imposed on parameters.

Fixed and equality constraints may be specified by means of matrixes that are passed to the

estimation function SDT.Estimate() (cf., Chapter 2.1, on Page 2). Functional constraints (as

well as fixed and equality constraints) are specified by means of a user-defined function that

is passed to the estimation function.

In the following, the three methods are considered in detail.

4.1 Fixing values of parameters

Values of parameters are fixed by specifying a matrix with two rows:

Row 1: Contains the values of the parameters to be fixed,

Row 2: Contains the positions of the parameter to be fixed.

Example:

Given: The vector of starting parameters for the SDT model with 4 types of signals and 6 re-

sponse categories per signal (cf. Chapter 3.1 for a description of the order and meaning of pa-

rameters of the SDT model):

m2 std2 m3 std3 m4 std4 t1 t2 t3 t4 t5

par <- c(0.00, 1.00, 0.00, 1.00, 0.00, 1.00, -1.50,-0.75, 0.00, 0.75, 1.50)

Assume that we want to fix the scale parameters std2, std3, and std4 (i.e. the standard devi-

ations of the Gaussians associated with signals 2, 3 and 4, respectively) to 1. We proceed as

follows:

First, the positions of the fixed parameters within the parameter vector are specified:

pos <- c(2, 4, 6)

Second the 2  3 matrix with the fixed values of parameters the in the first and positions of

the parameters in the second row is generated:

fixed <- matrix(c(par[pos], pos), nrow = 2, byrow = T)

For the present example, the resulting matrix looks like this:









=

642

111
fixed

Siegfried Macho: SDT Models in R 93

This matrix is passed to the estimation procedure SDT.Estimate() in the argument fixed.

4.1.1 Possible errors in specifying fixed constraints

The estimation routine checks for multiple occurrence of a parameter in the second row of the

matrix of fixed constraints. In this case an error message is emitted and the program stops.

Example:

The following specification of fixed constraints:

fixed <- matrix(c(0, 1, 0, 1, 1, 2, 1, 2), nr = 2, byrow = T)

resulting in the matrix:









=

2121

1010
fixed ,

leads to the following error message:

FATAL ERROR: Duplicated fixed constraints found on the following positions: 3 4

Error in SDT.Estimate(data = data, fixed = fixed, ident = ident, test = T):

Note that the error message indicates the positions with duplicated parameters (the positions

3 and 4, in the present case).

4.2 Imposing equality constraints on parameters

Equality constraints on parameters are imposed by specifying a matrix with two rows:

Row 1: Contains the positions of the first parameter (source parameters);

Row 2: Contains the positions of the second parameters (target parameters) that are equated

to the ones in the first row on the same position.

Example:

Given: The vector of starting parameters for the SDT model with 4 types of signals and 6 re-

sponse categories per signal (cf. Chapter 3.1 for a description of the order and meaning of pa-

rameters):

m2 std2 m3 std3 m4 std4 t1 t2 t3 t4 t5

par <- c(0.00, 1.00, 0.00, 1.00, 0.00, 1.00, -1.50,-0.75, 0.00, 0.75, 1.50)

Assume that we want to restrict the scale parameters std2, sts3 and sts4 (i.e. the standard

deviations of the Gaussians associated with signals 2, 3 and 4, respectively) to be equal. The

matrix of equality constraints may be specified as follows:

pos.source <- c(2, 2)

pos.target <- c(4, 6)

ident <- matrix(c(pos.source, pos.target), nrow = 2, byrow = T)

The resulting matrix looks like this:









=

64

22
ident

This matrix tells the program that the parameter on the forth position (std3) has to be equated

to that on the second position (std2), and, similarly, the parameter on the sixth position

(std4) has to be equated to that on the second position (std2).

Siegfried Macho: SDT Models in R 94

4.2.1 Possible errors in specifying equality constraints

One possible error in the specification of equality constraints consists in putting the same

index (of a parameter) in both rows of the matrix of equality constraints.

Example:

The following specification:

ident <- matrix(c(1, 2, 3, 5, 1, 3, 5, 6), nr = 2, byrow = T)

resulting in the matrix:









=

6531

5321
ident

leads to the following error message:

FATAL ERROR: Parameters subjected to identity constraints on the following source

positions: 1 3 4

are also found on target positions

Error in SDT.Estimate(data = data, fixed = fixed, ident = ident, test = T) :

The error message indicates the positions of those source parameters that function also as

target parameters (in the present case, the parameters are in the positions 1, 3 and 4).

4.2.2 Restrictions on equality constraints for specific models

4.2.2.1 MODEL HT.N

➢ The model HT.n checks for the existence of equality constraints between rating

probability parameters and other types of parameters. If this is the case an error

message occurs and the program stops.

Example 1: A mean and a recollection probability parameter were used as source with rating

probability parameters as targets of the equality constraints. This resulted in the

following error message:

Error in SDT.HT.n.check.identity.constraints(par, n, ident):

FATAL ERROR (HT.n): Equality constraint between rating parameters and other types

of parameters:

 Source Parameter: mean[2] p[2]

Example 2: A mean and a standard deviation parameter were used as target with rating

probability parameters as sources of the equality constraints. This resulted in the

following error message:

Error in SDT.HT.n.check.identity.constraints(par, n, ident):

FATAL ERROR (HT.n): Equality constraint between rating parameters and other types

of parameters:

 Target Parameter: mean[2] stddev[2]

➢ The model HT.n also checks for the existence of equality constraints between

recollection probability parameters and other types of parameters. If this is the case,

an error message occurs too, and the program stops.

Example 3: A mean parameter was used as the source with a recollection probability

parameter as the target of the equality constraint. This resulted in the following

error message:

Error in SDT.HT.n.check.identity.constraints(par, n, ident):

Siegfried Macho: SDT Models in R 95

FATAL ERROR (HT.n): Equality constraint between recollection parameters and other

types of parameters:

 Source Parameter: mean[2]

Example 4: A mean parameter was the target with a recollection probability parameter as

the source of the equality constraints. This resulted in the following error

message:

Error in SDT.HT.n.check.identity.constraints(par, n, ident):

FATAL ERROR (HT.n): Equality constraint between recollection parameters and other

types of parameters:

 Target Parameter: mean[2]

➢ The model does not allow for the specification of equality constraints between rating

parameters of different signals, if the source parameter belongs to a signal whose

parameters are subjected to between-signals equality constraints (This problem can

only occur for models comprising more than two signals).

Example 5: The following structure, generated by the function SDT.Parameter.Info() [cf.

Chapter 2.4], gives an overview of the fixed and equality constraints of the

model in question:
 name par fixed.value ident.source Nr

1 p[1] 0.500 --- ---

2 p-1[1] 0.000 0 ---

3 p-2[1] 0.089 --- ---

4 p-3[1] 0.243 --- ---

5 p-4[1] 0.488 --- ---

6 p-5[1] 0.180 Redundant-p ---

7 mean[2] 0.000 --- ---

8 stddev[2] 1.000 --- ---

9 p[2] 0.500 --- ---

10 p-1[2] 0.400 0.4 ---

11 p-2[2] 0.090 0.09 ---

12 p-3[2] 0.089 --- p-2[1] 3

13 p-4[2] 0.210 --- p-3[2] 12

14 p-5[2] 0.210 Redundant-p ---

15 mean[3] 0.000 --- ---

16 stddev[3] 1.000 --- ---

17 p[3] 0.500 --- ---

18 p-1[3] 0.233 Redundant-p ---

19 p-2[3] 0.089 --- p-2[1] 3

20 p-3[3] 0.210 --- p-5[2] 14

21 p-4[3] 0.233 --- p-1[3] 18

22 p-5[3] 0.233 --- p-1[3] 18

23 t-1 -1.500 --- ---

24 t-2 -0.500 --- ---

25 t-3 0.500 --- ---

26 t-4 1.500 --- ---

The column labeled ident.source contains the names of the source parameters

of the identity constraints. For example, the third rating probability parameter of

Model 2 (p-3[2]) is equated to the second rating probability parameter of Model

1 (p-2[1]).

This configuration results in the following error message:
FATAL ERROR: Not allowed equality constraints between signals

specified:

 Number of Signal (target): 3

 Number of Signal (source): 2

The source of the constraint is located within a model some of whose

parameters are itself subjected to equality constraints.

In order to fit the model with this type of constraint, set: sym.gr = F

in the estimation procedure SDT.Estimate().

Siegfried Macho: SDT Models in R 96

that is followed by a halt of program.

This error message is caused by the constraints p-3[2] = p-2[1] (Line 12) and

p-3[3] = 14 (Line 20). Due to these two constraints a between-signals con-

straint between rating probability parameters of Signal 2 and 3 is specified, with

a probability parameter of Signal 2 being, at the same time, subjected to a be-

tween-signals constraint.

The reason for not allowing these types of constraints lies in the fact that the computation

of the Jacobian for the transformation of raw to probability parameters may become extre-

mely complex if these types of constraints are permitted.

As indicated in the error message, models with these types of constraints can be fitted by

setting the flag sym.gr = F in the estimation procedure SDT.Estimate(). In this case, no

symbolic derivates are computed resulting in an increase of the time needed for perfor-

ming the estimation (cf. Chapter 2.1).

4.3 Resolution of conflicting constraints

If a parameter is subjected to a fixed as well as to an equality constraint, then all parameters

specified as being equal to the fixed parameter are transformed to fixed parameters by the

estimation procedure.

In addition, the routine performing the resolution of conflicting constraints eliminates

duplicate parameters from the matrix of fixed constraints.

4.4 Specifying complex (nonlinear) functional constraints on parameters

The models enable the specification of functional constraints on parameters. In order to spe-

cify these complex functional constraints on parameters the user has to define a function that

receives as input a vector of parameters and returns a new vector of parameters containing the

functional constraints.

In addition, a gradient function performing the adjustment of the gradient vector has to be

specified that takes the functional constraints into account. Formally, the adjustment of the

gradient amounts to a multiplication of the gradient vector θ with a Jacobian matrix J that

contains the partial derivatives of the functional constraints of the (old) parameters with re-

spect to the new parameters.

4.4.1 Basic principles

In the following, a formal exposition of the procedure for computing the new gradient vector

is provided. Then the implementation of functional constraints and the adjustment of the

gradient within the models is provided.

Given:

 Tθ n= ,, 21 The original vector of parameters without functional

constraints;
T

θ 



















=

n

LLL log
,,

log
,

log

21


The gradient vector, i.e., the vector of partial deri-

vatives of the log likelihood function with respect to

the original parameters.

For ease of exposition we assume that the parameters within the parameter and gradient

vector are ordered in such a way that the m source parameters appear before (n-m) target

parameters.

Siegfried Macho: SDT Models in R 97

We now consider the parameter vector θ as a vector function of the m source parameters
s

m

s  ,,1  that are, according to our assumption, identical to the first m components of θ .

The vector function implements the functional constraints on parameters and may be written

as a system of n equations:

()
()

()s

m

s

nn

s

m

s

mm

s

m

s

mm

s

mm

s

s

f

f

f

=

=

=

=

=

=

++

++

,,

,,

,,

1

122

111

22

11











.

The Jacobian matrix J is the mn matrix of partial derivatives of the components of the

vector θ with respect to the components of the vector s
θ of source parameters:
























































=









































































=
++++

s

m

n

s

n

s

m

m

s

m

s

m

n

s

n

s

m

m

s

m

s

m

m

s

m

s

m

s

























1

1

1

1

1

1

1

1

1

1

1

1

10

01

J ,

where
()

s

i

s

m

s

j

s

i

j f




=



 ,...,1
 denotes the partial derivative of the functional constraints on

parameter ()s

m

s

jj f = ,...,1 with respect to the source parameter
s

i .

Note that, due to the first functional constraints being equality constraints, the first mm

submatrix of J is the mm identity matrix.

The computation of standardized residuals in the presence of functional constraints requires

the specification of a function that takes as input the (full) parameter vector and computes

that full nn Jacobian matrix, i.e., the Jacobian matrix that also contains the columns

representing parameters subject to functional constraints. The full Jacobian matrix looks like

this.

Siegfried Macho: SDT Models in R 98












































= ++

10

01

0010

0001

1

1

1

1
full













s

m

n

s

n

s

m

m

s

mJ .

The gradient vector sθ
 of partial derivatives of the log likelihood function with respect to

the source parameters is given by pre-multiplying J with the gradient vector θ :

J
T

θθ
= s .

Component j of the new gradient vector representing the partial derivative of the log likeli-

hood function with respect to source parameter j is thus given by:

  

s

m

n

n

s

m

m

mj

s

m

n

n

s

m

m

m

s

m

j

j

s

j

j

j

s

j

s

j

n

n

s

j

s

j

s

j

LLL

LLLLL

LLLL









++









+




=









++









+









++









++









=









++









+









=





+

+

+

+

logloglog

loglog

0

log

1

log

0

log

loglogloglog

1

1

1

1

1

1

2

2

1

1







.

The matrix multiplication implements the chain rule. However, the outlined procedure for

computing the adjustments of the parameter and gradient vector is computationally inef-

ficient, for two reasons:

1. No modification of parameters that function as source parameters is required. Functional

constraints have to be specified for the target parameters only.

2. In case of few functional constraints J consists predominately of zeros resulting in the

summation of many zero components.

To circumvent these problems, the specification of functional constraints as well as the ad-

justment of the gradient vector is performed by means of a user defined function that per-

forms two actions:

1. The functional constraints on the target parameters are specified , i.e., the target parame-

ters are specified as functions of the source parameters. No modification of source para-

meters is performed.

2. The entries of gradient parameter associated with the source parameters are adjusted only.

The other entries of the gradient vector are left unchanged.

The function has the following general structure (the “…” indicates the code that has to be

specified by the user:

Siegfried Macho: SDT Models in R 99

functional <- function(par)

{

. . . # Specification of functional constraints

gr.fct <- function(grad, par)

{

. . . # Adjustment of relevant components of the gradient

return(grad)

}

attr(par, "SDT.gradient") <- gr.fct # Gradient function is passed as

an attribute of the parameter

return(par)

}

Note that the (user defined) gradient function has to be passed as an attribute named

“SDT.gradient” to the parameter vector (for concrete examples, cf., Section 4.4.2).

In addition to the specification of the function for implementing functional constraints, the

target parameters subject to functional constraints must be specified as fixed parameters, i.e.,

they must be added to the matrix of fixed constraints. This guarantees that these parameters

as well as their partial derivatives are eliminated from the parameter and gradient vector, re-

spectively.

In case of employment of the analytically computed model matrix (e.g. for the computation

of standardized residuals [cf. Chapter 2.2]), a function computing the Jacobian matrix cor-

responding to the functional constraints has to be defined and passed with the attribute

"SDT.Jacobian" to the function (computing the functional constraints):

J.fct <- function(par)

{

. . . # Specification of Jacobian matrix J

return(J)

}

attr(functional, "SDT.Jacobian") <- J.fct

The parameters that are the targets of the constraints make up the rows of the Jacobian matrix

(i.e. positions of target parameters within the parameter vector are the row indices) whereas

the positions of source parameters of the constraints make up the columns of the Jacobian

matrix.

4.4.2 Examples

In order to concretize the preceding considerations a number of examples are provided. The

first example illustrates the structure of the Jacobian matrix.

Example 1:

Let
ss

2

2

13 3 = , then ss

s 21

1

3 6 =



 and

2

1

2

3 3 s

s
=




; the resulting Jacobian is

Siegfried Macho: SDT Models in R 100



















=

















































=
2

121

2

3

1

3

2

2

1

2

2

1

1

1

36

10

01

sss

ss

s

s

s

s

s

s

s

s

J ,

and the full Jacobian is:



















=





























































=

136

010

001

2

121

3

3

2

3

1

3

3

2

2

2

1

2

3

1

2

1

1

1

full

sss

ss

s

s

s

s

s

s

s

s

s

s

J ,

The next example demonstrates the implementation of functional constraints with the general

Gaussian signal detection model (cf. Chapter 3.2).

Example 2:

In some applications it is required to set the value of one parameter equal to minus the value

of another parameter (e.g., the mean of one distribution should be set to minus the mean of

another distribution). This type of constraint can easily be implemented by means of

functional constraints.

Assume that we have an SDT model with two distributions (for two types of signals, e.g.,

noise and noise+signal). For each signal, a location parameter (m), a scale parameter (std),

and threshold parameters (ti) are specified (i.e., the general Gaussian model is used). The

vector of starting parameter may look like this:

m std t1 t2 t3 t4 t5

par <- c(0.0, 1.0, -1.0, -0.5, 0.5, 1.0, 1.7, # Signal 1

 0.0, 1.0, -1.0, -0.5, 0.5, 1.0, 1.7, # Signal 2

Instead of fixing the mean of the first distribution to a specific value, we impose the con-

straint that the mean of the first distribution is equal to minus the mean of the second distri-

bution: m1 = -m2.

The subsequent function fct.m performs the adjustment of the parameters and the embedded

function gr.fct performs the adjustment of the gradient.

The function J.fct following to fct.m computes the full Jacobian matrix. The function

J.fct is attached to that main function fct.m as the attribute "SDT.Jacobian".

Siegfried Macho: SDT Models in R 101

FUNCTION PERFOMING FUNCTIONAL CONSTRAINT: m1 = -m2

fct.m <- function(par)

{

 m1 <- 1 # Target index: mean 1 on position 1

 m2 <- 8 # Source index: mean 2 on position 8

 par[m1] <- -par[m2]

 # Define Gradient function

 gr.fct <- function(grad, par)

 {

 grad[m2] <- grad[m2] - grad[m1]

 return(grad)

 }

 attr(par, "SDT.gradient") <- gr.fct # Gradient

 return(par)

}

FUNCTION COMPUTING THE CORRESPONDING JACOBIAN MATRIX

J.fct <- function(par)

{

 J <- diag(length(par))

 J[1, 8] <- -1

 J

}

PASSING FUNCTION FOR COMPUTING THE JACOBIAN MATRIX AS AN ATTRIBUTE

"SDT.Jacobian" TO THE FUNCTION

attr(fct.m, "SDT.Jacobian") <- J.fct

The specification of the function fct.m comprises the following parts:

1. The target parameter m1 is located in Position 1 within the parameter vector, and the

source parameter m2 is locate at the 8. position.

2. The command par[m1] <- -par[m2] specifies the functional constraint.

3. The gradient function gr.fct is specified, with two parameters as input: grad, the grad-

ient vector, and par, the parameter vector.

4. The new value of the derivative of the log likelihood function with respect to the source

parameter m2 is computed. It is simply the original derivative (located in grad[m2])

minus the negative of the derivative with respect to the target index (-grad[m1]). Only

this component of the gradient vector has to be adjusted.

5. The new gradient with the indicated modification is returned.

6. The next command attr(par, "SDT.gradient") <- gr.fct specifies the gradient

function as an attribute of the parameter vector. As a result, the function is passed

together with the parameter vector and can be used by the internal function that actually

computes the gradient. This function simply applies gr.fct() to perform the

modification of the gradient due to the functional constraint.

The specification of the function J.fct, computing the full Jacobian matrix, consists in the

following parts:

1. An identity matrix with the number of parameters (including free and constrained ones)

is generated. In the present case this is a 1414 matrix with 1 in the main diagonal and 0

elsewhere.

2. The entry [1,8] of matrix J representing the partial derivative 1mm 21 −= is specified.

Note that the position of the target parameter (= 1) corresponds to the row index whereas

the position of the source parameter (= 8) corresponds to the column index.

Siegfried Macho: SDT Models in R 102

Comment: This type of constraint is used in the example in Chapter 7.1.

The next example demonstrates the implementation of slightly more complex functional

constraints within the standard SDT model with the distribution N(0, 1) representing the first

signal (cf. Chapter 3.1).

Example 3:

Assume the SDT model with two signals, and with the first signal represented by the standard

normal distribution N(0, 1). The parameter vector might look like this:

m2 std2 t1 t2 t3 t4 t5

par <- c(1.0, 1.0, -1.0, -0.5, 0.5, 1.0, 1.7)

m2 and std2 denote, respectively, the mean and the standard deviation of the distribution

representing the second signal, whereas t1 – t5 denote the decision bounds (assuming six

response categories).

We would like to implement the following symmetry restrictions on the decision bounds:

3513

3423

tttt

tttt

−=−

−=−
,

that is, we assume that decision bounds are spaced symmetrical around t3.

Taking t1 – t3 as source and t4 and t5 as target parameters the restrictions can be reformulated:

135

234

tt2t

tt2t

−=

−=
.

The following piece of code performs the relevant computations:

FUNCTION PERFOMING FUNCTIONAL CONSTRAINT ON THRESHOLDS:

t3 - t2 = t4 - t3

t3 - t1 = t5 - t3

fct.m <- function(par)

{

 t.1 <- 3 # Position of decision bound 1

 t.2 <- 4 # Position of decision bound 2

 t.3 <- 5 # Position of decision bound 3

 t.4 <- 6 # Position of decision bound 4

 t.5 <- 7 # Position of decision bound 5

 par[t.4] <- 2*par[t.3] - par[t.2]

 par[t.5] <- 2*par[t.3] - par[t.1]

 # Define Gradient function

 gr.fct <- function(grad, par)

 {

 grad[t.3] <- grad[t.3] + 2*grad[t.4] + 2*grad[t.5]

 grad[t.2] <- grad[t.2] - grad[t.4]

 grad[t.1] <- grad[t.1] - grad[t.5]

 return(grad)

 }

 attr(par, "SDT.gradient") <- gr.fct # Gradient

 return(par)

}

Siegfried Macho: SDT Models in R 103

FUNCTION COMPUTING THE CORRESPONDING JACOBIAN MATRIX

J.fct <- function(par)

{

 J <- diag(length(par))

 J[6, 5] <- 2

 J[7, 5] <- 2

 J[6, 4] <- -1

 J[7, 3] <- -1

 J

}

PASSING FUNCTION FOR COMPUTING THE JACOBIAN MATRIX AS AN ATTRIBUTE

"Jacobian" TO THE FUNCTION

attr(fct.m, "SDT.Jacobian") <- J.fct

In the previous two examples the adaptation of the gradient as well as the computation of the

Jacobian matrix does not require the actual parameter vector. This is due to the fact that linear

constraints were implemented only. However, the method can be used to implement arbitrary

linear and non-linear constraints on parameters. The following, though somewhat artificial,

example demonstrates this.

Example 4:

Assume that the parameter vector θ contains four components:  T
θ 4321 = , and

the user would like to specify the following functional constraints:

3

24

2

2

13 log5

=

+=
.

Thus, parameters
1 and

2 are the source parameters whereas parameters 3 and
4 are the

target parameters. By consequence, the Jacobian matrix J is 42 matrix and the full Jacobian

matrix Jfull 44 matrix:

































=





























































=

2

2

2

1

1

4

1

4

2

3

1

3

2

2

1

2

2

1

1

1

30

1
10

10

01

θ

θ
θ

J
























=





























































































=

1030

01
1

10

0010

0001

2

2

2

1

4

4

3

4

2

4

1

4

4

3

3

3

2

3

1

3

4

2

3

2

2

2

1

2

4

1

3

1

2

1

1

1

full

θ

θ

J

The new gradient vector J
T

θθ
= s consists of the following entries:

TT






















+







+








+





=



























4

2

2

322

3

1

1

2

1

3
1

10

LLL

LL

L

L

s

s

The function for specifying these functional constraints and for the adjustment of the gradient

vector looks like this:

Siegfried Macho: SDT Models in R 104

functional <- function(par)

{

par[3] <- 5*par[1]^2 + log(par[2])

par[4] <- par[2]^3

gr.fct <- function(grad, par)

{

grad[1] <- grad[1] + 10*par[1]*grad[3]

grad[2] <- grad[2] + 1/par[2]*grad[3] + 3*par[2]^2*grad[4]

return(grad)

}

attr(par, "SDT.gradient") <- gr.fct # Gradient function is passed as

an attribute of the parameter

return(par)

}

The function for computing the full Jacobian matrix looks like this:

J.fct <- function(par)

{

 J <- diag(4)

 J[3, 1] <- 10*par[1]

 J[3, 2] <- 1/par[2]

 J[4, 2] <- 3*par[2]^2

 J

}

PASSING FUNCTION FOR COMPUTING THE JACOBIAN MATRIX AS AN ATTRIBUTE

"SDT.Jacobian" TO THE FUNCTION

attr(functional, "SDT.Jacobian") <- J.fct

4.4.3 Concluding remarks

(i) The functional constraints are of highest priority, that is, they override possible other

constraints (fixed or equality constraints specified by means of the methods described

above). As a result the value specified for the fixed constraint is arbitrary.

(ii) The user-defined function is passed to the estimation function SDT.Estimate() in the

argument functional.

(iii) This method can also be used for specifying fixed and equality constraints. However, it

is preferable to specify these types of constraints by means of matrices, as detailed

above. This exempts the user from specifying components of gradients as well as

Jacobians.

(iv) It is possible to define functional constraints without specifying an associated gradient

function. In this case, the argument sym.gr of SDT.Estimate() (cf. above, Section 2.1)

must be set to sym.gr = F. By consequence, the gradient is approximated numerically.

This approximation retards the process of estimation considerably. The effect on the

precision of the estimates is ignorable, however. In addition, the Jacobian matrix is also

computed numerically at the end of the process of estimation. For none of the examples

a relevant difference between analytically and numerically computed Jacobian matrices

was observed.

Siegfried Macho: SDT Models in R 105

 Warning:

 A parameter subjected to functional constraints must not be involved in an equality

constraint neither as the source nor as the target. This is due to the fact that the

functional constraints are set after equality constraints. As result, an equality

constraint involving the parameter (as a target) is not set correctly because it does not

incorporate the functional constraint (The usage of the parameter as a target of an

equality constraint results in a faulty computation of the gradient).

 Consequently, in case of parameters being subject to equality as well as to more

complex functional constraints, the equality constraints must be specified within the

function for defining the functional constraints.

Comment: Additional examples demonstrating the specification of complex functional

constraints and the respective adjustment of the gradient vector, as well as the

computation of the Jacobian matrix are presented in the following chapters.

5. Working Examples: SDT and Gaussian model

In the following, different examples for fitting SDT models with the SDT and the Gaussian

version of the SDT model are demonstrated. We start with a simple example where the SDT

model is fitted to the data with two types of signal (new vs old) and two response categories

per signal: “new” vs. “old”. For this first example the complete R code, including all com-

ments, is discussed in order to provide a thorough explanation of the model functions.

This is followed by a demonstration of how to fit the same data with the Gaussian version of

the model assuming a symmetric configuration, i.e., the mean of the noise distribution being

minus the mean of the signal distribution. The further examples reveal additional facilities of

the module.

5.1 Example 1: Fitting the SDT model to data involving two types of signals

In the simplest case, data from two types of signals (noise vs. signal+noise or new vs. old)

with two response categories per signal are available (“yes” vs. “no” or “new” vs. “old” etc.).

The first part demonstrates how to fit these type of data using the standard SDT model

whereas the second part demonstrates the usage of the Gaussian version of the model using a

symmetric configuration.

5.1.1 Example 1-1: Fitting the standard SDT model to Yes/No data

The R code shown below is contained in the example file: SDT-1 (Y-N-Data).R.

==

Examples of the documentation of SDT Models:

SDT-1: Modeling of Yes/No data

Date of last update: August, 2013

Autor: Siegfried Macho

==

library(numDeriv)

DIRECTORIES (PLEASE ADJUST TO YOUR PERSONAL SETTING)

DirSource <- "C:/Documents and Settings/macho/Statistik/_SDT-Models

(Version 2)/R-Code/"

DirSourceM <- "C:/Documents and Settings/macho/Statistik/_SDT-Models

(Version 2)/R-Code/Models/"

Siegfried Macho: SDT Models in R 106

FILE NAME WITH THE MODEL

Model <- "SDT-SDT.R"

FILE NAMES FOR ESTIMATION

Main <- "SDT-Main.R"

Auxiliary <- "SDT-Auxiliary.R"

LOAD SOURCE FILES WITH SDT MODEL

source(paste(DirSourceM, Model, sep = ""))

LOAD SOURCE FILES WITH AUXILIARY AND ESTIMATION FUNCTIONS

source(paste(DirSource, Auxiliary, sep = ""))

source(paste(DirSource, Main, sep = ""))

datavec <- c(1780, 763, # NEW

 883, 1025) # OLD

List with configuration information: Both distributions are N(0, 1)

cfg <- list(n.sdt = 2, restriction = "equalvar")

Print Parameters

PI <- SDT.Parameter.Info(data = datavec, n = cfg)

cat("\n--\n")

cat(" Parameter-Information (SDT-Model):")

cat("\n--\n")

print(PI)

ESTIMATE AND EVALUATE THE RESULTS

Opti.Obj <- SDT.Estimate(data = datavec, n = cfg, test = T)

Stat.Obj <- SDT.Statistics(Opti.Obj, control = list(LR = T))

print(Stat.Obj)

PLOT CONFIGURATION

SDT.Plot(Opti.Obj, cols = 3:4, labels = c("Memory Strength", "Density"),

SDT.legend = list(text = c("New", "Old")))

This piece of R-code performs the following steps:

1. The library NumDeriv containing functions for computing highly accurate numerical

derivatives (Gilbert, 2006) is loaded:

library(numDeriv)

2. The name of the directory containing the main files as well as the directory containing the

model files are specified:

DirSource <- "C:/Documents and Settings/macho/Statistik/_SDT-Models

(Version 2)/R-Code/"

DirSourceM <- "C:/Documents and Settings/macho/Statistik/_SDT-Models

(Version 2)/R-Code/Models/"

3. The name of file containing the SDT model is specified.

Model <- "SDT-SDT.R"

4. The names of the source files with the estimation routines are specified:

Main <- "SDT-Main.R"

Auxiliary <- "SDT-Auxiliary.R"

5. The model is loaded:

Siegfried Macho: SDT Models in R 107

source(paste(DirSourceM, Model, sep = ""))

Comment: The paste() function is used to concatenate the directory and the file name.

6. The two main files are loaded:

source(paste(DirSource, Auxiliary, sep = ""))

source(paste(DirSource, Main, sep = ""))

7. The data vector with response frequencies for the two stimulus sets (corresponding to the

two types of signals) is specified:

datavec <- c(1780, 763, # NEW

 883, 1025) # OLD

The first number (1780) is the number of “new” responses to new items, the second num-

ber (763) is number of “old” responses to new items, the third number represents the num-

ber of “new” reponses to old items, and, finally, the last number (1025) is the number of

“old” responses to old items.

8. The list of configuration information is specified:

cfg <- list(n.sdt = 2, restriction = "equalvar")

The first entry n.sdt = 2 indicates that there are two types of signal or, equivalently, two

Gaussian distributions. The second entry restriction = "equalvar" tells the program

to set the variance parameter of the Gaussian distribution, representing the old items, to

1.0.

Comments:

❑ The restriction of equal variances of the two distributions is required for the identifica-

tion of the model.

❑ The first entry of the list is not required since n.sdt = 2 is the default that is supplied

by the program in case of no specification being provided by the user.

9. The Parameter information is calculated and stored in the variable PI.

PI <- SDT.Parameter.Info(data = datavec, n = cfg)

Comment:

For more information on the function SDT.Parameter.Info, cf. Chapter 2.4.

10. The parameter information is printed (together with a header):

cat("\n--\n")

cat(" Parameter-Information (SDT-Model):")

cat("\n--\n")

print(PI)

11. The estimation function is called:

Opti.Obj <- SDT.Estimate(data = datavec, n = cfg, test = T)

The function SDT.Estimate requires at least one argument: the vector with the data has to

be passed to the function with the argument data. The function returns the optimization

object Opti.Obj (The structur of the optimization object is described in Chapter 2.1)

Comment:

The name of the argument data must be specified because for the first argument (par) of

the function the default value is used. If the argument name were not specified the function

would interpret the input as the parameter vector (For a full description of the estimation

function, cf. Chapter 2.1).

Siegfried Macho: SDT Models in R 108

In the present case, the list with configuration information is passed as the second

argument: n = cfg.

Finally, the test flag test is set to TRUE. By consequence, the gradient is computed

numerically at the optimum using the function grad() from the package numDeriv and

compared to the analytically computed gradient. The result is printed in the output.

Comment:

It is good practice to set test = TRUE because non-negligible differences between sym-

bolic and numeric gradients indicate problems of the estimation process, for example, if an

estimate is on the border of the parameter space (e.g. a standard deviation parameter near

zero).

12. The result of the estimation is evaluated:

Stat.Obj <- SDT.Statistics(Opti.Obj, control = list(LR = T))

The function SDT.Statistics() usually requires a single argument, the optimization ob-

ject that is computed by the function SDT.Estimate(). In the present case a second

argument is passed to the function that instructs the function to compute likelihood ratio

confidence intervals for the estimated mean (d’).

The result of the computation is stored in the statistics object Stat.Obj.

Comment:

A full documentation of the function SDT.Statistics() may be found in Chapter 2.2.

13. The content of the statistics object Stat.Obj is displayed:

print(Stat.Obj)

14. The configuration is plotted:

SDT.Plot(Opti.Obj, cols = 3:4, labels = c("Memory Strength", "Density"),

SDT.legend = list(text = c("New", "Old")))

The function SDT.Plot() also takes the information from the optimization object. In

addition. The argument cols = 3:4 indicates that the colors blue and red should be used

for the density curves (cf. Figure 11). Furthermore, labels for the x- and y- axes are pro-

vided as well as a legend.

Comment:

A full documentation of the function SDT.Plot() may be found in Chapter 2.5.

The R code for estimating the model and printing the test statistics seems to be quite

complicated. However, the main portion consists essential of 4 components:

1. Specification of the data:

datavec <- c(1780, 763, # NEW

 883, 1025) # OLD

2. Specification of the configuration information:

cfg <- list(n.sdt = 2, restriction = "equalvar")

3. Estimation of parameters:

Opti.Obj <- SDT.Estimate(data = datavec, n = cfg, test = T)

4. Evaluation and printing of the estimation results:

Stat.Obj <- SDT.Statistics(Opti.Obj, control = list(LR = T))

print(Stat.Obj)

The printed output consists of two parts:

Siegfried Macho: SDT Models in R 109

(a) The parameter information, and

(b) The results of the estimation.

The following parameter information is printed:

$Model

[1] "Standard SDT model with noise distribution N(0, 1), Number of models:

<2>, Type of restrictions: <equalvar>"

$Parameters.and.Constraints

 name par fixed.value ident.source Nr

1 Mean[2] 0.0 --- ---

2 Stddev[2] 1.0 1 <set> ---

3 t-1 -0.9 --- ---

The printed parameter information comprises two sections:

(i) The first section called $Model contains a string that provides information about the

model and its configuration. In the present case the string tells us that the SDT model is

used with new distribution identical to N(0, 1) that the number of signals is 2 and that

equal variance restrictions are set.

(ii) The second section headed $Parameters.and.Constraints contains the names of the

parameters their starting values and which of them were fixed or set equal. In the present

case the model comprises three parameters: the mean Mean[2] and the standard deviation

Stddev[2] of the old distribution, as well as a threshold parameter t-1 (The parameters

of the new distribution are not shown because they are always equal to zero and one).

The standard deviation of the old distribution is fixed to 1.0 as indicated by the marker

<set>.

The printed results of the estimation look like this:
===

 Symbolic and numeric gradients at the optimum:

 Length of difference vector : 1.193788e-08

 Length of gradient at optimum: 8.290594e-06

===

 Symbolic Numeric Difference

Mean[2] 4.27e-06 4.28e-06 -1e-08

t-1 -7.11e-06 -7.11e-06 0e+00

===

$Model.description

[1] "Standard SDT model with noise distribution N(0, 1), Number of models: <2>,

Type of restrictions: <equalvar>"

$Statistics

 Statistic

log L -2870.749

X^2 0.000

G^2 0.000

df 0.000

p(Y > X^2) NA

p(Y > G^2) NA

AIC 5745.497

BIC 5758.299

CAICF 5776.687

ICOMP 5742.253

ICOMP.R 5742.100

Free Parameters 2.000

Length of gradient at optimum 0.000

Rank of Hessian 2.000

Condition number of information matrix 6.360

Rank of model matrix: t(J) * J 2.000

Condition number of model matrix 7.859

Siegfried Macho: SDT Models in R 110

$Free.parameters

 Value SE CFI-95(Lower) CFI-95(Upper) LR-95(Lower) LR-95(Upper)

Mean[2] 0.618 0.039 0.542 0.694 0.542 0.694

t-1 0.524 0.026 0.473 0.576

$Full.parametervector

 Gauss-1 Gauss-2

Mean 0.000 0.618

Stddev 1.000 1.000

t-1 0.524 0.524

$SDT.measures

 Value SE CFI-95(Lower) CFI-95(Upper)

d.a[2] 0.618 0.039 0.542 0.694

d.e[2] 0.618 0.039 0.542 0.694

A.z[2] 0.669 0.010 0.649 0.688

$Data.and.Estimates

 Observed Expected Probabilities Residuals Std.Resid.(analytical)

Signal 1 [1] 1780 1780 0.700 0 0

Signal 1 [2] 763 763 0.300 0 0

Signal 2 [1] 883 883 0.463 0 0

Signal 2 [2] 1025 1025 0.537 0 0

The table at the beginning exhibits the difference between the analytically and the numerical-

ly computed gradient at the optimum (The difference shown is the square root of the sum of

the squared differences of the single components of the two vectors). In the present case, the

difference between the two is negligible. The table further indicates that the gradient at the

optimum is close to 0.0, as it is necessary for the estimation to be successful.

The rows of the table contain the individual components of the symbolic and the numeric

gradient vector as well as their difference. Each row corresponds to a free parameter. Again,

all entries should be close to zero.

This table is printed only if the flag test of the estimation function is set to TRUE.

The residual output presents the content of the statistics object Stat.Obj that is computed by

the procedure SDT.Statistics(). The statistics object contains 5 sections:

1. The section $Model.description contains a string indicating the model actually used

(This string is identical to that provided above with the parameter information).

2. The section $Statistics contains various fit statistics, like Pearson X^2 and Likelihood

ratio statistic G^2, the degrees of freedom df associated with these statistics, as well as

other statistics that are relevant for evaluating the quality of the fit, like, for example, the

rank and the condition number of the observed information matrix.

3. The section $Free.parameters contains the names and values of the estimated parame-

ters and the estimated standard errors (SE) as well as the limits of the confidence intervals.

Due to the fact that likelihood ratio intervals were computed, two conficence intervals are

shown for the mean, the first interval is based on the assumption that estimated parameters

are normally distributed with the estimated standard error. The likelihood ratio confidence

intervals do not require the normality assumption and are thus more reliable. In the present

case both types of intervals are identical [A good description of likelihood ratio confidence

intervals may be found in Pawitan (2001)].

4. The section $Full.parametervector contains the full parameter vector including also

those parameters that are subjected to constraints or that are added internally by the pro-

gram.

Siegfried Macho: SDT Models in R 111

-2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

Memory Strength

D
e

n
s
it
y

New

Old

5. The section $SDT.measures contains the estimated values, standard errors and confidence

intervals for a number of important signal detection measures, like
zA , the area under the

estimated ROC curve, and ad , the Mahalanobis distance between the two distributions.

With unequal variances these measures may be better indicators of sensitivity as d’ (for

further details, cf. Section 2.2).

6. The section $Data.and.Estimates contains the data in the order provided by the input as

well as estimated frequencies, probabilities, the Pearson residuals as well as the standard-

ized residuals that are asymptotically standard normal distributed. The row labels Signal

s[r] indicate the signal (s) and the response (r) within the signal.

(For further details concerning the contents of the different sections in the output, cf. Chapter

2.2).

The Figure 11 shows the positions of the estimated density curves as well as of the threshold

(the grey vertical line). The figure was generated by the function SDT.Plot().

Following to this detailed description of the fitting of the SDT model, the fitting of symmetric

setup of the distributions with
21 −= is illustrated. This model can be fitted only with the

Gaussian version of the SDT model.

Figure 11: Density functions plotted by the function SDT.Plot().

5.1.2 Example 1-2: Fitting the symmetric SDT model to Yes/No data

The R code for his example is contained in the example file:

Gauss-1.2 (Y-N-Data, symmetric).R.

In the following, I present only the relevant differences to the above example. The R code for

this examples differs from the previous one in two respects only:

1. The list of configuration information has been modified:

cfg <- list(n.sdt = 2, restriction = "equalvar-symmetric")

Siegfried Macho: SDT Models in R 112

The string passed to the option restriction now indicates that an equal variance model

with
21 −= should be fitted. This type of restriction is valid only for the Gaussian

model and not for the standard SDT model.

2. An additional argument is passed to the estimation function:

Opti.Obj <- SDT.Estimate(data = datavec, n = cfg, Model.Id = "Gaussian",

test = T)

The argument Model.Id = "Gaussian" indicates that the Gaussian model should be

fitted to the data instead of the standard SDT model.

