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Natural Movies Evoke Spike Trains with Low Spike Time
Variability in Cat Primary Visual Cortex
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Neuronal responses in primary visual cortex have been found to be highly variable. This has led to the widespread notion that neuronal
responses have to be averaged over large numbers of neurons to obtain suitably invariant responses that can be used to reliably encode or
represent external stimuli. However, it is possible that the high variability of neuronal responses may result from the use of simple,
artificial stimuli and that the visual cortex may respond differently to dynamic, naturalistic images. To investigate this question, we
recorded the responses of primary visual cortical neurons in the anesthetized cat under stimulation with time-varying natural movies. We
found that cortical neurons on the whole exhibited a high degree of spike count variability, but a surprisingly low degree of spike time
variability. The spike count variability was further reduced when all but the first spike in a burst were removed. We also found that
responses exhibiting low spike time variability exhibited low spike count variability, suggesting that rate coding and temporal coding
might be more compatible than previously thought. In addition, we found the spike time variability to be significantly lower when
stimulated by natural movies as compared with stimulation using drifting gratings. Our results indicate that response variability in
primary visual cortex is stimulus dependent and significantly lower than previous measurements have indicated.

Introduction
As an animal navigates through its environment, it relies on the
responses of its sensory systems to identify objects and locations
in its surroundings. This implies a reproducible relationship be-
tween specific features of the environment (such as colors,
sounds, smells, etc.) and certain patterns of neuronal activity in
the sensory system. In contrast to this notion, previous studies in
visual cortex have found high variability in spike counts to re-
peated stimulus presentations (Schiller et al., 1976; Tolhurst et
al., 1983; Vogels et al., 1989; Buracas et al., 1998) (but see Gur et
al., 1997; Kara et al., 2000; DeWeese et al., 2003; Amarasingham
et al., 2006; Gur and Snodderly, 2006; Nawrot et al., 2008; Benedetti
et al., 2009). In fact, the Fano factor (FF), the ratio of the variance
of the spike counts across repetitions to the mean spike count,
was often found to be higher than that of a random Poisson
process, which has a FF of 1. The variability in spike times has also
been shown to be quite high (Tomko and Crapper, 1974; Shadlen
and Newsome, 1998; McAdams and Maunsell, 1999; Tolhurst et
al., 2009) (but see Richmond and Optican, 1990; McClurkin et

al., 1991; Bair and Koch, 1996; Buracas et al., 1998; Nawrot et al.,
2008; Benedetti et al., 2009; Maimon and Assad, 2009). As a re-
sult, neuronal responses have often been modeled using a non-
uniform Poisson process, in which the probability of a spike or
the firing rate would be constant for a short time window, and
then change to a different rate as a function of the stimulus (Vic-
tor and Purpura, 1996; Berry and Meister, 1998; Oram et al.,
1999). Using this model, the variance in the spike counts in each
time window would be equal to the mean spike count, and the
spike times would be randomly distributed.

However, these studies have most often used simple, artificial
stimuli like drifting bars and gratings, and random dot patterns,
which lack the spatial (Field, 1987) and temporal (Dong and
Atick, 1995) characteristics of natural visual images and thus
might not be predictive of how these neurons would respond
under natural stimulation. Indeed, a number of recent studies
have shown that, when given appropriate stimuli, neurons that
previously showed high response variability can exhibit highly
reproducible responses (Mainen and Sejnowski, 1995; Bair and
Koch, 1996; de Ruyter van Steveninck et al., 1997; Buracas et al.,
1998; DeWeese et al., 2003; Gur and Snodderly, 2006) (but see
Kayser et al., 2003).

To study the responses of visual cortical neurons to more
naturalistic stimulation, we recorded unit activity in the primary
visual cortex of anesthetized cats, while presenting the animals
with repeated presentations of movies of natural images (Yen et
al., 2007). We computed the spike count and spike time variabil-
ity and compared them with surrogates generated using a non-
uniform Poisson process with a relative refractory period. We
also performed these analyses on a subset of cells that were stim-
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ulated with both natural movies and drifting sinusoidal gratings.
This enabled us to compare directly the variability elicited by
complex and simple stimuli.

Materials and Methods
Surgery, electrophysiology, and visual stimulation
All experiments were conducted on anesthetized and paralyzed cats (3– 4
kg) of both genders. The surgical, electrophysiological methods, as well as
the details of the visual stimulation have been described in detail previ-
ously (Yen et al., 2007). We present a summary of the relevant details
below.

Recordings were made using either sharp tungsten electrodes (four
cells) or 16-contact, multitetrode silicon probes (84 cells) provided by
NeuroNexus. Monochromatic natural movie sequences were presented
at a distance of 57 cm using a 20 inch color monitor (ViewSonic P810) at
a resolution of 800 � 600 pixels. During the course of this study, we used
three different graphics cards, with increasing refresh rates of 85, 120, and
150 Hz, and refresh intervals of 11.8, 8.33, and 6.67 ms.

Movie frames were digitized from a variety of DVD movies covering a
wide range of natural and man-made scenes. These included Hollywood
movies like The Big Lebowski, The Matrix, Everest, as well as two docu-
mentaries called The Ultimate Guide—Big Cats and House Cats and An-
imals in the Wild. Individual movie frames had dimensions of 640 � 480
pixels and were converted to grayscale images. The movie was positioned
at the center of the monitor screen, occupying 32 � 24° of visual angle
(0.05°/pixel), and was presented at rates of three, four, or six refreshes per
frame (corresponding to the 85, 120, and 150 Hz graphics cards), making
the frame rate of the movies 28.3, 30, and 25 Hz, respectively, with cor-
responding frame durations of 35, 33, and 40 ms. For each recording site,
we selected a short movie sequence, ranging in duration from 15 to 30 s,
and presented that clip 60 –200 times to the dominant eye.

We also presented stimuli consisting of drifting, oriented sinusoidal
gratings, with different temporal and spatial frequencies. Each block con-
sisted of pseudorandom permutations of combinations of 24 orienta-
tions, 5 temporal and 5 spatial frequencies, for a total of 600 different
stimulus conditions. We presented each condition for 2 s, and at the end
of each block, we collected a 5 s period of spontaneous activity. One block
thus lasted for 1205 s, and we presented a total of five blocks at each
recording site. All grating stimuli were presented using a 150 Hz graphics
card.

The protocol used in the experiments was approved by the Institu-
tional Animal Care and Use Committee at Montana State University and
conformed to the guidelines recommended in Preparation and Mainte-
nance of Higher Mammals during Neuroscience Experiments (NIH publi-
cation no. 91-3207; National Institutes of Heath, Bethesda, MD; 1991).

Data analysis
We recorded 88 well isolated neurons from all layers of area 17 in eight
anesthetized cats. All 88 cells exhibited responses that were significantly
different from random spike trains [see details in the study by Yen et al.
(2007)]. We also recorded from 10 cells in an additional two animals in
which we were able to obtain responses to both natural movies and
drifting sinusoidal gratings. We focus first on the 88 cells for which we
only recorded responses to movie stimuli and carry out the comparison
between movie and grating responses in the last section.

To examine the distributions of intervals between spikes, we com-
puted the interspike interval (ISI) histograms for each cell using bin sizes
of 0.2 ms. For 28 of the cells, we found �50 intervals that were �50 ms.
This made it difficult for us to compute the spike recovery function (see
below), which was required for our analysis. In addition, we were con-
cerned that such highly sparse activity could make the analysis of tempo-
ral variability difficult. Indeed, we found that these cells exhibited
significantly lower variability than the rest of the cells, and we therefore
chose to exclude these cells from further analysis. Thus, in the subsequent
analysis, we analyzed the remaining 60 cells.