Comment:

For the standard SDT model the model identification string passed to the argument

Model.Id is "SDT". Due to the fact that this is the default option no model identification

string is required for the standard SDT model.

Here is an excerpt of the relevant portion of the output showing the estimated free parameters

with estimated standard errors and confidence intervals (likelihood ratio confidence intervals

have not been not computed):

[...]

$Free.parameters

 Value SE CFI-95(Lower) CFI-95(Upper)

t-1[1] 0.215 0.019 0.177 0.254

Mean[2] 0.309 0.019 0.271 0.347

$Full.parametervector

 Gauss-1 Gauss-2

Mean -0.309 0.309

Stddev 1.000 1.000

t-1 0.215 0.215

[...]

The output confirms that
21 −= with estimated 618.0'=d being identical to that estimated

by the standard SDT model. Clearly, the position of the threshold is now different from that

estimated by the standard SDT model.

5.2 Example 2: Fitting rating data

The present example illustrates the fitting of rating data using a data set of Ratcliff, McKoon

and Tindall (1994, Experiment 1, p. 783). The R-code of this example may be found in the

file: SDT-2.2 (2 signals, Data Ratcliff).R

Here is the relevant piece of code for fitting the data, printing the results and plotting densitiy

and ROC curves:

data <- c(477, 776, 527, 321, 258, 184, # New

 192, 401, 290, 267, 316, 442) # Old

Opti.Obj <- SDT.Estimate(data = data, test = T)

Stat.Obj <- SDT.Statistics(Opti.Obj) # Evaluate the results

print(Stat.Obj)

PLOT CONFIGURATION

Plot density curves

SDT.Plot(Opti.Obj, cols = 3:4, labels = c("Memory Strength", "Density"),

SDT.legend = list(text = c("New", "Old")))

Plot ROC curve with data

SDT.Plot(Opti.Obj, cols = 3, labels = c("False Alarms", "Hits"), option =

"ROC+")

Siegfried Macho: SDT Models in R 113

Plot zROC curve with data

SDT.Plot(Opti.Obj, cols = 3, labels = c("z(FA)", "z(H)"), option = "zROC+")

This piece of R-code performs the following steps:

1. The data vector with the frequencies of the response catgories for the two stimulus sets

(corresponding to the two types of signals) is specified:

data <- c(477, 776, 527, 321, 258, 184, # New

 192, 401, 290, 267, 316, 442) # Old

For each signal there are 6 response categories. These are orderer from the highest "new"

category to the highest "old" category.

2. The estimation function is called:

Opti.Obj <- SDT.Estimate(data = data, test = T)

Comment:

The name of the argument data must be specified because for the first argument (par) of

the function the default value is used. If the argument name were not specified the function

would interpret the input as the parameter vector.

In addition, the test flag is set to TRUE. As a result, the gradient is computed numerically at

the optimum by means of the function grad() in the package numDeriv and compared to

the analytically computed gradient.

Comment:

It is good practice to set test = TRUE because non-negligible differences between sym-

bolic and numeric gradients indicate problems of the estimation process, for example, due

to the fact that some of the estimates are on the border of the parameter space (e.g. a

standard deviation parameter near zero).

3. The result of the estimation is evaluated:

Stat.Obj <- SDT.Statistics(Opti.Obj)

4. The result is displayed:

print(Stat.Obj)

5. The configuration is plotted:
SDT.Plot(Opti.Obj, cols = 3:4, labels = c("Memory Strength", "Density"),

SDT.legend = list(text = c("New", "Old")))

Plot ROC curve with data

SDT.Plot(Opti.Obj, cols = 3, labels = c("False Alarms", "Hits"), option =

"ROC+")

Plot zROC curve with data

SDT.Plot(Opti.Obj, cols = 3, labels = c("z(FA)", "z(H)"), option = "zROC+")

SDT.Plot(Opti.Obj, cols = 3:4, labels = c("Memory Strength", "Density"),

SDT.legend = list(text = c("New", "Old")))

Three plots are created (cf. Figure 12):

(i) A plot of the density curves;

(ii) A plot of the ROC curve with the data;

(iii) A plot of the z-ROC curve with the data.

Comment:

A detailed description of the function SDT.Plot() may be found in Chapter 2.5.

Siegfried Macho: SDT Models in R 114

This piece of R-code results in the following output:

===

 Symbolic and numeric gradients at the optimum:

 Length of difference vector : 7.55028e-08

 Length of gradient at optimum: 2.441501e-09

===

 Symbolic Numeric Difference

Mean[2] 0 0e+00 0e+00

Stddev[2] 0 0e+00 0e+00

t-1 0 -4e-08 4e-08

t-2 0 0e+00 0e+00

t-3 0 -5e-08 5e-08

t-4 0 1e-08 -1e-08

t-5 0 3e-08 -3e-08

===

$Model.description

[1] "Standard SDT model with noise distribution N(0, 1), Number of models:

<2>, Type of restrictions: <no>"

$Statistics

 Statistic

log L -7642.024

X^2 5.723

G^2 5.750

df 3.000

p(Y > X^2) 0.126

p(Y > G^2) 0.124

AIC 15298.048

BIC 15342.854

CAICF 15410.322

ICOMP 15288.533

ICOMP.R 15288.161

Free Parameters 7.000

Length of gradient at optimum 0.000

Rank of Hessian 7.000

Condition number of information matrix 34.932

Rank of model matrix: t(J) * J 7.000

Condition number of model matrix 57.546

$Free.parameters

 Value SE CFI-95(Lower) CFI-95(Upper)

Mean[2] 0.606 0.036 0.535 0.677

Stddev[2] 1.181 0.034 1.114 1.247

t-1 -0.891 0.028 -0.947 -0.836

t-2 -0.004 0.023 -0.050 0.042

t-3 0.511 0.024 0.464 0.559

t-4 0.928 0.027 0.874 0.981

t-5 1.468 0.035 1.399 1.536

$Full.parametervector

 Gauss-1 Gauss-2

Mean 0.000 0.606

Stddev 1.000 1.181

t-1 -0.891 -0.891

t-2 -0.004 -0.004

t-3 0.511 0.511

t-4 0.928 0.928

t-5 1.468 1.468

Siegfried Macho: SDT Models in R 115

$SDT.measures

 Value SE CFI-95(Lower) CFI-95(Upper)

d.a[2] 0.554 0.032 0.490 0.619

d.e[2] 0.556 0.033 0.492 0.620

A.z[2] 0.652 0.008 0.636 0.669

$Data.and.Estimates

 Observed Expected Probabilities Residuals Std.Resid.(analytical)

Signal 1 [1] 477 473.981 0.186 0.139 0.705

Signal 1 [2] 776 793.236 0.312 -0.612 -1.340

Signal 1 [3] 527 501.413 0.197 1.143 2.117

Signal 1 [4] 321 324.712 0.128 -0.206 -0.332

Signal 1 [5] 258 268.829 0.106 -0.660 -1.014

Signal 1 [6] 184 180.828 0.071 0.236 0.633

Signal 2 [1] 192 195.321 0.102 -0.238 -0.805

Signal 2 [2] 401 382.118 0.200 0.966 1.606

Signal 2 [3] 290 315.709 0.165 -1.447 -2.396

Signal 2 [4] 267 265.650 0.139 0.083 0.138

Signal 2 [5] 316 305.101 0.160 0.624 1.128

Signal 2 [6] 442 444.101 0.233 -0.100 -0.554

The output is similar to that shown in Chapter 5.1.1. The table at the beginning displays the

comparison of the numerically and analytically computed gradients at the optimum. This

table is generated by SDT.Estimate().

In the header of the table the difference in length between the numeric and symbolic gradient

vector is presented together with the length of the symbolic gradient at the optimum. Ideally,

the two length should be close to zero (The length is the square root of the sum of the squared

components of the vector). In the present case, both quantities are sufficiently close to zero.

The rows of the table contain the individual components of the symbolic and the numeric

gradient vector as well as their difference. Each row corresponds to a free parameter. Again,

all entries should be close to zero.

The residual output presents the content of the statistics object Stat.Obj that is computed by

the procedure SDT.Statistics(). The statistics object contains 5 sections:

1. The section $Model.description contains a string indicating the model actually used.

2. The section $Statistics fit statistics, like Pearson X^2 and Likelihood ratios statistic

G^2, as well as other statistics that are relevant for evaluating the quality of the fit, like, for

example, the rank and the condition number of the observed information matrix.

3. The section $Free.parameters contains the names and values of the estimated parame-

ters and the estimated standard errors (SE) as well as the limits of the confidence intervals.

4. The section $Full.parametervector contains the full parameter vector including also

those parameters that are subjected to constraints or that are added internally by the pro-

gram. Each signal distribution makes up a column and the thresholds assigned to the

distribution are given below the mean and the standard deviation of the distribution. The

standard SDT model comprises only one set of threshold. By consequence, the values of

the thresholds for different distributions are identical.

5. The section $SDT.measures contains the estimated values, standard errors and confidence

intervals for a number of important signal detection measures, like
zA , the area under the

estimated ROC curve (for further details, cf. Section 2.2).

6. The section $Data.and.Estimates contains the data in the order provided by the input

as well as estimated frequencies, probabilities, the Pearson residuals as well as the

standardized residuals that are asymptotically standard normal distributed. The row

labels Signal s [r] indicate the signal (s) and the response (r) within the signal. For

Siegfried Macho: SDT Models in R 116

example, Signal 1 [6] indicates the row contains data and estimates for Response Ca-

tegory 6 of Signal 1.

(For further details concerning the contents of the different sections in the output, cf. Chapter

2.2).

The result of the three calls of the plot function SDT.Plot is shown in Figure 12.

Figure 12: SDT model plots: (a) Density functions and decision bounds of the estimated

configuration; (b) ROC plot with data; (c) z-ROC plot with data.

5.3 Example 3: Fitting data comprising four different types of signal distributions

The present example illustrates the fitting of rating data with four different types of signals

using a data set of Ratcliff, McKoon and Tindall (1994, Experiment 1, p. 783). The R-code of

this example may be found in the file: Gauss-4.3 (4 signals, LR intervals).R

Two different models are fitted:

1. A model with a single set of threshold for the four data sets, and

2. A model with different thresholds for fitting strong and weak items.

The results of the two fits are then compared, using the function SDT.Anova(). This type of

estimation and model comparison requires the Gaussian version of the SDT model, i.e. the

model with entirely free parameters. Here is an extract of the relevant piece of code:
n <- 4 # NUMBER OF SIGNALS

DATA RATCLIFF ET AL. (1994, Exp.1, 200 and 50 ms pure lists)

data <- c(477, 776, 527, 321, 258, 184, # Pure Strong New

 192, 401, 290, 267, 316, 442, # Pure Strong Old

 235, 649, 719, 442, 254, 156, # Pure Weak New

 151, 496, 480, 350, 221, 142) # Pure Weak Old

ESTIMATE MODEL

Opti.Obj <- SDT.Estimate(data = data, Model.Id = "Gaussian", n = n, test = T)

EVALUTE THE RESULTS

Stat.Obj <- SDT.Statistics(Opti.Obj)

PRINT THE RESULTS

cat("\n===\n")

cat(" Result of the 4 group Gaussian model:")

cat("\n===\n")

print(Stat.Obj)

NOW ESTIMATE MODELS FOR STRONG AND WEAK ITEMS SEPARATELY

n <- list(n.sdt = 4, restriction = "no") # New Configuration

-2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

Memory Strength

D
e

n
s
it
y

New

Old

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False Alarms

H
it
s

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

z(FA)

z
(H

)

(a) (b) (c)

Siegfried Macho: SDT Models in R 117

fixed <- matrix(c(0, 1, 0, 1,

 1, 2, 15, 16), nr = 2, byrow = T)

ident <- matrix(c(3:7, (3:7)+14,

 (3:7)+7, (3:7)+21), nr = 2, byrow = T)

Opti.Obj <- SDT.Estimate(data = data, Model.Id = "Gaussian", n = n, fixed = fixed,

ident = ident, test = T)

Stat2.Obj <- SDT.Statistics(Opti.Obj, control = list(LR = T))

cat("\n===\n")

cat(" Result of the 4 group Gaussian model:")

cat("\n Strong and weak Items are estimated separately")

cat("\n===\n")

print(Stat2.Obj)

COMPARE THE RESTRICTED WITH THE UNRESTRECTED MODEL

cat("\n==\n")

cat(" Comparison of models with simultaneous and separate fit:")

cat("\n===\n")

print(SDT.Anova(Stat2.Obj, Stat.Obj))

The code performs the following steps:

1. The number of signals is 4:

n <- 4 # NUMBER OF SIGNALS

In the present case this number is passed to the estimation function SDT.Estimate() as

the configuration information. The number is internally expanded to a full list of configu-

ration information that looks like this:

list(n.sdt = 4, restriction = "standard")

2. The data vector with the response frequencies is specified:
data <- c(477, 776, 527, 321, 258, 184, # Pure Strong New

 192, 401, 290, 267, 316, 442, # Pure Strong Old

 235, 649, 719, 442, 254, 156, # Pure Weak New

 151, 496, 480, 350, 221, 142) # Pure Weak Old

3. The estimation procedure SDT.Estimate() is called with the model identification string

"Gaussian". In addition, the number of signals is passed as configuration information to

the function. Finally, the test flag test is set to TRUE enabling a comparison of numeric

and analytic gradients at the optimum.

Opti.Obj <- SDT.Estimate(data = data, Model.Id =, n = n, test = T)

4. The result is evaluated using the procedure SDT.Statistics() and the result is printed:

Stat.Obj <- SDT.Statistics(Opti.Obj, control = list(LR = T))

print(Stat.Obj)

The argument control = list(LR = T) indicates that likelihood ratio confidence inter-

vals are computed.

5. A second estimation run is performed with strong and weak items being estimated sepa-

rately. This requires a new specification of the configuration information as well as of

fixed and equality constraints. The new configuration information consist in the following

list:

n <- list(n.sdt = 4, restriction = "no")

In the present case the complete list has to be specified since non of the default options is

used.

6. Fixed and equality constraints are specified:

fixed <- matrix(c(0, 1, 0, 1,

Siegfried Macho: SDT Models in R 118

 1, 2, 15, 16), nr = 2, byrow = T)

ident <- matrix(c(3:7, (3:7)+14,

 (3:7)+7, (3:7)+21), nr = 2, byrow = T)

In order to check whether these restriction are correct it is useful to use the function that

displays the parameter information (For the sake of brevity this was not included into the

above code).

PI <- SDT.Parameter.Info(data = data, n = n, Model.Id = "Gaussian",

fixed = fixed, ident = ident)

print(PI)

This results in the following output:

$Model

[1] "Gaussian SDT model with freely estimable parameters for each model,

Number of models: <4>, Type of restrictions: <no>"

$Parameters.and.Constraints

 name par fixed.value ident.source Nr

1 Mean[1] 0.00 0 ---

2 Stddev[1] 1.00 1 ---

3 t-1[1] -1.50 --- ---

4 t-2[1] -0.75 --- ---

5 t-3[1] 0.00 --- ---

6 t-4[1] 0.75 --- ---

7 t-5[1] 1.50 --- ---

8 Mean[2] 0.00 --- ---

9 Stddev[2] 1.00 --- ---

10 t-1[2] -1.50 --- t-1[1] 3

11 t-2[2] -0.75 --- t-2[1] 4

12 t-3[2] 0.00 --- t-3[1] 5

13 t-4[2] 0.75 --- t-4[1] 6

14 t-5[2] 1.50 --- t-5[1] 7

15 Mean[3] 0.00 0 ---

16 Stddev[3] 1.00 1 ---

17 t-1[3] -1.50 --- ---

18 t-2[3] -0.75 --- ---

19 t-3[3] 0.00 --- ---

20 t-4[3] 0.75 --- ---

21 t-5[3] 1.50 --- ---

22 Mean[4] 0.00 --- ---

23 Stddev[4] 1.00 --- ---

24 t-1[4] -1.50 --- t-1[3] 17

25 t-2[4] -0.75 --- t-2[3] 18

26 t-3[4] 0.00 --- t-3[3] 19

27 t-4[4] 0.75 --- t-4[3] 20

28 t-5[4] 1.50 --- t-5[3] 21

The output reveals the following restrictions:

1. The mean and the standard deviations of the first and the third Gaussian distribution

are fixed to 0 and 1 (see Parameters 1-2 and 15-16). This corresponds to the fixed

constraints given above where the first row of the matrix contains the values and the

second row contains the positions of the parameters.

2. The thresholds assigned to the second Gaussian model (Parameters 10-14) are const-

rained to be equal to the threshold parameters of the first model (Parameters 3-7).

Similarly, the thresholds assigned to the fourth Gaussian model (Parameters 24-28)

are constrained to be equal to the threshold parameters of the third model (Parameters

17-21). This information is provided in the last column. This corresponds exactly to

Siegfried Macho: SDT Models in R 119

the rows of the matrix of identity constraints with the first row containing the positi-

ons of the source parameters (3-7 and 17-21) and the second row containing the posi-

tions of the target parameters (10-14 and 24-28).

Comments:

(i) Due to the fact that strong and weak items are estimated using different thresholds the

location and scale parameters of the third distribution must be fixed (or an equivalent

type of constraint has to be imposed). Otherwise the model is not identified and a war-

ning message is printed (cf. Chapter 5.6).

(ii) Detailed information on how to specify constraints on parameters are found in

Chapter 3.13. An example concerning the specification of non-linear constraints on

parameters is given in Chapter 5.4.

7. The model is estimated a second time with the new configuration and and the results are

evaluated and printed.
Opti.Obj <- SDT.Estimate(data = data, Model.Id = "Gaussian", n = n, fixed = fixed,

ident = ident, test = T)

Stat2.Obj <- SDT.Statistics(Opti.Obj, control = list(LR = T))

print(Stat2.Obj)

8. The results of the two fits are compared using the function SDT.Anova():

SDT.Anova(Stat2.Obj, Stat.Obj)

The result of the function looks like this:

 G2 df p

Model 1 38.286 9 0.000

Model 2 11.256 6 0.081

Difference 27.030 3 0.000

The function provides the likelihood ratio statistic G2, the degrees of freedom df associ-

ated with the statistic as well as the associated p value, for the two models as well as the

difference between the two models.

In the present case, the difference statistic () 03.2732 == dfG printed in the last row is

not distributed according to a chi-square distribution since the two models are not nested.

Thus, the computed p value is not valid.

5.4 Example 4: Specifying nonlinear constraints on parameters

The present example demonstrates the specification of nonlinear constraints on parameters by

means of a user defined function using the data of Ratcliff, McKoon and Tindall (1994, Ex-

periment 1, p. 783) with four signals. The R-code is similar to that of the previous example.

The man difference consists in the specification of the additional non-linear constraint that

42 2.1 = , i.e., the standard deviation of the second distribution is 1.2 times that of

Distribution 4. The R-code of this example is contained in the file:

SDT-3.1 (Functional constraints).R

The following extract of the R code illustrates the four components that are required for a

proper specification of non-linear constraints on parameters:

1. The function that implements the nonlinear constraints;

2. The assigned gradient function;

3. The function that generates the Jacobian matrix for performing the proper adjustment

of the model matrix;

4. The addition of the parameters that are subjected to nonlinear constraints to the matrix

of fixed parameters.

Siegfried Macho: SDT Models in R 120

FUNCTION PERFOMING FUNCTIONAL CONSTRAINT: s2 = 1.2*s4

fct.s <- function(par)

{

 tindex <- 2 # Target index: s2

 sindex <- 6 # Source index: s4

 par[tindex] <- 1.2 * par[sindex]

 # Define Gradient function

 gr.fct <- function(grad, par)

 {

 grad[sindex] <- grad[sindex] + 1.2 * grad[tindex]

 return(grad)

 }

 attr(par, "SDT.gradient") <- gr.fct # Gradient

 return(par)

}

FUNCTION COMPUTING THE JACOBIAN MATRIX CORRESPONDING TO FUNCTIONAL

CONSTRAINTS

J.fct <- function(full.par)

{

 J <- diag(length(full.par))

 tindex <- 2

 sindex <- 6

 J[tindex, sindex] <- 1.2

 J

}

PASS FUNCTION FOR COMPUTING THE JACOBIAN MATRIX AS AN ATTRIBUTE

"Jacobian" TO THE FUNCTION

attr(fct.s, "SDT.Jacobian") <- J.fct

ADD SPECIFIED PARAMETER TO FIXED ONES

fixed <- matrix(c(1, 2), nrow = 2, byrow = T)

ESTIMATE MODEL

Opti.Obj <- SDT.Estimate(data = data, n = n, fixed = fixed, functional =

fct.s, test = T)

Stat.Obj <- SDT.Statistics(Opti.Obj)

1. The function fct.s implements the non-linear functional constraint. This function simply

sets the parameter on the 2. position of the parameter vector (= the position of
2) equal to

1.2 times the value of the parameter on the 6. position (= the position of
4).

2. The gradient function gr.fct()is be specified. This function adds the gradient of the log-

likelihood function with respect to
2 , multiplied by 1.2, to the partial derivate of the log-

likelihood function with respect to
4 . The gradient function is passed as an attribute

"SDT.gradient" to the parameter vector. The gradient function that computes the symbo-

lic gradient recovers it from the attribute of the parameter and uses it for the adjustment of

the gradient.

If no gradient function is specified the estimation procedure outputs an error message and

stops. However, models with non-linear constraints on parameters can be estimated with-

out the specification of a gradient function by setting the flag sym.gr = F as argument of

the estimation function. In this case, gradients and model matrices are computed numeri-

cally which slows down the process of estimation.

Siegfried Macho: SDT Models in R 121

3. The function J.fct is specified. It computes the full Jacobian matrix of the functional

constraints. This function is used for the analytic computation of the standardized

residuals. It is attached to the function fct.s as the attribute "SDT.Jacobian".

If no function for computing the Jacobian matrix of functional constraints is specified, the

model matrix is computed numerically.

4. Parameters subjected to functional constraints must be specified as fixed parameters, i.e.,

they have to be added to the matrix of fixed constraints:

fixed <- matrix(c(1, 2), nrow = 2, byrow = T)

5. Finally, the function is passed to the estimation procedure as an additional parameter (alos

the matrix of fixed constraints is passed to the function):

Opti.Obj <- SDT.Estimate(data = data, n = n, fixed = fixed, functional =

fct.s, test = T)

Comment:

A detailed description of how to specify functional constraints is presented in Chapter 4.4.

5.5 Example 5: Fitting data with different number of response categories per signal

The general SDT model with all parameters being freely estimable allows one to fit the mo-

del to signals with different number of data points per signal. In this case, a vector with the

different number of data for the different signals is passed to the estimation function for

parameter n (instead of the number of signals). The following R code is contained in the

example file: Gauss-5.2 (Unequal number of data per signal, LR intervals).R It

demonstrates this facility of the model:

n.data <- c(7, 4, 3, 6, 2) # NUMBER OF DATA POINTS PER SIGNAL

ARTIFICIAL DATA

data <- c(24, 22, 57, 10, 12, 17, 7, # Signal 1: 7 data points

 210, 34, 5, 1, # Signal 2: 4 data points

 60, 103, 8, # Signal 3: 3 data points

 0, 5, 198, 225, 148, 13, # Signal 4: 6 data points

 121, 69) # Signal 5: 2 data points

FIXED: DISTRIBUTION OF FIRST AND FIFTH SIGNAL = N(0,1)

fixed <- matrix(c(0, 1, 0, 1,

 1, 2, 25, 26), nr = 2, byrow = T)

EQUALITY CONSTRAINTS ON THRESHOLDS FOR DIFFERENT SIGNALS:

1. CONSTRAINTS ON THRESHOLDS ASSOCIATED WITH SIGNAL 2

ident.2 <- matrix(c(4:6,

 3:5+8), nr = 2, byrow = T)

2. CONSTRAINTS ON THRESHOLDS ASSOCIATED WITH SIGNAL 3

ident.3 <- matrix(c(4:5,

 3:4+13), nr = 2, byrow = T)

3. CONSTRAINTS ON THRESHOLDS ASSOCIATED WITH SIGNAL 4

ident.4 <- matrix(c(3:7,

 3:7+17), nr = 2, byrow = T)

4. CONSTRAINTS ON THRESHOLDS ASSOCIATED WITH SIGNAL 5

ident.5 <- matrix(c(5,

 3+24), nr = 2, byrow = T)

ident <- cbind(ident.2, ident.3, ident.4, ident.5)

Siegfried Macho: SDT Models in R 122

ESTIMATE THE MODEL

Opti.Obj <- SDT.Estimate(data = data, Model.Id = "Gaussian", n = n.data,

fixed = fixed, ident = ident, test = T)

Stat.Obj <- SDT.Statistics(Opti.Obj, control = list(LR = T))

This piece of code performs the following steps:

1. Specification of the vector with number of data points per signal:

n.data <- c(7, 4, 3, 6, 2) # NUMBER OF DATA POINTS PER SIGNAL

In the present case, there are 5 different types of signals with the first comprising 7

response categories, the second one 4, etc.

2. The data are specified:

ARTIFICIAL DATA

data <- c(24, 22, 57, 10, 12, 17, 7, # Signal 1: 7 data points

 210, 34, 5, 1, # Signal 2: 4 data points

 60, 103, 8, # Signal 3: 3 data points

 0, 5, 198, 225, 148, 13, # Signal 4: 6 data points

 121, 69) # Signal 5: 2 data points

3. Fixed constraints are imposed to make the model identifiable:

FIXED: DISTRIBUTION OF FIRST AND FIFTH SIGNAL = N(0,1)

fixed <- matrix(c(0, 1, 0, 1,

 1, 2, 25, 26), nr = 2, byrow = T)

The first and last signal distribution are specified to be the standard normal distribution

N(0, 1).

Comments:

❑ In case of different data points with different signals all the restrictions have to be spe-

cified by hand, i.e., the option restriction in the configuration list cannot be used.

It is always set to restriction = "no" by the estimation function.

❑ The variance parameter of the last signal distribution has to be fixed in order to make

the model identified. This is required, because only one free data point is associated

with this type of signal. This precludes the estimation of two free parameters for this

distribution.

4. Equality constraints on thresholds are specified: The specification is performed separately

for the signal distributions 2-5. These constraints are then collected in one matrix of

equality constraints:

EQUALITY CONSTRAINTS ON THRESHOLDS FOR DIFFERENT SIGNALS:

1. CONSTRAINTS ON THRESHOLDS ASSOCIATED WITH SIGNAL 2

ident.2 <- matrix(c(4:6,

 3:5+8), nr = 2, byrow = T)

2. CONSTRAINTS ON THRESHOLDS ASSOCIATED WITH SIGNAL 3

ident.3 <- matrix(c(4:5,

 3:4+13), nr = 2, byrow = T)

3. CONSTRAINTS ON THRESHOLDS ASSOCIATED WITH SIGNAL 4

ident.4 <- matrix(c(3:7,

 3:7+17), nr = 2, byrow = T)

4. CONSTRAINTS ON THRESHOLDS ASSOCIATED WITH SIGNAL 5

ident.5 <- matrix(c(5,

 3+24), nr = 2, byrow = T)

ident <- cbind(ident.2, ident.3, ident.4, ident.5)

Siegfried Macho: SDT Models in R 123

Comment:

To aid the specification of constraints and the checking of the correctness of the specified

constraints the function SDT.Parameter.Info() might be helpful (cf. Chapter 2.4 and the

example in Chapter 5.3).

5. The model is estimated and the statistics are computed. Note, once again, that the vector

n.data with the number of response categories per signal is passed to the function for the

argument n.

Opti.Obj <- SDT.Estimate(data = data, Model.Id = "Gaussian", n = n.data,

fixed = fixed, ident = ident, test = T)

Stat.Obj <- SDT.Statistics(Opti.Obj, control = list(LR = T))

The following output is produced:

===

 Symbolic and numeric gradients at the optimum:

 Length of difference vector : 3.839714e-08

 Length of gradient at optimum: 3.820168e-05

===

 Symbolic Numeric Difference

t-1[1] -7.000e-08 -7.000e-08 0e+00

t-2[1] 1.410e-06 1.420e-06 0e+00

t-3[1] 2.741e-05 2.739e-05 2e-08

t-4[1] -9.520e-06 -9.520e-06 0e+00

t-5[1] 2.200e-07 2.100e-07 0e+00

t-6[1] -3.000e-08 -4.000e-08 0e+00

Mean[2] -2.400e-07 -2.400e-07 0e+00

Stddev[2] -4.100e-07 -4.000e-07 0e+00

Mean[3] -1.200e-06 -1.200e-06 0e+00

Stddev[3] -1.320e-06 -1.340e-06 2e-08

Mean[4] -1.749e-05 -1.748e-05 -1e-08

Stddev[4] 1.750e-05 1.747e-05 3e-08

===

==

 Result of the Gaussian model with unequal data per signal:

 Data points per signal: n =(7 4 3 6 2)

==

$Model.description

[1] "Gaussian SDT model with freely estimable parameters for each model, data

points per signal: <7, 4, 3, 6, 2>, Type of restrictions: <no>"

$Statistics

 Statistic

log L -1367.033

X^2 13.859

G^2 14.041

df 5.000

p(Y > X^2) 0.017

p(Y > G^2) 0.015

AIC 2758.066

BIC 2820.551

CAICF 2917.785

ICOMP 2754.292

ICOMP.R 2749.214

Free Parameters 12.000

Length of gradient at optimum 0.000

Rank of Hessian 12.000

Condition number of information matrix 617.689

Rank of model matrix: t(J) * J 12.000

Condition number of model matrix 1627.429

$Free.parameters

 Value SE CFI-95(Lower) CFI-95(Upper) LR-95(Lower) LR-95(Upper)

t-1[1] -0.935 0.116 -1.162 -0.707

Siegfried Macho: SDT Models in R 124

t-2[1] -0.421 0.089 -0.597 -0.246

t-3[1] 0.332 0.066 0.204 0.460

t-4[1] 0.667 0.077 0.517 0.817

t-5[1] 1.122 0.105 0.915 1.329

t-6[1] 1.772 0.166 1.446 2.098

Mean[2] -1.143 0.204 -1.543 -0.744 -1.612 -0.791

Stddev[2] 0.727 0.131 0.472 0.983 0.515 1.044

Mean[3] -0.281 0.087 -0.452 -0.111 -0.456 -0.114

Stddev[3] 0.366 0.048 0.272 0.460 0.282 0.472

Mean[4] 0.460 0.069 0.325 0.595 0.325 0.596

Stddev[4] 0.341 0.035 0.273 0.409 0.277 0.413

$Full.parametervector

 Gauss-1 Gauss-2 Gauss-3 Gauss-4 Gauss-5

Mean 0.000 -1.143 -0.281 0.460 0.000

Stddev 1.000 0.727 0.366 0.341 1.000

t-1 -0.935 -0.421 -0.421 -0.935 0.332

t-2 -0.421 0.332 0.332 -0.421 NA

t-3 0.332 0.667 NA 0.332 NA

t-4 0.667 NA NA 0.667 NA

t-5 1.122 NA NA 1.122 NA

t-6 1.772 NA NA NA NA

$Data.and.Estimates

 Observed Expected Probabilities Residuals Std.Resid.(analytical)

Signal 1 [1] 24 26.076 0.175 -0.406 -1.516

Signal 1 [2] 22 24.094 0.162 -0.427 -1.619

Signal 1 [3] 57 43.707 0.293 2.011 4.151

Signal 1 [4] 10 17.500 0.117 -1.793 -2.441

Signal 1 [5] 12 18.120 0.122 -1.438 -1.944

Signal 1 [6] 17 13.815 0.093 0.857 2.212

Signal 1 [7] 7 5.688 0.038 0.550 2.212

Signal 2 [1] 210 209.874 0.839 0.009 0.854

Signal 2 [2] 34 34.807 0.139 -0.137 -0.854

Signal 2 [3] 5 3.713 0.015 0.668 0.854

Signal 2 [4] 1 1.605 0.006 -0.478 -0.854

Signal 3 [1] 60 60.000 0.351 0.000 0.000

Signal 3 [2] 103 103.000 0.602 0.000 0.000

Signal 3 [3] 8 8.000 0.047 0.000 0.000

Signal 4 [1] 0 0.013 0.000 -0.112 -0.113

Signal 4 [2] 5 2.849 0.005 1.274 2.059

Signal 4 [3] 198 205.489 0.349 -0.522 -1.857

Signal 4 [4] 225 220.400 0.374 0.310 0.914

Signal 4 [5] 148 144.933 0.246 0.255 0.732

Signal 4 [6] 13 15.317 0.026 -0.592 -1.501

Signal 5 [1] 121 119.709 0.630 0.118 0.264

Signal 5 [2] 69 70.291 0.370 -0.154 -0.264

The output reveals two new features:

1. In the section $Full.parametervector, the symbols NA (= not available) are shown

indicating that some decision bounds are not available for signals with a reduced number

of response categories.

2. The row names Signal s [r] of the matrix in the section $Data.and.Estimates

indicate that different data points were provided for different signals. The number s

indicates the signal and the number r indicates the response category for the respective

signal.

Comment:

The difference between likelihood ratio and normal based confidence intervals is now more

pronounced than in the previous examples (though the difference is not as dramatic in the

example of the example file SDT-4.2 (2 signals, LR intervals, bad data).R).

Siegfried Macho: SDT Models in R 125

5.6 Example 6: Detecting problems of identification

Model parameters are not identified if they cannot be uniquely estimated from the data. The

program checks for local identification (i.e., identification at the maximum of the likelihood

function) by investigating the eigenvalues of the observed information matrix (= Hessian

matrix at the optimum). In case of detecting a failure of identification, a warning is printed (if

the flag display.warning = TRUE of the function SDT.Statistics() is set, cf. Chapter

2.2), and the standard deviations of the free parameters are not computed.

A more sensitive test of local identification consists in the evaluation of the matrix JJ
T 

(symbolized by t(J)*J in the output), where J is the model matrix (i.e. the Jacobian matrix

of the probabilities with respect to the parameters). If this matrix is not of full rank and the

warning flag is set (display.warning = TRUE) a warning is printed even if no warning is

presented on bases of the evaluation of the Hessian matrix.

To demonstrate this problems, we take up again Example 3 of Chapter 5.3 (i.e., the estima-

tion of two separate SDT models on the basis of the four data sets. However, we relax the

restriction on the location parameter of the third signal distribution (03 =). As a result, the

origin of the scale for the second SDT model is not fixed. The code of this example is

contained in the file: Gauss-6 (4 signals not identified).R.

The only difference to the code of Example 3 consists in a different matrix of fixed con-

straints. Specifically, the matrix of fixed constraints in Example 3:

fixed <- matrix(c(0, 1, 0, 1,

 1, 2, 15, 16), nr = 2, byrow = T)

is replaced by:

fixed <- matrix(c(0, 1, 1,

 1, 2, 16), nr = 2, byrow = T)

Thus, the restriction on the mean of the third distribution (Parameter 15) to be equal to zero

has been removed.

This results in the following output:

===

 Symbolic and numeric gradients at the optimum:

 Length of difference vector : 4.171642e-06

 Length of gradient at optimum: 2.320325e-05

===

 Symbolic Numeric Difference

t-1[1] -3.530e-06 -3.610e-06 9.00e-08

t-2[1] -4.270e-06 -1.300e-07 -4.15e-06

t-3[1] 1.410e-05 1.403e-05 7.00e-08

t-4[1] -1.477e-05 -1.468e-05 -9.00e-08

t-5[1] 7.540e-06 7.550e-06 -1.00e-08

Mean[2] 2.800e-07 2.100e-07 7.00e-08

Stddev[2] -3.670e-06 -3.670e-06 0.00e+00

Mean[3] 7.000e-08 4.800e-07 -4.10e-07

t-1[3] -2.700e-07 -2.500e-07 -2.00e-08

t-2[3] -2.680e-06 -2.670e-06 -1.00e-08

t-3[3] -3.200e-07 -3.600e-07 4.00e-08

t-4[3] 2.400e-06 2.390e-06 1.00e-08

t-5[3] -7.000e-07 -7.300e-07 3.00e-08

Mean[4] 1.500e-06 1.370e-06 1.30e-07

Stddev[4] -2.110e-06 -2.100e-06 -1.00e-08

===

===> WARNING: Jacobian matrix [t(J) * J] is not positive definite: Rank = 14

$Model.description

[1] "SDT model with arbitrary parameters for each model"

Siegfried Macho: SDT Models in R 126

 Statistic

log L -1.479231e+04

X^2 1.122600e+01

G^2 1.125600e+01

df 5.000000e+00

p(Y > X^2) 4.700000e-02

p(Y > G^2) 4.700000e-02

AIC 2.961462e+04

BIC 2.972076e+04

CAICF 2.983488e+04

ICOMP 2.999515e+04

ICOMP.R 2.976975e+04

Free Parameters 1.500000e+01

Length of gradient at optimum 0.000000e+00

Rank of Hessian 1.500000e+01

Condition number of information matrix 4.592497e+14

Rank of model matrix: t(J) * J 1.400000e+01

Condition number of model matrix 2.300654e+17

$Free.parameters

 Value SE CFI-95(Lower) CFI-95(Upper)

t-1[1] -0.891 0.028 -0.947 -0.836

t-2[1] -0.004 0.023 -0.050 0.042

t-3[1] 0.511 0.024 0.464 0.559

t-4[1] 0.928 0.027 0.874 0.981

t-5[1] 1.468 0.035 1.399 1.536

Mean[2] 0.606 0.036 0.535 0.677

Stddev[2] 1.181 0.034 1.114 1.247

Mean[3] -0.184 77800.159 -152485.693 152485.325

t-1[3] -1.506 77800.160 -152487.018 152484.007

t-2[3] -0.523 77800.161 -152486.037 152484.992

t-3[3] 0.199 77800.161 -152485.315 152485.713

t-4[3] 0.774 77800.161 -152484.740 152486.288

t-5[3] 1.346 77800.160 -152484.167 152486.858

Mean[4] -0.106 77800.159 -152485.616 152485.403

Stddev[4] 1.022 0.026 0.971 1.074

[...]

Due to fact that the rank of Jacobian matrix multiplied by its transpose JJ
T  is lower than

the number of free parameters and the flag display.warning of the SDT.Statistics

function is set to TRUE, a warning is printed indicating that some of the parameters are not

identified.

The huge condition number of the Hessian matrix as well as the Jacobian matrix (multiplied

by its transpose) as well as the gigantic values of the estimated standard errors (and the

resulting confidence limits) indicate the existence of a problem of identification.

This output also indicates that the first two distributions and the associated set of thresholds

are not affected by the problem.

Comments:

❑ The column rank of the matrix JJ
T  was 14 (one less than the number of free

parameters) whereas the rank of the Hessian was 15. This confirms the simulation results

of McDonald and Krane (1979) that the Jacobian matrix is more sensitive and thus better

suited for detecting problems of identification.

❑ Note also that the estimation procedure converged properly as indicated by the small

value of the gradient at the optimum.

Siegfried Macho: SDT Models in R 127

5.7 List of example files for the SDT and Gaussian model

The following list contains all the example files concerning the SDT and Gaussian model.

These example files are available from the web site.

Gauss-1.1 (Y-N-Data, standard).R

Gauss-1.2 (Y-N-Data, symmetric).R

Gauss-2.1 (2 signals, Data Ratcliff).R

Gauss-2.2 (2 signals, Symmetric configuration).R

Gauss-3 (Functional constraints).R

Gauss-4.1 (2 signals, LR intervals).R

Gauss-4.2 (2 signals, symmetric, LR intervals).R

Gauss-4.3 (4 signals, LR intervals).R

Gauss-5.1 (Gaussian with unequal number of data per signal).R

Gauss-5.2 (Unequal number of data per signal, LR intervals).R

Gauss-6 (4 signals not identified).R

Gauss-7 (ROC Plots).R

SDT-1 (Y-N-Data).R

SDT-2.1 (2 signals, Data Wickens).R

SDT-2.2 (2 signals, Data Ratcliff).R

SDT-2.3 (3 signals, Data Ratcliff).R

SDT-3.1 (Functional constraints).R

SDT-3.2 (Functional constraints, symmetric thresholds).R

SDT-4.1 (2 signals, LR intervals).R

SDT-4.2 (2 signals, LR intervals, bad data).R

SDT-4.3 (4 signals, LR intervals).R

SDT-5 (ROC Plots).R

SDT-Gauss (Parameter Information).R

6. Working Examples: Gaussian mixture model (MIX.PD)

The present chapter provides examples for fitting the Gaussian mixture model with a pair of

signals represented by three Gaussian distributions (cf. Chapter 3.3). The application of the

model is illustrated with two different set of data:

(i) Source monitoring data from Hilford et al. (2002)

(ii) Data on associative recognition from Kelley and Wixted (2001).

6.1 Example 1: Fitting the MIX.PD model to source monitoring data

The file MIX-PD.1-2 (Source Monitoring, Hilford).R contains the R-code for fitting

the data from the three experiments of Hilford et al. (2002). The code looks like this:
==

Examples of the documentation of Model MIX-PD:

MIX-PD.1-2: Source monitoring with two signals

Data from Hilford et al. (2002)

Date of creation: July, 2009

Author: Siegfried Macho

==

library(numDeriv)

DIRECTORIES (PLEASE ADJUST TO YOUR PERSONAL SETTING)

DirSource <- "C:/Documents and Settings/macho/Statistik/_SDT-Models

(Version 2)/R-Code/"

DirSourceM <- "C:/Documents and Settings/macho/Statistik/_SDT-Models

(Version 2)/R-Code/Models/"

FILE NAME WITH THE MODEL

Model <- "SDT-MIX-PD.R"

FILE NAMES FOR ESTIMATION

Siegfried Macho: SDT Models in R 128

Main <- "SDT-Main.R"

Auxiliary <- "SDT-Auxiliary.R"

LOAD SOURCE FILES WITH SDT MODEL

source(paste(DirSourceM, Model, sep = ""))

LOAD SOURCE FILES WITH AUXILIARY AND ESTIMATION FUNCTIONS

source(paste(DirSource, Auxiliary, sep = ""))

source(paste(DirSource, Main, sep = ""))

DATA: HILFORD ET AL. (2002), Exp.1

data.1 <- c(264, 133, 159, 116, 80, 33, # Male voice

 25, 62, 105, 128, 145, 294) # Female voice

DATA: HILFORD ET AL. (2002), Exp.2

data.2 <- c(1358, 550, 701, 585, 466, 300, # Male

 278, 477, 598, 614, 589, 1404) # Female

DATA: HILFORD ET AL. (2002), Exp.3

data.3 <- c(1313, 538, 524, 529, 363, 333, # Top

 348, 356, 455, 552, 510, 1379) # Bottom

SPECIFY EQUALITY CONSTRAINTS: IDENTICAL PROBABILITIES AND d'

ident <- matrix(c(1, 3,

 2, 4), nr = 2, byrow = T)

cat("\n--\n")

cat(" MIX-PD: Hilford et al. (2002): Exp.1")

cat("\n--\n")

ESTIAMTE THE MODEL AND EVALUATE THE RESULT

Opti1.Obj <- SDT.Estimate(data = data.1, Model.Id = "MIX.PD", ident =

ident, test = T)

Stat1.Obj <- SDT.Statistics(Opti1.Obj)

print(Stat1.Obj)

cat("\n--\n")

cat(" MIX-PD: Hilford et al. (2002): Exp.2")

cat("\n--\n")

ESTIAMTE THE MODEL AND EVALUATE THE RESULT

Opti2.Obj <- SDT.Estimate(data = data.2, Model.Id = "MIX.PD", ident =

ident, test = T)

Stat2.Obj <- SDT.Statistics(Opti2.Obj)

print(Stat2.Obj)

cat("\n--\n")

cat(" MIX-PD: Hilford et al. (2002): Exp.3")

cat("\n--\n")

ESTIMATE THE MODEL AND EVALUATE THE RESULT

Opti3.Obj <- SDT.Estimate(data = data.3, Model.Id = "MIX.PD", ident =

ident, test = T)

Stat3.Obj <- SDT.Statistics(Opti3.Obj)

print(Stat3.Obj)

PLOT GAUSSIAN DISTRIBUTIONS AND THRESHOLDS, AS WELL AS ROC CURVES FOR

EXP.3:

Siegfried Macho: SDT Models in R 129

PLOT DENSITY CURVES

SDT.Plot(Opti3.Obj, cols = c(3, 4, 6), SDT.legend = list(text = c("no

info", "left", "right")))

PLOT ROC CURVES

Plot ROC curve with data

SDT.Plot(Opti3.Obj, cols = 3, labels = c("False Alarms", "Hits"), option =

"ROC+")

Plot z-ROC curve with data

SDT.Plot(Opti3.Obj, cols = 3, labels = c("z(FA)", "z(H)"), option =

"zROC+")

The code consists of five sections.

1. The relevant source files (SDT-Main.R, SDT-Auxiliary.R, and SDT-MIX-PD.R) are

loaded. This section is contained within the lines:

DIRECTORIES (PLEASE ADJUST TO YOUR PERSONAL SETTING)

...
source(paste(DirSource, Main, sep = ""))

2. The three data sets are specified: This section is contained within the lines:

DATA: HILFORD ET AL. (2002), Exp.1

...
 348, 356, 455, 552, 510, 1379) # Bottom

3. Equality (identity) constraints are specified, representing the restrictions:
rightleft 11 = and

rightleft 11 d'd' = :

SPECIFY EQUALITY CONSTRAINTS: IDENTICAL PROBABILITIES AND d'

ident <- matrix(c(1, 3,

 2, 4), nr = 2, byrow = T)

4. The three data sets are estimated, statistics are computed, and the result is printed. For

example, for modeling the data of Experiment 1, the following piece of code is relevant:

Opti1.Obj <- SDT.Estimate(data = data.1, Model.Id = "MIX.PD", ident =

ident, test = T)

Stat1.Obj <- SDT.Statistics(Opti1.Obj)

print(Stat1.Obj)

The first command performs the estimation. The results of this process are stored in the

object Opti1.Obj. Note that the number of signals (n = 2) was not passed to the estimation

procedure because n = 2 is the default value.

The second command results in the computation of relevant statistics that are stored in the

object Stat1.Obj.

Finally, the content of Stat1.Obj is printed.

The commands for estimating the other data sets are analogously. They main difference

consists in the fact that the data sets data.2 and data.3 are passed (instead of data.1) to

the estimation procedure.

1. Three plots are provided:

(i) The configuration of density curves is plotted:

SDT.Plot(Opti3.Obj, cols = c(3, 4, 6), SDT.legend = list(text = c("no

info", "left", "right")))

(ii) The ROC curves with the data are plotted:

Siegfried Macho: SDT Models in R 130

SDT.Plot(Opti3.Obj, cols = 3, labels = c("False Alarms", "Hits"), option =

"ROC+")

(iii) The z-ROC curves with the data are plotted:

SDT.Plot(Opti3.Obj, cols = 3, labels = c("z(FA)", "z(H)"), option =

"zROC+")

The output for the data of Exp.1 looks like this:

 MIX-PD: Hilford et al. (2002): Exp.1

===

 Symbolic and numeric gradients at the optimum:

 Length of difference vector : 1.996004e-07

 Length of gradient at optimum: 1.394832e-05

===

 Symbolic Numeric Difference

p.left[1] 1.100e-07 2.200e-07 -1.0e-07

d'.left[1] -7.300e-07 -7.300e-07 0.0e+00

t-1 5.000e-07 5.000e-07 0.0e+00

t-2 -1.200e-06 -1.200e-06 -1.0e-08

t-3 5.910e-06 5.740e-06 1.7e-07

t-4 -1.113e-05 -1.116e-05 3.0e-08

t-5 5.790e-06 5.790e-06 0.0e+00

===

$Model.description

[1] "Mixture Model: Mixtures of three normal distributions for each pair of

signals"

$Statistics

 Statistic

log L -2482.840

X^2 2.113

G^2 2.108

df 3.000

p(Y > X^2) 0.549

p(Y > G^2) 0.550

AIC 4979.680

BIC 5017.075

CAICF 5071.222

ICOMP 4973.280

ICOMP.R 4970.388

Free Parameters 7.000

Rank of Hessian 7.000

Length of gradient at optimum 0.000

Condition number of information matrix 80.891

Rank of model matrix: t(J) * J 7.000

Condition number of model matrix 165.849

$Free.parameters

 Value SE(delta method) SE(numerical) CFI-95(Lower) CFI-95(Upper)

p.left[1] 0.474 0.029 0.029 0.417 0.532

d'.left[1] 1.927 0.177 0.177 1.581 2.273

t-1 -1.543 0.086 0.086 -1.712 -1.374

t-2 -0.835 0.056 0.056 -0.946 -0.725

t-3 -0.078 0.048 0.048 -0.172 0.015

t-4 0.603 0.053 0.053 0.500 0.707

t-5 1.373 0.080 0.080 1.217 1.530

$Full.parametervector

 Mixture-1

Mean 0.000

Stddev 1.000

p.left 0.474

p.right 0.474

Siegfried Macho: SDT Models in R 131

d'.left 1.927

d'.right 1.927

t-1 -1.543

t-2 -0.835

t-3 -0.078

t-4 0.603

t-5 1.373

$Data.and.Estimates

 Observed Expected Probabilities Residuals Std.Resid.(analytical)

Data[1, 1] 264 267.246 0.340 -0.199 -0.662

Data[1, 2] 133 137.245 0.175 -0.362 -0.930

Data[1, 3] 159 149.318 0.190 0.792 1.436

Data[1, 4] 116 116.367 0.148 -0.034 -0.055

Data[1, 5] 80 79.653 0.101 0.039 0.080

Data[1, 6] 33 35.172 0.045 -0.366 -0.683

Data[2, 1] 25 24.591 0.032 0.083 0.149

Data[2, 2] 62 56.926 0.075 0.672 1.192

Data[2, 3] 105 113.532 0.150 -0.801 -1.440

Data[2, 4] 128 128.274 0.169 -0.024 -0.040

Data[2, 5] 145 146.129 0.193 -0.093 -0.239

Data[2, 6] 294 289.548 0.381 0.262 0.848

The table at the beginning of the output is presented because the flag test=T was set in the

estimation procedure. By consequence, the numeric gradient at the optimum is computed

using the function grad() from the R package numDeriv that was includes at the beginning

of the code file.

The numeric and symbolic gradients are very close, and, in addition, the length of the

gradient at the optimum is close to zero, indicating that a stationary point was found.

The model identification string indicates that the correct model was used and the statistics

sections provides the relevant general statistical information (for details, cf. Chapter 2.2).

The next section in the output lists the free parameters and their estimated values as well as

the estimated standard errors. In the present case, only
left1 and

left1d' as well as the thresholds

were estimated since the restrictions 01 = and 01 = are set by the program, due to the

fact that no foil distribution was present (indicated by the even number of signals). In

addition, the parameters
right1 and

right1d' were subjected to equality constraints and were thus

not estimated (The values of these parameters are shown in the subsequent section of the

output that presents the full parameter vector).

The standard errors of parameters are estimated in two ways:

1. Using the Hessian matrix that is provided by the estimation procedure together with the

delta method.

2. Computation of the Hessian, using the procedure hessian() from the R package

numDeriv.

The resulting estimates are shown in the columns named SE(delta method) and

SE(numerical), respectively. Conflicting values indicate a problem of the estimation. This

may happen, for instance, if one of the probability parameters is close to the limit (i.e. near

0.0 or 1.0).

In the present case, the estimates resulting from the two methods are identical. So there seems

to be no problem.

The last two columns of the section contain the lower and upper bound of the 95% confi-

dence interval of estimated parameters. These are based on the standard error computed by

means of the delta method.

Siegfried Macho: SDT Models in R 132

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False Alarms

H
it
s

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

z(FA)

z
(H

)

-4 -2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

no info

left

right

The next section presents the full parameter vector. Inspection reveals that the intended

equality constraints were set correctly.

The final section provides the observed data, the estimated model frequencies and probabili-

ties as well as the Pearson and the standardized residuals (cf. Chapter 2.2). The numbers in

brackets on the left indicate the number of the signal and the response category, e.g., Data[2,

4] refers to the second signal and the forth response category.

The plots generated by the three calls of the function SDT.Plot is shown in Figure 13.

6.2 Example 2: Fitting the MIX.PD model to associative recognition data

The files:

MIX-PD.2-1 (Associative Recognition, Kelly & Wixted, Exp.1).R

MIX-PD.2-2 (Associative Recognition, Kelly & Wixted, Exp.2).R

MIX-PD.2-3 (Associative Recognition, Kelly & Wixted, Exp.3).R

contain the R-code for fitting the data from the three experiments of Kelley & Wixted (2001)

on associative recognition. The following excerpt from MIX-PD.2-2 (Associative

Recognition, Kelly & Wixted, Exp.2).R contains the portion of the code for fitting one

model to the data of Experiment 2:

Figure 13: MIX.PD model: Plot of data and model predictions of Exp.3 of Hilford et al

(2003): (a) Configuration of densities and decision bounds; (b) ROC curves, (c)

z-ROC curves.

==

Examples of the documentation of Model MIX-PD:

MIX-PD.2-2: Modeling Associative Recognition

Data from Kelley and Wixted, Exp.2

Date of creation: August, 2009

Author: Siegfried Macho

==

... [Code for loading relevant source files]

DATA OF KELLEY & WIXTED (2001), Experiment 2

data <- c(879, 553, 345, 61, 54, 28, # Exp.2: Lure items

 179, 109, 82, 45, 28, 37, # Exp.2: Weak Items, rearranged

 81, 69, 62, 31, 37, 200, # Exp.2: Weak Items, intact

 215, 82, 60, 31, 31, 61, # Exp.2: Strong Items, rearranged

 21, 24, 33, 21, 33, 348) # Exp.2: Strong Items, intact

NUMBER OF CONDITIONS (TYPES OF SIGNALS)

n <- 5

(a) (b) (c)

Siegfried Macho: SDT Models in R 133

IDENTITY CONSTRAINTS. d'.left = d'.right (strong = weak)

ident.d.w.s <- matrix(c(5, 5, 5,

 6, 5+6, 6+6), nr = 2, byrow = T)

... [Code for fitting other models]

cat("\n--\n")

cat("MIX-PD: Associative recognition (Data from Kelley and Wixted, Exp.2):")

cat("\n p.left <> p.right, d'.left = d'.right (weak = strong)")

cat("\n--\n")

Opti.Obj <- SDT.Estimate(data = data, Model.Id = "MIX.PD", n = n, ident =

ident.d.w.s, test = T)

Stat.Obj <- SDT.Statistics(Opti.Obj)

print(Stat.Obj)

PLOT GAUSSIAN DISTRIBUTIONS AND THRESHOLDS, AS WELL AS ROC CURVES:

PLOT DENSITY CURVES

SDT.Plot(Opti.Obj, cols = c(6, 3, 3, 3, 4, 4, 4), SDT.legend = list(text =

c("New", paste("Weak", 1:3),paste("Strong", 1:3)), cols = c(6, 3, 3, 3, 4,

4, 4)))

PLOT ROC CURVES

Plot ROC curve with data

SDT.Plot(Opti.Obj, cols = c(3, 3, 4, 4), ltys = c(2, 1, 2, 1), labels =

c("False Alarms", "Hits"), option = "ROC+",

SDT.legend = list(text = c("weak rearranged", "weak intact","strong

rearranged", "strong intact"), cols = c(3, 3, 4, 4), ltys = c(2, 1, 2, 1)))

Plot z-ROC curve with data

SDT.Plot(Opti.Obj, cols = c(3, 3, 4, 4), ltys= c(2, 1, 2, 1), labels =

c("z(FA)", "z(H)"), option = "zROC+",

SDT.legend = list(text = c("weak rearranged", "weak intact","strong

rearranged", "strong intact"), cols = c(3, 3, 4, 4), ltys = c(2, 1, 2, 1)))

Again, the code consists of four main sections.

1. The relevant source files (SDT-Main.R, SDT-Auxiliary.R, and SDT-MIX-PD.R) are

loaded. This section was omitted:

... [Code for loading relevant source files]

2. The five data sets are specified and the number of models are specified:

DATA OF KELLEY & WIXTED (2001), Experiment 2

data <- c(879, 553, 345, 61, 54, 28, # Exp.2: Lure items

 179, 109, 82, 45, 28, 37, # Exp.2: Weak Items, rearranged

 81, 69, 62, 31, 37, 200, # Exp.2: Weak Items, intact

 215, 82, 60, 31, 31, 61, # Exp.2: Strong Items, rearranged

 21, 24, 33, 21, 33, 348) # Exp.2: Strong Items, intact

NUMBER OF CONDITIONS (TYPES OF SIGNALS)

n <- 5

Note that at the beginning the responses for the lure items is given. The data for lure items

have always to be presented before the item pairs.

3. Equality (identity) constraints are specified, representing the restrictions:

rightleftrightleft 2211 d'd'd'd' === :

IDENTITY CONSTRAINTS. d'.left = d'.right (strong = weak)

Siegfried Macho: SDT Models in R 134

ident.d.w.s <- matrix(c(5, 5, 5,

 6, 5+6, 6+6), nr = 2, byrow = T)

4. The data are estimated, statistics are computed and the result is printed:

Opti.Obj <- SDT.Estimate(data = data, Model.Id = "MIX.PD", n = n, ident =

ident.d.w.s, test = T)

Stat.Obj <- SDT.Statistics(Opti.Obj)

print(Stat.Obj)

The first command performs the estimation. The results of this process are stored in the

object Opti.Obj. Contrary to the first example with only two data sets, the number of sig-

nals must be passed to the estimation procedure (Since the default number of models is 2,

this was unnecessary for the previous example).

The second command results in the computation of relevant statistics that are stored in the

object Stat.Obj.

The next command prints the content of Stat.Obj is printed.

5. Three plots are provided:

(i) The configuration of density curves is plotted:

SDT.Plot(Opti.Obj, cols = c(6, 3, 3, 3, 4, 4, 4), SDT.legend = list(text =

c("New", paste("Weak", 1:3),paste("Strong", 1:3)), cols = c(6, 3, 3, 3, 4,

4, 4)))

(ii) The ROC curves with the data are plotted:

SDT.Plot(Opti.Obj, cols = c(3, 3, 4, 4), ltys = c(2, 1, 2, 1), labels =

c("False Alarms", "Hits"), option = "ROC+",

SDT.legend = list(text = c("weak rearranged", "weak intact","strong

rearranged", "strong intact"), cols = c(3, 3, 4, 4), ltys = c(2, 1, 2, 1)))

(iii) The z-ROC curves with the data are plotted:

SDT.Plot(Opti.Obj, cols = c(3, 3, 4, 4), ltys= c(2, 1, 2, 1), labels =

c("z(FA)", "z(H)"), option = "zROC+",

SDT.legend = list(text = c("weak rearranged", "weak intact","strong

rearranged", "strong intact"), cols = c(3, 3, 4, 4), ltys = c(2, 1, 2, 1)))

The output provided by this piece of code looks like this:

 MIX-PD: Associative recognition (Data from Kelley and Wixted, Exp.2):

 p.left <> p.right, d'.left = d'.right (weak = strong)

===

 Symbolic and numeric gradients at the optimum:

 Length of difference vector : 9.843447e-08

 Length of gradient at optimum: 3.152847e-05

===

 Symbolic Numeric Difference

Mean[1] 1.415e-05 1.417e-05 -1e-08

Stddev[1] 6.770e-06 6.790e-06 -2e-08

p.left[1] -8.800e-07 -8.700e-07 -1e-08

p.right[1] 4.190e-06 4.230e-06 -5e-08

d'.left[1] 3.960e-06 3.950e-06 1e-08

Mean[2] 6.870e-06 6.900e-06 -4e-08

Stddev[2] -2.400e-07 -2.600e-07 1e-08

p.left[2] -1.350e-06 -1.320e-06 -2e-08

p.right[2] 1.650e-06 1.650e-06 0e+00

t-1 7.050e-06 7.080e-06 -3e-08

t-2 -2.276e-05 -2.271e-05 -5e-08

t-3 -5.870e-06 -5.900e-06 3e-08

t-4 -6.010e-06 -6.020e-06 1e-08

t-5 -4.910e-06 -4.920e-06 1e-08

Siegfried Macho: SDT Models in R 135

===

$Model.description

[1] "Mixture Model: Mixtures of three normal distributions for each pair of

signals"

$Statistics

 Statistic

log L -5249.008

X^2 13.004

G^2 12.867

df 11.000

p(Y > X^2) 0.293

p(Y > G^2) 0.302

AIC 10526.017

BIC 10613.562

CAICF 10709.538

ICOMP 10545.679

ICOMP.R 10515.094

Free Parameters 14.000

Rank of Hessian 14.000

Length of gradient at optimum 0.000

Condition number of information matrix 12191.540

Rank of model matrix: t(J) * J 14.000

Condition number of model matrix 6849.359

$Free.parameters

 Value SE(delta method) SE(numerical) CFI-95(Lower) CFI-95(Upper)

Mean[1] 0.509 0.123 0.123 0.268 0.749

Stddev[1] 1.238 0.078 0.078 1.084 1.391

p.left[1] 0.099 0.066 0.066 0.000 0.229

p.right[1] 0.461 0.058 0.058 0.348 0.575

d'.left[1] 2.720 0.307 0.307 2.118 3.322

Mean[2] 0.850 0.543 0.543 -0.215 1.915

Stddev[2] 1.475 0.308 0.309 0.871 2.080

p.left[2] 0.306 0.214 0.214 0.000 0.726

p.right[2] 0.843 0.141 0.141 0.566 1.000

t-1 -0.108 0.029 0.029 -0.164 -0.052

t-2 0.675 0.029 0.029 0.618 0.733

t-3 1.402 0.039 0.039 1.326 1.478

t-4 1.746 0.047 0.047 1.654 1.838

t-5 2.187 0.063 0.063 2.065 2.310

$Full.parametervector

 Foil Mixture-1 Mixture-2

Mean 0.000 0.509 0.850

Stddev 1.000 1.238 1.475

p.left NA 0.099 0.306

p.right NA 0.461 0.843

d'.left NA 2.720 2.720

d'.right NA 2.720 2.720

t-1 -0.108 -0.108 -0.108

t-2 0.675 0.675 0.675

t-3 1.402 1.402 1.402

t-4 1.746 1.746 1.746

t-5 2.187 2.187 2.187

$Data.and.Estimates

...

The table at the beginning of the output is presented because the flag test=T was set in the

estimation procedure. By consequence, the numeric gradient at the optimum is computed

using the function grad() from the R package numDeriv that was includes at the beginning

of the code file.

Siegfried Macho: SDT Models in R 136

As in the previous example, the numeric and symbolic gradients are very close, and, in

addition, the length of the gradient at the optimum is close to zero, indicating that a stationary

point was found.

The model identification string indicates that the correct model was used and the statistics

sections provides the relevant general statistical information (for details, cf. Chapter 2.2).

The value of G2 statistic corresponds exactly to that reported in Macho (2004, Table 3 on

p.89). The latter estimations were performed by using the solver of the program Excel. Both

programs lead to the same result (this was true for all fits performed).

The next section lists the free parameters, estimated values, estimated standard errors, and

confidence limits of the 95% confidence interval. In the present case, due to the equality

restrictions specified, only
left1d' was estimated, but not

right1d' ,
left2d' and

right2d' . In addition, due

to the presence of a foil distribution,
1 and

1 (the mean and standard deviation of the

Gaussian corresponding to the first pair of stimuli) have been estimated.

The standard errors of parameters are estimated by the two methods described above (cf.

Chapter 6.1). Both estimates of standard errors are identical indicating the absence of major

problems. Note, however, that some of the confidence intervals of the probability parameters

include, respectively, the minimal (0.0) and maximal (1.0) possible value.

The next section presents the full parameter vector. The three columns labeled Foil

Mixture-1 Mixture-2 contain the estimates for the foil distribution and for the two mixture

models representing strong and weak pairs. The NA for foil distribution indicate that the

respective parameters are not present. The last rows comprise the estimated thresholds. By

assumption these are identical for each of the partial models.

Figure 14: MIX.PD model: Plot of data and model predictions of Kelley and Wixted (2001,

Exp.2): (a) Configuration of densities and decision bounds; (b) ROC curves, (c)

z-ROC curves.

Comment:

Note that the condition number of the information matrix as well as the Jacobian matrix are

rather high. In addition, some of the estimated standard errors are also relatively high. This

indicates that it would be favorable to specify further constraints, e.g. equality constraints on

the means and standard deviations of the mixtures for strong and weak pairs.

Figure 14 exhibits the plots generated by the three calls of the plot command.

-5 0 5

0
.0

0
.1

0
.2

0
.3

0
.4

New

Weak 1

Weak 2

Weak 3

Strong 1

Strong 2

Strong 3

(a) (b) (c)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False Alarms

H
it
s

weak rearranged

weak intact

strong rearranged

strong intact

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

z(FA)

z
(H

)

weak rearranged

weak intact

strong rearranged

strong intact

Siegfried Macho: SDT Models in R 137

7. Working Examples: Gaussian mixture model with two distributions per signal (MIX.2)

The present chapter provides examples for fitting the Gaussian mixture model with two

distributions available per signal (cf. Chapter 3.4). This model though extremely powerful

usually requires the specification of complex constraints. Thus, for simple applications it is

favorable to employ the MIX.PD model which is much easier to use. The application of the

model is illustrated by means of three examples:

(1) The mixture model of DeCarlo (2007) is fitted to the data on the mirror effect of Exp.1B

of DeCarlo (2007);

(2) The source monitoring model is fitted to the source monitoring data from Hilford et al.

(2002);

(3) The data from Experiment 2 of Kelley and Wixted (2001) are fitted.

7.1 Example 1: Fitting the MIX.2 model to data on the mirror effect

The file MIX-2.5.1 (MIX-2 Mirror effect, DeCarlo, 2007).R contains the R-code for

fitting the data from Experiment 1A and 1B of DeCarlo (2007) on the mirror effect. The

model for modeling these data does not require the specification of complex functional

constraints (The same is true for the mixture models of DeCarlo (2008) for modeling process

dissociation data (cf. the file: MIX-2.4 (MIX-2 Process Dissociation, Yonelinas,

1994).R)).

This is the R-Code:

==

MIX-2.5.1: Examples of the documentation of Model MIX.2:

Modeling the mirror effect

Model: DeCarlo (2007), Model 2

Data: DeCarlo (2007)

Date of creation: May, 2010

Author: Siegfried Macho

==

library(numDeriv)

DIRECTORIES (PLEASE ADJUST TO YOUR PERSONAL SETTING)

DirSource <- "C:/Documents and Settings/macho/Statistik/_SDT-Models

(Version 2)/R-Code/"

DirSourceM <- "C:/Documents and Settings/macho/Statistik/_SDT-Models

(Version 2)/R-Code/Models/"

FILE NAME WITH THE MODEL

Model <- "SDT-MIX-2.R"

FILE NAMES FOR ESTIMATION

Main <- "SDT-Main.R"

Auxiliary <- "SDT-Auxiliary.R"

LOAD SOURCE FILES WITH SDT MODEL

source(paste(DirSourceM, Model, sep = ""))

LOAD SOURCE FILES WITH AUXILIARY AND ESTIMATION FUNCTIONS

source(paste(DirSource, Auxiliary, sep = ""))

source(paste(DirSource, Main, sep = ""))

NUMBER OF SIGNALS

n <- 4

Siegfried Macho: SDT Models in R 138

DATA: DeCARLO (2007) Exp.1A: NATIVE SPEAKERS

data.1A <- c(721, 1418, 1460, 860, 422, 159, # High frequency New

 1457, 1436, 991, 567, 398, 191, # Low frequency New

 211, 689, 1016, 1028, 894, 1202, # High frequency Old

 233, 457, 568, 729, 995, 2058) # Low frequency Old

DATA: DeCARLO (2007) Exp.1B: NON-NATIVE SPEAKERS

data.1B <- c(740, 791, 616, 390, 230, 173, # High frequency New

 899, 755, 504, 344, 236, 202, # Low frequency New

 317, 449, 448, 374, 405, 947, # High frequency Old

 215, 305, 309, 338, 478, 1295) # Low frequency Old

1. FIXED CONSTRAINTS

1.1 FIX MEAN OF HIGH FREQUENCY NEW

fixed.m <- matrix(c(0, 0,

 2, 4), nr = 2, byrow = T)

1.2 FIX SD OF EACH OF THE 8 DISTRIBUTIONS TO 1.0

fixed.sd <- matrix(c(1, 1, 1, 1, 1, 1, 1, 1,

 3, 5, 13, 15, 23, 25, 33, 35), nr = 2, byrow = T)

1.3 FIX PROBABILITY OF HIGH FREQUENCY NEW (TO AN ARBITRARY VALUE)

fixed.p <- matrix(c(0,

 1), nr = 2, byrow = T)

1.4 COMBINE FIXED CONSTRAINTS

fixed <- cbind(fixed.m, fixed.sd, fixed.p)

2. EQUALITY CONSTRAINTS: IDENTICAL THRESHOLDS FOR ALL SIGNALS

ident <- matrix(c(6:10, 6:10, 6:10,

 6:10+10, 6:10+20, 6:10+30), nr = 2, byrow = T)

cat("\n---\n")

cat(" MIX-2: DeCarlo (2007): Exp.1A:")

cat("\n---\n")

Opti1A.Obj <- SDT.Estimate(data = data.1A, Model.Id = "MIX.2", n = n, fixed

= fixed, ident = ident, test = T)

Stat1A.Obj <- SDT.Statistics(Opti1A.Obj)

print(Stat1A.Obj)

cat("\n---\n")

cat(" MIX-2: DeCarlo (2007): Exp.1B:")

cat("\n---\n")

Opti1B.Obj <- SDT.Estimate(data = data.1B, Model.Id = "MIX.2", n = n, fixed

= fixed, ident = ident, test = T)

Stat1B.Obj <- SDT.Statistics(Opti1B.Obj)

print(Stat1B.Obj)

3. RE-FIT MODEL WITH ADDITIONAL CONSTRAINTS

RESTRICTION: HN = HO' = LO' for Exp.1B

fixed.r <- matrix(c(0, 0,

 22, 32), nr = 2, byrow = T)

fixed <- cbind(fixed, fixed.r)

RESTRICTION: HO = LO for Exp.2

Siegfried Macho: SDT Models in R 139

ident.r <- matrix(c(24,

 34), nr = 2, byrow = T)

ident <- cbind(ident, ident.r)

cat("\n---\n")

cat(" MIX-2: DeCarlo (2007): Exp.1B:\n")

cat(" Restrictions: HO' = LO' = HN\n")

cat(" HO = LO")

cat("\n---\n")

Opti1C.Obj <- SDT.Estimate(data = data.1B, Model.Id = "MIX.2", n = n, fixed

= fixed, ident = ident, test = T)

Stat1C.Obj <- SDT.Statistics(Opti1C.Obj)

print(Stat1C.Obj)

PLOT DENSITY CURVES OF EXP.1A

SDT.Plot(Opti1A.Obj, cols = rep(1:4, each = 2), ltys = rep(c(1,2), 4),

SDT.legend = list(text = c("HF", "LF New", "HF Old", "LF Old"), cols = 1:4,

ltys = rep(1, 4)))

PLOT ROC CURVES

ROC with data

SDT.Plot(Opti1A.Obj, cols = c(3, 4, 6),

SDT.legend = list(text = c("LF New", "HF Old", "LF Old"), cols = c(3, 4,

6)), option = "ROC+")

z-ROC with data

SDT.Plot(Opti1A.Obj, cols = c(3, 4, 6),

SDT.legend = list(text = c("LF New", "HF Old", "LF Old"), cols = c(3, 4,

6)), option = "zROC+")

The code comprises the following sections:

2. The relevant source files (SDT-Main.R, SDT-Auxiliary.R, and SDT-MIX-PD.R) are

loaded. This section is contained within the lines:

DIRECTORIES (PLEASE ADJUST TO YOUR PERSONAL SETTING)

...
source(paste(DirSource, Main, sep = ""))

3. The number of signals is specified

n <- 4

4. The two data sets are specified: This section is contained within the lines:

DATA: DeCARLO (2007) Exp.1A: NATIVE SPEAKERS

...
 348, 356, 455, 552, 510, 1379) # Bottom

5. Constraints on parameters are specified: Fixed and equality are required.

(i) Fixed constraints:

Two types of fixed constraints have to be specified: First, in order to fix the location

of the setup both means of the first distributions (representing new high frequency

words) are fixed to 0:

fixed.m <- matrix(c(0, 0,

 2, 4), nr = 2, byrow = T)

Siegfried Macho: SDT Models in R 140

Second, The standard deviations of all eight Gaussians are set to 1.0 (This also fixes

the scale of the setup):

fixed.sd <- matrix(c(1, 1, 1, 1, 1, 1, 1, 1,

 3, 5, 13, 15, 23, 25, 33, 35), nr = 2, byrow =

T)

Finally, the probability parameter of the first signal has to be fixed to an arbitrary

value (in the present case to the value 0):

fixed.p <- matrix(c(0,

 1), nr = 2, byrow = T)

These constraints are combined into a single matrix of fixed constraints:

fixed <- cbind(fixed.m, fixed.sd, fixed.p)

(ii) Equality constraints:

The threshold parameters for each signal assumed to be equal. This amounts to the

fact that a single set of thresholds is employed:

ident <- matrix(c(6:10, 6:10, 6:10,

 6:10+10, 6:10+20, 6:10+30), nr = 2, byrow = T)

6. The model is fit to the data of Experiment 1A and 1B using the same set of constraints and

the test statistics are computed and printed:

Opti1A.Obj <- SDT.Estimate(data = data.1A, Model.Id = "MIX.2", n = n, fixed

= fixed, ident = ident, test = T)

Stat1A.Obj <- SDT.Statistics(Opti1A.Obj)

print(Stat1A.Obj)

...
Opti1B.Obj <- SDT.Estimate(data = data.1B, Model.Id = "MIX.2", n = n, fixed

= fixed, ident = ident, test = T)

Stat1B.Obj <- SDT.Statistics(Opti1B.Obj)

print(Stat1B.Obj)

7. A restricted model is specified by adding fixed and equality constraints to the existing

ones and the model with these additional constraints is fitted to the data of Exp.1B:

RESTRICTION: HN = HO' = LO' for Exp.1B

fixed.r <- matrix(c(0, 0,

 22, 32), nr = 2, byrow = T)

fixed <- cbind(fixed, fixed.r)

RESTRICTION: HO = LO for Exp.2

ident.r <- matrix(c(24,

 34), nr = 2, byrow = T)

ident <- cbind(ident, ident.r)

...
Opti1C.Obj <- SDT.Estimate(data = data.1B, Model.Id = "MIX.2", n = n, fixed

= fixed, ident = ident, test = T)

Stat1C.Obj <- SDT.Statistics(Opti1C.Obj)

print(Stat1C.Obj)

8. Three plots are provided:

(i) The configuration of density curves is plotted:

SDT.Plot(Opti1A.Obj, cols = rep(1:4, each = 2), ltys = rep(c(1,2), 4),

SDT.legend = list(text = c("HF", "LF New", "HF Old", "LF Old"), cols = 1:4,

ltys = rep(1, 4)))

(ii) The ROC curves with the data are plotted:

Siegfried Macho: SDT Models in R 141

SDT.Plot(Opti1A.Obj, cols = c(3, 4, 6),

SDT.legend = list(text = c("LF New", "HF Old", "LF Old"), cols = c(3, 4,

6)), option = "ROC+")

(iii) The z-ROC curves with the data are plotted:

SDT.Plot(Opti1A.Obj, cols = c(3, 4, 6),

SDT.legend = list(text = c("LF New", "HF Old", "LF Old"), cols = c(3, 4,

6)), option = "zROC+")

The following excerpt shows the main portion of the output of fitting the unrestricted model

to the data of Exp.2B:

===

 Symbolic and numeric gradients at the optimum:

 Length of difference vector : 1.669982e-06

 Length of gradient at optimum: 0.0001051239

===

 Symbolic Numeric Difference

t-1[1] -1.168e-05 -1.154e-05 -1.40e-07

t-2[1] -3.180e-06 -1.830e-06 -1.35e-06

t-3[1] -3.293e-05 -3.308e-05 1.50e-07

t-4[1] -6.026e-05 -6.029e-05 3.00e-08

t-5[1] 7.531e-05 7.536e-05 -6.00e-08

p[2] 5.440e-06 5.490e-06 -5.00e-08

Mean-1[2] 4.650e-06 4.600e-06 5.00e-08

Mean-2[2] 1.823e-05 1.815e-05 8.00e-08

p[3] 5.700e-07 5.000e-07 7.00e-08

Mean-1[3] -5.200e-06 -5.180e-06 -2.00e-08

Mean-2[3] 6.870e-06 7.280e-06 -4.10e-07

p[4] 1.880e-06 1.870e-06 1.00e-08

Mean-1[4] -6.700e-06 -6.600e-06 -1.00e-07

Mean-2[4] 3.250e-06 4.110e-06 -8.60e-07

===

$Model.description

[1] "Mixture Model: Mixtures of two normal distributions per signal"

$Statistics

 Statistic

log L -19394.494

X^2 7.095

G^2 7.129

df 6.000

p(Y > X^2) 0.312

p(Y > G^2) 0.309

AIC 38816.988

BIC 38920.202

CAICF 39034.059

ICOMP 38842.862

ICOMP.R 38811.278

Free Parameters 14.000

Length of gradient at optimum 0.000

Rank of Hessian 14.000

Condition number of information matrix 27432.988

Rank of model matrix: t(J) * J 14.000

Condition number of model matrix 35290.090

$Free.parameters

 Value SE(delta method) SE(numerical) CFI-95(Lower) CFI-95(Upper)

t-1[1] -0.674 0.025 0.025 -0.723 -0.626

t-2[1] 0.061 0.022 0.022 0.019 0.104

t-3[1] 0.609 0.023 0.023 0.563 0.654

t-4[1] 1.074 0.027 0.027 1.022 1.126

t-5[1] 1.591 0.036 0.036 1.521 1.661

p[2] 0.300 0.213 0.213 0.000 0.718

Mean-1[2] 0.665 0.372 0.372 -0.065 1.394

Siegfried Macho: SDT Models in R 142

Mean-2[2] -0.417 0.195 0.195 -0.800 -0.034

p[3] 0.427 0.068 0.068 0.294 0.561

Mean-1[3] 1.947 0.204 0.204 1.547 2.347

Mean-2[3] 0.224 0.101 0.101 0.027 0.422

p[4] 0.734 0.045 0.045 0.646 0.821

Mean-1[4] 1.802 0.097 0.097 1.613 1.992

Mean-2[4] -0.035 0.144 0.144 -0.318 0.248

$Full.parametervector

 Mixture-1 Mixture-2 Mixture-3 Mixture-4

p 0.000 0.300 0.427 0.734

Mean-1 0.000 0.665 1.947 1.802

Stddev-1 1.000 1.000 1.000 1.000

Mean-2 0.000 -0.417 0.224 -0.035

Stddev-2 1.000 1.000 1.000 1.000

t-1 -0.674 -0.674 -0.674 -0.674

t-2 0.061 0.061 0.061 0.061

t-3 0.609 0.609 0.609 0.609

t-4 1.074 1.074 1.074 1.074

t-5 1.591 1.591 1.591 1.591

...

The fit statistics (G2, AIC and BIC) are nearly identical to those reported by DeCarlo (2007,

Table 2, on p.23: G2 = 7.16, AIC = 38817, and BIC = 38920)].

The high condition numbers of the observed information matrix as well as of the model

matrix indicate that the model might be too complex for the given data set.

Figure 15 displays the configuration of density curves as well as the ROC and z-ROC curves

of Experiment 1A generated by the plot commands (cf. DeCarlo, 2007, Figure 3 on p.24).

Figure 15: MIX.2 model: Plot of data and model predictions of Exp.1A of DeCarlo (2007);

(a) Configuration of densities and decision bounds; (b) ROC curves, (c) z-ROC

curves.