Spike latency analysis. To examine spike times relative to the onset of
movie frames, we computed the peristimulus time histogram (PSTH)
relative to the start of each movie frame. In other words, we computed a
histogram (at 1 ms resolution) of the latency between each spike time and

the start time of the movie frame in which the spike occurred. This
allowed us to view the distribution of spike times in relation to the frames
of the movie and the screen refreshes on the monitor. To quantify
refresh-following in the PSTHs, we zero-padded the histograms to a
length of 64 points and computed the fast Fourier transform (FFT) on
the entire window. We then computed the ratio of the magnitude of the
frequency component closest to the refresh rate of the monitor, to the
magnitude of the DC component. After visual inspection, cells with mag-
nitude ratios �0.13 (n � 9) were classified as having refresh-following
and removed from further analysis. We also performed a multitaper
analysis but found the simpler FFT approach to give better results.

Surrogate generation. To determine the spike count variability and
temporal reliability of our data, we compared it to surrogate data com-
puted using methods from Berry and Meister (1998). Briefly, spike trains
were modeled as time-varying Poisson processes with an explicit recov-
ery function to model the absolute and relative refractory period of a
neuron. This was done by modulating the stimulus induced firing rate
with a function that suppresses firing completely during the absolute
refractory period of a cell, followed by an increase to simulate the relative
refractory period.

To compute the spike recovery function for each cell, the ISI histogram
was first computed with bin sizes of 0.2 ms. Next, the counts were con-
verted to probabilities, p(t), by dividing by the total number of interspike
intervals. The recovery function, w(t), was computed up to the interval
with the highest probability using Equation 1. The recovery function was
then normalized so that the values ranged from 0 to 1 as follows:

w�t� �
p�t�

1 � �
0

t

p�u�du

. (1)

The spike recovery function was then used to compute the stimulus-
induced firing rate, which has also been called the free firing rate (Berry
and Meister, 1998). Essentially, this computes the probability of firing if
the cell did not have a refractory period and reflects the response condi-
tioned only on the stimulus. This is computed first by placing the recov-
ery function whenever there was a spike and averaging the resulting
probability function across repetitions to obtain the probability of free
firing, W(t). The free firing rate, q(t), was then obtained by dividing the
observed firing rate, r(t), by W(t).

The free firing rate, q(t), and the recovery function, w(t), were then
used to generate the surrogate spike trains. First, a set of random num-
bers, �i, uniformly distributed between 0 and 1 were generated. Follow-
ing a spike a time ti, the next spike, at time ti�1 was determined by
numerically integrating Equation 2, given by the following:

� ln�i�1 ��
ti

ti�1

q�t�w�t � ti�dt. (2)

In this study, we tested the hypothesis that the neuronal responses can be
modeled using a time-varying Poisson process changing at the frame rate
of the movies (i.e., 25 frames per second, or 40 ms duration per frame), so
we computed the recovery function and the free firing rate at a resolution
of 0.2 ms, and then averaged 200 bins (equivalent to 40 ms duration) of
the free firing rate together to create surrogate spike trains that were
generated with underlying free firing rate dynamics that were similar to
the frame rate of the movie.

Burst-removed data and surrogates. Since our data contained numer-
ous cells that responded with bursts of spikes (see Fig. 2), we studied the
effects of burst firing on response variability. To accomplish this, we
created a second data set in which only the first spike in a burst was
retained. We defined a burst as a series of spikes with interspike intervals
�5 ms (Cattaneo et al., 1981; Bair et al., 1994; DeBusk et al., 1997;
Maldonado et al., 2008). As it would be inappropriate to compare the
burst-removed data with the original surrogates, since the spike counts
will be greatly reduced, we compared the burst-removed data to a second
set of surrogates, generated using the same procedure as for the original
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data, but with the recovery function and the
free firing rate calculated from the burst-free
data. Figure 6 shows an example of the effect of
removing bursts.

Spike count variability. We characterized
spike count variability by first computing the
spike count in each movie frame and then
computing the mean and variance of the spike
counts across repetitions. The variability is
then expressed as the FF, which is the ratio of
the variance to the mean. The FF in each win-
dow was compared with those computed from
the same window in the surrogates to obtain an
FF score (FFS) that indicated the percentage of
surrogates that exhibited higher FFs compared
with the data. Windows with FFS � 95 were
marked significant. To look at how much lower
the variability in the data was compared with
the surrogates, we also determined a FF Z-score
(FFZ) for the spike count variability in each
window by subtracting the mean FF value for
the surrogates from the FF of the data and di-
viding by the SD of the surrogate FF values. If
the FFZ was more negative than �2, for exam-
ple, that would mean that the spike count vari-
ability in the data was �2 times the SD of the
surrogates.

Spike time variability. To investigate the variability of spike times
across stimulus repetitions, we developed a method to quantify spike
time entropy, referred to here as temporal reliability entropy (TR-
entropy). Figure 1 A illustrates how temporal variability was computed.
First, we subdivided the spike trains in each movie frame into n non-
overlapping bins. Each bin inside a window was given a rank according to
how many spikes it contained, such that the bin with the smallest number
of spikes was ranked first. If more than one bin had the same number of
spikes, they were each assigned the mean rank (e.g., if the second, third,
and fourth ranked bins had the same number of spikes, they were all
assigned the rank 3), following the procedure used in the Spearman rank
order correlation measure to correct for equal ranks. The rank of a bin
could therefore be any number in the range 1, 1.5, 2, 2.5, . . . n, which
meant there were 2n � 1 possible ranks in each bin. For each window, we
grouped all the repetitions together to calculate the probability distribu-
tion of the rank for each bin to create an n � (2n � 1) map. If the spike
times within a window were identical across repetitions, the probability
distribution map will be zero everywhere except in n boxes. However, if
the spike times were unreliable, the maps will be quite flat (the rank of a
bin in each repetition would be arbitrary). The bottom panel in Figure
1 A shows the rank probability maps for the three frames shown in the top
panel with different spike time variability.

To quantify the distributions in these maps, and thus the spike time
reliability, we computed the entropy for each map using the following:

E � �
i�1

2n�1�
j�1

n

P�ri, j�logP�ri, j�, (3)

where P(ri,j) is the probability of getting a rank i in bin j. It is important to
point out that it was quite convenient to compute the entropy on the
ranks instead of the actual numbers of spikes because this reduced the
number of possible values that could be reached in each bin. Here, the
universe of possibilities was 2n � 1, which was quite reasonable for 100
repetitions. By using ranks instead of raw spike counts, we were also able
to control for changes in overall spike counts due to state changes in the
animals. In all our calculations, we used n � 10, which meant that our bin
sizes were 	3.5– 4 ms depending on the frame duration of the movies.

To verify that the rank-based entropy measures spike precision, we
computed its value on simulated data in which we controlled the preci-
sion of spikes explicitly. This was done by randomly selecting the re-
sponse from a single stimulus presentation for one of our cells. We then

replicated these responses 100 times, to create simulated responses with
zero temporal variability across stimulus repetitions. We then degraded
the precision of these responses by adding to each spike time a random
jitter drawn from a zero mean Gaussian process with increasing SD. This
gave us several response sets with decreasing temporal precision. We then
computed the entropy of the ranked bins as explained above for each of
these response sets. In Figure 1 B, we plot this entropy as a function of the
amount of jitter applied to generate the surrogate data. The three differ-
ent lines represent the TR-entropy of windows with mean spike counts
(MSCs) between 0 and 1 (red), between 1 and 2 (green), and between 2
and 3 (blue). As Figure 1 B shows, there was a high degree of correlation
between TR-entropy and jitter. We found that 83.0% of the windows
used in the simulation in Figure 1 B had Spearman’s R � 0.5 (p � 0.05).

Note that, in the entropy calculation, windows with low mean spike
counts will naturally have lower entropy values compared with windows
with high mean spike counts since only a few bins will have nonzero
counts. To quantify how the entropy values behaved with increasing
mean spike counts, we created random spike count arrays that contained
100 rows and 10 columns corresponding to the 100 repetitions and n �
10 bins used in our analysis. To simulate a window with a mean spike
count of 1, we randomly incremented the spike count in 100 points in the
array. To simulate a window with a mean spike count of 2, we randomly
incremented the spike count in 200 points in the array, and so on. We did
not simulate a refractory period, so some points in the array ended up
with spike counts �1. We created 1000 such arrays for each mean spike
count and computed the entropy values for each of these arrays. We then
found the range of entropy values at each mean spike count that 95% of
the random arrays occupied (i.e., we found the 2.5 and 97.5% percentiles
of the entropy values) and then used a cubic spline to interpolate between
the entropy values calculated at discrete mean spike counts to obtain a
range of entropy values that we would expect from randomly placed
spikes for each mean spike count (see Fig. 9).