7.2 Example 2: Fitting the MIX.2 model to source monitoring data

The file MIX-2.1 (MIX-2 Source Monitoring, Hilford).R contains the R-code for

fitting the data from the three experiments of Hilford et al. (2002). The code looks like this:
==

MIX-2.1: Examples of the documentation of Model MIX.2:

Modeling source monitoring data from Hilford et al. (2002)

Date of creation: July, 2009

Author: Siegfried Macho

==

library(numDeriv)

DIRECTORIES (PLEASE ADJUST TO YOUR PERSONAL SETTING)

-4 -2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

HF

LF New

HF Old

LF Old

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

LF New

HF Old

LF Old

(a) (b) (c)
-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

LF New

HF Old

LF Old

Siegfried Macho: SDT Models in R 143

DirSource <- "C:/Documents and Settings/macho/Statistik/_SDT-Models

(Version 2)/R-Code/"

DirSourceM <- "C:/Documents and Settings/macho/Statistik/_SDT-Models

(Version 2)/R-Code/Models/"

FILE NAME WITH THE MODEL

Model <- "SDT-MIX-2.R"

FILE NAMES FOR ESTIMATION

Main <- "SDT-Main.R"

Auxiliary <- "SDT-Auxiliary.R"

LOAD SOURCE FILES WITH SDT MODEL

source(paste(DirSourceM, Model, sep = ""))

LOAD SOURCE FILES WITH AUXILIARY AND ESTIMATION FUNCTIONS

source(paste(DirSource, Auxiliary, sep = ""))

source(paste(DirSource, Main, sep = ""))

DATA: HILFORD ET AL. (2002), Exp.1

data.1 <- c(264, 133, 159, 116, 80, 33, # Male voice

 25, 62, 105, 128, 145, 294) # Female voice

DATA: HILFORD ET AL. (2002), Exp.2

data.2 <- c(1358, 550, 701, 585, 466, 300, # Male

 278, 477, 598, 614, 589, 1404) # Female

DATA: HILFORD ET AL. (2002), Exp.3

data.3 <- c(1313, 538, 524, 529, 363, 333, # Top

 348, 356, 455, 552, 510, 1379) # Bottom

1. FIXED CONSTRAINTS

1.1 FIX MEANS OF THE SECOND DISTRIBUTION OF EACH MIXTURE TO 0

fixed.m <- matrix(c(0, 0,

 4, 4+10), nr = 2, byrow = T)

1.2 FIX ALL SD TO 1.0

fixed.sd <- matrix(c(1, 1, 1, 1,

 3, 5, 3+10, 5+10), nr = 2, byrow = T)

1.3 FUNCTIONAL CONSTRAINTS ON MEANS (MUST BE INCLUDED)

fixed.fct <- matrix(c(2,

 2), nr = 2, byrow = T)

1.4 COMBINE FIXED CONSTRAINTS

fixed <- cbind(fixed.m, fixed.sd, fixed.fct)

2. EQUALITY CONSTRAINTS: IDENTICAL PROBABILITIES AS WELL AS IDENTICAL

THRESHOLDS

ident <- matrix(c(1, 6:10,

 11, 6:10+10), nr = 2, byrow = T)

3. FUNCTIONAL CONSTRAINT: m.A = -m.B (first distribution)

fct.m <- function(par)

{

 tindex <- 2 # Target index: m.A

 sindex <- 2 + 10 # Source index: m.B

Siegfried Macho: SDT Models in R 144

 par[tindex] <- -par[sindex]

 # Define Gradient function

 gr.fct <- function(grad, par)

 {

 grad[sindex] <- grad[sindex] - grad[tindex]

 return(grad)

 }

 attr(par, "SDT.gradient") <- gr.fct # Gradient

 return(par)

}

4 DEFINE FUNCTION TO COMPUTE Jacobian AND ASSIGN IT TO THE FUNCTION

J.fct <- function(par)

{

 J <- diag(length(par))

 J[2, 12] <- -1

 J

}

attr(fct.m, "SDT.Jacobian") <- J.fct # Jacobian matrix

cat("\n---\n")

cat(" MIX-2: Hilford et al. (2002): Exp.1")

cat("\n---\n")

Opti1.Obj <- SDT.Estimate(data = data.1, Model.Id = "MIX.2", fixed = fixed,

ident = ident, functional = fct.m, test = T)

Stat1.Obj <- SDT.Statistics(Opti1.Obj)

print(Stat1.Obj)

cat("\n---\n")

cat(" MIX-2: Hilford et al. (2002): Exp.2")

cat("\n---\n")

Opti2.Obj <- SDT.Estimate(data = data.2, Model.Id = "MIX.2", fixed = fixed,

ident = ident, functional = fct.m, test = T)

Stat2.Obj <- SDT.Statistics(Opti2.Obj)

print(Stat2.Obj)

cat("\n---\n")

cat(" MIX-2: Hilford et al. (2002): Exp.3")

cat("\n---\n")

Opti3.Obj <- SDT.Estimate(data = data.3, Model.Id = "MIX.2", fixed = fixed,

ident = ident, functional = fct.m, test = T)

Stat3.Obj <- SDT.Statistics(Opti3.Obj)

print(Stat3.Obj)

PLOT GAUSSIAN DISTRIBUTIONS AND THRESHOLDS, AS WELL AS ROC CURVES FOR

EXP.3:

#--

COMMENT ON THE ORDERING OF GAUSSIAN MODELS:

The ordering is: 1. First model of Signal 1 (m = -1.745, sd = 1.0)

2. Second model of Signal 1 (m = 0, sd = 1.0)

3. First model of Signal 2 (m = 1.745, sd = 1.0)

4. Second model of Signal 2 (m = 0, sd = 1.0)

The second model of Signal 1 is masked be the second model of Signal 2

#--

PLOT DENSITY CURVES

SDT.Plot(Opti3.Obj, cols = c(4, 3, 6, 3), SDT.legend = list(text =

c("left", "no info", "right"), cols = c(4, 3, 6)))

Siegfried Macho: SDT Models in R 145

PLOT ROC CURVES

Plot ROC curve with data

SDT.Plot(Opti3.Obj, cols = 3, labels = c("False Alarms", "Hits"), option =

"ROC+")

Plot z-ROC curve with data

SDT.Plot(Opti3.Obj, cols = 3, labels = c("z(FA)", "z(H)"), option =

"zROC+")

The code comprises the following main sections.

1. The relevant source files (SDT-Main.R, SDT-Auxiliary.R, and SDT-MIX-PD.R) are

loaded. This section is contained within the lines:

DIRECTORIES (PLEASE ADJUST TO YOUR PERSONAL SETTING)

...
source(paste(DirSource, Main, sep = ""))

2. The three data sets are specified: This section is contained within the lines:

DATA: HILFORD ET AL. (2002), Exp.1

...
 348, 356, 455, 552, 510, 1379) # Bottom

3. Constraints on parameters are specified. Note that fixed, equality, as well as functional

constraints (that are neither fixed nor equality constraints) are specified.

(i) Fixed constraints:

Two types of fixed constraints have to be specified: First, in order to fix the scale the

means of the second distributions are fixed to 0, for both signals. These distributions

may be conceived of as the “middle” distribution.

Second, The standard deviations of all four Gaussians are set to 1.0.

Additionally to these types of fixed constraints the parameter subjected to the func-

tional constraint (see below) is also added to the parameters of fixed constraints.

Finally, these types of fixed constraints are combined into a single matrix.

(ii) Equality constraints:

Two types of equality constraints are specified: First, the probabilities of the employ-

ing the first distribution are equated for the two types of signals.

Second, the threshold parameters assigned to the two types of signals are equated.

(iii) Functional constraint:

The first distribution associated with a signal are assumed to be the “left” distribution

for the first signal and the “right” distribution for the second signal. The two distri-

butions are assumed to be displaced from the “middle” distribution (located at 0, see

above) by the same amount but with different direction. Thus
2111 −= (the first

index indicates the signal and the second one the distribution per signal). This sort of

constraint is implemented by means of the function fct.m.

4. The function computing the Jacobian matrix of the functional constraint is computed:

J.fct <- function(par)

{

 J <- diag(length(par))

 J[2, 12] <- -1

 J

}

attr(fct.m, " SDT.Jacobian") <- J.fct # Jacobian matrix

Siegfried Macho: SDT Models in R 146

The function generates and identity matrix with dimension identical to the length of the

parameter vector. Then a –1 is put into the matrix: The row index of the entry corresponds

to the position of the target parameters (within the full parameter vector) and the column

index corresponds to the position of the source parameter.

5. The three data sets are estimated, statistics are computed, and the result is printed. For

example, for modeling the data of Experiment 1, the following piece of code is relevant:

Opti1.Obj <- SDT.Estimate(data = data.1, Model.Id = "MIX.2", fixed = fixed,

ident = ident, functional = fct.m, test = T)

Stat1.Obj <- SDT.Statistics(Opti1.Obj)

print(Stat1.Obj)

The first command performs the estimation. The results of this process are stored in the

object Opti1.Obj. Note that the number of signals (n = 2) was not passed to the estimation

procedure because n = 2 is the default value.

The second command results in the computation of relevant statistics that are stored in the

object Stat1.Obj.

Finally, the content of Stat1.Obj is printed.

The commands for estimating the other data sets are analogous. They main difference

consists in the fact that the data sets data.2 and data.3 are passed (instead of data.1) to

the estimation procedure.

6. The Gaussian density functions with the thresholds as well as ROC and z-ROC curves are

plotted:

(iii) Density functions and thresholds:

SDT.Plot(Opti3.Obj, cols = c(4, 3, 6, 3), SDT.legend = list(text =

c("left", "no info", "right"), cols = c(4, 3, 6)))

As noted in the comment in the command file the second Gaussian distribution of Signal 1

is masked by the Gaussian distribution of Signal 1 due to the fact that the parameters of

both distributions a specified to be equal.

(iv) ROC curves of model and data:

SDT.Plot(Opti3.Obj, cols = 3, labels = c("False Alarms", "Hits"), option =

"ROC+")

(v) z-ROC curves of model and data:

SDT.Plot(Opti3.Obj, cols = 3, labels = c("z(FA)", "z(H)"), option =

"zROC+")

The output for the data of Exp.1 looks like this:
--

 MIX-2: Hilford et al. (2002): Exp.1

--

===

 Symbolic and numeric gradients at the optimum:

 Length of difference vector : 1.625848e-07

 Length of gradient at optimum: 8.807141e-06

===

 Symbolic Numeric Difference

p[1] 3.60e-07 3.60e-07 0.0e+00

t-1[1] -1.51e-06 -1.51e-06 1.0e-08

t-2[1] 4.62e-06 4.61e-06 1.0e-08

t-3[1] -5.92e-06 -6.08e-06 1.6e-07

t-4[1] 4.08e-06 4.08e-06 1.0e-08

t-5[1] -1.44e-06 -1.44e-06 1.0e-08

Mean-1[2] 3.00e-07 3.00e-07 0.0e+00

Siegfried Macho: SDT Models in R 147

===

$Model.description

[1] "Mixture Model: Mixtures of two normal distributions per signal"

$Statistics

 Statistic

log L -2482.840

X^2 2.113

G^2 2.108

df 3.000

p(Y > X^2) 0.549

p(Y > G^2) 0.550

AIC 4979.680

BIC 5017.075

CAICF 5071.222

ICOMP 4973.280

ICOMP.R 4970.388

Free Parameters 7.000

Rank of Hessian 7.000

Length of gradient at optimum 0.000

Condition number of information matrix 80.891

Rank of model matrix: t(J) * J 7.000

Condition number of model matrix 165.849

$Free.parameters

 Value SE(delta method) SE(numerical) CFI-95(Lower) CFI-95(Upper)

p[1] 0.474 0.029 0.029 0.417 0.532

t-1[1] -1.543 0.086 0.086 -1.712 -1.374

t-2[1] -0.835 0.056 0.056 -0.946 -0.725

t-3[1] -0.078 0.048 0.048 -0.172 0.015

t-4[1] 0.603 0.053 0.053 0.500 0.707

t-5[1] 1.373 0.080 0.080 1.217 1.530

Mean-1[2] 1.927 0.177 0.177 1.581 2.273

$Full.parametervector

 Mixture-1 Mixture-2

p 0.474 0.474

Mean-1 -1.927 1.927

Stddev-1 1.000 1.000

Mean-2 0.000 0.000

Stddev-2 1.000 1.000

t-1 -1.543 -1.543

t-2 -0.835 -0.835

t-3 -0.078 -0.078

t-4 0.603 0.603

t-5 1.373 1.373

$Data.and.Estimates

 Observed Expected Probabilities Residuals Std.Resid.(analytical)

Data[1, 1] 264 267.246 0.340 -0.199 -0.662

Data[1, 2] 133 137.245 0.175 -0.362 -0.930

Data[1, 3] 159 149.318 0.190 0.792 1.436

Data[1, 4] 116 116.367 0.148 -0.034 -0.055

Data[1, 5] 80 79.653 0.101 0.039 0.080

Data[1, 6] 33 35.172 0.045 -0.366 -0.683

Data[2, 1] 25 24.591 0.032 0.083 0.149

Data[2, 2] 62 56.926 0.075 0.672 1.192

Data[2, 3] 105 113.532 0.150 -0.801 -1.440

Data[2, 4] 128 128.274 0.169 -0.024 -0.040

Data[2, 5] 145 146.129 0.193 -0.093 -0.239

Data[2, 6] 294 289.548 0.381 0.262 0.848

Note that the result is exactly the same as that of MIX.PD model (cf. Chapter 6.1), with

respect to statistics, estimated parameters, estimated standard errors, confidence intervals, and

predicted frequencies and probabilities. Only the name of the parameters are different. By

Siegfried Macho: SDT Models in R 148

consequence, the discussion of the results is analogously to that of the MIX.PD model and

will not be repeated here.

A look on the section $Full.parametervector reveals that the constraints on parameters have

been specified properly:

(i) The fixed constraints on the means of the second distributions (02212 ==) as well as

on the standard deviations (122211211 ====);

(ii) The equality constraints on probabilities
21 = as well as on thresholds for the two

signals
2111 tt = ,

2212 tt = , 2313 tt = ,
2414 tt = , and 2515 tt = ;

(iii) The function constraints on the means of the first distributions:
2111 −= .

The plots generated by the command SDT.Plot is shown in Figure 16.

Figure 16 displays the plots generated by the plot commands.

Figure 16: MIX.2 model: Plot of data and model predictions of Exp.3 of Hilford et al (2003):

(a) Configuration of densities and decision bounds; (b) ROC curves, (c) z-ROC

curves.

Comment:

The order of the density functions plotted is different from that of the MIX.PD model (cf.

Figure 13). This is due to the parameterization: The first signal is represented by the left (red)

and middle (blue) distribution whereas the second signal is represented by the right (green)

and middle distribution.

7.3 Example 3: Fitting the MIX.2 model to data on associative recognition

The file MIX-2.2 (MIX-2 Associative Recognition, Exp.2).R contains the R-code for

fitting the model to the data from Experiment 2 of Kelley and Wixted (2001). For this exam-

ple, the constraints are specified in such a way that the outcome of the MIX.2 model can be

compared directly with that of MIX.PD shown above.

The relevant code, that is, the specification of the data, the specification of restrictions, and

the commands for fitting the model and computing test statistics are shown below (The file

contains additional code that lists the names of the parameter in the order they occur within

the parameter vector. This may be helpful for the specification of constraints. This piece of

code is not shown here).

1. Specification of the data:

The data are presented in the same order as for the MIX.PD model (otherwise the ROC

plots would not be correct)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False Alarms

H
it
s

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

z(FA)

z
(H

)

-4 -2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

left

no info

right

(a) (b) (c)

Siegfried Macho: SDT Models in R 149

data <- c(879, 553, 345, 61, 54, 28, # Exp.2: Lure items

 179, 109, 82, 45, 28, 37, # Exp.2: Weak Items, rearranged

 81, 69, 62, 31, 37, 200, # Exp.2: Weak Items, intact

 215, 82, 60, 31, 31, 61, # Exp.2: Strong Items, rearranged

 21, 24, 33, 21, 33, 348) # Exp.2: Strong Items, intact

2. Specification of constraints:

The hard work when using the MIX.2 model consists in specifying the relevant constraints

on parameters (As already noted, without imposing constraints on parameters the model is

not identified). We begin with the specification of fixed constraints:

1. SPECIFY FIXED CONSTRAINTS

1.1 FIX PARAMETERS FOR THE LURE DISTRIBUTION: p.1 = 0, m.11 = m.12 = 0,

sd.11 = sd.12 = 1

p.1 m.11 m.12 sd.11 sd.12

fixed.lure <- matrix(c(0, 0, 0, 1, 1,

 1, 2, 4, 3, 5), nr = 2, byrow = T)

1.2 FUNCTIONAL CONSTRAINTS ON MEANS (SEE BELOW)

m.31 m.32 m.41 m.51 m.52

fixed.fct <- matrix(c(0, 0, 0, 0, 0,

 22, 24, 32, 42, 44), nr = 2, byrow = T)

1.3 COMBINE FIXED CONSTRAINTS

fixed <- cbind(fixed.lure, fixed.fct)

The fixed constraints consist of two types of constraints:

(i) The parameters of the model used for modeling the data from the lure signal are fixed

completely (cf. the matrix fixed.lure). Specifically, the two means are fixed to 0

and the standard distributions of the two Gaussians (that are assigned to each signal)

were fixed to 1.0. In addition, the probability parameter was fixed to 0 (Note that it

may be fixed to any arbitrary value because the two mixing distributions are equal).

(ii) The parameters that are subjected to functional constraints are declared as fixed (cf.

the matrix fixed.fct).

The two matrices of fixed constraints are then combined into a single matrix fixed.

Second, equality constraints were specified:

2. SPECIFY EQUALITY CONSTRAINTS: IDENTICAL PROBABILITIES AND THRESHOLD

IDENTICAL

2.1 IDENTICAL THRESHOLDS

ident.th <- matrix(c(6:10, 6:10, 6:10, 6:10,

 6:10+10, 6:10+20, 6:10+30, 6:10+40), nr = 2, byrow = T)

2.2 IDENTICAL SD FOR STRONG SIGNALS AND IDENTICAL SD FOR WEAK SIGNALS

ident.sd <- matrix(c(13, 13, 13, 13+20, 13+20, 13+20,

 13+10, 15, 15+10, 13+30, 15+20, 15+30), nr = 2,

byrow = T)

2.3 COMBINE EQUALITY CONSTRAINTS

ident <- cbind(ident.th, ident.sd)

There are also two different kinds of equality constraints:

(i) The standard deviations of the four distributions for modeling the weak signals are

equated and the same is done for the four distributions for modeling the strong signals

(cf. the matrix ident.sd).

(ii) The thresholds associated with different signals are equated (cf. the matrix ident.th).

Siegfried Macho: SDT Models in R 150

The two matrices of equality constraints are then combined into a single matrix ident.

Third, functional constraints are specified. This piece of the code is certainly the most

intricate one:

3. SPECIFY FUNCTIONAL CONSTRAINTS

fct.m <- function(par)

{

 # Positions of target means

 m.31 <- 22 # Target index: m.31

 m.32 <- 24 # Target index: m.32

 m.41 <- 32 # Target index: m.41

 m.51 <- 42 # Target index: m.51

 m.52 <- 44 # Target index: m.52

 # Positions of source means

 m.21 <- 12 # Source index: m.21

 m.22 <- 14 # Source index: m.22

 m.42 <- 34 # Source index: m.42

 # Constraints:

 par[m.32] <- par[m.22] # Fix "middle" distributions, weak pair

 par[m.52] <- par[m.42] # Fix "middle" distributions, strong pair

 par[m.31] <- par[m.22] + par[m.22] - par[m.21] # Right = middle +

d'.ass (weak)

 par[m.41] <- par[m.42] + par[m.21] - par[m.22] # Left = middle -

d'.ass (strong)

 par[m.51] <- par[m.42] - par[m.21] + par[m.22] # Right = middle +

d'.ass (strong)

 # Define Gradient function

 gr.fct <- function(grad, par)

 {

 grad[m.21] <- grad[m.21] - grad[m.31] + grad[m.41] - grad[m.51]

 grad[m.22] <- grad[m.22] + 2*grad[m.31] + grad[m.32] - grad[m.41] +

grad[m.51]

 grad[m.42] <- grad[m.42] + grad[m.52] + grad[m.41] + grad[m.51]

 return(grad)

 }

 attr(par, "SDT.gradient") <- gr.fct # Gradient

 return(par)

}

The following steps are performed within the function:

(i) The positions of the target and source parameters are specified. The names of the

indices indicate the parameter: m.ij indicates the j-th mean of the i-th signal, for

example m.31 denotes the position of the mean of the first distribution for the third

signal.

A parameter may function either as a target or as source of a constraint but not as

both.

(ii) It was assumed that the second distributions assigned to a signal always function as

the “middle” distribution (as in the MIX.PD model). In addition the “middle” distri-

butions are the same for intact and rearranged items. Thus the means of the second

distribution of the first and second signal must be equated, and, similarly, the means

of the third and fourth distribution must be identical (Note that the standard deviations

of the distributions for weak and strong pairs were equated by means of equality con-

straints). This is performed by means of the two commands:

Siegfried Macho: SDT Models in R 151

par[m.32] <- par[m.22] # Fix "middle" distributions, weak pair

par[m.52] <- par[m.42] # Fix "middle" distributions, strong pair

(iii) It was further assumed that the first distribution assigned to a signal functions either as

the “left” distribution or as the “right” distribution. Specifically, for weak items the

first distribution assigned to the first signal functions as the “left” and the first

distribution assigned to the second signal works as the “right” distribution. Similarly,

for strong items the first distribution assigned to the third signal functions as the “left”

and the first distribution assigned to the forth signal works as the “right” distribution.

Now, the restriction that the displacement d’ of the “left” and “right” distributions form

the “middle” distributions are the same has to be implemented for strong and weak pairs.

The displacement
'

leftd for the weak items is given by: 1211

'

leftd −= . This quantity has to

be subtracted (in case of “right” distributions) or added (in case of a “left” distribution) to

the means of the “middle” distributions. This is done by the three commands:
par[m.31] <- par[m.22] + par[m.22] - par[m.21] # Right = middle + d'.ass (weak)

par[m.41] <- par[m.42] + par[m.21] - par[m.22] # Left = middle - d'.ass (strong)

par[m.51] <- par[m.42] - par[m.21] + par[m.22] # Right = middle + d'.ass (strong)

The first command specifies the mean of the “right” distribution for the weak items, the

second one determines the mean of ”left” distribution of the strong items and the final one

provides the mean of the “right” distribution of the strong items.

(iv) The gradient must be adjusted. Specifically, the partial derivatives of the log likely-

hood with respect to the source parameters m.21, m.22, and m.42 must be adapted. In

the present case this is very simple: One has to add to the existing derivative the

derivatives of those target parameters that are influenced by the respective source

parameter. If the source parameter is added to the target the sign of the derivative is

positive, and if the source parameter is subtracted, the sign of the respective derivative

is negative.

Take, for example, parameter m.22. The partial derivative is adjusted in the following

way:

grad[m.22] <- grad[m.22] + 2*grad[m.31] + grad[m.32] - grad[m.41] + grad[m.51]

The derivative grad[m.32] is added because of the restriction: par[m.32] <- par[m.22].

The derivative 2*grad[m.31] is added due to the restriction: par[m.31] <- par[m.22]

+ par[m.22] - par[m.21]. (note that m.22 enters twice).

The derivative grad[m.41] is subtracted because of the restriction: par[m.41] <-

par[m.42] + par[m.21] - par[m.22].

Finally, the derivative grad[m.51] is added due to the restriction: par[m.51] <-

par[m.42] - par[m.21] + par[m.22].

(v) The function computing the Jacobian matrix of the functional constraints is specified:

4. SPECIFY JACOBIAN ASSOCIATED WITH FUNCTIONAL CONSTRAINTS

J.fct <- function(par)

{

 # Positions of target means

 m.31 <- 22 # Target index: m.31

 m.32 <- 24 # Target index: m.32

 m.41 <- 32 # Target index: m.41

 m.51 <- 42 # Target index: m.51

 m.52 <- 44 # Target index: m.52

 # Positions of source means

 m.21 <- 12 # Source index: m.21

 m.22 <- 14 # Source index: m.22

Siegfried Macho: SDT Models in R 152

 m.42 <- 34 # Source index: m.42

 J <- diag(length(par))

 # Implement Constraints:

 J[m.32, m.22] <- 1

 J[m.52, m.42] <- 1

 J[m.31, m.22] <- 2

 J[m.31, m.21] <- -1

 J[m.41, m.42] <- 1

 J[m.41, m.21] <- 1

 J[m.41, m.22] <- -1

 J[m.51, m.42] <- 1

 J[m.51, m.21] <- -1

 J[m.51, m.22] <- 1

 J

}

attr(fct.m, "SDT.Jacobian") <- J.fct # Jacobian matrix

As for the previous examples the positions of the target parameters make up the row

indices and the positions of the source parameters make up the column indices of the

relevant entries.

3. Estimation and computation of test statistics: After the specification of the constraints it is

quite simple to estimate the model and compute the statistic. This is performed as usual,

by the following pair of commands:

Opti.Obj <- SDT.Estimate(data = data, Model.Id = "MIX.2", n = n, fixed =

fixed, ident = ident, functional = fct.m, test = T)

Stat.Obj <- SDT.Statistics(Opti.Obj)

The first command results in the estimation of the model, with the results contained in

the object Opti.Obj. The second command leads to the computation of the test statistics

that is stored in the object Stat.Obj.

4. Plots of the density and ROC curves with data are generated by three calls of the plot

function SDT.Plot: (the resulting plots are identical to that of Figure 14).

PLOT GAUSSIAN DISTRIBUTIONS AND THRESHOLDS:

PLOT DENSITY CURVES

SDT.Plot(Opti.Obj, cols = c(6, 6, 3, 3, 3, 3, 4, 4, 4, 4), SDT.legend =

list(text = c("New", paste("Weak", 1:3),paste("Strong", 1:3)), cols =c(6,

3, 3, 3, 4, 4, 4)))

PLOT ROC CURVES

Plot ROC curve with data

SDT.Plot(Opti.Obj, cols = c(3, 3, 4, 4), ltys = c(2, 1, 2, 1), labels =

c("False Alarms", "Hits"), option = "ROC+",

SDT.legend = list(text = c("weak rearranged", "weak intact","strong

rearranged", "strong intact"), cols = c(3, 3, 4, 4), ltys = c(2, 1, 2, 1)))

Plot z-ROC curve with data

SDT.Plot(Opti.Obj, cols = c(3, 3, 4, 4), ltys= c(2, 1, 2, 1), labels =

c("z(FA)", "z(H)"), option = "zROC+",

SDT.legend = list(text = c("weak rearranged", "weak intact","strong

rearranged", "strong intact"), cols = c(3, 3, 4, 4), ltys = c(2, 1, 2, 1)))

Siegfried Macho: SDT Models in R 153

Due to the setting of the test flag of the function SDT.Estimate() the following table is

printed:
===

 Symbolic and numeric gradients at the optimum:

 Length of difference vector : 2.588069e-07

 Length of gradient at optimum: 4.976604e-05

===

 Symbolic Numeric Difference

t-1[1] 2.986e-05 3.010e-05 -2.4e-07

t-2[1] -2.668e-05 -2.672e-05 4.0e-08

t-3[1] 1.603e-05 1.600e-05 3.0e-08

t-4[1] -1.860e-05 -1.860e-05 0.0e+00

t-5[1] 1.347e-05 1.348e-05 -1.0e-08

p[2] 7.500e-07 7.300e-07 2.0e-08

Mean-1[2] 2.230e-06 2.240e-06 -1.0e-08

Stddev-1[2] 2.500e-06 2.490e-06 1.0e-08

Mean-2[2] -8.310e-06 -8.390e-06 7.0e-08

p[3] -1.870e-06 -1.880e-06 1.0e-08

p[4] 3.200e-07 3.600e-07 -4.0e-08

Stddev-1[4] 4.000e-07 4.200e-07 -2.0e-08

Mean-2[4] -1.970e-06 -1.970e-06 0.0e+00

p[5] -5.500e-07 -5.300e-07 -2.0e-08

===

In the present case, the table showing a comparison of the numeric and analytic gradient is

very important since it enables one to check whether the gradient vector was adjusted cor-

rectly. In case of an incorrect adjustment of gradient a major difference between the numeric

and the analytic gradient would be observed.

Assume, for the instance, that the derivative of m.22 was adjusted (wrongly) in the following

way (instead of 2*grad[m.31] the value enters only once):

grad[m.22] <- grad[m.22] + grad[m.31] + grad[m.32] - grad[m.41] + grad[m.51]

This would result in the following output:
===

 Symbolic and numeric gradients at the optimum:

 Length of difference vector : 0.3612789

 Length of gradient at optimum: 0.004766168

===

 Symbolic Numeric Difference

t-1[1] 0.00022215 0.00022219 -0.00000005

t-2[1] 0.00188639 0.00188639 0.00000001

t-3[1] 0.00050008 0.00050008 0.00000001

t-4[1] 0.00070468 0.00070470 -0.00000002

t-5[1] -0.00318094 -0.00318094 0.00000001

p[2] 0.00032329 0.00032328 0.00000001

Mean-1[2] -0.00159187 -0.00159186 -0.00000001

Stddev-1[2] 0.00090994 0.00090993 0.00000001

Mean-2[2] 0.00072353 -0.36055539 0.36127892

p[3] 0.00083546 0.00083530 0.00000015

p[4] -0.00037083 -0.00037079 -0.00000004

Stddev-1[4] -0.00097489 -0.00097487 -0.00000002

Mean-2[4] 0.00142946 0.00142947 -0.00000002

p[5] 0.00065129 0.00065130 -0.00000001

===

Inspection of the table reveals that the specification of the derivative of m.22 (= Mean-2[2])

was not correct.

Printing the contents of Stat.Obj (with all constraints and derivatives specified correctly)

leads to the following output:

$Model.description

Siegfried Macho: SDT Models in R 154

[1] "Mixture Model: Mixtures of two normal distributions per signal"

$Statistics

 Statistic

log L -5249.008

X^2 13.004

G^2 12.867

df 11.000

p(Y > X^2) 0.293

p(Y > G^2) 0.302

AIC 10526.017

BIC 10613.562

CAICF 10709.538

ICOMP 10545.648

ICOMP.R 10515.016

Free Parameters 14.000

Rank of Hessian 14.000

Length of gradient at optimum 0.000

Condition number of information matrix 12120.751

Rank of model matrix: t(J) * J 14.000

Condition number of model matrix 6796.958

$Free.parameters

 Value SE(delta method) SE(numerical) CFI-95(Lower) CFI-95(Upper)

t-1[1] -0.108 0.029 0.029 -0.164 -0.052

t-2[1] 0.675 0.029 0.029 0.618 0.733

t-3[1] 1.402 0.039 0.039 1.326 1.478

t-4[1] 1.746 0.047 0.047 1.654 1.838

t-5[1] 2.187 0.063 0.063 2.065 2.310

p[2] 0.099 0.066 0.066 0.000 0.229

Mean-1[2] -2.211 0.295 0.295 -2.790 -1.632

Stddev-1[2] 1.238 0.078 0.078 1.084 1.391

Mean-2[2] 0.509 0.123 0.123 0.268 0.749

p[3] 0.461 0.058 0.058 0.348 0.575

p[4] 0.306 0.214 0.214 0.000 0.726

Stddev-1[4] 1.475 0.308 0.308 0.871 2.080

Mean-2[4] 0.850 0.543 0.543 -0.215 1.915

p[5] 0.843 0.141 0.141 0.566 1.000

$Full.parametervector

 Mixture-1 Mixture-2 Mixture-3 Mixture-4 Mixture-5

p 0.000 0.099 0.461 0.306 0.843

Mean-1 0.000 -2.211 3.228 -1.870 3.569

Stddev-1 1.000 1.238 1.238 1.475 1.475

Mean-2 0.000 0.509 0.509 0.850 0.850

Stddev-2 1.000 1.238 1.238 1.475 1.475

t-1 -0.108 -0.108 -0.108 -0.108 -0.108

t-2 0.675 0.675 0.675 0.675 0.675

t-3 1.402 1.402 1.402 1.402 1.402

t-4 1.746 1.746 1.746 1.746 1.746

t-5 2.187 2.187 2.187 2.187 2.187

$Data.and.Estimates

...

A comparison of test statistics, estimated parameters and standard errors with those of the

model MIX.PD in Chapter 6.2 reveals that the test statistics and the comparable parameters as

well as estimated standard errors are identical. For example, the mean of the “middle”

distribution for weak items was estimated as 0.509 in both cases with an estimated standard

error of 0.123.

Siegfried Macho: SDT Models in R 155

We can also check, whether the estimated displacement d’ of the “left” and “right” distributi-

on, respectively, from the “middle” one was identical to that of MIX.PD. For the latter the

estimated value was d’ = 2.720 (cf. Chapter 6.2). In the present case we have:

m.21 – m.22: −2.211 − 0.509 = −2.720

m.31 – m.32: 3.228 − 0.509 = 2.719

m.41 – m.42: −1.870 − 0.850 = −2.720

m.51 – m.52: 3.569 – 0.850 = 2.719

Thus, up to negligible rounding errors the displacements are exactly the same for both

models. The computation also demonstrates that the functional constraints on parameters

were specified correctly.

Comment:

Contrary to the example in Chapter 7.1, the condition number of the Jacobian of the MIX-2

model does not correspond exactly to that of the MIX-PD model (cf. Chapter 6.2). The reason

for this divergence is not clear to me. However, the numerically and analytically computed

Jacobians are identical for the present example.

7.4 Source files containing further examples

The package comprises additional source files (not mentioned above):

 MIX-2.3 (MIX-2 Parameter Information).R
 MIX-2.4 (MIX-2 Process Dissociation, Yonelinas, 1994).R

 MIX-2.5.2 (MIX-2 Mirror effect,Arndt & Reder, 2002, Exp.1).R

 MIX-2.6.1 (MIX-2 Plot, Source Monitoring).R

 MIX-2.6.2 (MIX-2 Plot, Associative Recognition).R

 MIX-2.6.3 (MIX-2 Plot, Process Dissociation).R

 MIX-2.6.4 (MIX-2 Plot, Mirror Effect).R

 MIX-2.7 (MIX-2 SDT Model).R

The first file demonstrates the printing or parameter information.

The second file contains the code for modeling the data of Yonelinas (1994) with the models

proposed by DeCarlo (2008).

The third file contains the code for mixture modeling the data on the mirror effect of Arndt

and Reder (2002, Exp.1). The fit of the model does not correspond to that of DeCarlo (2007,

Table 6, on p.28). The reasons for the divergence is not clear. Using the values reported by

DeCarlo (2007, Table 7, on p. 29) as starting values for the estimation procedure leads to the

same result as using the default starting values. The same model implemented by means of

Excel leads to exactly the same fit results as that provided by R (and are thus different from

those of DeCarlo).

The next four files (MIX-2.6.1 to MIX-2.6.4) illustrate the usage of the plot function using

plotting objects instead of the estimation object (cf. Chapter 2.5).

The last file (MIX-2.7) demonstrates the fitting of the standard dual process model to old-new

recognition data. Two models are fitted: (a) The standard model assuming that in case of an

old items the new distribution is used with a certain probability whereas the old distribution is

used with the complementary probability; and (b) the extended model assuming that instead

of using the new distribution another distribution whose mean and standard deviation are

estimated is used with a certain probability (and the old distribution is used with the comple-

mentary probability) [Comment: For the extended model the condition number of the

observed information matrix is relatively high, indicating problems of identification].

Siegfried Macho: SDT Models in R 156

8. Working Examples: Dual process signal detection model (DPSDT)

The present chapter provides examples for fitting the dual process signal detection model (for

a description of the model, cf. Chapter 3.5). The application of the model is illustrated with

the same set of data that were used for the Gaussian mixture model:

(i) Source monitoring data from Hilford et al. (2002)

(ii) Data on associative recognition from Kelley and Wixted (2001).

8.1 Example 1: Fitting the DPSDT model to source monitoring data

The file DPSDT-1 (Source Monitoring, Hilford).R contains the R-code for fitting the

data from the three experiments of Hilford et al. (2002). The code looks like this:
==

Examples of the documentation of Model DPSDT:

DPSDT-1: Source monitoring with two signals

Data from Hilford et al. (2002)

Date of creation: November, 2013

Author: Siegfried Macho

==

library(numDeriv)

DIRECTORIES (PLEASE ADJUST TO YOUR PERSONAL SETTING)

DirSource <- "C:/Documents and Settings/macho/Statistik/_SDT-Models

(Version 2)/R-Code/"

DirSourceM <- "C:/Documents and Settings/macho/Statistik/_SDT-Models

(Version 2)/R-Code/Models/"

FILE NAME WITH THE MODEL

Model <- "SDT-DPSDT.R"

FILE NAMES FOR ESTIMATION

Main <- "SDT-Main.R"

Auxiliary <- "SDT-Auxiliary.R"

LOAD SOURCE FILES WITH SDT MODEL

source(paste(DirSourceM, Model, sep = ""))

LOAD SOURCE FILES WITH AUXILIARY AND ESTIMATION FUNCTIONS

source(paste(DirSource, Auxiliary, sep = ""))

source(paste(DirSource, Main, sep = ""))

DATA: HILFORD ET AL. (2002), Exp.1

data.1 <- c(264, 133, 159, 116, 80, 33, # Male voice

 25, 62, 105, 128, 145, 294) # Female voice

DATA: HILFORD ET AL. (2002), Exp.2

data.2 <- c(1358, 550, 701, 585, 466, 300, # Male

 278, 477, 598, 614, 589, 1404) # Female

DATA: HILFORD ET AL. (2002), Exp.3

data.3 <- c(1313, 538, 524, 529, 363, 333, # Top

 348, 356, 455, 552, 510, 1379) # Bottom

cat("\n--\n")

Siegfried Macho: SDT Models in R 157

cat(" DPSDT: Hilford et al. (2002), Exp.1: Identical recollection

probabilities")

cat("\n--\n")

cfg <- list(n.sdt = 2, restriction = "standard-2-eq")

Opti1.Obj <- SDT.Estimate(data = data.1, n = cfg, Model.Id = "DPSDT", test

= T)

Stat1.Obj <- SDT.Statistics(Opti1.Obj)

print(Stat1.Obj)

cat("\n--\n")

cat(" DPSDT: Hilford et al. (2002), Exp.2: Identical recollection

probabilities")

cat("\n--\n")

Opti2.Obj <- SDT.Estimate(data = data.2, n = cfg, Model.Id = "DPSDT", test

= T)

Stat2.Obj <- SDT.Statistics(Opti2.Obj)

print(Stat2.Obj)

cat("\n--\n")

cat(" DPSDT: Hilford et al. (2002), Exp.3: Identical recollection

probabilities")

cat("\n--\n")

Opti3.Obj <- SDT.Estimate(data = data.3, n = cfg, Model.Id = "DPSDT", test

= T)

Stat3.Obj <- SDT.Statistics(Opti3.Obj)

print(Stat3.Obj)

The code consists of three sections.

1. The relevant source files (SDT-Main.R, SDT-Auxiliary.R, and SDT-DPSDT.R) are

loaded. This section is contained within the lines:

DIRECTORIES (PLEASE ADJUST TO YOUR PERSONAL SETTING)

...
source(paste(DirSource, Main, sep = ""))

2. The three data sets are specified: This section is contained within the lines:

DATA: HILFORD ET AL. (2002), Exp.1

...
 348, 356, 455, 552, 510, 1379) # Bottom

3. The three data sets are estimated, statistics are computed and the result is printed. For

example, for modeling the data of Experiment 1, the following piece of code is relevant:

cfg <- list(n.sdt = 2, restriction = "standard-2-eq")

Opti1.Obj <- SDT.Estimate(data = data.1, n = cfg, Model.Id = "DPSDT", test

= T)

Stat1.Obj <- SDT.Statistics(Opti1.Obj)

print(Stat1.Obj)

❑ The command in the first row specifies the configuration information consisting of the

number of signals and the type of restrictions that are set (cf. Chapter 3.5).

❑ The second command performs the estimation. The results of this process are stored in the

object Opti1.Obj.

❑ The third command performs the computation of relevant statistics that are stored in the

object Stat1.Obj.

❑ Finally, the content of Stat1.Obj is printed.

Siegfried Macho: SDT Models in R 158

The commands for estimating the other data sets are analogously. They main difference

consists in the fact that the data sets data.2 and data.3 are passed (instead of data.1) to

the estimation procedure.

The output for the data of Exp.1 looks like this:
--

 DPSDT: Hilford et al. (2002), Exp.1: Identical recollection probabilities---------

--

===

 Symbolic and numeric gradients at the optimum:

 Length of difference vector : 2.131116e-08

 Length of gradient at optimum: 7.987202e-06

===

 Symbolic Numeric Difference

Recollection[1] 5.94e-06 5.94e-06 0e+00

t-1[1] 6.70e-07 6.80e-07 -1e-08

t-2[1] -3.78e-06 -3.79e-06 0e+00

t-3[1] 3.03e-06 3.03e-06 -1e-08

t-4[1] -9.90e-07 -9.90e-07 0e+00

t-5[1] 1.60e-07 1.70e-07 -1e-08

Mean[2] -1.88e-06 -1.86e-06 -1e-08

===

$Model.description

[1] "Dual Process SDT model: Number of Gaussian models: <2> Type of restrictions:

<standard-2-eq>"

$Statistics

 Statistic

log L -2482.375

X^2 1.177

G^2 1.178

df 3.000

p(Y > X^2) 0.759

p(Y > G^2) 0.758

AIC 4978.750

BIC 5016.145

CAICF 5070.960

ICOMP 4976.811

ICOMP.R 4973.882

Free Parameters 7.000

Rank of Hessian 7.000

Length of gradient at optimum 0.001

Condition number of information matrix 243.180

Rank of model matrix: t(J) * J 7.000

Condition number of model matrix 521.792

$Free.parameters

 Value SE(delta) SE(numerical) CFI-95(Lower) CFI-95(Upper)

Recollection[1] 0.211 0.038 0.038 0.136 0.287

t-1[1] -0.970 0.149 0.149 -1.263 -0.678

t-2[1] -0.298 0.093 0.093 -0.479 -0.116

t-3[1] 0.330 0.075 0.075 0.184 0.476

t-4[1] 0.892 0.065 0.065 0.764 1.020

t-5[1] 1.580 0.065 0.065 1.453 1.707

Mean[2] 0.790 0.131 0.131 0.534 1.046

$Full.parametervector

 DPSDT.1 DPSDT.2

Recollection-pos 1.000 6.000

Recollection 0.211 0.211

Mean 0.000 0.790

Stddev 1.000 1.000

t-1 -0.970 -0.970

Siegfried Macho: SDT Models in R 159

t-2 -0.298 -0.298

t-3 0.330 0.330

t-4 0.892 0.892

t-5 1.580 1.580

$Data.and.Estimates

 Observed Expected Probabilities Residuals Std.Resid.(analytical)

Signal 1 [1] 264 268.579 0.342 -0.279 -0.831

Signal 1 [2] 133 134.338 0.171 -0.115 -0.330

Signal 1 [3] 159 152.549 0.194 0.522 0.928

Signal 1 [4] 116 114.293 0.146 0.160 0.253

Signal 1 [5] 80 79.919 0.102 0.009 0.017

Signal 1 [6] 33 35.322 0.045 -0.391 -0.773

Signal 2 [1] 25 23.451 0.031 0.320 0.732

Signal 2 [2] 62 59.360 0.078 0.343 0.631

Signal 2 [3] 105 110.402 0.145 -0.514 -0.855

Signal 2 [4] 128 130.499 0.172 -0.219 -0.361

Signal 2 [5] 145 146.381 0.193 -0.114 -0.279

Signal 2 [6] 294 288.906 0.381 0.300 0.845

The table at the beginning of the output is presented because the flag test=T was set in the

estimation procedure. By consequence, the numeric gradient at the optimum is computed

using the function grad() from the R package numDeriv that was includes at the beginning

of the code file.

The numeric and symbolic gradients are close together, and, in addition, the length of the

gradient at the optimum is close to zero, indicating that a stationary point was found.

The model identification string indicates that the correct model was used and the statistics

sections provides the relevant general statistical information (for details, cf. Chapter 2.2).

The next section in the output lists the free parameters and their estimated values the esti-

mated standard errors (SE), as well as the lower and upper 95% confidence limits. In the pre-

sent case, only
1 (the recollection parameter of the first model) and

2 (the mean parameter

of the second model) as well as the thresholds were estimated.

The standard errors (SE) of parameters are estimated in two ways:

1. Using the Hessian matrix that is provided by the estimation procedure together with the

delta method.

2. Computation of the Hessian, using the procedure hessian() from the R package

numDeriv.

The resulting estimates are shown in the second and first column from the right. Conflicting

values indicate a problem of the estimation. The may happen, for instance, if one of the pro-

bability parameters is close to the limit (i.e. near 0.0 or 1.0).

In the present case, the estimates resulting from the two methods are identical. So there seems

to be no problem.

The computation of the limits of the confidence intervals is based on standard errors

computed by means of the delta method.

The next section presents the full parameter vector. The first line labeled Recollection-pos

shows the response categories that is selected in case of recollection. In the present case, the

first response category is selected for the first signal and the last response category for the

second signal. Inspection reveals that the intended equality constraints on recollection

parameter were set correctly.

The final section provides the observed data, the estimated model frequencies and probabi-

lities as well as the Pearson and standardized residuals (cf. Chapter 2.2).

Siegfried Macho: SDT Models in R 160

8.2 Example 2: Fitting the DPSDT model to associative recognition data

The files:

DPSDT-2.1 (Associative Recognition, Kelly & Wixted, Exp.1).R

DPSDT-2.2 (Associative Recognition, Kelly & Wixted, Exp.2).R

DPSDT-2.3 (Associative Recognition, Kelly & Wixted, Exp.3).R

contain R-code for fitting the DPDST model to the data from the three experiments of Kelley

& Wixted (2001) on associative recognition. The following excerpt from DPSDT-2.2

(Associative Recognition, Kelly & Wixted, Exp.2).R contains the portion of the

code for fitting one model to the data of Experiment 2:
==

Examples of the documentation of Model DPSDT:

DPSDT-2.2: Modeling Associative Recognition

Data from Kelley and Wixted, Exp.2

Date of creation: November, 2013

Author: Siegfried Macho

==...

...[Code for loading relevant source files]

DATA OF KELLEY & WIXTED (2001), Experiment 2

data <- c(879, 553, 345, 61, 54, 28, # Exp.2: Lure items

 179, 109, 82, 45, 28, 37, # Exp.2: Weak Items, rearranged

 81, 69, 62, 31, 37, 200, # Exp.2: Weak Items, intact

 215, 82, 60, 31, 31, 61, # Exp.2: Strong Items, rearranged

 21, 24, 33, 21, 33, 348) # Exp.2: Strong Items, intact

cfg <- list(n.sdt = 5, restriction = "standard-lure-pairs-eq", rec.pos =

c(1, 1, 6, 1, 6))

Opti1.Obj <- SDT.Estimate(data = data, Model.Id = "DPSDT", n = cfg, test =

T)

Stat1.Obj <- SDT.Statistics(Opti1.Obj)

print(Stat1.Obj)

... [Code for fitting other models]

The code comprises four principal sections.

1. The relevant source files (SDT-Main.R, SDT-Auxiliary.R, and SDT-DPSDT.R) are

loaded. This section was omitted:

... [Code for loading relevant source files]

2. The data sets for the five different types of signals are specified:

DATA OF KELLEY & WIXTED (2001), Experiment 2

data <- c(879, 553, 345, 61, 54, 28, # Exp.2: Lure items

 179, 109, 82, 45, 28, 37, # Exp.2: Weak Items, rearranged

 81, 69, 62, 31, 37, 200, # Exp.2: Weak Items, intact

 215, 82, 60, 31, 31, 61, # Exp.2: Strong Items, rearranged

 21, 24, 33, 21, 33, 348) # Exp.2: Strong Items, intact

Note that at the beginning the responses for the lure items is given. The data for lure items

have always to be presented before the item pairs.

3. The configuration list is specified:
cfg <- list(n.sdt = 5, restriction = "standard-lure-pairs-eq", rec.pos =

c(1, 1, 6, 1, 6))

The configuration list provides the following information:

Siegfried Macho: SDT Models in R 161

❑ Number of signals (n.sdt = 5)

❑ Types of restrictions (restriction = "standard-lure-pairs-eq"): The restriction

specify a high threshold model for pairs with a lure distribution with equal standard

deviations for signals of within a pair (cf. Chapter 3.5, for a detailed specification of the

restrictions).

❑ Specification of the recollection positions (rec.pos = c(1, 1, 6, 1, 6)) for the five

signals. Due to the fact that the recollection probability of the first distribution, represent-

ing the lures, is zero the first position is arbitrary.

4. The data are estimated, statistics are computed and the result is printed:

Opti1.Obj <- SDT.Estimate(data = data, Model.Id = "DPSDT", n = cfg, test =

T)

Stat1.Obj <- SDT.Statistics(Opti1.Obj)

print(Stat1.Obj)

The first command performs the estimation. The results of this process are stored in the

object Opti.Obj.

The second command results in the computation of relevant statistics that are stored in the

object Stat.Obj.

Finally, the content of Stat.Obj is printed.

The output provided by this piece of code looks like this:

 DPSDT 1: Associative recognition (Data from Kelley and Wixted, Exp.2:

 restriction = "standard-lure-pairs-eq"

 - Distribution 1 = N(0,1) [Lure]

 - recollection[2] = 0, recollection[4] = 0

 - stddev[2] = stddev[3] = stddev[4] = stddev[5]

===

 Symbolic and numeric gradients at the optimum:

 Length of difference vector : 2.288471e-07

 Length of gradient at optimum: 4.431718e-05

===

 Symbolic Numeric Difference

t-1[1] -2.141e-05 -2.142e-05 1e-08

t-2[1] 2.989e-05 2.991e-05 -2e-08

t-3[1] 8.600e-06 8.590e-06 1e-08

t-4[1] -1.357e-05 -1.356e-05 -1e-08

t-5[1] 9.790e-06 9.800e-06 -1e-08

Mean[2] -7.370e-06 -7.290e-06 -7e-08

Stddev[2] -1.560e-06 -1.580e-06 2e-08

Recollection[3] -2.110e-06 -2.170e-06 6e-08

Mean[3] -6.310e-06 -6.270e-06 -4e-08

Mean[4] -1.037e-05 -1.057e-05 2e-07

Stddev[4] -5.470e-06 -5.480e-06 1e-08

Recollection[5] -3.730e-06 -3.740e-06 2e-08

Mean[5] -2.360e-06 -2.370e-06 0e+00

===

$Model.description

[1] "Dual Process SDT model: Number of Gaussian models: <5> Type of restrictions:

<standard-lure-pairs-eq> Recollection positions: <1, 1, 6, 1, 6>"

$Statistics

 Statistic

log L -5249.641

X^2 14.258

G^2 14.132

df 12.000

p(Y > X^2) 0.285

Siegfried Macho: SDT Models in R 162

p(Y > G^2) 0.292

AIC 10525.282

BIC 10606.574

CAICF 10701.966

ICOMP 10532.674

ICOMP.R 10506.932

Free Parameters 13.000

Length of gradient at optimum 0.000

Rank of Hessian 13.000

Condition number of information matrix 3325.156

Rank of model matrix: t(J) * J 13.000

Condition number of model matrix 4427.466

$Free.parameters

 Value SE(delta) SE(numerical) CFI-95(Lower) CFI-95(Upper)

t-1[1] -0.105 0.029 0.029 -0.161 -0.049

t-2[1] 0.669 0.029 0.029 0.612 0.726

t-3[1] 1.395 0.039 0.039 1.319 1.471

t-4[1] 1.747 0.047 0.047 1.655 1.839

t-5[1] 2.227 0.064 0.064 2.102 2.353

Mean[2] 0.328 0.073 0.073 0.184 0.472

Stddev[2] 1.360 0.071 0.071 1.221 1.499

Recollection[3] 0.307 0.036 0.036 0.237 0.378

Mean[3] 0.863 0.125 0.125 0.617 1.109

Mean[4] 0.135 0.102 0.102 -0.066 0.336

Stddev[4] 1.847 0.116 0.116 1.619 2.075

Recollection[5] 0.296 0.156 0.156 0.000 0.601

Mean[5] 2.741 0.408 0.408 1.941 3.540

$Full.parametervector

 DPSDT.1 DPSDT.2 DPSDT.3 DPSDT.4 DPSDT.5

Recollection-pos 1.000 1.000 6.000 1.000 6.000

Recollection 0.000 0.000 0.307 0.000 0.296

Mean 0.000 0.328 0.863 0.135 2.741

Stddev 1.000 1.360 1.360 1.847 1.847

t-1 -0.105 -0.105 -0.105 -0.105 -0.105

t-2 0.669 0.669 0.669 0.669 0.669

t-3 1.395 1.395 1.395 1.395 1.395

t-4 1.747 1.747 1.747 1.747 1.747

t-5 2.227 2.227 2.227 2.227 2.227

[...]

The table at the beginning of the output is presented because the flag test=T was set in the

estimation procedure. By consequence, the numeric gradient at the optimum is computed

using the function grad() from the R package numDeriv that was includes at the beginning

of the code file.

As in the previous examples, the numeric and symbolic gradients are very close, and, in

addition, the length of the gradient at the optimum is close to zero, indicating that a stationary

point was found.

The model identification string indicates that the correct model was used and the statistics

sections provides the relevant general statistical information (for details, cf. Chapter 2.2).

The next section lists the free parameters as well as estimated values and estimated standard

errors.

The standard errors of parameters are estimated by the two methods described above (cf.

Chapter 6.1 or 8.1) are identical indicating the absence of major problems.

The next section presents the full parameter vector. For each model the recollection proba-

bility, the mean and standard deviation as well as the decision bounds are shown. The first

Siegfried Macho: SDT Models in R 163

row labeled Recollection-pos indicates the response categories selected in case of recol-

lection.

9. Working Examples: High threshold model for rating data (HT.n)

The present chapter provides examples for fitting the double high-threshold model with

probabilities (HT.n). to rating data from two types of experiments:

1. Data of Yonelinas (1994) with three types of items: Distractors, exclusion, and inclusion

items;

2. Data of Kelley and Wixted (2001) on associative recognition.

9.1 Example 1: Fitting the HT.n model to exclusion-inclusion data

The present example demonstrates how to utilize the HT.n module for building a hybrid mo-

del consisting of a (unequal variance) signal detection model and a (double) high threshold

model with more than one response option in case of recollection. By consequence, the

resulting model is a generalization of the HTSDT.1 model.

The files:

HT-n.1-1 (Yonelinas, 1994, Exp.1).R

HT-n.1-2 (Yonelinas, 1994, Exp.2).R

HT-n.1-3 (Yonelinas, 1994, Exp.3).R

contain the R-code for fitting various HT.n model to the data from three experiments of

Yonelinas (1994).

The structure of the model is depicted in Macho (2002, Figure 6, on p.30) and the fit statistics

using the program Excel for fitting the model are presented in Macho (2002, Table 6, on

p.35). The results reported by Macho (2002) are exactly identical to the actual results.

The present example shows an excerpt of the file for fitting data from Exp.2. For ease of

exposition, the part of the code for loading the relevant source files is not shown.

==

Examples of the documentation of Model HT.n:

HT.n-1.2: Exclusion vs. inclusion

Data from Yonelinas (1994), Exp.2

Date of creation: October, 2009

Author: Siegfried Macho

==

... [Code for loading relevant source files]

DATA OF YONELINAS (1994), Experiment 2: SHORT LISTS

data.short <- c(509, 495, 98, 30, 16, 4, # Distractors

 557, 263, 137, 78, 75, 42, # Exclusion items

 51, 109, 88, 105, 214, 585) # Inclusion items

DATA OF YONELINAS (1994), Experiment 2: LONG LISTS

data.long <- c(307, 530, 192, 79, 39, 5, # Distractors

 335, 308, 162, 178, 126, 43, # Exclusion items

 46, 179, 130, 189, 252, 356) # Inclusion items

n <- 3

Specification of constraints

Distractors

fixed.dist <- matrix(c(rep(0, 6), 1,

 1:6, 7), nr = 2, byrow = T)

Siegfried Macho: SDT Models in R 164

Fixed constraints exclusion / inclusion:

fixed.exc.inc <- matrix(c(rep(0, 6), 1, 1,

 14:16, 20:22, 9, 18), nr = 2, byrow = T)

fixed <- cbind(fixed.dist, fixed.exc.inc)

ident <- matrix(c(11:13, 8, 10,

 25:23, 17, 19), nr = 2, byrow = T)

Compute start parameter vector

par <- SDT.HT.n.start.par(n, data.short)

Add redundant parameters so that their positions can be seen in output

fixed.show <- HT.n.Redundant.to.Fixed(par, n, fixed, ident)

Compute Parameter information

Par.Info <- SDT.Parameter.Info(par = par, n = n, Model.Id = "HT.n", fixed =

fixed.show, ident = ident)

cat("\n---\n")

cat("HT.3: Yonelinas (1994), Exp.2, Parameter-Information:")

cat("\n---\n")

print(Par.Info)

cat("\n---\n")

cat(" HT.3: Yonelinas (1994), Exp.2, short lists")

cat("\n---\n")

Opti1.Obj <- SDT.Estimate(data = data.short, n = n, Model.Id = "HT.n",

fixed = fixed, ident = ident, test = T)

Stat1.Obj <- SDT.Statistics(Opti1.Obj)

print(Stat1.Obj)

... [Code for fitting additional models]

The code comprises five main sections.

1. The relevant source files (SDT-Main.R, SDT-Auxiliary.R, and SDT-HT-n.R) are loaded.

This section was omitted:

... [Code for loading relevant source files]

2. The two data sets (long vs. short lists) comprising three types of signals each (distracters,

exclusion, and inclusion items) as well as the number of signals are specified:

data.short <- c(509, 495, 98, 30, 16, 4, # Distractors

 557, 263, 137, 78, 75, 42, # Exclusion items

 51, 109, 88, 105, 214, 585) # Inclusion items

DATA OF YONELINAS (1994), Experiment 2: LONG LISTS

data.long <- c(307, 530, 192, 79, 39, 5, # Distractors

 335, 308, 162, 178, 126, 43, # Exclusion items

 46, 179, 130, 189, 252, 356) # Inclusion items

n <- 3

3. Fixed and equality constraints are specified

fixed.dist <- matrix(c(rep(0, 6), 1,

 1:6, 7), nr = 2, byrow = T)

Fixed constraints exclusion / inclusion:

fixed.exc.inc <- matrix(c(rep(0, 6), 1, 1,

 14:16, 20:22, 9, 18), nr = 2, byrow = T)

fixed <- cbind(fixed.dist, fixed.exc.inc)

ident <- matrix(c(11:13, 8, 10,

Siegfried Macho: SDT Models in R 165

 25:23, 17, 19), nr = 2, byrow = T)

The matrix fixed.dist specifies the constraints on the model for the distracter signal:

The recollection probability parameter is set to zero and all rating probability parameters

except for the last one is set to 0 (The last one is set to 1).

For the specification of further constraints, see the output below.

4. A table with parameter information is computed and printed. It enables one to check con-

veniently whether constraints on parameters are specified correctly. This is performed by

the calling the function (cf. Chapter 2.4):

Compute Parameter information

Par.Info <- SDT.Parameter.Info(par = par, n = n, Model.Id = "HT.n", fixed =

fixed.show, ident = ident)

print(Par.Info)

However, in order to show the redundant probability parameters (due to the fact that the

rating parameters for each signal sum to 1.0) the parameter vector is generated and the re-

dundant probability parameters are fixed:

Compute start parameter vector

par <- SDT.HT.n.start.par(n, data.short)

Add redundant parameters so that their positions can be seen in output

fixed.show <- HT.n.Redundant.to.Fixed(par, n, fixed, ident)

The function HT.n.Redundant.to.Fixed is called also during the setup of the model.

The table with the parameter information that is returned by the function

SDT.Parameter.Info() looks like this:

$Model

[1] "HT.n: Double high threshold model for rating data"

$Parameters.and.Constraints

 name par fixed.value ident.source Nr

1 p[1] 0.00 0 ---

2 p-1[1] 0.00 0 ---

3 p-2[1] 0.00 0 ---

4 p-3[1] 0.00 0 ---

5 p-4[1] 0.00 0 ---

6 p-5[1] 0.00 0 ---

7 p-6[1] 0.00 1 ---

8 mean[2] 0.00 --- ---

9 stddev[2] 1.00 1 ---

10 p[2] 0.00 --- ---

11 p-1[2] 0.00 --- ---

12 p-2[2] 0.00 --- ---

13 p-3[2] 0.00 Redundant-p ---

14 p-4[2] 0.00 0 ---

15 p-5[2] 0.00 0 ---

16 p-6[2] 0.00 0 ---

17 mean[3] 0.00 --- mean[2] 8

18 stddev[3] 1.00 1 ---

19 p[3] 0.00 --- p[2] 10

20 p-1[3] 0.00 0 ---

21 p-2[3] 0.00 0 ---

22 p-3[3] 0.00 0 ---

23 p-4[3] 0.00 --- p-3[2] 13

24 p-5[3] 0.00 --- p-2[2] 12

Siegfried Macho: SDT Models in R 166

25 p-6[3] 0.00 --- p-1[2] 11

26 t-1 -1.50 --- ---

27 t-2 -0.75 --- ---

28 t-3 0.00 --- ---

29 t-4 0.75 --- ---

30 t-5 1.50 --- ---

The table presents the name of the parameter in the first column, the actual value in the se-

cond column, the fixed constraints in the third column (numbers indicate the values and »-

--« indicate no constraints), the names of the source parameters of equality constraints in

the fourth column, and the positions of the source parameters of equality constraints in the

last column (cf. Chapter 2.4).

The entry Redundant-p for the third rating parameter for Signal 2 (representing the ex-

clusion items) indicates that this probability parameter is redundant. By consequence, it is

fixed internally by the program (using the function HT.n.Redundant.to.Fixed), in order

to guarantee the identification of the model.

5. Finally, the model is fitted to the data of short lists and the results are evaluated:

Opti1.Obj <- SDT.Estimate(data = data.short, n = n, Model.Id = "HT.n",

fixed = fixed, ident = ident, test = T)

Stat1.Obj <- SDT.Statistics(Opti1.Obj)

print(Stat1.Obj)

The code for fitting additional models that is also contained in the file is not shown.

The output looks like this:
--

 HT.3: Yonelinas (1994), Exp.2, short lists

--

$Model.description

[1] "HT.n: Double high threshold model for rating data"

$Statistics

 Statistic

log L -4578.589

X^2 28.279

G^2 26.538

df 6.000

p(Y > X^2) 0.000

p(Y > G^2) 0.000

AIC 9175.178

BIC 9230.509

CAICF 9300.544

ICOMP 9172.306

ICOMP.R 9163.180

Free Parameters 9.000

Length of gradient at optimum 0.000

Rank of Hessian 9.000

Condition number of information matrix 333.278

Rank of model matrix: t(J) * J 9.000

Condition number of model matrix 655.198

$Free.parameters

 Value SE(raw parameters) SE(delta numeric) CFI-95(Lower) CFI-95(Upper)

mean[2] 1.374 0.062 0.062 1.253 1.496

p[2] 0.617 0.068 0.017 0.583 0.650

p-1[2] 0.754 0.245 0.030 0.694 0.813

p-2[2] 0.191 0.254 0.033 0.127 0.256

t-1 -0.106 0.036 0.036 -0.176 -0.036

t-2 1.063 0.043 0.043 0.979 1.146

t-3 1.603 0.050 0.050 1.505 1.701

t-4 2.039 0.061 0.061 1.919 2.159

Siegfried Macho: SDT Models in R 167

t-5 2.704 0.082 0.082 2.543 2.865

... [Additional output, not shown]

The output is similar to those for the other models. There is however one difference: The

standard errors of the recollection and rating probability parameters are computed by means

of the delta method with the Jacobian of the transformation from raw to probability para-

meters being computed numerically. The result is presented in the third column [named

SE(delta numeric)] in the section $Free.parameters.

9.2 Example 2: Fitting the HT.n model to associative recognition data

The files:

HT-n.2-1 (Associative Recognition, Kelley & Wixted, Exp.1).R

HT-n.2-2 (Associative Recognition, Kelley & Wixted, Exp.2).R

HT-n.2-3 (Associative Recognition, Kelley & Wixted, Exp.3).R

contain the R-code for fitting the HT.n model to the data from the three experiments of

Kelley & Wixted (2001) on associative recognition. The following excerpt is contained in the

file for fitting the data of Experiment 2. Again, for ease of exposition, only the relevant por-

tions of the code are presented.

#==

Examples of the documentation of Model HT.n:

HT.n-2.2: Associative recognition

Data from Kelley & Wixted (2001), Exp.2

Date of creation: October, 2009

Author: Siegfried Macho

#==

... [Code for loading relevant source files]

DATA: Kelley & Wixted (2001, Exp.1 strong

DATA OF KELLEY & WIXTED (2001), Experiment 1

data <- c(879, 553, 345, 61, 54, 28, # Exp.2: Lure items

 179, 109, 82, 45, 28, 37, # Exp.2: Weak Items, rearranged

 81, 69, 62, 31, 37, 200, # Exp.2: Weak Items, intact

 215, 82, 60, 31, 31, 61, # Exp.2: Strong Items, rearranged

 21, 24, 33, 21, 33, 348) # Exp.2: Strong Items, intact

NUMBER OF CONDITIONS (TYPES OF SIGNALS)

n <- 5

Specification of constraints for HT.3

fixed.null <- matrix(c(rep(0, 6), 1,

 1:6, 7), nr = 2, byrow = T)

fixed.weak <- matrix(c(rep(0, 6),

 14:16, 20:22), nr = 2, byrow = T)

ident.weak <- matrix(c(11:13, 8:9,

 25:23, 17:18), nr = 2, byrow = T)

fixed.strong <- matrix(c(rep(0, 6),

 32:34, 38:40), nr = 2, byrow = T)

ident.strong <- matrix(c(11:13, 11:13, 26:27,

 29:31, 43:41, 35:36), nr = 2, byrow = T)

fixed <- cbind(fixed.null, fixed.weak, fixed.strong)

Siegfried Macho: SDT Models in R 168

ident <- cbind(ident.weak, ident.strong)

Compute start parameter vector

par <- SDT.HT.n.start.par(n, data)

Add redundant parameters so that ist position can be seen in output

fixed.show <- HT.n.Redundant.to.Fixed(par, n, fixed, ident)

Compute Parameter information

Par.Info <- SDT.Parameter.Info(par = par, n = n, Model.Id = "HT.n", fixed =

fixed.show, ident = ident)

cat("\n---\n")

cat("HT.3: Kelley & Wixted, Exp.2, Parameter-Information:")

cat("\n---\n")

print(Par.Info)

cat("\n---\n")

cat(" HT.3: Kelley & Wixted, Exp.2, Weak and strong items")

cat("\n---\n")

Opti1.Obj <- SDT.Estimate(data = data, n = n, Model.Id = "HT.n", fixed =

fixed, ident = ident, test = T)

Stat1.Obj <- SDT.Statistics(Opti1.Obj)

print(Stat1.Obj)

... [Code for fitting additional models]

The code is quite similar to that of Example 1 (Section 9.1) for fitting the data of Yonelinas

(1994). Again it comprises five main sections.

1. The relevant source files (SDT-Main.R, SDT-Auxiliary.R, and SDT-HT-n.R) are loaded.

This section was omitted:

... [Code for loading relevant source files]

2. The two data sets comprising five types of signals (Lure items, weak items – rearranged,

weak items – intact, strong items – rearranged, and strong items – intact) as well as the

number of signals are specified:

data <- c(879, 553, 345, 61, 54, 28, # Exp.2: Lure items

 179, 109, 82, 45, 28, 37, # Exp.2: Weak Items, rearranged

 81, 69, 62, 31, 37, 200, # Exp.2: Weak Items, intact

 215, 82, 60, 31, 31, 61, # Exp.2: Strong Items, rearranged

 21, 24, 33, 21, 33, 348) # Exp.2: Strong Items, intact

NUMBER OF CONDITIONS (TYPES OF SIGNALS)

n <- 5

3. Fixed and equality constraints are specified:

Specification of constraints for HT.3

fixed.null <- matrix(c(rep(0, 6), 1,

 1:6, 7), nr = 2, byrow = T)

fixed.weak <- matrix(c(rep(0, 6),

 14:16, 20:22), nr = 2, byrow = T)

ident.weak <- matrix(c(11:13, 8:9,

 25:23, 17:18), nr = 2, byrow = T)

Siegfried Macho: SDT Models in R 169

fixed.strong <- matrix(c(rep(0, 6),

 32:34, 38:40), nr = 2, byrow = T)

ident.strong <- matrix(c(11:13, 11:13, 26:27,

 29:31, 43:41, 35:36), nr = 2, byrow = T)

fixed <- cbind(fixed.null, fixed.weak, fixed.strong)

ident <- cbind(ident.weak, ident.strong)

The matrix fixed.null specifies the constraints on the model for the lure signal: The

recollection probability parameter is set to zero and all rating probability parameters except

for the last one is set to 0 (The last one is set to 1).

For the specification of further constraints, see the output below.

4. A table with parameter information is computed and printed. It enables one to check

conveniently whether constraints on parameters are specified correctly. This is performed

by the call of the function (cf. Chapter 2.4):

Compute Parameter information

Par.Info <- SDT.Parameter.Info(par = par, n = n, Model.Id = "HT.n", fixed =

fixed.show, ident = ident)

print(Par.Info)

However, in order to show the redundant probability parameters (due to the fact that the

rating parameters for each signal sum to 1.0) the parameter vector is generated and the

redundant probability parameters are fixed:

Compute start parameter vector

par <- SDT.HT.n.start.par(n, data)

Add redundant parameters so that ist position can be seen in output

fixed.show <- HT.n.Redundant.to.Fixed(par, n, fixed, ident)

The function HT.n.Redundant.to.Fixed is called also during the setup of the model.

The table with the parameter information that is returned by the function

SDT.Parameter.Info() looks like this:

$Model

[1] "HT.n: Double high threshold model for rating data"

$Parameters.and.Constraints

 name par fixed.value ident.source Nr

1 p[1] 0.00 0 ---

2 p-1[1] 0.00 0 ---

3 p-2[1] 0.00 0 ---

4 p-3[1] 0.00 0 ---

5 p-4[1] 0.00 0 ---

6 p-5[1] 0.00 0 ---

7 p-6[1] 0.00 1 ---

8 mean[2] 0.00 --- ---

9 stddev[2] 1.00 --- ---

10 p[2] 0.00 --- ---

11 p-1[2] 0.00 --- ---

12 p-2[2] 0.00 --- ---

13 p-3[2] 0.00 Redundant-p ---

14 p-4[2] 0.00 0 ---

15 p-5[2] 0.00 0 ---

16 p-6[2] 0.00 0 ---

17 mean[3] 0.00 --- mean[2] 8

18 stddev[3] 1.00 --- stddev[2] 9

19 p[3] 0.00 --- ---

Siegfried Macho: SDT Models in R 170

20 p-1[3] 0.00 0 ---

21 p-2[3] 0.00 0 ---

22 p-3[3] 0.00 0 ---

23 p-4[3] 0.00 --- p-3[2] 13

24 p-5[3] 0.00 --- p-2[2] 12

25 p-6[3] 0.00 --- p-1[2] 11

26 mean[4] 0.00 --- ---

27 stddev[4] 1.00 --- ---

28 p[4] 0.00 --- ---

29 p-1[4] 0.00 --- p-1[2] 11

30 p-2[4] 0.00 --- p-2[2] 12

31 p-3[4] 0.00 --- p-3[2] 13

32 p-4[4] 0.00 0 ---

33 p-5[4] 0.00 0 ---

34 p-6[4] 0.00 0 ---

35 mean[5] 0.00 --- mean[4] 26

36 stddev[5] 1.00 --- stddev[4] 27

37 p[5] 0.00 --- ---

38 p-1[5] 0.00 0 ---

39 p-2[5] 0.00 0 ---

40 p-3[5] 0.00 0 ---

41 p-4[5] 0.00 --- p-3[2] 13

42 p-5[5] 0.00 --- p-2[2] 12

43 p-6[5] 0.00 --- p-1[2] 11

44 t-1 -1.50 --- ---

45 t-2 -0.75 --- ---

46 t-3 0.00 --- ---

47 t-4 0.75 --- ---

48 t-5 1.50 --- ---

The table presents the name of the parameter in the first column, the actual value in the se-

cond column, the fixed constraints in the third column (numbers indicate the values and »---

« indicate no constraints), the names of the source parameters of equality constraints in the

fourth column, and the positions of the source parameters of equality constraints in the last

column.

The entry Redundant-p for the third rating parameter for Signal 2 (representing the weak

rearranged items) indicates that this probability parameter is redundant. By consequence, it

is fixed internally by the program (using the function HT.n.Redundant.to.Fixed), in order

to guarantee the identification of the model.

5. Finally, the model is fitted to the data and the results are evaluated:

Opti1.Obj <- SDT.Estimate(data = data, n = n, Model.Id = "HT.n", fixed =

fixed, ident = ident, test = T)

Stat1.Obj <- SDT.Statistics(Opti1.Obj)

print(Stat1.Obj)

The code for fitting additional models that is also contained in the file is not shown.

The output resembles that of Example 1 (cf. Section 9.1).

10. Working Examples: Bivariate Gaussian model of signal detection (SDT.2D)

The present chapter illustrates the fitting of the bivariate Gaussian SDT model under different

conditions. The first example demonstrates the fitting of the standard model without any ad-

ditional complications. The second example demonstrates the treatment of structural zeros.

The fourth example illustrates the fitting in case of violations of decisional separability. The

fourth example demonstrates how to use a matrix for pooling data and estimates.

Siegfried Macho: SDT Models in R 171

10.1 Example 1: Fitting the standard bivariate Gaussian model of signal detection

The present example demonstrates how to utilize the SDT.2D module for fitting bivariate

signal detection data with no violations of decisional separability and no structural zeros.

The example file:

SDT-2D-1-1. Estimation of Observer A of Thomas (2001).R

contains the R code. The data of the present example stem from a face identification experi-

ment of Thomas (2001, p.212, Table 6.1, Observer A). The data comprise responses to four

types of faces resulting from varying two facial features with two values per feature. On each

dimension, two response options were possible. This results in 4 (Faces [signals])  2 (Re-

sponse options on Dimension 1)  2 (Response options on Dimension 2) = 16 data points.

The structure of the fitted model (i.e., the location and orientation of the 90% confidence

regions of the four Gaussian distributions as well as the location of the decision bounds) is

shown in Figure 17.

For ease of exposition, in the following presentation the part of the R code for loading the

relevant source files is not shown.

==

SDT-2D-1-1:Example of the SDT-2D MODEL

Thomas, R. D. (2001). Characterizing perceptual interactions

in face identification using multidimensional signal detection

theory.

In M. J. Wenger, & J. T. Townsend (Eds.),

Computational geometry, and processing perspectives on facial

cognition

(Chapter 6, pp. 193-227). Hillsdale, NJ: Erlbaum.

Data: Observer A (p.212, Table, 6.1)

Results: p. 220, Table 7.

Author: Siegfried Macho

Date of last update: September, 2013

==

[...] [Code for loading relevant source files]

CONFIGURATION OF THE MODEL:

#--

Restrictions: st = standard restrictions

v1 = all variances equal to 1

er = equal correlation coefficients

qu = quadratic setup (rectangular configuration)

#--

cfg <- list(n.sdt = 4, k1 = 1, k2 = 1, ds = 0, restriction = "st-v1-er-qu")

DATA FROM THOMAS (2001)

data <- c(83, 112, 47, 11,

 38, 154, 28, 33,

 15, 27, 117, 94,

 6, 36, 75, 136)

PRINT PARAMETER INFORMATION

p.info <- SDT.Parameter.Info(n = cfg, Model.Id = "SDT.2D")

cat("\n==")

cat("\n Parameter information:")

cat("\n==\n")

print(p.info)

Siegfried Macho: SDT Models in R 172

CALL ESTIMATION MODULE AND PRINT THE RESULT

Opti.obj <- SDT.Estimate(data = data, n = cfg, Model.Id = "SDT.2D", test =

T)

COMPUTE AND PRINT STATISTICS

Stat.Obj <- SDT.Statistics(Opti.obj)

cat("\n==")

cat("\n Result of the Estimation: Thomas (2001):")

cat("\n==\n")

print(Stat.Obj)

PLOT CONFIGURATION

xy.labels <- c("Eyes", "Nose")

SDT.Plot(Opti.obj, cols = 3:6, labels = xy.labels)

This piece of code performs the following steps:

1. The list with the configuration of the model is specified:
cfg <- list(n.sdt = 4, k1 = 1, k2 = 1, ds = 0, restriction = "st-v1-er-qu")

The list contains the following entries:

n.sdt = Number of signals / Gaussian distributions;

k1 = Number of decision bounds on Dimension 1;

k2 = Number of decision bounds on Dimension 2;

ds = Flag indicating no violations of decisional separability;

restriction = String indicating the different types of restricitons (cf. Chapter 3.7):

st = standard restriction (for identification);

v1 = all variance pararmeters equal to 1.0;

er = all correlation parameter are equal;

qu = rectangular setup.

Comment:

The entry in the list (ds = 0) is not required because the option of no violations is the

default option.

2. The data vector is specified:

data <- c(83, 112, 47, 11,

 38, 154, 28, 33,

 15, 27, 117, 94,

 6, 36, 75, 136)

Comment:

For information about the order of the data, cf. Chapter 3.7 and Figure 9.

3. The information concerning the starting parameter and the restrictions is computed and

printed:

p.info <- SDT.Parameter.Info(n = cfg, Model.Id = "SDT.2D")

print(p.info)

Comment:

The content of the parameter vector is shown below in the output where the configuration

of parameters and constraints is shown.

4. The estimation function is called:

Opti.obj <- SDT.Estimate(data = data, n = cfg, Model.Id = "SDT.2D" test =

T)

Siegfried Macho: SDT Models in R 173

Comment:

No parameter vector is provided. By consequence, the vector of starting parameters is

generated internally by the estimation function.

5. Test statistics are computed and printed:

Stat.Obj <- SDT.Statistics(Opti.obj)

print(Stat.Obj)

6. The configuration of Gaussian distributions is plotted:

xy.labels <- c("Eyes", "Nose")

SDT.Plot(Opti.obj, cols = 3:6, labels = xy.labels)

The plot function accepts as the first argument either an estimation object (generated by

the function SDT.Estimate) or a list containing information about the model, the

parameters, and the configuration (cf., Chapter 2.5, for details).

The R-code produces the following output:
==

 Parameter information:

==

$Model

[1] "Bivariate Gaussian SDT model: No violations of decisional separability

[RESTRICTIONS: st-v1-er-qu]"

$Parameters.and.Constraints

 name par fixed.value ident.source Nr

1 Mean.1[1] 0 0 <set> ---

2 Mean.2[1] 0 0 <set> ---

3 Stddev.1[1] 1 1 <set> ---

4 Stddev.2[1] 1 1 <set> ---

5 Corr[1] 0 --- ---

6 Mean.1[2] 0 --- Mean.1[1] <set> 1

7 Mean.2[2] 0 --- ---

8 Stddev.1[2] 1 1 <set> ---

9 Stddev.2[2] 1 1 <set> ---

10 Corr[2] 0 --- Corr[1] <set> 5

11 Mean.1[3] 0 --- ---

12 Mean.2[3] 0 --- Mean.2[1] <set> 2

13 Stddev.1[3] 1 1 <set> ---

14 Stddev.2[3] 1 1 <set> ---

15 Corr[3] 0 --- Corr[1] <set> 5

16 Mean.1[4] 0 --- Mean.1[3] <set> 11

17 Mean.2[4] 0 --- Mean.2[2] <set> 7

18 Stddev.1[4] 1 1 <set> ---

19 Stddev.2[4] 1 1 <set> ---

20 Corr[4] 0 --- Corr[1] <set> 5

21 t.D1-1 -1 --- ---

22 t.D2-1 -1 --- ---

===

 Symbolic and numeric gradients at the optimum:

 Length of difference vector : 1.153319e-07

 Length of gradient at optimum: 9.986968e-07

===

 Symbolic Numeric Difference

Corr[1] -6.4e-07 -6.4e-07 0.0e+00

Mean.2[2] 2.4e-07 2.4e-07 0.0e+00

Mean.1[3] -3.0e-07 -3.0e-07 0.0e+00

t.D1-1 6.5e-07 6.5e-07 0.0e+00

t.D2-1 1.1e-07 2.3e-07 -1.2e-07

===

==

 Result of the Estimation: Thomas (2001):

Siegfried Macho: SDT Models in R 174

==

$Model.description

[1] "Bivariate Gaussian SDT model: No violations of decisional separability

[RESTRICTIONS: st-v1-er-qu]"

$Statistics

 Statistic

log L -1132.460

X^2 6.656

G^2 6.773

df 7.000

p(Y > X^2) 0.466

p(Y > G^2) 0.453

AIC 2274.919

BIC 2299.517

CAICF 2338.064

ICOMP 2266.641

ICOMP.R 2266.196

Free Parameters 5.000

Length of gradient at optimum 0.000

Rank of Hessian 5.000

Condition number of information matrix 9.108

Rank of model matrix: t(J) * J 5.000

Condition number of model matrix 14.392

$Free.parameters

 Value SE CFI-95(Lower) CFI-95(Upper)

Corr[1] -0.411 0.052 -0.512 -0.310

Mean.2[2] 0.604 0.079 0.449 0.759

Mean.1[3] 1.667 0.088 1.494 1.840

t.D1-1 0.714 0.061 0.595 0.832

t.D2-1 0.049 0.055 -0.058 0.157

$Gaussian.parameters

 Gauss-1 Gauss-2 Gauss-3 Gauss-4

Mean.1 0.000 0.000 1.667 1.667

Mean.2 0.000 0.604 0.000 0.604

Stddev.1 1.000 1.000 1.000 1.000

Stddev.2 1.000 1.000 1.000 1.000

Corr -0.411 -0.411 -0.411 -0.411

$Decision.bounds.D1

 t-1

Dimension 1 0.714

$Decision.bounds.D2

 t-1

Dimension 2 0.049

$Data.and.Estimates

 Observed Expected Probabilities Residuals Std.Resid.(analytical)

Data[1, 1, 1] 83 87.346 0.345 -0.465 -0.809

Data[1, 1, 2] 112 105.509 0.417 0.632 1.093

Data[1, 2, 1] 47 44.136 0.174 0.431 0.614

Data[1, 2, 2] 11 16.008 0.063 -1.252 -1.681

Data[2, 1, 1] 38 43.761 0.173 -0.871 -1.316

Data[2, 1, 2] 154 149.094 0.589 0.402 0.822

Data[2, 2, 1] 28 29.504 0.117 -0.277 -0.370

Data[2, 2, 2] 33 30.640 0.121 0.426 0.612

Data[3, 1, 1] 15 11.769 0.047 0.942 1.222

Data[3, 1, 2] 27 31.294 0.124 -0.768 -1.051

Data[3, 2, 1] 117 119.713 0.473 -0.248 -0.454

Data[3, 2, 2] 94 90.224 0.357 0.398 0.695

Data[4, 1, 1] 6 4.518 0.018 0.697 0.825

Data[4, 1, 2] 36 38.545 0.152 -0.410 -0.592

Data[4, 2, 1] 75 68.748 0.272 0.754 1.190

Siegfried Macho: SDT Models in R 175

-2 -1 0 1 2 3 4

-2
-1

0
1

2
3

4

Eyes

N
o

s
e

Data[4, 2, 2] 136 141.190 0.558 -0.437 -0.933

1. The table at the beginning of the output provides the relevant information about para-

meters and the restrictions imposed on them (cf., the discussion above). The marker

<set> associated with restriction indicates that the restriction was set by the program.