The entropy in each window was also compared with the entropies
in the surrogates to obtain the temporal reliability entropy score (TRES).
This score measured the percentage of entropy values obtained from the
surrogate data that exceeded the entropy value calculated from the ex-
perimental data. Since larger entropy meant greater spike time variabil-
ity, the TRES measured the percentage of the surrogate windows that
exhibited higher spike time variability than the experimental data. Win-
dows with a TRES �95 (i.e., windows in which the entropy of the data
was lower than 95% of the surrogates) were marked significant. A nor-
malized entropy measure, the temporal reliability entropy Z-score
(TREZ) was also obtained by subtracting the mean entropy value for the
surrogates from the entropy value of the data and dividing by the SD of
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Figure 1. Illustration of methods. A, The top panel shows sample rasters from three different frames (all with mean spike
counts � 1), arranged from high to low entropy. The left-most frame returned a TR-entropy value of 0.098, which was near the
bottom of the distribution for this cell, the middle frame returned a TR-entropy value of 0.081, which was near the median, while
the right-most frame was among the frames with the lowest TR-entropy for this cell, with a value of 0.069. The bottom panel shows
the resulting rank probability map (see the text for more details). B, TR-entropy and spike time variability. Each curve shows the
behavior of the TR-entropy measure in windows with mean spike counts between 0 and 1 (red), 1 and 2 (green), and 2 and 3 (blue)
as a function of jitter (see Materials and Methods for more details). In 80% of the windows, TR-entropy was highly positively
correlated with jitter (Spearman’s R � 0.5; p � 0.05).
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the surrogate entropy values. Negative TREZ values indicated that the
spike time variability in the data was lower than the variability in the
surrogate data.

Since the TR-entropy represents a novel way of computing spike time
variability, we compared our results to spike time variability computed
using a standard approach based on identifying response events in the
PSTH of a cell (Keat et al., 2001; Butts et al., 2007; Kumbhani et al., 2007;
Desbordes et al., 2010). First, we identified event boundaries by identi-
fying points at which the firing rate exceeded the 95th percentile. Second,
events were required to have at least one spike in 50% of the trials, to
prevent response epochs with intertrial nonstationarities from being in-
cluded in the analysis. We then computed the spike time precision of an
event by computing the interquartile range of the spike times contained
within the event (Kumbhani et al., 2007). To facilitate comparison to the
TR-entropy measure, we also computed the event-based spike variability
of the same surrogate datasets used to compute TRES and TREZ. This
was done by using the event boundaries identified from the data, and
computing the spike time interquartile range of the corresponding time
period of the surrogates. This allowed us to form an interquartile range
score (IQRS) and interquartile range Z-score (IQRZ), which like the
TRES and TREZ, measured the percentage of surrogates that was
more variable than the data, and the z-scores for the interquartile range of
the data compared with the surrogates, respectively.

Relationship between variability and stimulus. To investigate whether
the variability in the neural spike trains could be related to the properties
of the stimulus, we performed a series of analyses on the stimulus frames.
First, we investigated whether low variability in the responses was simply
due to large luminance changes in the movie due to scene transitions. We
used a measure to identify scene transitions previously described by Yen
et al. (2007). Briefly, we computed the differences in gray level of every
pixel between consecutive movie frames, and defined scene transitions as
frames in which 60% of the pixels changed by 10 gray levels. We con-
firmed these scene changes by visual inspection of the movie frames.

A more detailed analysis sought to investigate whether stimulus mo-
tion in the frames preceding a response window influenced the spike time
variability of that window. We computed the motion across five consec-
utive movie frames, following the techniques in the study by Ma et al.
(2002). Briefly, temporal gradients were constructed across adjacent
frames, and the entropy of the distribution of these gradients was esti-
mated across five frames. This gave us a motion value for each pixel of the
movie frames. We then used the spatial outline of the receptive field of
each cell (obtained using hand-mapping during the experiment) to select
the pixels in the motion maps that overlapped with the receptive field. By
taking the average motion value for these pixels, we ended up with an
average motion value for each frame, and the distribution of these frame-
by-frame motion values was then compared with the distribution of
TREZ values.

Results
Interspike interval distributions
Our goal in this study was to quantify the spike count and spike
time variability in the neuronal responses to repeated presenta-
tions of natural movies. However, it has been shown that spike
count variability can be affected by the relative refractory period
(Berry et al., 1997; Kara et al., 2000; Keat et al., 2001). To account
for the effect of the relative refractory period on the response
variability for each cell, we first computed ISI distributions for
each unit in our database. Figure 2 shows the responses of one of
the cells in our database to natural movie stimuli. The raster plot
in Figure 2A shows the responses to 50 stimulus repetitions,
while Figure 2B shows the corresponding PSTH. In Figure 2C, we
plot the rasters for the two 2 s segments highlighted in Figure 2B.
Both the raster and PSTH show clear epochs of vigorous re-
sponses, with quieter periods in-between. As the close-ups in
Figure 2C show, the variability across repetitions for different
parts of the response is quite different. In the segment on the left,
spikes appeared with seemingly high precision across repetitions,

while in the segment on the right, spikes were missing in a sub-
stantial fraction of the repetitions. These differences were also
reflected in the spike time variability measure that we developed
(TREZ; see Materials and Methods) for the two segments. The
three frames with the lowest TREZ in each segment are high-
lighted in-between the vertical red lines. For the first segment,
these three frames had TREZ values of �9.9, �6.3, and �4.9,
while the three frames in the second segment had TREZ values of
�2.4, �2.2, and �1.6. This shows that the TREZ measure was
able to quantify correctly that the spikes in the first segment had
significantly lower spike time variability than the spikes in the
second segment.

Before embarking on the variability analysis, we investigated
whether some of our cells were locked to the refresh rate of the
presentation monitor (Wollman and Palmer, 1995; Williams et
al., 2004). We excluded cells exhibiting such refresh-following
from any variability analyses as they might show artificially high
levels of temporal precision close to the refresh intervals of the
monitor, typically 6.67, 8.33, or 11.7 ms (see Materials and Meth-
ods). As such, we subtracted each spike time by the onset time of

Figure 2. The response of a cell to a natural movie stimulus. A, Raster plot showing the
spikes elicited in the cell to repeated movie presentations. Each row is a single repetition of a
movie, and a total of 50 repetitions are shown for this cell. B, PSTH of the cell. C, Raster plot of the
response segments highlighted by the gray rectangles in B. The panel on the left shows frames
with low temporal variability, while the panel on the right shows frames with higher temporal
variability. The vertical red lines denote frame boundaries; only the top three frames with the
lowest entropy are shown to avoid clutter.
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the movie frame in which the spike occurred and then computed
a histogram of the spike times relative to the start of the movie
frame. This is shown in Figure 3. The cells were sorted by the
refresh rates used in the experiments, with the cells recorded
using a monitor with a 150 Hz refresh rate (i.e., a movie frame
consisting of six monitor refreshes) appearing first, followed by
the cells recorded with monitors with 120 and 85 Hz refresh rates,
corresponding to four and three monitor refreshes per movie
frame, respectively.

Cells 52– 60, recorded using a monitor with a 85 Hz refresh
rate, showed clear refresh entrainment (see Materials and Meth-
ods for the quantitative measure we used), which resulted in these
cells exhibiting significantly lower spike time variability than the
remaining cells [two-sample Kolmogorov–Smirnov (KS) test,
p � 0.05]; therefore, we excluded these cells and retained the
remaining 51 cells for the subsequent analyses.

Figure 3 also revealed some interesting aspects of the spike
latencies. In some cells, the spike times were uniformly distrib-
uted with respect to the onset of a movie frame, but in other cells,
there appeared to be a clear bias in terms of the latency of the
spikes (e.g., cells 8, 9, 10, 15, 16, 19, 20, and 25). Although there
appears to be an increase in the number of spikes occurring at

the start and end of each movie frame, the increase at the start of
the movie frame in all likelihood is the continuation of the in-
crease at the end of the preceding movie frame. This perhaps
reflects the fact that these cells have response latencies between 33
and 40 ms, which is consistent with other studies of response
latencies in the primary visual cortex of the anesthetized cat (Sa-
monds and Bonds, 2005).

The ISI histograms for each of the 60 cells in our database
are shown in Figure 4. The histograms were computed by
taking the base 10 logarithm of the ISIs and binning this dis-
tribution using 100 equally sized bins to emphasize any mul-
timodality within the histograms. A large fraction of the cells
exhibited a predominance of short ISIs. The maximum ISI
value in the histogram was �4 ms for 41 of the 60 cells. The
remaining 19 cells are marked with asterisks in Figure 4. Most
of the cells (47 of 60) exhibited multimodal peaks within the
ISI histograms. The occurrence of two distinct modes; one
centered at short ISIs and one centered at slightly longer in-
tervals, indicated that these cells exhibited a significant degree
of bursting firing activity. Cells exhibiting endogenous burst-
ing behavior can be further grouped into two main classes as
follows: intrinsically bursting (IB) and chattering (CH) (Gray

Figure 3. Spike latencies. Histograms of spike times relative to the start of the movie frame in which the spikes occurred. Bin width is 1 ms. The vertical lines in each histogram indicate the times
of the monitor refreshes. The movie frames were presented for six monitor refreshes at a rate of 150 Hz (pink bars), four refreshes at 120 Hz (blue bars), and three refreshes at 85 Hz (gray bars). The
horizontal axis limits correspond to the length of a movie frame and were 0 – 40 ms for cells 1–21 and 0 –35 ms for the remaining cells.
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and McCormick, 1996; Wang, 1999; Nowak et al., 2003; Traub
et al., 2003; Cunningham et al., 2004; Takekawa et al., 2007).
Using the criteria reported by Nowak et al. (2003) (i.e., IB cells
have a large mode at intermediate ISIs and a narrower peak at
short ISIs, while CH cells have a higher peak at short ISIs and
a smaller and broader peak at the interburst interval), we cat-
egorized cells 2, 27–31, 54, and 55 as chattering (Fig. 4, blue
backgrounds), and cells 1, 22, 26, 52, and 53 as intrinsically
bursting (Fig. 4, pink backgrounds).

To investigate whether the predominance of short ISIs shown
in Figure 4 was due to spike doublets or bursts consisting of three
or more spikes, we computed the joint interval histogram for
each cell (i.e., each spike interval vs its subsequent interval) (Ro-
dieck et al., 1962; Doiron et al., 2003), and the results are shown in
Figure 5. The first interval is plotted on the vertical axis and the
subsequent interval is plotted on the horizontal axis. If spike
doublets occurred with greater frequency (Traub et al., 1996;
Higgs and Spain, 2009), we should find short intervals preceding
longer intervals, as well as longer intervals preceding short inter-
vals. A high occurrence of doublets would appear as vertical and
horizontal bands on the 2D histogram (Fig. 5, cell 4). However, if
bursts were more likely, we should see a majority of short inter-
vals preceded and followed by other short intervals. This would

appear as spherical regions in the bottom left corner of the 2D
histograms (Fig. 5, cell 51). We found multispike bursting to be
the most common property among our cell population, with
most (40 of 60) of the cells showing a greater density of points in
the bottom left corner of the histograms. In addition, a number of
the cells appeared to have vertically elongated regions in the his-
tograms (e.g., cell 25). This suggests the occurrence of larger first
intervals followed by smaller subsequent intervals, which is typi-
cal of burst firing (Kepecs and Lisman, 2003).

We also quantified the percentage of burst firing in each cell by
dividing the number of spikes contained in bursts in which the
interspike intervals were �5 ms (Cattaneo et al., 1981; Bair et al.,
1994; DeBusk et al., 1997; Maldonado et al., 2008), by the total
number of spikes. This number is shown in parentheses for each
cell in Figure 5. Surprisingly, the cells did not fall into easily
segregated categories. Instead, we found that burst firing made up
�30% of the total number of spikes in the majority of the cells,
although the proportion was as high as 84% in one cell (cell 51).

Having analyzed the ISI distributions of the cells, we found
evidence of two types of cells, exhibiting varying degree of burst-
ing behavior. This prompted us to investigate the effect of this
bursting on spike count and spike time variability. We were also
able to estimate the refractory period via Equation 1 and generate
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Figure 4. ISI histograms. Plots of the log ISI histograms for all 60 cells. The histograms were computed by taking the base 10 logarithm of the ISIs and binning this distribution using 100 equally
sized bins. The peak of the ISI histogram occurred �4 ms for all but 19 of the cells (marked with asterisks). Eight cells were labeled as CH (blue background), while 5 cells were labeled as IB (pink
background). The ordering of the cells is the same as in Figure 3.
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Poisson surrogate spike trains that exhibited the same refrac-
tory effects. This was an essential step in modeling the cellular
responses.

Variability and surrogates
We turned next to the issue of spike count and spike time vari-
ability in the neuronal responses to natural movies. Spike count
variability has been shown to be significantly affected by the re-
fractory period of individual neurons (Berry et al., 1997; Kara et
al., 2000; Keat et al., 2001), and previous studies have shown that
retinal spike trains may be modeled using time-varying Poisson
processes with appropriate refractory periods (Berry and Meister,
1998). Therefore, we compared the variability of individual neu-
rons in our database with surrogate spike trains created using a
similar model to investigate how the variability in cortical spike
trains compared with those found in the retina.

Using the ISI histograms in Figure 4, we computed the spike
recovery function for each neuron to generate surrogate spike
trains that could be compared with the experimental data. Exam-
ples of the surrogate spike trains are shown in Figure 6A. The data
are shown in the top raster plot, while the surrogate spike trains
generated with firing rates changing at the frame rate are shown
in the bottom raster plot. The surrogate spike trains replicated
most of the features of the data with the exception that they
generally exhibited more uniformity in their response across tri-
als. This was due to the fact that each repetition of the surrogates
was generated using the identical free-firing rate, which in turn

was computed by averaging across repetitions (see Materials and
Methods). In the response epoch shown, the surrogate spike
trains were able to replicate the data in most of the time windows
(an example window is labeled with the letter “a”). This means
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Figure 5. Joint interval histograms. Each graph plots interspike interval duration (vertical axis) versus the subsequent interval duration (horizontal axis) for intervals between 0 and 5 ms.
Histogram bins were computed at 0.2 ms resolution. Consecutive short intervals, which are reflected in these plots as spherical blobs in the bottom left corner of the histogram, appeared to be most
common, suggesting that many of the cells responded with bursts of firing. The percentage of burst firing in each cell is shown in parentheses after the cell number in the title of each plot.
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Figure 6. Variability and surrogates. Raster plots of the original data (A) and the equivalent
burst-removed data (B) are shown in the top row. The surrogates generated are shown in the
bottom two rows. The activity in the windows marked with the letter “a” is well modeled by the
surrogates, while the window marked with the letter “b” contains features that are not well
modeled by the surrogates.
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that the precision of the responses was relatively coarse as surro-
gates generated with firing rates changing at the frame rate were
sufficient to approximate the data. However, in some of the win-
dows (e.g., in the window labeled with the letter “b”), these sur-
rogates were not able to replicate the finer features of the data.

As shown in Figures 4 and 5, as well as in the raster plot for the
data in Figure 6A, most of the cells in this study exhibited some
degree of burst firing. These bursts could significantly affect the
variability of the data compared with the surrogates, which are
largely free of burst firing since we did not attempt to model
bursting in the surrogates. To study the effect of burst firing on
response variability, we generated new spike trains from the orig-
inal data by retaining only the first spike in a burst and removing
the remaining spikes (for details, see Materials and Methods). We
then regenerated the surrogates, using the same procedure as
for the original data, but with the recovery function and the free
firing rate calculated from the burst-free data. Figure 6B illus-
trates the resulting rasters after removing spikes within bursts.
The top panels show raster plots of the data, while the bottom
panel shows the surrogates generated at the frame rate. These
surrogates were generated based on the burst-removed data and
were thus quite different from the surrogates shown in Figure 6A,
which were more similar to the data.