2. The second table comparing the values of the numeric and symbolic gradient at the

optimum was computed by the function SDT.Estimate since the flag test = T was set.

Discrepancies between the numeric and analytic gradient indicate a failure of conver-

gence. It is thus recommended to always use this option. In addition, the length of the

symbolic gradient is close to zero indicating that the optimum was reached.

Comment:

In case of discrepancies between the numeric and analytic gradient set the flag sym.gr =

FALSE and redo the estimation. In addition, contact me so that I can search for the reas-

ons of the problem.

3. The output following to the table with symbolic and numeric gradients is provided by the

function SDT.Statistics that computes the relevant information on the basis of the

object provided by the estimation procedure (Details are given in Chapter 2.2).

The numbers in the row labels Data[s, D1, D2] indicate the signal (s), the response

category on Dimension 1 (D1) and the response category on Dimension 2 (D2)

corresponding the actual data point, estimates, and residuals.

4. The graphical display of the configuration, shown in Figure 17, is generated by the func-

tion SDT.Plot that takes the information also from the object resulting from the estima-

tion procedure (However, the function accepts also a different input format, cf. Chapter

2.5).

Figure 17: SDT-2D model: Estimated Gaussian configuration and decision bounds for the

data of Thomas (2001).

10.2 Example 2: Fitting the bivariate Gaussian model of signal detection with structural

zeros

The following example illustrates the specification of structural zeros. The corresponding file

containing the example is named:

SDT-2D-2-1. Estimation of data from Olzak & Kramer (1984).R

Siegfried Macho: SDT Models in R 176

The data of this example come from a study of Olzak and Kramer (1984). A detailed analysis

of these data using the bivariate Gaussian SDT model was provided by Wickens and Olzak

(1992).

The data comprise responses to four types of signals. On each dimension, six response opti-

ons were possible. This results in 4 (Signals)  6 (Response options on Dimension 1)  6 (Re-

sponse options on Dimension 6) = 144 data points.

The structure of the fitted model (i.e., the location and orientation of the 90% confidence

regions of the four Gaussian distributions as well as the location of the decision bounds) is

shown in Figure 18.

The R code for fitting these data differs in one significant respect from that of the previous

example only. This concerns the list with the configuration information:

CONFIGURATION OF THE MODEL

cfg <- list(n.sdt = 4, k1 = 5, k2 = 5, struct.zero = c(1, 36+1, 2*36+1,

3*36+1), restriction = "st-quvd")

The configuration list has been modified as follows:

1. The number of decision bounds k1 and k2 on Dimension 1 and 2, respectively has

changed: Each dimension now comprises 5 decision bounds.

2. The entry struct.zero has been added. This entry contains the positions of structural

zeros within the data vector. In the present case, the data on the positions 1, 37, 73, and

109 are specified as structural zeros.

3. The restriction have been changed:

(i) st indicates standard restrictions, i.e. the menas and variance parameters of the first

distribution are fixed.

(ii) quvd indicates two types of restrictions: qu indicates a rectangular configuration and

vd indicates dimensionwise equality of variances. The latter feature is illustrated in

Figure 18: The variances of the first (dark blue) and second (cyan) Gaussian distri-

bution are equal on the first dimension (low frequency signal). The variances of the

first (dark blue) and third (red) Gaussian distribution are equal on the second dimen-

sion (high frequency signal). Finally, the variance of the fourth distribution (dark

green) is equal to that of the second on the hight frequency dimension and to that of

the third distribution on the low frequency dimension.

Siegfried Macho: SDT Models in R 177

-2 -1 0 1 2 3 4

-2
-1

0
1

2
3

4

Low Frequency Signal

H
ig

h
 F

re
q

u
e

n
c
y
 S

ig
n

a
l

Figure 18: SDT-2D model: Estimated Gaussian configuration and decision bounds for the

data of Olzak & Kramer (1984) assuming decisional separability.

Comment:

It is not required to set the frequencies in the data vector to zero. This is performed automa-

tically by the program.

The following excerpt shows the relevant changes in the output due to the specification of

structural zeros. The relevant rows with the data representing structural zeros are tagged by

three stars ***. In addition, the estimated probabilities, frequencies and residuals are all zero.

==

 Results for the data of Olzak and Kramer (1984):

==

$Model.description

[1] "Bivariate Gaussian SDT model: No violations of decisional separability

[RESTRICTIONS: st-quvd]"

$Statistics

[...]

$Data.and.Estimates

 Observed Expected Probabilities Residuals Std.Resid.(analytical)

Data[1, 1, 1] 0*** 0.000 0.000 0.000 0.000

Data[1, 1, 2] 4 13.418 0.044 -2.571 -3.025

[...]

Data[2, 1, 1] 0*** 0.000 0.000 0.000 0.000

Data[2, 1, 2] 4 2.691 0.008 0.798 0.868

[...]

Data[3, 1, 1] 0*** 0.000 0.000 0.000 0.000

Data[3, 1, 2] 2 5.240 0.015 -1.416 -1.561

[...]

Data[4, 1, 1] 0*** 0.000 0.000 0.000 0.000

Data[4, 1, 2] 1 0.583 0.002 0.547 0.567

[...]

Siegfried Macho: SDT Models in R 178

10.3 Example 3: Fitting the bivariate Gaussian model of signal detection with violations

of decisional separability

The following example illustrates the fitting of a model that assumes violations of decisional

separability on Dimension 1 using the same data as in the previous example. The name of the

file with this example is:

SDT-2D-3-1. Estimation of data from Olzak & Kramer (1984) (ds = 1).R

This file differs only with respect to the content of the configuration list. Everything else is

exactly the same (except from comments). The configuration list for this example is specified

by the command:
CONFIGURATION OF THE MODEL

cfg <- list(n.sdt = 4, k1 = 5, k2 = 5, ds = 1, restriction = "st-quvd")

Now the flag ds = 1 was set to indicating violations of decisional separability on Dimen-

sion 1. In addition, no structural zeros were specified.

Comment:

The specification of structural zeros as in the previous example results in a rank deficient

Jacobian matrix (More precisely: The column rank of the model matrix is not of full rank).

Due to the fact that the warning flag is set the function SDT.Statistics prints the warning.

The example file:

SDT-2D-6. Estimation of data from Olzak & Kramer (1984) (identification, ds

= 1, struct zero).R

contains the corresponding R code.

The following excerpt contains only those parts of the output that differ from the output of

the previous examples:
==

 Results for the data of Olzak and Kramer (1984):

==

$Model.description

[1] "Bivariate Gaussian SDT model: Violation of decisional separability on

Dimension 1 [RESTRICTIONS: st-quvd]"

[...]

$Decision.bounds.D1

 D1: t-1 D1: t-2 D1: t-3 D1: t-4 D1: t-5

D2: t-1 -0.496 -0.137 0.236 0.873 1.382

D2: t-2 -1.506 -0.392 0.250 1.055 1.838

D2: t-3 -1.043 -0.163 0.453 1.137 1.989

D2: t-4 -1.183 -0.405 0.239 1.242 2.118

D2: t-5 -0.765 0.487 0.874 1.299 2.193

D2: t-6 0.275 0.954 1.276 1.769 2.257

$Decision.bounds.D2

 t-1 t-2 t-3 t-4 t-5

Dimension 2 -0.715 -0.067 0.424 0.982 1.594

[...]

1. The string with information on the model employed indicates that the SDT model assume-

ing violations of decisional separability was fitted.

2. The part of the output with the decision bounds now contains a table showing the decision

bounds. Each row contains the decision bounds on Dimension 1 for a region on Dimension

2, for example the first row contains the decision bounds on Dimension 1 in within the

region (2

1, Dt− (see also Figure 19).

Siegfried Macho: SDT Models in R 179

-2 -1 0 1 2 3 4

-2
-1

0
1

2
3

4

Low Frequency Signal

H
ig

h
 F

re
q

u
e

n
c
y
 S

ig
n

a
l

Figure 19 illustrates the configuration of Gaussian distributions as well as the locations of the

decision bounds.

Figure 19: SDT-2D model: Estimated Gaussian configuration and decision bounds for the

data of Olzak & Kramer (1984) assuming violations of decisional separability on

Dimension 1.

Comment:

In order to fit the model assuming violations of decisional separability on Dimension 2 one

has only to set ds = 2 within the list with configuration information. The file with the code

containing the example is named:

SDT-2D-4-1. Estimation of data from Olzak & Kramer (1984) (ds = 2).R

10.4 Example 4: Fitting the bivariate Gaussian model using a matrix for the pooling of

data

In some applications it might be useful to pool some of the cells. This may be performed by

specification of a matrix R (R = response pooling) in the configuration list. This matrix is

used by the program to perform the transformation of the input data as well as the estimated

probabilities and frequencies. Thus, in the course of estimation, the complete probability vec-

tor is computed (using the actual values of the parameters) and these probabilities are pooled

by using matrix R. The resulting probabilities enter as probabilities into the (product) multi-

nomial likelihood. By consequence, if the transformed and non-transformed counts follow a

(product) multinomial distribution, the resulting estimates are maximum likelihood estimates.

In case of pooling data corresponding to single signals this assumption is tenable. However, if

matrix R is used to perform other types of transformations (e.g. differentially weighing the

data points) the estimated parameters may not be maximum likelihood estimates.

The matrix R may be used to estimate bivariate Gaussian models with response selection (cf.

Green, 2008, DeCarlo, 2003b).

The following example demonstrates the specification and usage of matrix R for pooling

parts of the data. Again, data from Olzak & Kramer (1984) are used. The relevant R code is

contained in the example file:

SDT-2D-9-1. Estimation of data from Olzak & Kramer (1984) (Pooling of

data).R

The relevant code for specification of matrix R looks like this:

Siegfried Macho: SDT Models in R 180

SPECIFICATION OF A MATRIX FOR POOLING DATA

R <- diag(length(data))

group.1 <- c(2, 7, 8) # Cells which are pooled with the target cells

group.2 <- c(2, 7, 8) + 36

group.3 <- c(2, 7, 8) + 36*2

group.4 <- c(2, 7, 8) + 36*3

target.1 <- 1 # Target cells

target.2 <- 1 + 36

target.3 <- 1 + 36*2

target.4 <- 1 + 36*3

Matrix: Source cells in columns, target cells in rows

R[target.1, group.1] <- 1

R[target.2, group.2] <- 1

R[target.3, group.3] <- 1

R[target.4, group.4] <- 1

Delete rows of cells that are grouped

R <- R[-c(group.1, group.2, group.3, group.4),]

CONFIGURATION OF THE MODEL

cfg <- list(s = 4, k1 = 5, k2 = 5, ds = 0, R = R)

The code implements the following operations:

1. An identity matrix of order equal to the length of the data is generated by the command:

R <- diag(length(data))

In the present case the matrix is a 144  144 identity matrix (i.e. 1 on the main diagonal

and 0 elsewhere).

2. The positions of the counts that are added to the target cells are specified:

group.1 <- c(2, 7, 8)

group.2 <- c(2, 7, 8) + 36

group.3 <- c(2, 7, 8) + 36*2

group.4 <- c(2, 7, 8) + 36*3

In the present case the counts of the cells »surrounding« the first data points of each sig-

nal. are pooled to the counts of the first data points for each signal.

3. The positions of the four target cells are specified:

target.1 <- 1

target.2 <- 1 + 36

target.3 <- 1 + 36*2

target.4 <- 1 + 36*3

In the present case, these are the first data points for each signal.

4. Ones are inserted into matrix R on the positions with rows corresponding to the target

cells and columns to the source cells:

R[target.1, group.1] <- 1

R[target.2, group.2] <- 1

R[target.3, group.3] <- 1

R[target.4, group.4] <- 1

Due to the fact that data vector and the vector of estimated probabilities are premultiplied

by R this specification results in the addition of the counts in the target cells to those in

the source cells.

5. Finally, the rows representing the source cells are deleted from the matrix:

Siegfried Macho: SDT Models in R 181

R <- R[-c(group.1, group.2, group.3, group.4),]

 Please note:

 (1) The program assumes that the full data vector is provided as input. The pooling

of data and estimates is performed internally by the program.

 (2) Do not include structural zeros into the set of pooled data cells. The inclusion of

structural zeros might result in a wrong computation of the degrees of freedom

for to the
2 statistics.

As shown in the following excerpt the utilization of matrix R results in a slightly modified

output of the data and estimate section:

[...]

$Data.and.Estimates

 Observed Expected Probabilities Residuals Std.Resid.(analytical)

1 91 94.643 0.271 -0.374 -2.464

2 9 16.474 0.047 -1.842 -2.068

3 7 14.390 0.041 -1.948 -2.210

4 6 8.608 0.025 -0.889 -1.003

[...]

The modification concerns the numbering of rows on the left side. Due to the usage of matrix

R it is not possible to specify for each data and estimate the signal and the number of

response within each signal. By consequence, the rows are simply numbered.

10.5 Example 5: Robust estimation of decision bounds with pooled estimates

An application using a pooling matrix the estimation may fail if the decision bounds are not

estimated using the robust option. The model discussed in the present chapter and its appli-

cation to data provides a concrete instance.

The model depicted in Figure 20 was designed for modeling Remember-Know judgments

(and conjoint recognition judgments, respectively). The model assumes two independent

dimensions that are relevant for Remember-Know judgments: Familiarity (horizontal axis)

and recollection (vertical axis). If the memory signal exceeds one of the decision bounds
RRR

521 ,,   on the recollection dimension a »Remember« response is emitted, with confi-

dence level determined by the decision bounds on the corresponding aixs (the vertical grey

lines in Figure 20). If the meory strength is located below the lowest bound
R

1 , the decision

is guides by the degree of familiarity and the decision baounds
KKK

521 ,,   on the familiari-

ty axis are used for selecting a confidence category for the »Know« response. This type of

model for explaining Remember-Know judgments has been proposed by Rotello, Macmillan,

and Reeder (2004, Figure 12, on p. 602).

The model requires the pooling of cells: For example the region representing the »Re-

member« response with confidence level C2 is made up of the cells 2, 8, 14, 20, 26, and 32.

By consequence, these cells have to be pooled together. A similar pooling of cells has to be

performed for the other »Remember« responses.

The estimation of the model to the data of Rotello, Mamillan, Reeder; & Wong (2005)

without robust estimation of decision bounds fails to converge on a local optimum. Thus the

robust option is required for fitting the model. The following file contains the relevant code

for modeling these data:

SDT-2D.12. (R-K Rotello, 2005, neutral condition, robust).R

Siegfried Macho: SDT Models in R 182

There are two specific requirements for fitting this model to the data using a pooling matrix:

1. The input data require a specific format, and

2. The pooling matrix has to be specified.

The structure of the input data is exhibited by following excerpt of code:

Lure Target

data <- matrix(c(745, 290, # 1 New

 46, 26, # 2 Remember 2

 29, 38, # 3 Remember 3

 47, 61, # 4 Remember 4

 51, 109, # 5 Remember 5

 55, 433, # 6 Remember 6

 199, 122, # 7 Know 2

 0, 0, # 8 Remember 2

 0, 0, # 9 Remember 3

 0, 0, # 10 Remember 4

 0, 0, # 11 Remember 5

 0, 0, # 12 Remember 6

 124, 106, # 13 Know 3

 […]
 13, 59, # 31 Know 6

 0, 0, # 32 Remember 2

 0, 0, # 33 Remember 3

 0, 0, # 34 Remember 4

 0, 0, # 35 Remember 5

 0, 0 # 36 Remember 6

), nc = 2, byrow = T)

Figure 20: Bivariate SDT model of Remember-Know recognition judgments: The two

dimensions making up the decision space are recollection and familiarity.

»New«

[cell 1]

»Know C2«

[cell 7]

»Remember C2« [pooled cells:2, 8, 14, 20, 26, 32]

»Know C3«

[cell 13]

»Know C4«

[cell 19]

»Know C5«

[cell 25]

»Know C6«

[cell 31]

»Remember C3« [pooled cells:3, 9, 15, 21, 27, 33]

»Remember C4« [pooled cells:4, 10, 16, 22, 28, 34]

»Remember C5« [pooled cells:5, 11, 17, 23, 29, 35]

»Remember C6« [pooled cells: 6, 12, 18, 24, 30, 36]

Lure

Familiarity

R
ec

o
ll

ec
ti

o
n

Target

Siegfried Macho: SDT Models in R 183

Horizonal grey lines indicate decision bounds on the recollection dimension and

vertival lines indicate decision bounds on the familiarity dimension.

The first column represents the data for the lure (new) items for the different response

categories and the second colum contains the respective data for old items.

The central feature of the data matrix consists in the fact that there are many rows of »pseudo

data« with zero counts. These are required because the model requests 36 data points per

signal type due to 5 decision bounds on each dimension. There are however only 13 response

categories (1 »New«, 6 »Know« and 6 »Remember« responses). By consequence 23 »pseudo

data« consisting of zeros have to be generated in order to fit the model. These counts are

added by means of the pooling matrix to the main data, consistiong of the observed fre-

quencies for the different response categories.

Consider, for example, the »Remember« response associated with with the lowest confidence

(called Remember 2 in the code above). The corresponding response region consists of the

cells: 2, 8, 14, 20, 26, 32 (cf. Figure 20). The counts of these cells (as well as the predicted

frequencies) are pooled together. In the input, the observed frequencies of Remember 2 re-

sponses are associated with Cell 2 whereas the frequencies of the other cells are set to zero

(Clearly, it makes no difference if the observed frequencies are associated with a different

cell of the set or if they are distributed over the whole set, as long as the sum of the counts

correspond to the observed values). The same principle was applied to the »Remember«

responses associated with the other confidence categories.

The second important requirement for fitting the data concerns the specification of the

pooling matrix R. Here is the relevant piece of R code:

R <- diag(length(data))

Specify relevant entries for the lure signal

C2 <- c(8, 14, 20, 26, 32)

C3 <- C2 + 1

C4 <- C2 + 2

C5 <- C2 + 3

C6 <- C2 + 4

R[2, C2] <- 1

R[3, C3] <- 1

R[4, C4] <- 1

R[5, C5] <- 1

R[6, C6] <- 1

Specify relevant entries for the target signal

C22 <- C2 + 36

C23 <- C3 + 36

C24 <- C4 + 36

C25 <- C5 + 36

C26 <- C6 + 36

R[2+36, C22] <- 1

R[3+36, C23] <- 1

R[4+36, C24] <- 1

R[5+36, C25] <- 1

R[6+36, C26] <- 1

Delete rows of the cells that are grouped together

R <- R[-c(C2, C3, C4, C5, C6, C22, C23, C24, C25, C26),]

The first command:

Siegfried Macho: SDT Models in R 184

R <- diag(length(data))

generates a 7272 identity matrix (2 signals  36 response regions). The command:

C2 <- c(8, 14, 20, 26, 32)

specifies the cells whose content is added to the second cell, representing Remember 2 res-

ponses for lure items. Similarly, the command:

C3 <- C2 + 1

specifies the cells whose content is added to the third cell, representing Remember 3 respons-

es for lure items. C3 results from C2 by adding a 1 to each entry of C2.

The command:

R[2, C2] <- 1

puts ones into columns 8, 14, 20, 26, and 32 (whose indices are represented by C2) of the

second row of the pooling matrix R. As a result, if the data vector is multiplied from the right

with matrix R, the entries 8, 14, 20, 26, and 32 are added to Entry 2. The following com-

mands (shown above) perform the same procedure for the other rows (3-6). In this way, the

pooling of data for lure items is ensured.

Now, the whole procedure is repeated for the old items. Finally, the command:

R <- R[-c(C2, C3, C4, C5, C6, C22, C23, C24, C25, C26),]

Deletes the rows corresponding to the cells that are added to Cells 2, 3, …, 42.

Following to the specification of the pooling matrix, the model setup is defined:

cfg <- list(n.sdt = 2, k1 = 5, k2 = 5, ds = 0, R = R, robust = T)

n.sdt denotes the number of signals, k1 and k2 refer to the number of response criteria on

Dimension 1. and 2, ds = 0 indicates decisional separabilty (this argument may by omitted

because this option is the default one). Finally the pooling matrix R is passed and robust

estimation of decision bounds is specified by setting robust = T.

If the robust estimation option is not set, the estimation does not converge properly as

indicated by the following output:
===

 Symbolic and numeric gradients at the optimum:

 Length of difference vector : 3.446338e+17

 Length of gradient at optimum: 3.446338e+17

===

 Symbolic Numeric Difference

Mean.1[2] 1.661760e+02 166.17598 -1.600000e-07

Mean.2[2] -9.490750e+00 -9.49075 2.400000e-07

Stddev.1[2] 5.504106e+01 55.04106 -6.000000e-08

Stddev.2[2] -9.320256e+01 -93.20256 0.000000e+00

t.D1-1 -1.207060e+02 -120.70603 3.000000e-08

t.D1-2 -7.509269e+02 -750.92690 8.000000e-08

t.D1-3 -1.385655e+02 -138.56550 -1.150000e-06

t.D1-4 -4.701655e+01 -47.01655 -3.000000e-08

t.D1-5 -9.855457e+01 -98.55457 5.000000e-08

t.D2-1 2.436929e+17 -1405.05202 2.436929e+17

t.D2-2 -2.436929e+17 140.11090 -2.436929e+17

t.D2-3 8.684503e+01 86.84503 -1.890000e-06

t.D2-4 2.133776e+02 213.37758 -1.600000e-07

t.D2-5 6.532763e+01 65.32763 7.000000e-08

===

===> WARNING: Hessian matrix is not positive definite: Rank = 13

On the one hand, there is a huge difference between the numeric and the analytic gradient

computed at the estimated paramet values. This is due to the difference for first two decision

Siegfried Macho: SDT Models in R 185

bounds on the second dimension. On the other hand, the Hessian matrix is singular (the rank

of the matrix should be 14).

These difficulties arise because the code for computing probabilities makes some ad hoc

adjustmenst in order to avoid negative probabilities. In the present case, these ad hoc

adjustments are not sufficient to provide a proper results. With robust estimation negative

probabilites due to a wrong ordering of decision bounds can never occur. By consequence, in

case of robust estimation no problems are observed. These is indicated by the resulting table

containing the computed gradients at the optimum (as well as by the absence of warning

message concerning the Hessian matrix):
===

 Symbolic and numeric gradients at the optimum:

 Length of difference vector : 1.343428e-07

 Length of gradient at optimum: 2.25306e-05

===

 Symbolic Numeric Difference

Mean.1[2] -9.84e-06 -9.890e-06 5e-08

Mean.2[2] 4.50e-07 4.300e-07 1e-08

Stddev.1[2] -5.44e-06 -5.430e-06 0e+00

Stddev.2[2] 1.94e-06 1.970e-06 -3e-08

t.D1-1 1.68e-05 1.674e-05 6e-08

t.D1-2 3.72e-06 3.750e-06 -3e-08

t.D1-3 5.82e-06 5.800e-06 2e-08

t.D1-4 -1.85e-06 -1.800e-06 -5e-08

t.D1-5 2.72e-06 2.660e-06 7e-08

t.D2-1 -4.67e-06 -4.620e-06 -5e-08

t.D2-2 -1.38e-06 -1.380e-06 0e+00

t.D2-3 4.00e-07 4.100e-07 -1e-08

t.D2-4 1.49e-06 1.470e-06 2e-08

t.D2-5 -3.23e-06 -3.210e-06 -2e-08

===

The table indicates proper convergence of the estimation procedure: The gradient at the esti-

mated value is close to zero (about 0.00003), and the numerically and analytically computed

gradients are nearly identical.

Comment:

Proper convergence also results without setting the robust option if the flag use.nlminb = T

is set in the procedure SDT.Estimate. Since this is now the default option the robust flag

needs no longer be set for this example.

Figure 21 depicts the 90 percent confidence regions and the location of the decision bounds.

This picture was generated by using the commands:

xy.labels <- c("Familiarity", "Recollection")

SDT.Plot(Opti.obj, cols = 3:6, labels = xy.labels, option = 6:30)

The vector that is passed to argument option indicates the number of those decision bounds

that are left out from the figure. It is assumed that the decision bounds on Dimension 1 are

ordered as shown in Figure 7 and are located in front of decision bounds of Dimension 2

whose is ordering depicted in Figure 8. Figure 1 presents for a concrete example exhibiting

the ordering of the decision bounds.

Comment:

All source files with the word »robust« included in the file name use the robust = T option.

A comparison of the output with and without the option exhibits that the specification of the

option has no effect on the output.

Siegfried Macho: SDT Models in R 186

Figure 21: Estimated configuration of the model for the actual data set.

10.6 Example 6: Implementation of the CDP-SDT model

The CDP-SDT model (Continuous Dual-Process Signal Detection Model) of Wixted and

Mickes (2010) can be implemented by means of the SDT-2D model. This implementation

requires the specification of a response pooling matrix R as well as the definition of complex

functional constraints.

In the following example the model was implemented to fit the data of a Remember/Know

recognition experiment from Rotello, Macmillan, Reeder, & Wong (2005) [p. 873]. The

following file contains the code of this example:

SDT-2D-10-1. Implementation of the CDP-SDT Model.R

The relevant code for specification of matrix R looks like this:

1. The data are specified:

DATA from Rotello et al.(2005), NEUTRAL CONDITION

data <- matrix(c(

 # Lure Target

 745, 290, # Category 1 New

 0, 0, # Category 1 New

 199, 122, # Category 2 Know

 46, 26, # Category 2 Remember

 124, 106, # Category 3 Know

 29, 38, # Category 3 Remember

 84, 101, # Category 4 Know

 47, 61, # Category 4 Remember

 45, 92, # Category 5 Know

 51, 109, # Category 5 Remember

 13, 59, # Category 6 Know

 55, 433), # Category 6 Remember

 nc = 2, byrow = T)

dvec <- c(data[,1], data[,2]) # Make data vector

The data contain the Remember /Know [R/K] responses for lure (new) and target (old) items.

Note that for Confidence Category 1 [sure new] no remember answers are present because in

-2 0 2 4

-2
0

2
4

Familiarity

R
e

c
o

ll
e

c
ti
o

n

Siegfried Macho: SDT Models in R 187

case of selecting this response category no R/K responses were given. Thus, the data of R/K

for this category are pooled together by using a pooling matrix R.

2. The pooling matrix R is specified as follows:

R <- diag(length(data))

R[1, 2] <- 1

R[13, 14] <- 1

R <- R[-c(2, 14),]

The first two data cells (lure items) as well as 13. and 14. cell (target items) are pooled

together and the redundant cells 2 and 14 are deleted. By consequence, instead of 24 data

points, 22 are fitted only.

3. The configuration of the model is specified:

CONFIGURATION OF THE MODEL

cfg <- list(n.sdt = 2, k1 = 5, k2 = 1, ds = 0, standard = F, R = R)

Note that the option standard = F was set indicating that the standard restrictions (11 = 0,

12 = 0, 11 = 1, and 12 = 1) are not implemented automatically.

The reason is exhibited in Tab. 1 that shows the parameters together with the restrictions

imposed:

Lure 11 = 0 12 = 0 211 = 12 = 1 211 =

Target 21 22 2

2221 1 += 22 2

22222 1 +=

Thresholds (D1) 11 12 13 14 15

Thresholds (D2) 21

Tab. 1: Parameter restrictions for implementing the CDP-SDT-Model for the data of Rotello

et al. (2005)

Instead of setting 11 = 1 it is fixed at 211 = . Note also that the implementation requires

the definition of the functional constraints: 2

2221 1 += and
2

22222 1 += . This is

performed by the following piece of code:

4. Specification of fixed and functional constraints is

SPECIFICATION OF FIXED CONSTRAINTS:

fixed.par <-matrix(c(0, 0, sqrt(2), 1, 1/sqrt(2), 1, 1,

 1, 2, 3, 4, 5, 8, 10), nrow = 2, byrow =

T)

#--

DEFINE FUNCTION FOR IMPLEMENTING FUNCTIONAL CONSTRAINTS

#--

fct.res <- function(par)

{

 par[8] <- sqrt(1 + par[9]*par[9])

 par[10] <- par[9]/par[8]

 # Gradient function

 gr.fct <- function(grad, par)

 {

 zw <- sqrt(1+ par[9]*par[9])

 grad[9] <- grad[9] + grad[8]*par[9]/zw + grad[10]*(1/zw -

par[9]*par[9]/zw/zw/zw)

 return(grad)

Siegfried Macho: SDT Models in R 188

 }

 attr(par, "SDT.gradient") <- gr.fct # Gradient function

 return(par)

}

The function fct.res implements the functional constraints. In addition the gradient function

gr.fct for adjusting the gradient is defined.

5. Specification of the function for computing the Jacobian matrix of the functional con-

straints:
#--

DEFINE FUNCTION FOR COMPUTING THE JACOBIAN FOR THE ANALYTICAL COMPUTATION

OF STANDARDIZED RESIDUALS

#--

J.fct <- function(par)

{

 zw <- sqrt(1+ par[9]*par[9])

 J <- diag(length(par))

 J[8, 9] <- par[9]/zw

 J[10, 9] <- 1/zw - par[9]*par[9]/zw/zw/zw

 J

}

attr(fct.res, "SDT.Jacobian") <- J.fct

This function is required for the computation of the analytic standardized residuals. Note that

this function is not required because if it is not specified, the residuals are computed numeri-

cally (leading to the same result).

6. Now the estimation procedure may be called:

Opti.obj <- SDT.Estimate(data = dvec, n = cfg, Model.Id = "SDT.2D", fixed =

fixed.par, functional = fct.res, test = T)

7. Finally the statistics are computed and printed and the configuration is plotted:

Stat.Obj <- SDT.Statistics(Opti.obj)

print(Stat.Obj)

PLOT CONFIRGUATION

xy.labels <- c("Confidence", "Recollection")

SDT.Plot(Opti.obj, cols = 3:6, labels = xy.labels, option = 11)

Figure 22 depicts the configuration. The blue ellipse represents lure items and the red one

represents the target items. Note the the left part of the vertical decision bound was not

plotted due to the command option = 11 (cf. Chapter 2.5).

The resulting fit statistics of the model are identical to those reported by Wixted and Mickes

(2010, p.1039).

Siegfried Macho: SDT Models in R 189

-2 0 2 4

-2
0

2
4

Confidence

R
e

c
o

ll
e

c
ti
o

n

Figure 22: SDT-2D model: Configuration of the CPD-SDT Model for the data of Rotello et

al. (2005)

The R file contains additional code for fitting data of the conservative condition of Rotello et

al. (2005).

10.7 Source files containing further examples

The package comprises four additional source files (not mentioned above):

 SDT-2D-6. Estimation of data from Olzak & Kramer (1984) (identification,
ds = 1, struct zero).R

 SDT-2D-5. Estimation of data from Olzak & Kramer (1984) (functional
constraints).R

 SDT-2D-5-1. Estimation of data from Olzak & Kramer (1984) (functional
constraints, robust).R

 SDT-2D-8-1. Estimation of polychoric correlation (Finney & DiStefano).R

 SDT-2D-8-2. Estimation of polychoric correlation (Ollson).R

 SDT-2D-10-2. Implementation of the CDP-SDT Model (Violations of ds).R

 SDT-2D-11. Implementation of the CVM-SDT Model.R

The first example demonstrates conditional estimation, i.e., in case of structural zeros, the

residual probabilities of the signal are renormalized to sum to 1.0. The second and third file

contain an example demonstrating the usage of functional constraints (without and with

robust estimation). The fourth and fifth example illustrate the computation of the polychoric

correlation coefficient. The sixth example implements the CDP-SDT model assuming viola-

tions of decisional separability for the conservative condition of Rotello et al. (2005). The fin-

al example implements the Criterion Variability Model for Remember-Know data of Rotello

et al. (2005).

11. Working Example: Mixture of two Bivariate Gaussian models (SDT2D.MIX.2)

The present example demonstrates how to utilize the SDT2D.MIX.2 module for fitting bivari-

ate signal detection data with violations of decisional separability on Dimension 1 and no

structural zeros.

The example file:

SDT2D-MIX-2 Sourcemonitoring Yonelinas (1999, Exp.2).R

Siegfried Macho: SDT Models in R 190

contains the R code. The data of the present example stem from a source monitoring experi-

ment (Yonelinas, 1999, Experiment 2) consisting of new items and old items from two

sources (male vs. female voice).

In the following, only the most important lines of the command file are presented. The lines

containing the loading of source files and the data vectors are not shown. It should be noted

however that the file SDT-SDT-2D.R containing the code of the SDT2D model must be

included since the SDT2D.MIX.2 model uses functions of the SDT2D model.

Here is the code:

CONFIGURATION INFORMATION

cfg <- list(s = 3, k1 = 5, k2 = 5, standard = F, ds = 1, robust = T)

##################################

CONSTRAINTS

D1: Source recognition

D2: Old/New recognition

Model 1: p, m1, m2, s1, s2, r:

1, 0, 0, 1, 1, 0,

0, 0, 1, 1, 0,

Model 2: *, 0, a, 1, 1, 0,

c, b, 1, 1, 0,

Model 3: *, 0, a, 1, 1, 0,

-c, b, 1, 1, 0,

##################################

Fixed restrictions for Model 1

fixed.M1 <- matrix(c(1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0,

 1:11), nr = 2, byrow = T)

Fixed restrictions for Model 2

fixed.M2 <- matrix(c(0, 1, 1, 0, 1, 1, 0,

 13, 15, 16, 17, 20, 21, 22), nr = 2, byrow = T)

Fixed restrictions for Model 3

fixed.M3 <- matrix(c(0, 1, 1, 0, 1, 1, 0,

 24, 26, 27, 28, 31, 32, 33), nr = 2, byrow = T)

Target of functional constraints

fixed.fct <- matrix(c(0,

 29), nr = 2, byrow = T)

fixed <- cbind(fixed.M1, fixed.M2, fixed.M3, fixed.fct)

ident <- matrix(c(14, 19,

 25, 30), nr = 2, byrow = T)

Functional constraint:

Mean.x of Model 2, second Gaussian = Mean.x of Model 3, second Gaussian

fct.m <- function(par)

{

 tindex <- 29 # Target index: Mean.x[3.2]

 sindex <- 18 # Source index: Mean.x[2.2]

 par[tindex] <- -par[sindex]

 # Define Gradient function

 gr.fct <- function(grad, par)

Siegfried Macho: SDT Models in R 191

 {

 grad[sindex] <- grad[sindex] - grad[tindex]

 return(grad)

 }

 attr(par, "SDT.gradient") <- gr.fct # Gradient

 return(par)

}

4 DEFINE FUNCTION TO COMPUTE Jacobian AND ASSIGN IT TO THE FUNCTION

J.fct <- function(par)

{

 J <- diag(length(par))

 J[29, 18] <- -1

 J

}

attr(fct.m, "SDT.Jacobian") <- J.fct # Jacobian matrix

#---

SHOW THE CONFIGURATION

#---

Par.Info <- SDT.Parameter.Info(n = cfg, Model.Id = "SDT2D.MIX.2", fixed =

fixed, ident = ident, deci = 3)

print(Par.Info)

#---

ESTIMATION OF PARAMETERS AND EVALUATION OF RESULTS

#---

Est.Obj <- SDT.Estimate(data = data.vec, Model.Id = "SDT2D.MIX.2", n = cfg,

fixed = fixed, ident = ident, functional = fct.m, test = T)

Stat.Obj <- SDT.Statistics(Est.Obj)

cat("\n--\n")

cat(" Yonelinas (1999), Experiment 2:")

cat("\n--\n")

print(Stat.Obj)

#---

PLOT THE CONFIGURATION:

Gaussian of New in blue, the other Gaussians are red

#---

SDT.Plot(Est.Obj, cols = c(1, 2, 2, 2, 2), labels = c("Source", "Old/New"))

The first command line:

cfg <- list(s = 3, k1 = 5, k2 = 5, standard = F, ds = 1, robust = T)

speicifies the configuration of the model:

➢ Three mixures of Gaussians are used: s = 3

➢ The number of thresholds on Dimension 1 (source dimension) and on Dimension 2

(Old/new recognition dimension) are both 5: k1 = 5, k2 = 5

➢ The standard option for fixing parameters is not used: standard = F

Two things should be noted however: First, the actual fixation of parameters corresponds

to the standard (cf. the entries in the matrix fixed), and, second, it does not matter

whether standard = F or standard = T since the program eliminates redundant fixed

constraints.

➢ Violation of decisional separability on Dimension 1 is assumed: ds = 1

➢ Robust estimation of decision bounds is performed: robust = T

Siegfried Macho: SDT Models in R 192

The following comments indicate which parameters are fixed or set equal: '*' indicate free pa-

rameters, letters a, b and c indicate equality constraints (note the utilization of letters c and –c

indicate that the second value was set to minus the first one.

The two Gaussians of the first model have the same parameters (all fixed) thus »simulating«

a single Gaussian distribution. Due to the fact, the the probability parameter was set to 1.0,

the second Gaussian distribution of the model has no impact on the result. By consequence,

fhe parameters of this Gaussian may thus be fixed to any (permissible) set of values without

changing the result. It is however important to fix these parameters since otherwise the model

would not be identified.

The matrices fixed.M1, fixed.M2 and fixed.M3 contain fixed constraints for each of the

three models. The matrix fixed.fct represent the functional constraint. These matrices of

constraints are binded together resulting in the matrix fixed.

The matrix ident represents the equality constraints. In the present case, the means on the y-

dimension of Model 2 were equated to the corresponding means of Model 3.

The following lines are required for specifying the functional constraint that the mean on the

x-dimension of the second Gaussian of Model 3 is set to minus the respective mean of Model

2 (cf. Figure 23, the two red circles in the upper part of the figure). The code is practically

identical to the one described in Section 7.2. Thus, I refer readers to the description in this

section (for further explications and examples concnering functional constraints, see Section

4.4.2).

The commands:

Par.Info <- SDT.Parameter.Info(n = cfg, Model.Id = "SDT2D.MIX.2", fixed =

fixed, ident = ident, deci = 3)

print(Par.Info)

display the parameters as well as the constraints specified. This can be very helpful for

checking whether constraints were specified properly.

The estimation of the model is performed by the command:

Est.Obj <- SDT.Estimate(data = data.vec, Model.Id = "SDT2D.MIX.2", n = cfg,

fixed = fixed, ident = ident, functional = fct.m, test = T)

with the result being saved in the object Est.Obj.