The spike count variability (Fano factor) and spike time vari-
ability (TR-entropy) in the data, compared with those of the
surrogates, is shown in Figure 7. A 1 s segment of the data is
displayed in the top raster plot. The FF for the data and surrogates
are shown in the middle plot. The mean and SD of the FF for the
surrogates are shown in green. As expected, since the surrogates
were generated using a Poisson model, the FFs were fairly close to
1, with occasional values �1, presumably due to the effect of the
relative refractory period. We found that the FF for the data was
unstable when the MSC was �1 spike per window, so we sepa-
rated the windows into those with MSC � 1 spike per window
(black circles), and those with MSC � 1 (gray circles). In addi-
tion, windows in which 95% of the surrogates exhibited higher FF
than the data (i.e., FFS � 95) are plotted in red (for windows with
MSC � 1) and blue (for windows with MSC � 1, not observed in
this plot). The plot in the bottom panel uses the same color

scheme to illustrate the comparisons of the spike time variability
measure (TR-entropy) between the data and the surrogates.

Spike count variability
The Fano factors for all windows and all 51 cells in our study are
shown in Figure 8A. Windows with MSC � 1 are shown in gray,
while windows with higher mean spike counts are shown in black.
Windows with FFS � 95 are plotted in blue (for MSC � 1) and
red (for MSC � 1). The green dotted line in the top plot at FF �
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Figure 7. Spike count and spike time variability of the data compared with the surrogates.
Windows with MSCs � 1 are plotted in gray, while the remaining windows are plotted in black.
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Figure 8. Spike count variability for 51 cells. A, The Fano factor for all the windows in the 51
cells in our data set are plotted against the mean spike count. Windows with MSC � 1 are
plotted in gray, while the rest are plotted in black. Windows with FFS � 95 when compared
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distribution of Fano factor z-scores for all the windows are shown using a logarithmic scale on
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while the distribution for all windows is shown in light gray. C, Fano factor computed for events
plotted against event MSC, using the same color code as for the frame-based FF shown in A. D,
Distribution of FFZ computed based on events. The color code is the same as in B. E–H, The
equivalent plots for the burst-removed data.
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1 denotes the FF for a Poisson process, where the variance is equal
to the mean. In agreement with previous observations in mam-
malian visual cortex (Schiller et al., 1976; Tolhurst et al., 1983;
Vogels et al., 1989), the Fano factors for a large majority of win-
dows were �1, indicating that the overall spike count variability
was high. However, certain portions of the movie generated re-
sponses that were much less variable. We found FF � 1 in 17.1%
(6599 of 38,600) of the windows with nonzero mean spike counts
in our database, and 15.8% (255 of 1615) of the windows with
MSC � 1. In total, the percentage of cells with at least one re-
sponse window in which FF � 1 while the MSC � 1, was 56.9%
(29 of 51). The FF and the mean spike count for all windows with
MSC � 1 were negatively correlated (r � �0.29; p � 0.001). This
is consistent with previous reports that the FF decreases at high
spike counts due to the limits imposed by the refractory period of
spiking neurons.

The effect of the refractory period was also demonstrated in
our comparison of the data with the surrogates. Even though the
surrogates were generated using a Poisson process, they exhibited
very similar FF to the data, including values that were �1 (data
not shown). When comparing the data to the surrogates, we
found that only 1.18% (19 of 1615) of the windows with MSC �
1 exhibited FF � 95% of the surrogates (FFS � 95). This is
smaller than the number of windows expected to have FF smaller
than the surrogates if those windows occurred with a 5% chance.
Therefore, the FF of the data could not be said to be significantly
different from that of the surrogates. A possible concern arises
from the observation that windows with FF � 1 also tended to
have high activity. These are exactly the windows that an unmod-
ified Poisson process is unable to model, and if our model fails for
these windows too, we cannot claim to have captured spike count
variability. However, when analyzing all the windows condi-
tioned on the mean spike count, we found that the number of
windows with FFS � 95 did not exceed that expected from chance
for any of the MSC-bins tested. In other words, even the high-
activity windows were well modeled by the modified Poisson
process. Additionally, the distribution of FFZs was weighted to-
ward positive values (shown in Fig. 8B), again indicating that
very few windows exhibited variability that was significantly
lower than the surrogates. The windows with FFS � 95 occurred
in 23.5% (12 of 51) of the cells, 4 of which were previously clas-
sified as chattering, and 1 which was intrinsically bursting. These
results indicate that spike count variability in the responses to
natural movies appear to be well modeled by a Poisson process
with a relative refractory period, with a time-varying rate close to
that of the movie frame rate.

The results from the burst-removed data (shown in Fig.
8E–H) were significantly different. In this case, we found 62.8%
(353 of 562) of the windows with MSC � 1 exhibited FFS � 95.
The distribution of FFZ now included a significant number of
windows with variability that was significantly lower than the
surrogates (i.e., FFZ � �3). These windows occurred in 52.9%
(27 of 51) of the cells, 5 of which were chattering, and 1 that was
intrinsically bursting. This indicated that the spike count vari-
ability we observed in the original data was largely due to burst
firing. Once the subsequent spikes in a burst were removed, the
spike count variability appeared to be much lower than that ex-
pected from a Poisson process with a relative refractory period. It
also appeared that the spike count variability was not correlated
to the simple cell type (i.e., chattering or intrinsically bursting)
classification measure used.

Figure 8, C and G, show the distribution of Fano factors for the
events identified in our data. Using the criteria that an event

constituted an elevation of the firing rate above its 95th percen-
tile, and that at least 50% of the trials had to contain at least one
spike within an event (see Materials and Methods), we identified
442 events in the original data and 415 events in the burst-
removed data. The distribution of Fano factors for events was
qualitatively similar to the frame-based Fano factors, with the
percentage of events with MSC � 1 and FFS � 95 increasing from
5.7% (25 of 442) to 26% (106 of 415) when burst spikes were
removed. However, this increase was less dramatic than the in-
crease from 1.18 to 62.8% for the frame-based Fano factors, per-
haps due to the smaller number of events.

We also plotted the distribution of Fano factor Z-scores ob-
tained from events in Figure 8, D (original data) and H (burst-
removed data). These distributions exhibited the same effect as
the frame-based Fano factor Z-scores (i.e., a highly significant
change after burst spikes were removed).

Spike time variability
The spike time variability, quantified by the TR-entropy, for the
cells in our database is shown in Figure 9A. Similar to Figure 8A,
windows with MSC � 1 are plotted in gray, while those with
MSC � 1 are plotted in black. Windows in which the entropy of
the data was �95% of the surrogates (i.e., TRES � 95) are plotted
in red if MSC � 1, and in blue if MSC � 1. To put the entropy
values for the data in context, we also computed the entropy in
1000 windows with randomly placed spikes and obtained the
range containing 95% of the values (see Materials and Methods).
The lower and upper boundaries of the 95% interval for these
values are illustrated by the pair of green lines within Figure 9, A
and E. In total, when compared with the surrogates, 12.1% (4660
of 38,600) of all windows exhibited TRES � 95 and for windows
with MSC � 1, this fraction increased to 49.3% (796 of 1615), and
the effect was present in 68.7% (35 of 51) of the cells. Of these 35
cells, 4 were previously classified as chattering, while 1 was intrin-
sically bursting. The distribution of the entropy z-scores (TREZ)
shows large numbers of windows with entropy values that were
�3 SDs smaller than the mean of the surrogates (Fig. 9B). The
TREZ and the mean spike count for all windows with MSC � 1
were weakly, but significantly, negatively correlated (r � �0.13;
p � 0.001). This means that higher firing rates led to lower TREZ
values (i.e., lower spike time variability).

As noted in Materials and Methods, we excluded 28 extremely
sparse firing cells and 9 cells with refresh artifacts from our data-
base. We note here that these cells did indeed exhibit significantly
lower TR-entropy than the 51 cells included (one-sided two-
sample KS test, p � 0.0001 for both groups of cells), which justi-
fied excluding them from the main analysis.

When bursts of spikes were removed from the data, we found
relatively similar results (Fig. 9E–H), with 44.1% (248 of 562) of
the windows with MSC � 1 exhibiting TRES � 95. These win-
dows were found in 45.1% (23 of 51) of the cells, of which 5 were
chattering cells.

The distribution of interquartile ranges for spike times com-
puted within events are plotted in Figure 9C for the original data,
and in Figure 9G for the data with burst spikes removed. The
median and quartiles of these distributions were 11.8, 7.06, and
24.2 ms for the original data, and 11.3, 7.31, and 22.6 ms for the
data with burst spikes removed (shown in Fig. 9D,H). Both dis-
tributions changed relatively little as a result of removing burst
spikes, showing that both TR-entropy and event interquartile
range captured the effect that burst spikes were no more variable
than nonburst spikes.
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Our results suggest that spike time variability was much
lower than that expected from a Poisson process and that the
time of the first spike in a burst exhibited as little variability as
the time of the subsequent spikes in a burst. Contrary to what
we found for spike count variability, the distribution of TREZ
did vary across cell type in windows with MSC � 1, with
response windows (n � 24) from cells labeled as intrinsically
bursting exhibiting higher spike time variability than response
windows (n � 797) from cells labeled as chattering (one-sided
two-sample KS test, p � 0.05). This is shown in Figure 10, in

which we created box plots of the distribution of TREZ (blue
boxes) for response windows (n � 794) from unclassified cells,
intrinsically bursting cells, and chattering cells. The decrease
in variability for chattering cells was interesting, as previous
studies have found intrinsically bursting cells to be mostly
located in the supragranular and infragranular layers, while
chattering cells are found more frequently in layers 2/3 and 4
(Nowak et al., 2003). Thus, although not conclusive, our re-
sults seemed to suggest that cells located in the input layer
(layer 4) are less variable than cells located in the processing
layers (layer 2/3, and layers 5 and 6), which has also been
shown in the study by Kara et al. (2000). Notably, we did not
observe this effect when we computed spike time variability
using events (i.e., IQRZ; shown in the green boxes in Fig. 10).
In this case, events from chattering cells (n � 107) did not
exhibit spike time variability significantly different from
events from intrinsically bursting cells (n � 8) (one-sided KS
test, p � 0.3). However, events from chattering cells did ex-
hibit higher spike time variability than events from unclassi-
fied cells (n � 254) (one-sided KS test, p � 0.01).

Spike count and spike time relationship
In our data, 43.9% (112 of 255) of the windows with MSC � 1
and FF � 1 also exhibited TRES � 95 (we used FF � 1 instead of
FFS � 95 as the former gave us 255 windows, while the latter only
gave us 19 windows). These windows occurred in 45% (12 of 51)
of the cells. The FF and the TREZ were highly correlated (Pear-
son’s r � 0.29, Spearman’s r � 0.33, p � 0.001 for both measures;
Fig. 11A), indicating that the windows with low spike count vari-
ability were also the windows with low spike time variability. This
relationship can be seen even more clearly with the burst-
removed data (Pearson’s r � 0.87, Spearman’s r � 0.95, p � 0.001
for both measures; Fig. 11B). It turns out that it can be shown (see
below, Mathematical expression of the Fano factor) that the vari-
ability of spike counts in a window is lower when the rate func-
tion is non-uniform within the window. This suggests that
neuronal encoding schemes based on rates and temporal varia-
tions may be more compatible than previously thought.

Figure 9. Spike time variability for 51 cells. A, The spike time entropy values for all the
windows in the 51 cells in our data set are plotted against the mean spike count. Windows with
MSC � 1 are plotted in gray, while the rest are plotted in black. Windows with TRES � 95 are
plotted in blue (for MSC � 1) and red (for MSC � 1). The two green lines denote the 2.5 and
97.5 percentile of the entropy values obtained from 1000 random spike trains (see Materials and
Methods). B, The distribution of TREZ for all the windows is shown in logarithmic scale on the
vertical axis. The distribution for the subset of windows with MSC � 1 is shown in dark gray,
while the distribution for all windows is shown in light gray. C, Event interquartile range plotted
against event MSC, using the same color code as for the TR-entropy shown in A. D, The distri-
bution of event interquartile range Z-scores. The color code is the same as in B. E–H, The
equivalent plots for the burst-removed data.
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Figure 11, C and D, shows the equivalent relationship for the
event-based method. In this case, IQRZ and Fano were signifi-
cantly positively correlated for both original and burst-removed
data, but the relationship did not change substantially after burst
spikes were removed (Spearman’s r � 0.27, p � 0.004 for original
data; r � 0.19, p � 0.02 for burst-removed data). In fact, there
was a slight trend toward IQRZ being less correlated with Fano
after bursts were removed, indicating that the event-based vari-
ability measure did not exhibit the same sensitivity to changes in
spike count variability as did the TR-entropy-based method.

Relationship to stimulus properties
We performed a simple event-triggered analysis to see whether
the windows with low variability in spike count (FF � 1) and
spike time (TRES � 95) were simply due to large luminance
changes as a result of scene changes. In the windows with MSC �
1 and FF � 1 in the original data, we found that only 5.9% (15 of
255) of the windows occurred within two movie frames of a scene
change (a duration of 	66 – 80 ms). Similarly, we found that
3.1% (25 of 796) of the windows with MSC � 1 and TRES � 95
occurred within two movie frames of a scene change. In the burst-
removed data, we found the corresponding numbers to be 2.0%
(9 of 454) and 2.0% (5 of 248). We therefore concluded that the
effect of scene changes in our data was minimal. In all cases, only
a very small fraction of the windows were preceded by scene
changes. Instead, responses with low variability are likely to be
related to specific features within the movie.

In an effort to gain a better understanding of the effect of
stimulus properties on spike count and spike time variability, we
used an approach from the study by Ma et al. (2002) to quantify
the stimulus motion present in the movie frames. We found that,
across the whole population of cells, the neural responses in
movie frames that were preceded by high motion tended to have
lower spike time variability than frames preceded by lower mo-
tion (i.e., the distribution of motion values for frames with
TRES � 95 was higher than the distribution of motion values for
frames with TRES � 95, two-sample KS test, p � 0.0001). How-
ever, when we examined this relationship on a cell-by-cell basis,
we found only a weak correlation between spike time variability
(i.e., TREZ) and frame motion (i.e., the median Pearson’s R
across 16 cells with significant correlations of p � 0.05, was 0.09).
One explanation for this lack of sensitivity to frame motion could
be that the different cells were tuned to different directions of
motions, with cells exhibiting different degrees of variability for
preferred and nonpreferred directions. Since our simple motion
measure did not include directional information, we were unable
to conclude whether direction tuning was present in our cells.
Some evidence for this could be seen when we compared the
distribution of TREZ conditioned on motion over a range of
motion bins for each cell. For 21 of 51 cells, a nonparametric
ANOVA test (i.e., Kruskal–Wallis) on these distributions re-
vealed that TREZ was indeed significantly different for some mo-
tion bins (p � 0.05), which indicated that motion tuning could be
present in these cells.

Comparison with grating responses
We also recorded from an additional 10 cells that were presented
with both movie and grating stimuli. The movie stimuli were the
same as for the other 88 cells (with total stimulus durations of
4200 – 4500 s), while the grating responses consisted of drifting,
sinusoidal gratings with different combinations of temporal and
spatial frequencies (with a total stimulus duration of 6025 s). The
ISI distributions for each of the 10 cells are plotted in Figure 12A,
with grating responses plotted in red and movie responses in
blue. Except for differences in the absolute counts, perhaps due to
differences in the total stimulus duration in the two stimulus
conditions, the two distributions look remarkably similar.