The relevant statistical information is computed by the command:

Stat.Obj <- SDT.Statistics(Est.Obj)

Printing the contents of the object Stat.Obj results in the following output (outlined):
$Model.description

[1] “Bivariate Gaussian 2 Mixture model: Violation of decisional separability on

Dimension 1 [ROBUST]"

$Statistics

 Statistic

log L -16902.466

X^2 90.785

G^2 93.027

df 65.000

p(Y > X^2) 0.019

p(Y > G^2) 0.013

AIC 33884.933

BIC 34151.280

CAICF 34454.119

ICOMP 34002.844

ICOMP.R 33839.370

Free Parameters 40.000

Siegfried Macho: SDT Models in R 193

Length of gradient at optimum 0.000

Rank of Hessian 40.000

Condition number of information matrix 1453621.124

Rank of model matrix: t(J) * J 40.000

Condition number of model matrix 15578.430

$Free.parameters

 Value SE CFI-95(Lower) CFI-95(Upper)

p[2] 0.644 0.025 0.595 0.692

Mean.y[2.1] 0.548 0.051 0.449 0.647

Mean.x[2.2] 0.995 0.208 0.588 1.402

Mean.y[2.2] 3.048 3.805 -4.411 10.506

p[3] 0.616 0.041 0.536 0.696

t.D1-1[D2 = 1] -1.979 0.014 -2.006 -1.952

t.D1-2[D2 = 1] -1.138 0.081 -1.297 -0.978

t.D1-3[D2 = 1] 0.411 0.041 0.330 0.492

t.D1-4[D2 = 1] 1.707 0.085 1.541 1.874

t.D1-5[D2 = 1] 2.146 0.118 1.913 2.378

t.D1-1[D2 = 2] -1.954 0.119 -2.187 -1.720

t.D1-2[D2 = 2] -1.197 0.136 -1.464 -0.931

t.D1-3[D2 = 2] 0.371 0.036 0.301 0.442

t.D1-4[D2 = 2] 1.921 0.085 1.754 2.087

t.D1-5[D2 = 2] 2.466 0.138 2.195 2.737

t.D1-1[D2 = 3] -2.187 0.139 -2.460 -1.915

t.D1-2[D2 = 3] -1.078 0.171 -1.412 -0.744

t.D1-3[D2 = 3] 0.294 0.043 0.211 0.378

t.D1-4[D2 = 3] 1.843 0.091 1.664 2.022

t.D1-5[D2 = 3] 2.590 0.176 2.245 2.936

t.D1-1[D2 = 4] -1.813 0.177 -2.159 -1.466

t.D1-2[D2 = 4] -0.877 0.192 -1.252 -0.501

t.D1-3[D2 = 4] 0.310 0.050 0.212 0.407

t.D1-4[D2 = 4] 1.210 0.067 1.079 1.341

t.D1-5[D2 = 4] 2.416 0.126 2.169 2.662

t.D1-1[D2 = 5] -1.567 0.077 -1.717 -1.416

t.D1-2[D2 = 5] -0.301 0.059 -0.417 -0.184

t.D1-3[D2 = 5] 0.172 0.081 0.013 0.331

t.D1-4[D2 = 5] 0.652 0.084 0.487 0.816

t.D1-5[D2 = 5] 1.812 0.074 1.668 1.956

t.D1-1[D2 = 6] -0.623 0.042 -0.706 -0.541

t.D1-2[D2 = 6] -0.201 0.071 -0.339 -0.062

t.D1-3[D2 = 6] 0.102 0.082 -0.059 0.263

t.D1-4[D2 = 6] 0.281 0.106 0.073 0.490

t.D1-5[D2 = 6] 0.702 0.071 0.562 0.842

t.D2-1 -0.671 0.029 -0.728 -0.614

t.D2-2 0.063 0.029 0.007 0.119

t.D2-3 0.552 0.034 0.484 0.619

t.D2-4 0.992 0.042 0.910 1.074

t.D2-5 1.616 0.054 1.511 1.721

$Gaussian.parameters

 Mixture-1 Mixture-2 Mixture-3

p 1 0.644 0.616

Mean.x[1] 0 0.000 0.000

Mean.y[1] 0 0.548 0.548

Stddev.x[1] 1 1.000 1.000

Stddev.y[1] 1 1.000 1.000

Corr[1] 0 0.000 0.000

Mean.x[2] 0 0.995 -0.995

Mean.y[2] 0 3.048 3.048

Stddev.x[2] 1 1.000 1.000

Stddev.y[2] 1 1.000 1.000

Corr[2] 0 0.000 0.000

$Decision.bounds.D1

 D1: t-1 D1: t-2 D1: t-3 D1: t-4 D1: t-5

D2: t-1 -1.979 -1.138 0.411 1.707 2.146

Siegfried Macho: SDT Models in R 194

D2: t-2 -1.954 -1.197 0.371 1.921 2.466

D2: t-3 -2.187 -1.078 0.294 1.843 2.590

D2: t-4 -1.813 -0.877 0.310 1.210 2.416

D2: t-5 -1.567 -0.301 0.172 0.652 1.812

D2: t-6 -0.623 -0.201 0.102 0.281 0.702

$Decision.bounds.D2

 t-1 t-2 t-3 t-4 t-5

Dimension 2 -1.954 -1.197 0.371 1.921 2.466

$Data.and.Estimates

 Observed Expected Probabilities Residuals Std.Resid.(analytical)

Data[1, 1, 1] 9 11.529 0.006 -0.745 -1.254

Data[1, 1, 2] 14 13.353 0.007 0.177 0.256

[...]

Concerning the listing of results two things should be mentioned:

1. The model descriptions at the beginning of the listing provides information about the

model and its configuration.

2. The condition number of the information matrix is quite high, indicating that the model

might be too complex for the data set used. This is presumably due to the fact that a num-

ber of cells have low frequencies.

The command

SDT.Plot(Est.Obj, cols = c(1, 2, 2, 2, 2), labels = c("Source", "Old/New"))

Generates the plot of Figure 23.

Figure 23: SDT2D-MIX-2 model: Configuration for modeling the data of Yonelinas (1999,

Experiment 2).

12. Working Example: SDT model for m-alternative forced choice with bias (mAFC)

The present example demonstrates the utilization of the SDT.mAFC module for fitting 3-AFC

forced choice data, assuming bias. The data come from a taste experiment performed by Ennis

& O’Mahony (1995, Table 1 on p.1089).

Here is an excerpt from the script that performs the estimation and computation of test

statistics for the WW condition. The file SDT-mAFC (Ennis & Mahoney, 1995).R contains

the code.

-2 0 2 4

-2
0

2
4

Source

O
ld

/N
e

w

Siegfried Macho: SDT Models in R 195

Data of Ennis & Mahony (1995), p. 1089, Condition WW

datavec1 <- c(54, 5, 1, # SWW

 0, 60, 0, # WSW

 5, 3, 52) # WWS

Data of Ennis & Mahony (1995), p. 1089, Condition SS

datavec2 <- c(40, 12, 8, # SWW

 6, 49, 4, # WSW

 6, 5, 49) # WWS

CONFIGURATION

cfg <- list(s = 1, m = 3, quad = "aGH")

SET FIXED CONSTRAINT: FIX VARIANCE OF TARGET TO 1.0

fixed <- matrix(c(1, 2), nr = 2, byrow = T)

ESTIMATE AND EVALUATE THE RESULTS

Opti.Obj <- SDT.Estimate(data = datavec1, n = cfg, Model.Id = "mAFC", fixed

= fixed, test = T)

Stat.Obj <- SDT.Statistics(Opti.Obj, deci = 3)

cat("\n---\n")

cat(" 1. Ennis & Mahony (1995), Condition WW\n")

cat(" using adaptive Gauss-Hermite Quadrature")

cat("\n---\n")

print(Stat.Obj)

The following steps are performed:

1. The two data vectors datavec1 and datavec2 from two experimental conditions WW

and SS are specified.

2. The configuration is specified: cfg <- list(s = 1, m = 3, quad = "aGH")

3. The variance parameter (parameter in the second position [cf. Chapter 3.9]) is fixed to 1.0:
fixed <- matrix(c(1, 2), nr = 2, byrow = T)

4. The estimation is performed via the SDT.Estimate() command with the model

identification Model.Id = "mAFC", and the result is assigned to the object Opti.Obj.

5. Test statistics are computed by means of the function SDT.Statistics(), and result is

assigned to the object Stat.Obj.

6. The content of the Object Stat.Obj is printed: print(Stat.Obj).

7. The output looks like this:
===

 Symbolic and numeric gradients at the optimum:

 Length of difference vector : 2.263725e-09

 Length of gradient at optimum: 4.169881e-12

===

 Symbolic Numeric Difference

d' 0 0 0

b1 0 0 0

b2 0 0 0

===

 1. Ennis & Mahony (1995), Condition WW

 using adaptive Gauss-Hermite Quadrature

$Model.description

[1] "3-AFC Model with Bias, Assuming Gaussian Distributions, Number of Models: 1,

Method of quadrature: Adaptive Gauss-Hermite, Number of quadrature points: 25"

Siegfried Macho: SDT Models in R 196

$Statistics

 Statistic

log L -54.177

X^2 5.213

G^2 6.230

df 3.000

p(Y > X^2) 0.157

p(Y > G^2) 0.101

AIC 114.353

BIC 123.932

CAICF 138.592

ICOMP 109.285

ICOMP.R 109.198

Free Parameters 3.000

Length of gradient at optimum 0.000

Rank of Hessian 3.000

Condition number of information matrix 6.599

Rank of model matrix: t(J) * J 3.000

Condition number of model matrix 20.392

$Free.parameters

 Value SE CFI-95(Lower) CFI-95(Upper)

d' 2.628 0.230 2.177 3.079

b1 0.400 0.282 -0.153 0.953

b2 0.854 0.309 0.248 1.460

$Full.parametervector

 Parameters

d' 2.628

sd 1.000

b1 0.400

b2 0.854

$Data.and.Estimates

 Observed Expected Probabilities Residuals Std.Resid.(analytical)

Data[1, 1] 54 55.663 0.928 -0.223 -1.844

Data[1, 2] 5 3.593 0.060 0.742 1.199

Data[1, 3] 1 0.744 0.012 0.297 0.391

Data[1, 4] 0 0.845 0.014 -0.919 -1.213

Data[1, 5] 60 58.783 0.980 0.159 1.846

Data[1, 6] 0 0.372 0.006 -0.610 -0.736

Data[1, 7] 5 2.689 0.045 1.409 2.203

Data[1, 8] 3 5.720 0.095 -1.137 -1.977

Data[1, 9] 52 51.591 0.860 0.057 0.445

1. The first table is printed by the estimation procedure SDT.Estimate() since the flag

test = T was set. It shows that the estimation procedure converged on a local optimum

with the numerically and analytically computed gradients being practically identical.

2. The second part of the ouput shows the content of the object Stat.Obj that was

computed by the function SDT.Statistics().

The output comprises the following sections:

(i) Model.description: A verbal description of the model;

(ii) Statistics: A list of various test statistics;

(iii) Free.parameters: Estimated parameters with estimated standard errors and

 confidence intervals;

(iv) Full.parametervector: A list of all model parameters including constrained

 parameters;

(v) Data.and.Estimates: Observed and estimated frequencies and probabilities as

 well as residuals;

Siegfried Macho: SDT Models in R 197

Comment: Further details concerning the output of SDT.Statistics() are provided in

 Chapter 2.2.

The estimated parametes differ slightly from those reported by DeCarlo (2012, Table 3 on

p.203). This is due to the fact that the present estimation procedure differs slightly from that

used by DeCarlo. A comparison of both methods revealed that the present method of estima-

tion is slightly superior with respect to precision of parameter estimation, coverage probabili-

ties of estimated confidence intervals, as well as the power to detect whether parameters are

different from zero.1

13. Working Example: SDT model for modeling forced choice and rating data (SDT.Rank)

In the following, two examples of the usage of the module SDT.Rank are presented. The first

illustrates the modeling of pure AFC data with repeated choices (or ranking). The second

example illustrates the joint modeling of ratning and AFC data.

13.1.1 SDT-Rank Example 1: Modeling pure forced choice with repeated choices

The present example demonstrates the utilization of the SDT.Rank module for fitting forced

choice data or ranking data only. The data come from an own experiment. The first 16 data

points result from a condition where participant had to rank the four items (one target and

three distractors) presented [= parallel condition]. The second 16 data points come from a

condition in which, in case of failing to choose the target item, the item set is reduced and

participants had to choose from the set of remaining [= serial condition]. The 16 data points

represent the number of cases where the target is chosen (ranked) as the first, second, third or

last item, when the target was on the first second, third, and fourth position within the (full)

distractor set.

Here is an extract of R code for modeling the two sets 4-AFC data

DATA FROM AN OWN EXPERIMENT

data.org <- c(518, 157, 118, 107, # parallel, target in 1. position

 537, 148, 135, 80, # parallel, target in 2. position

 517, 178, 127, 78, # parallel, target in 3. position

 507, 164, 122, 107, # parallel, target in 4. position

 509, 152, 142, 97, # serial, target in 1. position

 545, 186, 102, 67, # serial, target in 2. position

 516, 162, 127, 95, # serial, target in 3. position

 497, 164, 123, 121) # serial, target in 4. position

POOL THE DATA FROM THE DIFFERENT POSITIONS

datavec <- c(data.org[1:4] + data.org[5:8] + data.org[9:12] +

data.org[13:16],

 data.org[17:20] + data.org[21:24] + data.org[25:28] +

data.org[29:32])

CONFIGRUATIONS OF THE MODELS

cfg.1 <- list(k.rg = c(4, 4), rating = F)

cfg.2 <- list(k.rg = c(4, 4), rating = F, restriction = "equal")

#==

1. Estimation of ranking data:

4-AFC & 3-AFC

Standard UVSDT restrictions

1 I would like to thank Lawrence DeCarlo for his generous support in resolving these issues and for making

available his simulated data sets.

Siegfried Macho: SDT Models in R 198

#==

Opti.Obj <- SDT.Estimate(data = datavec, n = cfg.1, Model.Id = "SDT.Rank",

test = T)

Stat.Obj <- SDT.Statistics(Opti.Obj) # Evaluate the results

print(Stat.Obj)

#==

2. Estimation of ranking data:

4-AFC & 3-AFC

Equality restrictions

#==

Opti.Obj <- SDT.Estimate(data = datavec, n = cfg.2, Model.Id = "SDT.Rank",

test = T)

Stat.Obj <- SDT.Statistics(Opti.Obj) # Evaluate the results

The following steps are performed:

1. The data vectors data.org contains the frequencies for the different response categories

for the different positions of the target within the distractor set. These data are pooled over

positions of the target resulting in 4 data points per condition (i.e. 8 data points all in all)

that are stored in the vector datavec. The pooling of the data is performed by the com-

mand line:

datavec <- c(data.org[1:4] + data.org[5:8] + data.org[9:12] +

data.org[13:16], data.org[17:20] + data.org[21:24] + data.org[25:28] +

data.org[29:32])

2. The configuration lists for the two models are generated:
cfg.1 <- list(k.rg = c(4, 4), rating = F)

cfg.2 <- list(k.rg = c(4, 4), rating = F, restriction = "equal")

The configuration list cfg.1 represents the configuration of the first model:

 k.rg = c(4, 4) indicates that there are two data sets with 4 data points each (=4-

AFC repeated data).

 rating = F indicates that only AFC data (and no rating data) are modeled.

Due to the fact that the restriction option was not used, standard restrictions were set.

A description of the various entries of the configuration list is presented in Chapter 3.10.

The configuration list cfg.2 represents the configuration of the second model:

 restriction = "equal" indicates the use of equality resrtitctions.

3. The estimation procedure SDT.Estimate() is called using the model identification string

Model.Id = "SDT.Rank" and the configuration list cfg.1. The result of the estimation is

assigned to the object Opti.Obj.

4. Test statistics are computed by means of the function SDT.Statistics(), and result is

assigned to the object Stat.Obj.

5. The content of the Object Stat.Obj is printed: print(Stat.Obj).

6. A second run using the configuration list cfg.2 is used for modeling the same data with

the dame models and equality restrictions.

Here is the output of the two modeling runs:

===

 Symbolic and numeric gradients at the optimum:

 Length of difference vector : 6.066071e-08

 Length of gradient at optimum: 9.043311e-06

===

 Symbolic Numeric Difference

[P-1] Mean.2 7.17e-06 7.19e-06 -1e-08

Siegfried Macho: SDT Models in R 199

[P-1] Stddev.2 -5.34e-06 -5.31e-06 -2e-08

[P-2] Mean.2 -1.04e-06 -1.02e-06 -2e-08

[P-2] Stddev.2 8.90e-07 8.40e-07 5e-08

===

Results of estimation of 4-AFC & 3-AFC data with standard restrictions:

$Model.description

[1] "SDT ranking model: Model types: <P,P> Number of ranking-alternatives:

<4,4> Number of ranking-positions: <4,4> Number of quadrature points: <30>

Restrictions: <standard>"

$Statistics

 Statistic

log L -8201.526

X^2 12.885

G^2 12.719

df 2.000

p(Y > X^2) 0.002

p(Y > G^2) 0.002

AIC 16411.051

BIC 16438.581

CAICF 16472.824

ICOMP 16403.905

ICOMP.R 16403.827

Free Parameters 4.000

Length of gradient at optimum 0.000

Rank of Hessian 4.000

Condition number of information matrix 3.926

Rank of model matrix: t(J) * J 4.000

Condition number of model matrix 4.822

$Free.parameters

 Value SE CFI-95(Lower) CFI-95(Upper)

[P-1] Mean.2 1.146 0.038 1.072 1.220

[P-1] Stddev.2 1.426 0.046 1.336 1.516

[P-2] Mean.2 1.131 0.037 1.057 1.204

[P-2] Stddev.2 1.419 0.046 1.330 1.509

$Ranking.parameters

 Rank-1[P] Rank-2[P]

Mean.1 0.000 0.000

Stddev.1 1.000 1.000

Mean.2 1.146 1.131

Stddev.2 1.426 1.419

$Data.and.Estimates

 Observed Expected Probabilities Residuals Std.Resid.(analytical)

AFC-4 [1] 2079 2071.008 0.575 0.176 2.901

AFC-4 [2] 647 688.579 0.191 -1.585 -2.901

AFC-4 [3] 502 453.124 0.126 2.296 2.901

AFC-4 [4] 372 387.289 0.108 -0.777 -2.901

AFC-4 [1] 2067 2061.103 0.572 0.130 2.114

AFC-4 [2] 664 694.486 0.193 -1.157 -2.114

AFC-4 [3] 494 458.224 0.127 1.671 2.114

AFC-4 [4] 380 391.187 0.109 -0.566 -2.114

===

Siegfried Macho: SDT Models in R 200

 Symbolic and numeric gradients at the optimum:

 Length of difference vector : 2.410043e-08

 Length of gradient at optimum: 3.342198e-07

===

 Symbolic Numeric Difference

[P-1] Mean.2 -1.9e-07 -1.8e-07 -1e-08

[P-1] Stddev.2 -2.7e-07 -2.9e-07 2e-08

===

Results of estimation of 4-AFC & 3-AFC data with equality restrictions:

$Model.description

[1] "SDT ranking model: Model types: <P,P> Number of ranking-alternatives:

<4,4> Number of ranking-positions: <4,4> Number of quadrature points: <30>

Restrictions: <equal>"

$Statistics

 Statistic

log L -8201.572

X^2 12.962

G^2 12.812

df 4.000

p(Y > X^2) 0.011

p(Y > G^2) 0.012

AIC 16407.144

BIC 16420.909

CAICF 16439.417

ICOMP 16403.571

ICOMP.R 16403.532

Free Parameters 2.000

Length of gradient at optimum 0.000

Rank of Hessian 2.000

Condition number of information matrix 3.872

Rank of model matrix: t(J) * J 2.000

Condition number of model matrix 4.736

$Free.parameters

 Value SE CFI-95(Lower) CFI-95(Upper)

[P-1] Mean.2 1.138 0.027 1.086 1.190

[P-1] Stddev.2 1.423 0.032 1.359 1.486

$Ranking.parameters

 Rank-1[P] Rank-2[P]

Mean.1 0.000 0.000

Stddev.1 1.000 1.000

Mean.2 1.138 1.138

Stddev.2 1.423 1.423

$Data.and.Estimates

 Observed Expected Probabilities Residuals Std.Resid.(analytical)

AFC-4 [1] 2079 2064.617 0.574 0.317 0.682

AFC-4 [2] 647 691.058 0.192 -1.676 -2.253

AFC-4 [3] 502 455.358 0.126 2.186 2.525

AFC-4 [4] 372 388.967 0.108 -0.860 -1.239

AFC-4 [1] 2067 2067.485 0.574 -0.011 -0.023

AFC-4 [2] 664 692.017 0.192 -1.065 -1.432

AFC-4 [3] 494 455.990 0.126 1.780 2.056

AFC-4 [4] 380 389.508 0.108 -0.482 -0.694

Siegfried Macho: SDT Models in R 201

1. The first table for each model fit is printed by the estimation procedure SDT.Estimate()

since the flag test = T was set. It shows that the estimation procedure converged to a

local optimum with the numerically and analytically computed gradients being practi-

cally identical.

2. The second part reveals for each model run the output shows the content of the object

Stat.Obj that was compued by the function SDT.Statistics().

The output comprises the following sections:

(i) Model.description: A verbal description of the model: This description exhibits

the setup.

(ii) Statistics: A list of various test statistics;

(iii) Free.parameters: Estimated parameters with estimated standard errors and

 confidence intervals;

(iv) Ranking parameters: A list of all model parameters including constrained para-

meters; The column headers indicate which model [P =

parallel, S = serial] was used for the respective data set (in

the present case the parallel model was used).

(v) Data.and.Estimates: Observed and estimated frequencies and probabilities as

 well as residuals;

Comments:

 Further details concerning the output of SDT.Statistics() are provided in Chapter 2.2.

 The model obviously does not fit the data. In fact, the model with both data sets modeled

by means of a parallel model fits the data much better.

 The code for modeling these data is contained in the file:
SDT-Rank (Ex.2 Modeling of pure ranking data).R

13.1.2 SDT-Rank Example 2: Joint modeling repeated forced choice and rating data

The present example demonstrates the utilization of the SDT.Rank module for fitting repeated

forced choice together with rating data. The data come from an own experiment. They

comprise data from a 4-AFC and 3-AFC task with repeated choices and two sets of rating data

with 6 and 4 response categories. The four data sets are modelled together assuming equal

paraemters for all 4 data sets.

Here is an extract of R code for modeling the two sets 4-AFC data:

data.pooled <- c(10198, 3209, 2252, 1621, # 4-AFC

 11382, 3519, 2379, # 3-SFC

 4611, 4340, 3357, 2663, 1618, 691, # 6-Rating (New)

 1309, 2049, 2274, 2620, 2493, 6535, # 6 Rating (Old)

 5508, 6711, 3987, 1074, # 4-Rating (New)

 1837, 3959, 4330, 7154) # 4-Rating (old)

CONFIGURATION LIST

cfg <- list(n.sdt = c(2, 6, 2, 4), k.rg = c(4, 3), rating = T, restriction

= "equal")

ESTIMATE AND EVALUATE RESULTS

Opti.Obj <- SDT.Estimate(data = data.pooled, n = cfg, Model.Id =

"SDT.Rank", test = T)

Stat.Obj <- SDT.Statistics(Opti.all.equ.Obj, display.warning = F)

PRINT THE RESULTS

print(Stat.Obj)1

This piece of code comprises the following complonents:

Siegfried Macho: SDT Models in R 202

1. The vector data.pooled contains the data in the proper order:

 The data from the repeated 4-AFC and 3.AFC tasks.

 The data from the rating task with 6 response categories (and two types of signals)

 The data from the rating task with 4 response categories (and two types of signals)

2. The configuration list:

cfg <- list(n.sdt = c(2, 6, 2, 4), k.rg = c(4, 3), rating = T, restriction

= "equal")

provides the following information:

The specification n.sdt = c(2, 6, 2, 4) tells the program that two rating models are

used:

 The first data set has two types of stimuli (and the model has thus two Gaussian

distributions) and 6 response categpries.

 The second data set comprises two types of stimuli and 4 response categpries.

The specification k.rg = c(4, 3) informs the model that 4-AFC and 3-AFC data with

repeated forced choices are present.

Finally, the specification restriction = "equal" tells the program to set equality re-

strictions.

3. The following two commands result in fitting the model and evaluating the results:

Opti.Obj <- SDT.Estimate(data = data.pooled, n = cfg, Model.Id =

"SDT.Rank", test = T)

Stat.Obj <- SDT.Statistics(Opti.all.equ.Obj, display.warning = F)

4. Finally, the result is printed.

This results in the following output:

…
$Model.description

[1] "SDT ranking and rating model: Number of Gaussians within SDT models: <<2,6>,

<2,4>> Model types: <P,P> Number of ranking-alternatives: <4,3> Number of ranking-

positions: <4,3> Number of quadrature points: <30> Restrictions: <equal>"

$Statistics

 Statistic

log L -135214.832

X^2 208.109

G^2 209.173

df 11.000

p(Y > X^2) 0.000

p(Y > G^2) 0.000

AIC 270449.664

BIC 270545.154

CAICF 270662.847

ICOMP 270434.156

ICOMP.R 270433.883

Free Parameters 10.000

Length of gradient at optimum 0.001

Rank of Hessian 10.000

Condition number of information matrix 20.933

Rank of model matrix: t(J) * J 10.000

Condition number of model matrix 25.973

$Free.parameters

 Value SE CFI-95(Lower) CFI-95(Upper)

[P-1] Mean.2 1.208 0.009 1.191 1.225

[P-1] Stddev.2 1.369 0.009 1.351 1.388

[SDT-1] c-1 -0.652 0.009 -0.670 -0.634

Siegfried Macho: SDT Models in R 203

[SDT-1] c-2 0.044 0.008 0.028 0.060

[SDT-1] c-3 0.575 0.008 0.559 0.592

[SDT-1] c-4 1.120 0.009 1.101 1.138

[SDT-1] c-5 1.666 0.012 1.643 1.689

[SDT-2] c-1 -0.477 0.009 -0.495 -0.460

[SDT-2] c-2 0.577 0.008 0.560 0.593

[SDT-2] c-3 1.508 0.011 1.487 1.530

$Ranking.parameters

 Rank-1[P] Rank-2[P]

Mean.1 0.000 0.000

Stddev.1 1.000 1.000

Mean.2 1.208 1.208

Stddev.2 1.369 1.369

$Rating.parameters

 SDT-1/Gauss-1 SDT-1/Gauss-2 SDT-2/Gauss-1 SDT-2/Gauss-2

Mean 0 1.208 0 1.208

Stddev 1 1.369 1 1.369

$Decision.bounds

 c-1 c-2 c-3 c-4 c-5

SDT-1 -0.652 0.044 0.575 1.12 1.666

SDT-2 -0.477 0.577 1.508

$Data.and.Estimates

 Observed Expected Probabilities Residuals Std.Resid.(analytical)

AFC-4 [1] 10198 10248.347 0.593 -0.497 -0.906

AFC-4 [2] 3209 3332.108 0.193 -2.133 -2.563

AFC-4 [3] 2252 2084.142 0.121 3.677 4.071

AFC-4 [4] 1621 1615.403 0.093 0.139 0.165

AFC-3 [1] 11382 11359.050 0.657 0.215 0.416

AFC-3 [2] 3519 3610.833 0.209 -1.528 -1.844

AFC-3 [3] 2379 2310.117 0.134 1.433 1.714

SDT-1.1 [1] 4611 4443.832 0.257 2.508 6.956

SDT-1.1 [2] 4340 4500.661 0.260 -2.395 -5.249

SDT-1.1 [3] 3357 3454.294 0.200 -1.655 -3.187

SDT-1.1 [4] 2663 2610.929 0.151 1.019 1.706

SDT-1.1 [5] 1618 1442.971 0.084 4.608 6.615

SDT-1.1 [6] 691 827.313 0.048 -4.739 -7.016

SDT-1.2 [1] 1309 1507.182 0.087 -5.105 -7.116

SDT-1.2 [2] 2049 1910.256 0.111 3.174 4.158

SDT-1.2 [3] 2274 2149.644 0.124 2.682 3.815

SDT-1.2 [4] 2620 2631.200 0.152 -0.218 -0.351

SDT-1.2 [5] 2493 2705.517 0.157 -4.086 -7.524

SDT-1.2 [6] 6535 6376.200 0.369 1.989 4.448

SDT-2.1 [1] 5508 5470.385 0.317 0.509 1.427

SDT-2.1 [2] 6711 6934.476 0.401 -2.684 -6.513

SDT-2.1 [3] 3987 3739.037 0.216 4.055 7.307

SDT-2.1 [4] 1074 1136.102 0.066 -1.842 -2.879

SDT-2.2 [1] 1837 1888.180 0.109 -1.178 -1.659

SDT-2.2 [2] 3959 3683.610 0.213 4.537 6.873

SDT-2.2 [3] 4330 4569.110 0.264 -3.537 -6.597

SDT-2.2 [4] 7154 7139.099 0.413 0.176 0.390

The output contains the following sections:

1. $Model.description: A string showing the confirguration of the model.

2. $Free.parameters: The free parametes with estimated standard errors and confidence

intervals.

3. $Ranking.parameters: The parameters of the two AFC (or ranking) models.

4. $Rating.parameters: The Gaussian parameters of the two rating models.

5. $Decision.bounds: The decision thresholds for the two rating models.

Siegfried Macho: SDT Models in R 204

6. $Data.and.Estimates: The observed and estimated frequencies and the estimated

probabilities as well as the residuals.

Comment: The code fo this example is contained in the file:
SDT-Rank (Ex.5 Own data).R

13.1.3 Files with SDT-Rank Examples

The following files contain examples of the SDT.Rank model:
SDT-Rank (Ex.1 Parameterinformation).R

SDT-Rank (Ex.2 Modeling of pure ranking data).R

SDT-Rank (Ex.3 Kellen, Klauer & Singmann, 2012).R

SDT-Rank (Ex.4 Model only first choice with k alternatives).R

SDT-Rank (Ex.5 Own data).R

14. Working Examples: SDT model with recollection and guessing for modeling forced

choice and rating data with or without bias (HTSDT.Rank & HTSDT.Bias.Rank)

In the following examples of applications of the module HTSDT.Rank and HTSDT.Bias.Rank

are presented. First, two examples illustrating the application of HTSDT.Rank are presented.

This is followed by one example illustrating the application of HTSDT.Bias.Rank.

14.1 HTSDT.Rank examples

The first example demonstrates the simultaneous modeling of forced choice and rating data.

14.1.1 HTSDT-Rank Example 1: Modeling forced choice and rating data with standard

restrictions

The code of this example is contained in the file:

HTSDT-Rank (Ex.2 Kellen, Klauer & Singmann, 2012).R

The following R script demonstrates the estimation of both rating and forced choice data from

Kellen et al. (2012) that takes recollection into account. This can be performed by using the

standard restrictions.
Data vector of Kellen, Klauer & Singmann (2012), pooled data

datavec <- c(1801, 488, 407, 304, # 1. Ranking data

 667, 780, 651, 485, 277, 140, # 2. Rating data (new)

 198, 303, 402, 421, 426, 1250) # 3. Rating data (old)

cfg <- list(n.sdt = c(2, 6), k.rg = 4, rating = T, restriction = "standard")

Opti.Obj <- SDT.Estimate(data = datavec, n = cfg, Model.Id = "HTSDT.Rank", test =

T)

Stat.Obj <- SDT.Statistics(Opti.Obj)

Model 1: HTSDT-Modell AFC + rating

 standard restrictions

 AFC: k.rg = 4

 SDT: c(2, 6)

print(Stat.Obj)

The only difference to the code presented in Chapter 13 consists in the usage of a different

model identification string passed to the function SDT.Estimate(): Instead of "SDT.Rank"

the string "HTSDT.Rank" is used indicating the usage of the HTSDT-Rank model.

Here is a selection of the output produced by the R script:

Model 1: HTSDT-Modell AFC + rating

 standard restrictions

 AFC: k.rg = 4

 SDT: c(2, 6)

Siegfried Macho: SDT Models in R 205

$Model.description

[1] "HTSDT ranking and rating model: Number of Gaussians within SDT models: <2,6>

Model types: <P> Number of ranking-alternatives: <4> Number of ranking-positions:

<4> Number of quadrature points: <30> Restrictions: <standard>"

$Statistics

 Statistic

log L -13135.511

X^2 13.889

G^2 13.802

df 4.000

p(Y > X^2) 0.008

p(Y > G^2) 0.008

AIC 26289.021

BIC 26352.966

CAICF 26434.694

ICOMP 26280.375

ICOMP.R 26275.826

Free Parameters 9.000

Length of gradient at optimum 0.000

Rank of Hessian 9.000

Condition number of information matrix 111.375

Rank of model matrix: t(J) * J 9.000

Condition number of model matrix 150.824

$Free.parameters

 Value SE CFI-95(Lower) CFI-95(Upper)

Recollection (Rank 1) 0.385 0.021 0.343 0.426

Mean.2 (Rank 1) 0.360 0.056 0.250 0.470

[SDT-1][Gauss-2] Recollection 0.315 0.071 0.176 0.454

[SDT-1][Gauss-2] Mean 0.644 0.040 0.566 0.723

[SDT-1] c-1 -0.736 0.024 -0.783 -0.689

[SDT-1] c-2 -0.049 0.022 -0.092 -0.007

[SDT-1] c-3 0.507 0.022 0.464 0.551

[SDT-1] c-4 1.049 0.025 1.000 1.098

[SDT-1] c-5 1.687 0.039 1.610 1.765

$Ranking.parameters

 Rank <k=4, j=4>

Recollection 0.385

Mean.1 0.000

Stddev.1 1.000

Mean.2 0.360

Stddev.2 1.000

$Rating.parameters

 SDT-1/Gauss-1 SDT-1/Gauss-2

Recollection 0 0.315

Mean 0 0.644

Stddev 1 1.000

$Decision.bounds

 c-1 c-2 c-3 c-4 c-5

SDT-1 -0.736 -0.049 0.507 1.049 1.687

$Data.and.Estimates

 Observed Expected Probabilities Residuals Std.Resid.(analytical)

AFC-4 [1] 1801 1801.000 0.600 0.000 0.000

AFC-4 [2] 488 492.861 0.164 -0.219 -0.558

AFC-4 [3] 407 397.940 0.133 0.454 0.558

AFC-4 [4] 304 308.199 0.103 -0.239 -0.558

SDT-1.1 [1] 667 692.660 0.231 -0.975 -3.452

SDT-1.1 [2] 780 748.161 0.249 1.164 2.523

SDT-1.1 [3] 651 641.028 0.214 0.394 0.734

SDT-1.1 [4] 485 476.636 0.159 0.383 0.694

Siegfried Macho: SDT Models in R 206

SDT-1.1 [5] 277 304.160 0.101 -1.557 -2.770

SDT-1.1 [6] 140 137.356 0.046 0.226 3.219

SDT-1.2 [1] 198 172.119 0.057 1.973 3.402

SDT-1.2 [2] 303 329.136 0.110 -1.441 -2.158

SDT-1.2 [3] 402 414.147 0.138 -0.597 -0.887

SDT-1.2 [4] 421 434.878 0.145 -0.665 -1.127

SDT-1.2 [5] 426 399.720 0.133 1.314 2.862

SDT-1.2 [6] 1250 1250.000 0.417 0.000 0.000

The output includes a new section labeled $Ranking.parameters that lists the parameters of

the forced choice component. In case of multiple forced choice models a column is provided

for each forced choice model (cf. Chapter 14.1.2). Inspection of the results exhibits, e.g., that

the estimated value of the recollection parameter is .385.

The labels in the section $Data.and.Estimates indicate whicht data are forced choice data

(AFC-4) and which are new (SDT 1.1) and old items (SDT 1.2), respectively.

Comment:

The file HTSDT-Rank (Ex.2 Kellen, Klauer & Singmann, 2012).R contains an example

that uses equality restrictions (restriction = "equal").

14.1.2 HTSDT-Rank Example 2: Modeling multiple forced choice data

The second example demonstrates the modeling of multiple forced choice data using UVSDT

restrictions (for a detailed description of this option, cf. Chapter 3.11.1). The code of this

example is contained in the file:

HTSDT-Rank (Ex.3 Multiple forced choice models).R

The present example also illustrates the simultaneous modeling of two sets of forced choice

data, one from a 2-AFC task and the other one from a 4-AFC task. The relevant piece of R

code is as follows:
dvec <- c(2327, 873, # 1. 2-AFC data

 739, 351, 295, 215) # 2. 4-AFC data

cfg <- list(j.rg = c(2, 4), rating = F, restriction = "UVSDT")

fixed <- matrix(c(1, 5), nr = 2) # Standard deviation of first model to 1

Opti.Obj <- SDT.Estimate(data = dvec, n = cfg, Model.Id = "HTSDT.Rank", test = T)

Stat.Obj <- SDT.Statistics(Opti.Obj) # Evaluate the results

print(Stat.Obj)

The data vector dvec comprises 6 data points, 2 from the 2-AFC task and 4 from the 4-AFC

task. In addition. in the configuration list cfg the vector c(2, 4) is passed to argument j.rg

indicating two models with 2 and 4 data points respectively. The flag rating was set to

FALSE indicating that forced choice data are modeled only. The string passed to the argument

restriction was "UVSDT" indicating restictions that result in the UVSDT model.

Specifically, the recollection probability is set to zero.

For identification purposes, the and standard deviation parameter of the old distribution for

the model used to model the 2-AFC data was fixed to 1.

Here is the output:

 2. Modeling (repeated) AFC data (2-AFC and 4-AFC)

 Additional restriction:

 - Standard deviation of first model = 1

$Model.description

[1] "HTSDT ranking model: Model types: <P,P> Number of ranking-alternatives: <2,4>

Number of ranking-positions: <2,4> Number of quadrature points: <30> Restrictions:

<UVSDT>"

$Statistics

 Statistic

Siegfried Macho: SDT Models in R 207

log L -3910.825

X^2 3.816

G^2 3.781

df 1.000

p(Y > X^2) 0.051

p(Y > G^2) 0.052

AIC 7827.649

BIC 7847.078

CAICF 7872.143

ICOMP 7822.056

ICOMP.R 7821.808

Free Parameters 3.000

Length of gradient at optimum 0.000

Rank of Hessian 3.000

Condition number of information matrix 3.137

Rank of model matrix: t(J) * J 3.000

Condition number of model matrix 2.899

$Free.parameters

 Value SE CFI-95(Lower) CFI-95(Upper)

Mean.2 (Rank 1) 0.855 0.034 0.789 0.920

Mean.2 (Rank 2) 0.692 0.042 0.609 0.775

Stddev.2 (Rank 2) 1.208 0.055 1.099 1.316

$Ranking.parameters

 Rank <k=2, j=2> Rank <k=4, j=4>

Recollection 0.000 0.000

Mean.1 0.000 0.000

Stddev.1 1.000 1.000

Mean.2 0.855 0.692

Stddev.2 1.000 1.208

$Data.and.Estimates

 Observed Expected Probabilities Residuals Std.Resid.(analytical)

AFC-2 [1] 2327 2327.000 0.727 0.000 0.000

AFC-2 [2] 873 873.000 0.273 0.000 0.000

AFC-4 [1] 739 733.904 0.459 0.188 1.953

AFC-4 [2] 351 373.025 0.233 -1.140 -1.953

AFC-4 [3] 295 270.486 0.169 1.491 1.953

AFC-4 [4] 215 222.586 0.139 -0.508 -1.953

There are two things to notice: First, the section $Ranking.parameters, showing the para-

meters of the forced choice models, now contains two columns for the two models. Due to

the fact that no rating data were modeled there is no section containing s parameters of the

model for modeling rating data.

Second, The row labels in the section $Data.and.Estimates indicate which data points and

estimates etc. belong to the first (AFC-2) and to the second data set (AFC-4), respectively.

Comment:

The file HTSDT-Rank (Ex.3 Multiple forced choice models).R contains additional

code for estimating the data with standard and equality restrictions.

14.1.3 HTSDT-Rank Example 3: Modeling multiple rating and multiple forced choice data

simultaneously

The third example demonstrates the simultaneous modeling of multiple forced choice and

multiple rating data with equality restrictions (for a detailed description of this option, cf.

Chapter 3.11.1). The code of this example is contained in the file:

HTSDT-Rank (Ex.4 Own data).R

The relevant piece of R code is as follows:
data.pooled <- c(10198, 3209, 2252, 1621, # 4-AFC

 11382, 3519, 2379, # 3-SFC

Siegfried Macho: SDT Models in R 208

 4611, 4340, 3357, 2663, 1618, 691, # 6-Rating (New)

 1309, 2049, 2274, 2620, 2493, 6535, # 6 Rating (Old)

 5508, 6711, 3987, 1074, # 4-Rating (New)

 1837, 3959, 4330, 7154) # 4-Rating (Old)

cfg.all.equal <- list(n.sdt = c(2, 6, 2, 4), k.rg = c(4, 3), rating = T,

restriction = "equal")

Opti.all.equ.Obj <- SDT.Estimate(data = data.pooled, n = cfg.all.equal, Model.Id =

"HTSDT.Rank", test = T)

Stat.all.equ.Obj <- SDT.Statistics(Opti.all.equ.Obj, display.warning = F)

print(Stat.all.equ.Obj)

The entries in the configuration list,
list(n.sdt = c(2, 6, 2, 4), k.rg = c(4, 3), rating = T, restriction = "equal")

have the following meaning:
n.sdt = c(2, 6, 2, 4)

specifies the rating model and the number of response categories. In the present case, there

are two models: The first model comprises two types of signals with 6 response categories for

each signal. The second model comprises also two types of signals, however, with only four

response categories.
k.rg = c(4, 3)

specifies the repeated forced choice models: a 4-AFC and a 3-AFC model with repeated

choices.
rating = T

informs the estimation function that rating as well as AFC (or ranking) data are used. Finally,
restriction = "equal"

specifies the type of restrictions. In the present case the recollection and mean parameters are

all assumed to be equal.