We repeated the same variability analysis for these 10 cells,
using a window size of 40 ms for both the movie and grating
responses. In the movie responses, we found that 19% (49 of 258)
of the windows with MSC � 1 exhibited low spike time variability
(TRES � 95), while only 5.2% (1182 of 22,592) of the windows in
the grating responses exhibited low spike time variability. For
spike count variability, these proportions were 2.3% (6 of 258)
for movies and 0.89% (201 of 22,592) for gratings. Although the
total number of windows in the two cases were quite different,
this suggested that spike count and spike time variability were
higher in the grating responses than in the movie responses.

To investigate these differences further, we plotted the median
MSC values for the movie responses against those for the grating
responses for each of the 10 cells in Figure 12B. Similarly, we also
plotted the median Fano factor and TR-entropy values for the
movie responses against the grating responses in Figure 12, C and
D, respectively. In all cases, windows with MSC � 0 were ex-
cluded. The error bars in Figure 12B–D indicate the 25th and
75th percentile of the distributions for each cell. We found the
distribution of mean spike counts for the grating responses to be
significantly higher in each of the 10 cells (one-tailed two-sample
Kolmogorov–Smirnov test, p � 0.001). However, the distribu-
tions of both Fano factors and TR-entropy values exhibited a
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more nuanced behavior. Looking at the last two panels in Figure
12C, D, it appears that the Fano factors tended to be higher for
movie than for grating responses, while the opposite trend
seemed to hold for the TR-entropy values. This is interesting as
we found a weak but significant negative correlation between the
mean spike count and the TREZ earlier in the movie responses,
implying that more vigorous responses elicited less spike time
variability. Here, even though the grating responses exhibited
significantly higher mean spike counts, they also exhibited higher
TR-entropy values (i.e., higher spike time variability). This again
suggests that, for each of the cells, the spike time variability in the
movie responses were lower than the variability in the grating
responses.

As the mean spike counts were in general quite low (the me-
dian MSC for all cells were �1 in Fig. 12B), we wanted to exclude
the possibility that the difference in spike time variability was
only found in windows with weak evoked responses. As a result,
we compared the distribution of TREZ values for windows with
MSC � 1 in the movie responses to a similar distribution in the
grating responses. Of the eight cells that contained response win-
dows with MSC � 1, the distribution of TREZ for the movie
responses was significantly lower than that for the grating re-
sponses for five of them (one-sided, two-sample Kolmogorov–
Smirnov test, p � 0.05). This showed that the spike time
variability in response windows with vigorous responses was also
lower in the movie responses compared with the grating responses.

Since we observed much higher mean spike counts for grating
responses than for movie responses (Fig. 12B), we attempted to

rule out the effect of mean spike counts on
spike time variability by directly compar-
ing the spike time variability in the grating
responses to the movie responses for re-
sponse windows with the same mean
spike count. We divided the mean spike
counts into six equal-sized bins ranging
from 0 to 3. We plot the distribution of
TR-entropy for movie and grating re-
sponses, conditioned on these MSC bins,
collapsed across the 10 cells in Figure 13.
However, in comparing the TR-entropy
values between the movie and grating re-
sponses, the fact that we only had five rep-
etitions for the grating responses could
bias the entropy toward lower values, thus
resulting in artificially low entropy values
compared with the movie responses. In an
effort to account for this negative bias in
computing the TR-entropy for the grating
responses, we subsampled the movie re-
sponses to create 1000 response sets per
cell, with each set consisting of five ran-
domly selected repetitions from the full
response set. Thus, the two distributions
had the same systematic bias toward low
entropy values. We then compared each
of the 1000 sets of TR-entropy distribu-
tions for the movie responses to the distri-
butions of TR-entropy for the grating
responses in each MSC bin using a one-
sided, two-sample Kolmogorov–Smirnov
test. To correct for multiple comparisons,
we counted the number of p values �0.05
and compared that with the 95th percen-

tile of a binomial distribution with N � 1000 and p � 0.05. Using
this approach, we found the movie responses to have significantly
lower TR-entropy than the grating responses for MSC between 0
and 2.5. For MSC � 2.5, there were not enough windows to make
a reliable comparison.

The difference in the number of repetitions, and the possible
bias this could introduce in the analysis, could also be accounted
for by considering TREZ, which was normalized to the surro-
gates. We thus repeated the above MSC-conditioned analysis on
the distribution of TREZ values for movie and grating responses.
For the first three MSC bins (i.e., for windows with 0 � MSC �
1.5), the distribution of TREZ values for the movie responses was
significantly more negative (i.e., spike time variability was lower)
than the distribution for the grating responses (one-sided Kolm-
ogorov–Smirnov test, p � 0.05). We saw the same trend for win-
dows with MSC between 2 and 2.5 (p � 0.035). For 1.5 � MSC �
2.0, we observed the opposite effect [i.e., TREZ for movie was
larger than TREZ for grating (p � 0.001)], while for the last bin
(i.e., for 2.5 � MSC � 3), there was no difference between the two
distributions (p � 0.69).

These two analyses of both TR-entropy and TREZ suggested
that movie responses truly did exhibit lower spike time variability
than grating responses, even when the firing rates were equal. We
repeated this analysis using different numbers of subsampled re-
sponse sets (n � 250 and 500, as well as matching n to the number
of windows in the grating responses), but they did not exhibit any
significant differences in the result.
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Figure 12. Comparison between movie and grating responses. A, ISI distributions for the 10 cells presented with both movie
(blue trace) and grating (red trace) stimuli. B–D, The median of the mean spike counts (B), Fano factor (C), and TR-entropy values
(D) for each of the 10 cells (each cell is plotted in a different color). The error bars are the 25th and 75th percentile of the mean spike
counts and the TREZ values for the movie (vertical axis) and grating (horizontal axis) responses for each cell. If the values from the
movie and grating responses were identical, they would lie on the black diagonal line. The grating responses exhibited higher
mean spike counts than the movie responses, which is usually thought to be associated with lower response variability. So it was
perhaps not surprising that the grating responses exhibited lower Fano factors (i.e., lower spike count variability). However, what
was surprising was that, despite their higher spike counts, the grating responses also exhibited higher TR-entropy values (i.e.,
higher spike time variability) than the movie responses.
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Mathematical expression of the
Fano factor
To understand how precise spike times
and substimulus rate modulations can
influence spike count reliability, we
used a very simple model of the re-
sponse of a neuron. This model was
based on the assumption that the pres-
ence of a spike in a neuron at a given
time, t, depends solely on a firing prob-
ability, p(t), which is constant across
repetitions. This assumption is the basis
of the well known time-varying Poisson
process. This assumption is obviously
oversimplified since many factors can
affect p(t) across trials, such as changes
in the depth of the anesthesia (Hartveit
and Heggelund, 1994; Kisley and Ger-
stein, 1999), or ongoing brain activity
(Arieli et al., 1996; Azouz and Gray,
1999). This is probably the case in part
of our data set and may explain why we
found a majority of Fano factors �1.

We added to this assumption the ob-
servation that neurons have an absolute
refractory period that prevents them from
firing more than one spike in a 1 ms inter-
val (in our database of 60 cells, the mini-
mum ISI was 1.1 ms). Thus, we modeled
the response of the cell in a window of n
ms, as a succession of n independent Ber-
noulli trials, each having a firing probabil-
ity p(n). To check for independence between time bins in our
data, we used 35 ms windows (corresponding to a movie frame)
with FF � 1 and mean spike counts of at least 1 (n � 134). For
each window, we computed the product between spike counts,
si(t), in bins of 1 ms (spike counts were either 0 or 1), and aver-
aged them across repetitions as follows:

�1/N��
i�l

N

Si�t�Si�t � ��, (4)

with N � 60. We computed the product for t � 1 � 35 ms and t �
1 � 30 ms for a total of 1050 values for each 35 ms window. To
obtain the expected values for independent spikes trains with the
same firing probability, we used a Monte-Carlo trial shuffling
procedure as follows:

�1/N��
i�l

N

Si�t�Sx�i��t � ��, (5)

where x(i) is shuffled and in general different from i. We repeated
the trial-shuffled procedure 100 times to obtain 100 sets of sur-
rogate values. We then determined whether the values obtained
from the data were higher than the surrogates at p � 0.01. Across
the 134 windows, only 0.34% (479 of a possible 140,700) of the
products were significantly higher than the surrogates. That was
well below chance level and showed that the time bins were in-
deed independent.