This piece of code results in the following output:
$Model.description

[1] "HTSDT ranking and rating model: Number of Gaussians within SDT models: <<2,6>,

<2,4>> Model types: <P,P> Number of ranking-alternatives: <4,3> Number of ranking-

positions: <4,3> Number of quadrature points: <30> Restrictions: <equal>"

$Statistics

 Statistic

log L -135139.835

X^2 59.278

G^2 59.180

df 11.000

p(Y > X^2) 0.000

p(Y > G^2) 0.000

AIC 270299.671

BIC 270395.162

CAICF 270510.584

ICOMP 270285.836

ICOMP.R 270283.790

Free Parameters 10.000

Length of gradient at optimum 0.000

Rank of Hessian 10.000

Condition number of information matrix 35.759

Rank of model matrix: t(J) * J 10.000

Condition number of model matrix 69.439

$Free.parameters

 Value SE CFI-95(Lower) CFI-95(Upper)

Recollection (Rank 1) 0.292 0.004 0.284 0.300

Mean.2 (Rank 1) 0.600 0.010 0.581 0.618

[SDT-1] c-1 -0.631 0.009 -0.649 -0.614

Siegfried Macho: SDT Models in R 209

[SDT-1] c-2 0.027 0.008 0.011 0.042

[SDT-1] c-3 0.533 0.008 0.517 0.549

[SDT-1] c-4 1.082 0.009 1.063 1.100

[SDT-1] c-5 1.763 0.016 1.733 1.794

[SDT-2] c-1 -0.460 0.009 -0.477 -0.444

[SDT-2] c-2 0.539 0.008 0.523 0.555

[SDT-2] c-3 1.539 0.013 1.514 1.565

$Ranking.parameters

 Rank <k=4, j=4> Rank <k=3, j=3>

Recollection 0.292 0.292

Mean.1 0.000 0.000

Stddev.1 1.000 1.000

Mean.2 0.600 0.600

Stddev.2 1.000 1.000

$Rating.parameters

 SDT-1/Gauss-1 SDT-1/Gauss-2 SDT-2/Gauss-1 SDT-2/Gauss-2

Recollection 0 0.292 0 0.292

Mean 0 0.600 0 0.600

Stddev 1 1.000 1 1.000

$Decision.bounds

 c-1 c-2 c-3 c-4 c-5

SDT-1 -0.631 0.027 0.533 1.082 1.763

SDT-2 -0.46 0.539 1.539

$Data.and.Estimates

 Observed Expected Probabilities Residuals Std.Resid.(analytical)

AFC-4 [1] 10198 10234.738 0.592 -0.363 -0.650

AFC-4 [2] 3209 3261.338 0.189 -0.916 -1.078

AFC-4 [3] 2252 2281.808 0.132 -0.624 -0.693

AFC-4 [4] 1621 1502.115 0.087 3.067 3.515

AFC-3 [1] 11382 11321.851 0.655 0.565 1.080

AFC-3 [2] 3519 3695.431 0.214 -2.902 -3.423

AFC-3 [3] 2379 2262.718 0.131 2.445 2.882

SDT-1.1 [1] 4611 4560.728 0.264 0.744 1.748

SDT-1.1 [2] 4340 4262.010 0.247 1.195 2.383

SDT-1.1 [3] 3357 3326.234 0.192 0.533 0.946

SDT-1.1 [4] 2663 2716.400 0.157 -1.025 -1.709

SDT-1.1 [5] 1618 1741.761 0.101 -2.965 -4.594

SDT-1.1 [6] 691 672.867 0.039 0.699 1.646

SDT-1.2 [1] 1309 1336.603 0.077 -0.755 -1.031

SDT-1.2 [2] 2049 2131.270 0.123 -1.782 -2.430

SDT-1.2 [3] 2274 2328.851 0.135 -1.137 -1.622

SDT-1.2 [4] 2620 2589.122 0.150 0.607 0.957

SDT-1.2 [5] 2493 2357.819 0.136 2.784 4.948

SDT-1.2 [6] 6535 6536.335 0.378 -0.017 -0.032

SDT-2.1 [1] 5508 5574.245 0.323 -0.887 -2.122

SDT-2.1 [2] 6711 6607.153 0.382 1.278 2.713

SDT-2.1 [3] 3987 4029.792 0.233 -0.674 -1.258

SDT-2.1 [4] 1074 1068.810 0.062 0.159 0.331

SDT-2.2 [1] 1837 1769.547 0.102 1.603 2.278

SDT-2.2 [2] 3959 4053.641 0.235 -1.486 -2.244

SDT-2.2 [3] 4330 4291.930 0.248 0.581 1.056

SDT-2.2 [4] 7154 7164.882 0.415 -0.129 -0.246

Note that the mean and recollection paramters of all models (AFC and rating) are equal due

to the equality constraints. The standard deviations parameters are all fixed to one. Note also

that there are two sets of thresholds for the two rating models.

14.1.4 Files with HTSDT-Rank Examples

The following files contain examples of the HTSDT.Rank model:
HTSDT-Rank (HTSDT-Rank (Ex.1 Parameters & restrictions I AFC & Rating).R

HTSDT-Rank (Ex.2 Kellen, Klauer & Singmann, 2012).R

Siegfried Macho: SDT Models in R 210

HTSDT-Rank (Ex.3 Multiple forced choice models).R

HTSDT-Rank (Ex.4 Own data).R

14.2 HTSDT-Bias-Rank example

The following example demonstrates the application of the HTSDT.Bias.Rank model to a

data set comprising two sets of 4-AFC data as well as rating data (from an own experiment).

The code of this example is contained in the file:

MIX-Bias-Rank (Ex.4 Estimate Ranking and rating model (multiple models)).R

The relevant code for fitting the data, using standard restrictions, and evaluating as well as

printing the results looks like this:

datavec <- c(210, 68, 68, 54, # Ranking 1, Target on Position 1

 193, 98, 60, 49, # Ranking 1, Target on Position 2

 198, 101, 55, 46, # Ranking 1, Target on Position 3

 169, 88, 82, 61, # Ranking 1, Target on Position 4

 180, 79, 78, 63, # Ranking 2, Target on Position 1

 184, 86, 85, 45, # Ranking 2, Target on Position 2

 190, 100, 58, 52, # Ranking 2, Target on Position 3

 185, 86, 74, 55, # Ranking 2, Target on Position 4

 432, 341, 309, 262, 185, 71, # Rating data (new)

 179, 220, 238, 256, 257, 450) # Rating data (old)

cfg <- list(k.rg = c(4, 4), j.rg = c(4, 4))

Opti1.Obj <- SDT.Estimate(data = datavec, n = cfg, Model.Id =

"HTSDT.Bias.Rank", test = T)

Stat1.Obj <- SDT.Statistics(Opti1.Obj) # Evaluate the results

print(Stat1.Obj)

Here is a portion of the output:

$Model.description

[1] "SDT ranking and rating model with recollection and guessing, with

position bias: Number of Gaussian models: <2> Number of ranking-

alternatives: <4, 4> Number of ranking-positions: <4, 4> Number of

quadrature points: <30> Type of restrictions: <standard>"

$Statistics

 Statistic

log L -9519.546

X^2 28.839

G^2 28.748

df 21.000

p(Y > X^2) 0.118

p(Y > G^2) 0.120

AIC 19065.091

BIC 19153.024

CAICF 19259.752

ICOMP 19049.841

ICOMP.R 19044.094

Free Parameters 13.000

Length of gradient at optimum 0.000

Rank of Hessian 13.000

Condition number of information matrix 108.959

Rank of model matrix: t(J) * J 13.000

Condition number of model matrix 51.337

$Free.parameters

 Value SE CFI-95(Lower) CFI-95(Upper)

Recollection (Rank 1) 0.184 0.014 0.157 0.212

Mean.2 (Rank 1) 0.410 0.032 0.346 0.473

Siegfried Macho: SDT Models in R 211

Bias.1 (Rank 1) 0.173 0.087 0.002 0.344

Bias.2 (Rank 1) 0.185 0.085 0.020 0.351

Bias.3 (Rank 1) 0.230 0.084 0.064 0.395

Bias.1 (Rank 2) -0.077 0.088 -0.249 0.095

Bias.2 (Rank 2) 0.028 0.086 -0.140 0.195

Bias.3 (Rank 2) 0.078 0.086 -0.090 0.246

c[1] -0.638 0.029 -0.694 -0.582

c[2] -0.063 0.026 -0.114 -0.012

c[3] 0.427 0.026 0.375 0.478

c[4] 0.951 0.030 0.893 1.009

c[5] 1.668 0.051 1.567 1.768

$Ranking.parameters

 Rank <k=4, j=4> Rank <k=4, j=4>

Recollection 0.184 0.184

Guessing 0.000 0.000

Mean.1 0.000 0.000

Stddev.1 1.000 1.000

Mean.2 0.410 0.410

Stddev.2 1.000 1.000

Bias.1 0.173 -0.077

Bias.2 0.185 0.028

Bias.3 0.230 0.078

Bias.4 0.000 0.000

$Rating.parameters

 Gauss-1 Gauss-2

Recollection 0.000 0.184

Guessing 0.000 0.000

Bias (guessing) 0.500 0.500

Mean 0.000 0.410

Stddev 1.000 1.000

t-1 -0.638 -0.638

t-2 -0.063 -0.063

t-3 0.427 0.427

t-4 0.951 0.951

t-5 1.668 1.668

[...]

The output is quite similar to that of the HTSDT.Rank model (cf. Chapter 14.1). The main

difference consists in the fact that in the section $Ranking.parameters listing the

parameters of the forced choice models position bias parameters are shown.

The values of the bias parameters indicate that for the first forced choice data set position 4

received less attention than the other 3 positions (these can be seen directly from the data set

where the target item was ranked considerably less often as the first item, when it was on the

fourth position).

For the second forced choice data set the third position received slightly more weight than the

other positions. This is also evident from the frequencies since the target item was ranked

more often on the first and second rank when it was on the third position.

Comments:

❑ The file HTSDT-Bias-Rank (Ex.4 Estimate Ranking and rating model (multiple

models)).R contains additional code for estimating the data with extended (correspond-

ing to the unequal variance SDT model with recollection) as well as SDT restrictions

(corresponding to the unequal variance model without recollection).

❑ The following files contain examples of the HTSDT.Bias.Rank model:

Siegfried Macho: SDT Models in R 212

HTSDT-Bias-Rank (Ex.0 Parameters & restrictions).R

HTSDT-Bias-Rank (Ex.1 Estimate Ranking model (1 model only)).R

HTSDT-Bias-Rank (Ex.3 Estimate Ranking model (multiple models).R

HTSDT-Bias-Rank (Ex.4 Estimate Ranking and rating model (multiple

models)).R

15. Working Example: Gaussian mixture SDT model for modeling forced choice and

rating data with and without position bias (MIX.Rank & MIX.Bias.Rank)

In the following, examples of applications of the module MIX.Rank and MIX.Bias.Rank are

presented. First, two examples illustrating the application of MIX.Rank are presented. This is

followed by one example illustrating the application of MIX.Bias.Rank.

15.1 MIX.Rank Examples

The first example demonstrates the simultaneous modeling of forced choice and rating data

using again the data of Kellen et al. (2012).

15.1.1 MIX-Rank Example 1: Modeling forced choice and rating data

The code of this example is contained in the file:

MIX-Rank (Ex.1 Kellen, Klauer & Singmann, 2012).R

The following R script demonstrates the estimation of both rating and forced choice data from

Kellen et al. (2012) using the mixture model with extended restrictions, i.e., the mean of the

weak target distribution is a free parameter (and not 0.0 as is the case with standard restrict-

tions).
Data vector of Kellen, Klauer & Singmann (2012), pooled data

datavec <- c(1801, 488, 407, 304, # 1. Ranking data

 667, 780, 651, 485, 277, 140, # 2. Rating data (new)

 198, 303, 402, 421, 426, 1250) # 3. Rating data (old)

cfg <- list(k.rg = 4, rating = T, restriction = "extended")

Opti.Obj <- SDT.Estimate(data = datavec, n = cfg, Model.Id = "MIX.Rank", test = T)

Stat.Obj <- SDT.Statistics(Opti.Obj)

print(Stat.Obj)

The only difference to the code presented in Chapters 13 and 14 consists in the usage of a dif-

ferent model identification string passed to the function SDT.Estimate(): Instead of the

string "SDT.Rank" (and "HTSDT.Rank", respectively) "MIX.Rank" is used indicating the

usage of the MIX-Rank model.

Here is a selection of the output produced by the R script:
$Model.description

[1] "MIX ranking and rating model: Number of Mixture models: <2> Number of ranking-

alternatives: <4> Number of ranking-positions: <4> Number of quadrature points:

<30> Type of restrictions: <extended>"

$Statistics

 Statistic

log L -13137.607

X^2 17.925

G^2 17.995

df 5.000

p(Y > X^2) 0.003

p(Y > G^2) 0.003

AIC 26291.214

BIC 26348.054

CAICF 26420.167

ICOMP 26294.392

ICOMP.R 26282.671

Free Parameters 8.000

Length of gradient at optimum 0.000

Siegfried Macho: SDT Models in R 213

Rank of Hessian 8.000

Condition number of information matrix 736.698

Rank of model matrix: t(J) * J 8.000

Condition number of model matrix 1171.838

$Free.parameters

 Value SE CFI-95(Lower) CFI-95(Upper)

p.mix (Rank 1) 0.469 0.044 0.384 0.555

Mean.1 (Rank 1) 0.338 0.075 0.191 0.485

Mean.2 (Rank 1) 2.451 0.198 2.063 2.840

c[1] -0.779 0.024 -0.826 -0.733

c[2] -0.078 0.021 -0.119 -0.037

c[3] 0.504 0.022 0.460 0.547

c[4] 1.078 0.026 1.026 1.129

c[5] 1.684 0.037 1.612 1.756

$Ranking.parameters

 Rank <k=4, j=4>

p.mix 0.469

Mean.0 0.000

Stddev.0 1.000

Mean.1 0.338

Stddev.1 1.000

Mean.2 2.451

Stddev.2 1.000

$Rating.parameters

 Gauss-1 Gauss-2

p.mix 1.000 0.469

Mean.0 0.000 0.338

Stddev.0 1.000 1.000

Mean.1 0.000 2.451

Stddev.1 1.000 1.000

t-1 -0.779 -0.779

t-2 -0.078 -0.078

t-3 0.504 0.504

t-4 1.078 1.078

t-5 1.684 1.684

[...]

As for the HTSDT-Rank model (cf Chapter 14.1), the output includes a new section labeled

$Ranking.parameters that lists the parameters of the forced choice component. In case of

multiple forced choice models a column for each model is provided (cf. Chapter 15.1.2).

Inspection of the results exhibits, e.g., that the estimated value of the mixture probability

parameter is .469 (which was forced to be equal to the respective parameter of the SDT

component representing the target items).

Comment:

The file MIX-Rank (Ex.1 Kellen, Klauer & Singmann, 2012).R contains additional

code for estimating the data with standard mixture model as well as SDT restrictions (cor-

responding to the unequal variance model without recollection).

15.1.2 MIX-Rank Example 2: Modeling multiple forced choice data

The second example demonstrates the modeling of multiple forced choice data using standard

restrictions (for a detailed description of the different types of restrictions cf. Chapter 3.12.1).

The code of this example is contained in the file:

MIX-Rank (Ex.2 Multiple forced choice models).R

The relevant piece of R code is as follows:
dvec <- c(2327, 873, # 1. 2-AFC data

Siegfried Macho: SDT Models in R 214

 739, 351, 295, 215) # 2. 4-AFC data

cfg <- list(j.rg = c(2, 4), rating = F)

Opti.Obj <- SDT.Estimate(data = dvec, n = cfg, Model.Id = "MIX.Rank", test = T)

Stat.Obj <- SDT.Statistics(Opti.Obj) # Evaluate the results

print(Stat.Obj)

The data vector dvec comprises 6 data points, 2 from the 2-AFC task and 4 from the 4-AFC

task. In addition. in the configuration list cfg the vector c(2, 4) is passed to argument j.rg

indicating two models with 2 and 4 data points respectively. The flag rating was set to

FALSE indicating that forced choice data are modeled only.

Here is the output:
$Model.description

[1] "MIX ranking model: Number of ranking-alternatives: <2, 4> Number of ranking-

positions: <2, 4> Number of quadrature points: <30> Type of restrictions:

<standard>"

$Statistics

 Statistic

log L -3922.173

X^2 26.802

G^2 26.478

df 2.000

p(Y > X^2) 0.000

p(Y > G^2) 0.000

AIC 7848.346

BIC 7861.299

CAICF 7874.068

ICOMP 7846.909

ICOMP.R 7846.683

Free Parameters 2.000

Length of gradient at optimum 0.000

Rank of Hessian 2.000

Condition number of information matrix 49.892

Rank of model matrix: t(J) * J 2.000

Condition number of model matrix 66.671

$Free.parameters

 Value SE CFI-95(Lower) CFI-95(Upper)

p.mix (Rank 1) 0.626 0.060 0.509 0.743

Mean.2 (Rank 1) 1.299 0.157 0.991 1.607

$Ranking.parameters

 Rank <k=2, j=2> Rank <k=4, j=4>

p.mix 0.626 0.626

Mean.0 0.000 0.000

Stddev.0 1.000 1.000

Mean.1 0.000 0.000

Stddev.1 1.000 1.000

Mean.2 1.299 1.299

Stddev.2 1.000 1.000

$Data.and.Estimates

 Observed Expected Probabilities Residuals Std.Resid.(analytical)

Rank 1 [1] 2327 2242.671 0.701 1.781 4.109

Rank 1 [2] 873 957.329 0.299 -2.725 -4.109

Rank 2 [1] 739 794.802 0.497 -1.979 -5.318

Rank 2 [2] 351 365.595 0.228 -0.763 -1.567

Rank 2 [3] 295 248.411 0.155 2.956 3.582

Rank 2 [4] 215 191.192 0.119 1.722 3.065

Comments:

❑ The file MIX-Rank (Ex.2 Multiple forced choice models).R contains additional

code for estimating the data with an extended mixture model as well as SDT restrictions

Siegfried Macho: SDT Models in R 215

(corresponding to the unequal variance model). The extended model (for a detailed dis-

cussion of this model, see Chapter 3.12.1 and the example in Chapter 15.1.1) exhibits a

lack of identification.

❑ The following files contain examples of the MIX.Rank model:
MIX-Rank (Ex.0 Parameters & restrictions).R

MIX-Rank (Ex.1 Kellen, Klauer & Singmann, 2012).R

MIX-Rank (Ex.2 Multiple forced choice models).R

15.2 MIX.Bias.Rank Example

The following example demonstrates the application of the MIX.Bias.Rank model to a data

set comprising two sets of 4-AFC data as well as rating data (from an own experiment). The

code of this example is contained in the file:

MIX-Bias-Rank (Ex.4 Estimate Ranking and rating model (multiple models)).R

The relevant code for fitting the data, using extended restrictions, and evaluating as well as

printing the results looks like this:

datavec <- c(210, 68, 68, 54, # Ranking 1, Target on Position 1

 193, 98, 60, 49, # Ranking 1, Target on Position 2

 198, 101, 55, 46, # Ranking 1, Target on Position 3

 169, 88, 82, 61, # Ranking 1, Target on Position 4

 180, 79, 78, 63, # Ranking 2, Target on Position 1

 184, 86, 85, 45, # Ranking 2, Target on Position 2

 190, 100, 58, 52, # Ranking 2, Target on Position 3

 185, 86, 74, 55, # Ranking 2, Target on Position 4

 432, 341, 309, 262, 185, 71, # Rating data (new)

 179, 220, 238, 256, 257, 450) # Rating data (old)

cfg <- list(k.rg = c(4, 4), j.rg = c(4, 4), restriction = "EXTENDED")

Opti1.Obj <- SDT.Estimate(data = datavec, n = cfg, Model.Id =

"MIX.Bias.Rank", test = T)

Stat1.Obj <- SDT.Statistics(Opti1.Obj) # Evaluate the results

print(Stat1.Obj)

Here is a portion of the output:

$Model.description

[1] "MIX ranking and rating model with bias: Number of Mixture models: <2>

Number of ranking-alternatives: <4, 4> Number of ranking-positions: <4, 4>

Number of quadrature points: <30> Type of restrictions: <extended>"

$Statistics

 Statistic

log L -9519.386

X^2 28.539

G^2 28.428

df 20.000

p(Y > X^2) 0.097

p(Y > G^2) 0.100

AIC 19066.772

BIC 19161.469

CAICF 19269.956

ICOMP 19086.166

ICOMP.R 19047.139

Free Parameters 14.000

Length of gradient at optimum 0.000

Rank of Hessian 14.000

Condition number of information matrix 9018.250

Rank of model matrix: t(J) * J 14.000

Condition number of model matrix 10074.631

Siegfried Macho: SDT Models in R 216

$Free.parameters

 Value SE CFI-95(Lower) CFI-95(Upper)

p.mix (Rank 1) 0.202 0.041 0.122 0.282

Mean.1 (Rank 1) 0.388 0.056 0.278 0.499

Mean.2 (Rank 1) 3.198 1.095 1.052 5.344

Bias.1 (Rank 1) 0.178 0.087 0.006 0.349

Bias.2 (Rank 1) 0.185 0.085 0.019 0.351

Bias.3 (Rank 1) 0.229 0.085 0.063 0.394

Bias.1 (Rank 2) -0.076 0.088 -0.248 0.096

Bias.2 (Rank 2) 0.028 0.086 -0.140 0.195

Bias.3 (Rank 2) 0.076 0.086 -0.093 0.245

c[1] -0.641 0.029 -0.698 -0.584

c[2] -0.064 0.026 -0.115 -0.012

c[3] 0.429 0.027 0.376 0.482

c[4] 0.959 0.033 0.894 1.024

c[5] 1.666 0.051 1.567 1.766

$Ranking.parameters

 Rank <k=4, j=4> Rank <k=4, j=4>

p.mix 0.202 0.202

Mean.0 0.000 0.000

Stddev.0 1.000 1.000

Mean.1 0.388 0.388

Stddev.1 1.000 1.000

Mean.2 3.198 3.198

Stddev.2 1.000 1.000

Bias.1 0.178 -0.076

Bias.2 0.185 0.028

Bias.3 0.229 0.076

Bias.4 0.000 0.000

$Rating.parameters

 Gauss-1 Gauss-2

p.mix 1.000 0.202

Mean.0 0.000 0.388

Stddev.0 1.000 1.000

Mean.1 0.000 3.198

Stddev.1 1.000 1.000

t-1 -0.641 -0.641

t-2 -0.064 -0.064

t-3 0.429 0.429

t-4 0.959 0.959

t-5 1.666 1.666

[...]

The output is quite similar to that of the MIX.Rank model (cf. Chapter 15.1). The main

difference consists in the fact that in the section $Ranking.parameters listing the

parameters of the forced choice models position bias parameters are shown.

The values of the bias parameters indicate that for the first forced choice data set position 4

received less attention than the other 3 positions (these can be seen directly from the data set

where the target item was ranked considerably less often as the first item, when it was on the

fourth position).

For the second forced choice data set the third position received slightly more weight than the

other positions. This is also evident from the frequencies since the target item was ranked

more often on the first and second rank when it was on the third position.

Siegfried Macho: SDT Models in R 217

The estimated values of the bias parameters are nearly identical to those esteimated by means

of the HTSDT.Bias.Rank model (cf. Chapter 14.2).

Comments:

❑ The file MIX-Bias-Rank (Ex.4 Estimate Ranking and rating model (multiple

models)).R contains additional code for estimating the data with extended mixture

model with position bias as well as SDT restrictions (corresponding to the unequal

variance model with position bias).

❑ The following files contain examples of the MIX.Bias.Rank model:
MIX-Bias-Rank (Ex.0 Parameters & restrictions).R

MIX-Bias-Rank (Ex.1 Estimate Ranking model (1 model only)).R

MIX-Bias-Rank (Ex.3 Estimate Ranking model (multiple models).R

MIX-Bias-Rank (Ex.4 Estimate Ranking and rating model (multiple

models)).R

16. Working Example: SDT models with probabilistic item response functions (IRF.Gauss)

In the following, an example of the application of the module IRF.Gauss is presented. The

example illustrates both probabilistic response model: The graded response model (GRM) and

the ordinal Rasch response model (ORM).

The data of Ratcliff, McKoon, & Tindall (1994), Exp. 1, pure strong items are used.

The relevant code for fitting the models to the data, evaluating and printing the results is

contained in the file:
SDT-IRF-Gauss 1 (2 signals, Data Ratcliff et al. 1994).R

The code (including comments) looks like this:

LIBRARY REQUIRED SINCE THE TESTFLAG IN ESTIMATION PROCEDURE IS SET TO TRUE

library(numDeriv)

LOAD SOURCE FILES WITH MODEL, AUXILIARY AND ESTIMATION FUNCTIONS

source("SDT-IRF-Gauss.R")

source("SDT-Main.R")

source("SDT-Auxiliary.R")

DATA OF RATCLIFF ET AL. (1994, Exp.1, 200 ms pure strong list)

datavec <- c(477, 776, 527, 321, 258, 184, # New

 192, 401, 290, 267, 316, 442) # Old

FIT SDT-GRM MODEL AND COMPUTE OUTPUT

cfg <- list(n.sdt = 2, model = "GRM")

Opti.GRM <- SDT.Estimate(data = datavec, n = cfg, Model.Id = "IRF.Gauss", test = T)

Stat.GRM <- SDT.Statistics(Opti.GRM)

FIT SDT-ORM MODEL AND COMPUTE OUTPUT

cfg <- list(n.sdt = 2, model = "ORM")

Opti.ORM <- SDT.Estimate(data = datavec, n = cfg, Model.Id = "IRF.Gauss", test = T)

Stat.ORM <- SDT.Statistics(Opti.ORM)

PRINT THE RESULTS

cat("\n---\n")

cat(" Results of the GRM-SDT (Graded Response) model:\n")

cat(" Data: Ratcliff, MacKoon, & Tindall, 1994, Exp.1, pure strong items")

cat("\n---\n")

Siegfried Macho: SDT Models in R 218

print(Stat.GRM)

cat("\n---\n")

cat(" Results of the ORM-SDT (Ordinal Rasch) model:\n")

cat(" Data: Ratcliff, MacKoon, & Tindall, 1994, Exp.1, pure strong items")

cat("\n---\n")

print(Stat.ORM)

The code comprises 5 blocks that perform the following actions:

1. The library NumDeriv and the source files with the relevant code SDT-IRF-Gauss.R,

SDT-Main.R and SDT-Auxiliary.R are loaded.

2. The data vector is datavec specified. It contains the counts of the different response

categories for new and old items in the order sure new to sure old.

3. The configuration list cfg of the graded response model is specified and the model is

fitted using the function SDT.Estimate(). The result is stored in the object Opti.GRM.

Then the function SDT.Statistics() computes the relevant output: estimates,

statistics etc.

4. The same is done for the ordinal Rasch model.

5. Finally, the results are printed.

The output for the graded response model looks like this:

Results of the GRM-SDT (Graded Response) model:

Data: Ratcliff, MacKoon, & Tindall, 1994, Exp.1, pure strong items

$Model.description

[1] "Gaussian SDT model with probabilistic item response functions <Model = GRM>,

<Restriction = STANDARD>, <Robust thresholds = FALSE>, <Number of quadrature points

= 35>"

$Statistics

 Statistic

log L -7641.877

X^2 5.465

G^2 5.456

df 3.000

p(Y > X^2) 0.141

p(Y > G^2) 0.141

AIC 15297.754

BIC 15342.560

CAICF 15399.482

ICOMP 15288.927

ICOMP.R 15287.971

Free Parameters 7.000

Length of gradient at optimum 0.000

Rank of Hessian 7.000

Condition number of information matrix 44.012

Rank of model matrix: t(J) * J 7.000

Condition number of model matrix 71.835

$Free.parameters

 Value SE CFI-95(Lower) CFI-95(Upper)

[SDT-2] Mean 1.214 0.074 1.070 1.358

[SDT-2] Stddev 1.604 0.099 1.409 1.798

c[1] -1.764 0.057 -1.876 -1.652

c[2] -0.004 0.046 -0.094 0.086

c[3] 1.006 0.048 0.911 1.100

c[4] 1.834 0.056 1.723 1.944

c[5] 2.941 0.076 2.793 3.090

$Gaussian.parameters

Siegfried Macho: SDT Models in R 219

 Gauss-1 Gauss-2

Mean 0 1.214

Stddev 1 1.604

$Response.parameters

 Difficulty Discrimination

1 -1.764 1

2 -0.004 1

3 1.006 1

4 1.834 1

5 2.941 1

$SDT.measures

 Value SE CFI-95(Lower) CFI-95(Upper)

d.a[2] 0.908 0.060 0.790 1.026

d.e[2] 0.933 0.059 0.816 1.049

A.z[2] 0.740 0.014 0.713 0.767

$Data.and.Estimates

 Observed Expected Probabilities Residuals Std.Resid.(analytical)

Signal 1 [1] 477 469.449 0.185 0.349 1.501

Signal 1 [2] 776 800.051 0.315 -0.850 -1.906

Signal 1 [3] 527 504.819 0.199 0.987 1.884

Signal 1 [4] 321 322.068 0.127 -0.059 -0.097

Signal 1 [5] 258 261.165 0.103 -0.196 -0.301

Signal 1 [6] 184 185.448 0.073 -0.106 -0.260

Signal 2 [1] 192 199.950 0.105 -0.562 -1.715

Signal 2 [2] 401 374.938 0.197 1.346 2.221

Signal 2 [3] 290 311.196 0.163 -1.202 -2.002

Signal 2 [4] 267 267.650 0.140 -0.040 -0.067

Signal 2 [5] 316 313.933 0.165 0.117 0.218

Signal 2 [6] 442 440.334 0.231 0.079 0.436

The output for the ordinal Rasch model looks like this:

 Results of the ORM-SDT (Ordinal Rasch) model:

 Data: Ratcliff, MacKoon, & Tindall, 1994, Exp.1, pure strong items

$Model.description

[1] "Gaussian SDT model with probabilistic item response functions <Model = ORM>,

<Restriction = STANDARD>, <Robust thresholds = FALSE>, <Number of quadrature points

= 35>"

$Statistics

 Statistic

log L -7641.052

X^2 3.814

G^2 3.807

df 3.000

p(Y > X^2) 0.282

p(Y > G^2) 0.283

AIC 15296.105

BIC 15340.911

CAICF 15395.003

ICOMP 15283.680

ICOMP.R 15283.335

Free Parameters 7.000

Length of gradient at optimum 0.000

Rank of Hessian 7.000

Condition number of information matrix 8.458

Rank of model matrix: t(J) * J 7.000

Condition number of model matrix 18.550

$Free.parameters

 Value SE CFI-95(Lower) CFI-95(Upper)

[SDT-2] Mean 0.802 0.049 0.705 0.898

Siegfried Macho: SDT Models in R 220

[SDT-2] Stddev 1.313 0.066 1.184 1.443

c[1] -1.190 0.060 -1.308 -1.072

c[2] 0.311 0.054 0.206 0.416

c[3] 0.792 0.061 0.673 0.912

c[4] 1.006 0.068 0.873 1.140

c[5] 1.504 0.082 1.342 1.666

$Gaussian.parameters

 Gauss-1 Gauss-2

Mean 0 0.802

Stddev 1 1.313

$Response.parameters

 Difficulty Discrimination

1 -1.190 1

2 0.311 1

3 0.792 1

4 1.006 1

5 1.504 1

$SDT.measures

 Value SE CFI-95(Lower) CFI-95(Upper)

d.a[2] 0.687 0.043 0.602 0.771

d.e[2] 0.693 0.043 0.609 0.777

A.z[2] 0.686 0.011 0.665 0.708

$Data.and.Estimates

 Observed Expected Probabilities Residuals Std.Resid.(analytical)

Signal 1 [1] 477 468.788 0.184 0.379 1.418

Signal 1 [2] 776 797.808 0.314 -0.772 -1.654

Signal 1 [3] 527 511.768 0.201 0.673 1.290

Signal 1 [4] 321 323.154 0.127 -0.120 -0.199

Signal 1 [5] 258 254.025 0.100 0.249 0.378

Signal 1 [6] 184 187.457 0.074 -0.253 -0.646

Signal 2 [1] 192 200.280 0.105 -0.585 -1.629

Signal 2 [2] 401 378.782 0.199 1.142 1.904

Signal 2 [3] 290 304.964 0.160 -0.857 -1.450

Signal 2 [4] 267 264.931 0.139 0.127 0.220

Signal 2 [5] 316 320.353 0.168 -0.243 -0.470

Signal 2 [6] 442 438.690 0.230 0.158 0.749

For a detailed description of the output, cf. Chapter 5.1 (page 105).

16.1 List of example files forGaussian SDT models with probabilistic response functions
SDT-IRF-Gauss 1 (2 signals, Data Ratcliff et al. 1994).R

SDT-IRF-Gauss 2 (3 signals, Data Ratcliff et al. 1994).R

SDT-IRF-Gauss 3 (Y-N-Data).R

SDT-IRF-Gauss 4 (Parameterinfo).R

17. References

Agresti, A. (2002). Categorical data analysis (2nd edition). New York: Wiley.

Arndt, J. & Reder, L. M. (2002). Word frequency and receiver operating characteristic curves

in recognition memory: Evidence for a dual-process interpretation. Journal of

Experimental Psychology: Learning, Memory, & Cognition, 28, 830-842.

Ashby, F. G., & Townsend, J. T. (1986). Varieties of perceptual independence. Psychological

Review, 93, 154-179.

Bozdogan, H. (1987). Model selection and Akaike’s information criterion (AIC): The general

theory and its analytic extensions. Psychometrika, 52, 345-370.

Siegfried Macho: SDT Models in R 221

Bozdogan, H. (1988). ICOMP: A new model selection criterion. In: H. H. Bock (Ed.),

Classification and related methods of data analysis (pp. 599-608). Amsterdam:

North-Holland.

DeCarlo, L. T. (2003a). An application of signal detection theory with finite mixture

distributions of source discrimination. Journal of Experimental Psychology, Learning,

Memory, & Cognition, 29, 767-778.

DeCarlo, L. T. (2003b). Source monitoring and multivariate signal detection theory, with a

model for selection. Journal of Mathematical Psychology, 47, 292-303.

DeCarlo, L. T. (2007). The mirror effect and mixture signal detection theory. Journal of

Experimental Psychology, Learning, Memory, & Cognition, 33, 18-33.

DeCarlo, L. T. (2008). Process dissociation and mixture signal detection theory. Journal of

Experimental Psychology, Learning, Memory, & Cognition, 34, 1565-1572.

DeCarlo, L. T. (2012). On a signal detection approach to m-alternative forced choice with

bias, with maximum likelihood and Bayesian approaches to estimation. Journal of

Mathematical Psychology, 56, 196-207.

Donaldson, W., & Good, C. (1996). A’r: An estimates of area under isosensitivity curves.

Behavior Research Methods, Instruments, & Computers, 28, 590-597.

Ennis, D. M., & O’Mahony, M. (1995). Probabilistic models of sequential taste effects in

triadic choice. Journal of Experiment Psychology: Human Perception and

Performance, 21, 1088-1097.

Gilbert, P. (2006). numDeriv: Accurate Numerical Derivatives. R package version 2006.4-1.

Greene, W. H. (2008). Econometric analysis (6th edition). Upper Saddle River: Prentice Hall.

Hanley, J. A., & McNeil, R.J. (1982). The meaning and use of the area under a receiver

operating characteristic (ROC) curve. Radiology, 143, 29-36.

Hilford, A., Glanzer, M., Kim, K., & DeCarlo, L. T. (2002). Regularities of source

recognition: ROC analysis. Journal of Experimental Psychology: General, 131, 494-

510

Kellen, D., Klauer K. C., & Singmann, H. (2012). On the measurement of criterion noise in

signal detection theory: The case of recognition memory. Psychological Review, 119,

457-479.

Kelley, R., & Wixted, J. T. (2001). On the nature of associative information in recognition

memory. Journal of Experimental Psychology: Learning, Memory, & Cognition, 27,

701-722.

Macho, S. (2002). Cognitive modeling with spreadsheets. Behavior Research Methods,

Instruments, & Computers, 34, 19-36.

Macho, S. (2004). Modeling associative recognition: A comparison of two-high-threshold,

two-high-threshold signal detection, and mixture distribution models. Journal of

Experimental Psychology: Learning, Memory, & Cognition, 30, 83-97.

Macmillan, N. A., & Creelman, C. D. (2005). Detection theory: A user’s guide (2nd edition).

Cambridge: Cambridge University Press.

Siegfried Macho: SDT Models in R 222

McDonald, R. P., & Krane, W. R. (1979). A Monte Carlo study of local identifiability and

degrees of freedom in the asymptotic likelihood ratio test. British Journal of

Mathematical Psychology, 32, 121-132.

Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149-174.

doi: 10.1007/BF02296272

Masters, G. N. (2010). The partial credit model. In M. L. Nering, & R. Ostini, (Eds.),

Handbook of polytomous item response models (pp. 109-122). New York: Taylor &

Francis.

Masters, G. N., & Wright, B. D. (1984). The essential process in a family of measurement

models. Psychometrika, 49, 529-544.

Muraki, E. (1992). A generalized partial credit model: Application of an EM algorithm.

Applied Psychological Measurement, 16, 159-176. doi:

10.1177/014662169201600206

Olzak, L. A., & Kramer, P. (1984). Interactions between spatially tuned mechanisms:

Converging evidence. Journal of the Optical Society of America A, 1, 1290 (Abstract).

Onyper, S. V., Zhang, Y. X., & Howard, M. W. (2010). Some-or-none recollection: Evidence

from item and source memory. Journal of Experimental Psychology: General, 139,

341-364.

Pawitan, Y. (2001). In all likelihood: Statistical modelling and inference using likelihood.

Oxford; UK: Clarendon Press.

Rao, C. P. (1973). Linear statistical inference and its applications (2nd edition). New York:

Wiley.

Ratcliff, R., & McKoon, G., & Tindall, M. (1994). Empirical generality of data from recog-

nition memory receiver-operating characteristic functions and implications for global

memory models. Journal of Experimental Psychology: Learning, Memory, &

Cognition, 20, 763-785.

Rotello, C. M., Macmillan, N. A., & Reeder, J. A. (2004). Sum-difference theory of

remembering and knowing: A two-dimensional signal-detection model. Psychological

Review, 111, 588-616.

Rotello, C. M., Macmillan, N. A., Reeder, J. A., & Wong, M. (2005). The remember

response: Subject to bias, graded, and not a process-pure indicator of recollection.

Psychonomic Bulletin & Review, 15, 865-873.

Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores.

Psychometrika, Monograph Supplement No.17.

Samejima, F. (1997). Graded response model. In W. J. Van der Linden & R. K. Hambleton,

(Eds.), Handbook of modern item response theory (pp.85-100). New York: Springer.

Samejima, F. (2010). The general graded response model. In M. L. Nering, & R. Ostini,

(Eds.), Handbook of polytomous item response models (pp. 77-107). New York:

Taylor & Francis.

Simpson, A. J., & Fitter, M. J. (1973). What is the best index of detectability? Psychological

Bulletin, 80, 481-488.

Siegfried Macho: SDT Models in R 223

Thomas, R. D. (2001). Characterizing perceptual interactions in face identification using

multidimensional signal detection theory. In M. J. Wenger, & J. T. Townsend (Eds.),

Computational geometry, and processing perspectives on facial cognition (Chapter 6,

pp. 193-227). Hillsdale, NJ: Erlbaum.

Vokey, J. R. (2016). Single-step simple ROC curve fitting via PCA. Canadian Journal of

Experimental Psychology, 70, 301-305. doi: 10.1037/cep0000095

Wickens, T. D. (1992). Maximum-Likelihood estimation of a multivariate Gaussian rating

model with excluded data. Journal of Mathematical Psychology, 36, 213-234.

Wickens, T. D. (2002). Elementary signal detection theory. Oxford: Oxford University Press

Wickens, T. D., & Olzak, L. A. (1992). Three views of association in concurrent detection

ratings. In: F. G. Ashby (Ed.), Multidimensional models of perception and cognition

(Chapter 9: pp. 229-252). Hillsdale, NJ.: Erlbaum.

Wixted, J. T., & Mikes, L. (2010). A continuous dual-process model of remember/know

judgments. Psychological Review, 117, 1025-1054.

Yonelinas, A. P. (1994). Receiver-operating characteristics in recognition memory: Evidence

for a dual-process model. Journal of Experimental Psychology: Learning, Memory, &

Cognition, 20, 1341-1354.

Yonelinas, A. P. (1999). The contribution of recollection and familiarity to recognition and

source-memory judgments: A formal dual-process model and an analysis of receiver

operating characteristics. Journal of Experimental Psychology: Learning, Memory, &

Cognition, 25, 1415-1434.

https://doi.org/10.1037/cep0000095