In each trial, the presence or absence of a spike in bin n was
determined by whether a number, drawn randomly from a

uniform distribution from 0 to 1, was smaller than p(n). This
model, which we will refer to as a time-varying Bernoulli pro-
cess, is comparable with a Poisson process with a very precise
rate modulation and a realistic absolute refractory period,
which was found to model neuronal responses correctly in the
visual cortex of alert primates (Buracas et al., 1998). To test the
fit between the Fano factor computed for our data and for
the time-varying Bernoulli process, we selected 35 ms win-
dows in every cell in which the FF was �1, and the mean spike
count was �1 spike per window. For each window, we com-
puted the firing probability, p(n), across 60 repetitions in 1 ms
steps. We then generated 100 sets of 60 spike trains using p(n)
and computed the FF for each set of 60 surrogate spike trains.
Of the 134 windows selected, only 6 windows had a FF that
deviated from the mean of the surrogate spike trains by �3
SDs, which is slightly higher than would be expected by
chance. Apart from these bins, the time-varying Bernoulli pro-
cess produced FF values that were very similar to those ob-
tained from our data.

We modeled the neuron response to n repetitions of the same
stimulus, with a duration of m ms, by n binary time series of m
samples. Each sample value, sij (sample i in trial j), could either be
1 (spike) or 0 (no spike). The probability for a spike in sij is
determined solely by the time-varying firing probability p(i),
which is identical across trials.

The number of spikes in each time series is then the following:

Nj � �
i

Sij. (6)

Since it is the sum of m independent Bernoulli processes, the
mean and variance of Nj can easily be computed as follows:
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Figure 13. Movie and grating TR-entropy (TRE) distributions conditioned on mean spike count. The title of each of the plots
indicates the range of the mean spike count. Each panel shows the distribution of TR-entropy values for the grating responses
collapsed across all 10 cells, conditioned on the MSC. For movie responses, we resampled the distribution of TR-entropy values of
each cell to create 1000 distributions with the same number of repetitions as the grating responses, and each panel concatenates
all of these distributions, again conditioned on the MSC. The red horizontal lines correspond to the medians, the boxes represent
the lower and upper quartiles, while the whiskers span 1.5 times the interquartile range. The red crosses represent outliers. The
notches indicate the 95% confidence interval of the median. The distributions of TRE values for the movie responses were much
tighter around the median than the grating responses, especially for low mean spike counts, which explain the qualitative
differences in the boxplots between the two conditions.
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Mean

�Nj� j � �
i

pi (7)

Variance

Var�Nj�j � �
i

pi�1 � pi�. (8)

It follows that the Fano factor would be as follows:

FF�p� �
Var�Nj�j

�Nj�j
, (9)

which expands out to:

FF�p� �
�

i
pi�1 � pi�

�
i

pi

�
�

i
pi � �

i
pi

2

�
i

pi

� 1 �
�

i
pi

2

�
i

pi

. (10)

FF can also be written as follows:

FF�p� � 1 �
1

m �
i

pi

m�
i

pi
2

��
i

pi�
2 � 1 � M�p�

1

C�p�2 (11)

M� p� �
1

m�
i

pi, (12)

where M(p) is the mean value of p, and C(p) is a direct measure of
the correlation between the probability function p(i), and a flat
probability distribution, q�i� � 1/�m, as follows:

C� p� �
�

i
pi

�m��
i

pi
2
. (13)

Intuitively, for an imposed value of the mean firing rate, low Fano
factors are reached for high values of the norm as follows:

��
i

pi
2

This defines a simple geometrical problem that provides an intu-
itive idea of which distributions of p generate the lowest FF. Let us
first define P to be an m-dimensional vector of the values pi, and
E to be the m-dimensional vector in which all values are 1. Then
FF(p) can also be written as FF(p) � 1 � �P� 2/(P � E). That is, for
a given mean firing rate (P � E, which defines a hyperplane of
dimension m � 1, orthogonal to E), FF(p) is minimal for vectors
P with the highest norm, within that hyperplane.

While the Fano factor of a constant or time-varying Poisson
process is 1 over any time interval, the FF of a time-varying Ber-
noulli process, as shown in Equation 11, can be �1. This is also
true of a time-varying Poisson process with an absolute refractory
period (Berry and Meister, 1998). The FF is thus expressed in
terms of the mean value, M(p), of p(n) in a response window, and
C(p), a measure of the correlation between p(n), and a flat prob-
ability distribution, q(n) � 1/
m, with m being the number of 1
ms Bernoulli trials in the response window. C(p) is therefore a
measure of the uniformity of p(n); the less uniform the firing
probability, the lower the FF. Thus, for a given mean probability
of firing in a window, M(p), FF(p) will be at its maximum when
p(n) is uniform [i.e., p(n) � p0]. In this case, FF(p) � 1 � M(p) �
1 � p0, which will be close to 1, except when the probability of
firing is near the saturation regime (where p0 is close to 1), where
FF(p) will be close to 0. FF(p) will be at its minimum when C(p) is
at its minimum, that is when p(n) is zero everywhere except for a

single bin, where it is mM(p). Then, FF(p) � 1 � mM(p), which
will be 0.

In our simulations with some non-uniform rate functions, we
found significant negative Spearman’s rank order correlations
(p � 0.001) between the analytical Fano factor obtained from
Equation 11 and the TRES/TREZ values. This means that the
Bernoulli model also shows low spike count variability when the
temporal precision is high. We also found significant positive
Spearman’s rank order correlations (p � 0.001) between the an-
alytical Fano factor and the measured FF, which further validates
the use of the Bernoulli model.

Discussion
When presented with natural movies, neuronal responses in stri-
ate visual cortex largely exhibited spike count variability that was
comparable or higher than the variability exhibited by a Poisson
process. Occasionally, we did observe response epochs exhibiting
low spike count variability (i.e., FF � 1), but these were not
statistically significant in either number or value. Burst firing,
however, appeared to make a significant contribution to the in-
crease in spike count variability, suggesting that the number of
spikes in a burst was highly variable. We also found that spike
time variability was much lower than that exhibited by a Poisson
process with a relative refractory period, and that burst firing,
however, did not significantly affect spike time variability. This
suggested that, even though the number of spikes in a burst was
highly variable, the time of the spikes was conserved across rep-
etitions. In addition, we found that response windows exhibiting
low spike time variability also showed low spike count variability,
a result that could be due to a nonstationary free firing rate.

Our results show that a modified, inhomogeneous Poisson
process is unable to reproduce the temporal precision of striate
cortical spike trains. A major shortcoming of inhomogeneous
Poisson processes in reproducing temporal reliability is that they
lack a refractory period. The fact that neurons are unable to gen-
erate spikes at arbitrarily high frequencies makes the original
spike trains more regular than those produced by a random pro-
cess without such limitations. We attempted to correct for this
difference by explicitly modulating the free firing rate such that a
refractory period was used. Despite this addition to the spike
generation model, we were not able to match the precision of the
experimental data. A pertinent question is whether this failure is
the result of our choice of the spiking model. In a study by Bar-
bieri et al. (2001), the authors found that an inverse Gaussian
distribution exhibited a better fit to the spiking activity of place
cells in rat hippocampus. Notably, this distribution did a much
better job modeling short ISIs. We did not test this model on our
data, and it is possible that we could have obtained better matches
to the precision of the responses in regions of high firing if we
had. However, since the inhomogeneous Poisson process is still
the most widely used model for neural spike trains, it provides a
recognizable standard to compare neural variability.

When comparing our spike time variability measure with that
using PSTH events, we found largely similar results. However, the
TR-entropy measure can be computed for all response periods,
and as such is able to express spike time variability as a continu-
ous temporal function, unlike the event-based measure, which
only quantifies temporal variability in a small portion of dis-
jointed windows. The event method is also quite dependent on
the ability to detect events accurately. Figure 14 illustrates the
difficulty in identifying events in our data, in which single events
often encompass multiple “subevents.” We also observed a
smaller change in the spike count variability computed from
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events after removing burst spikes than what we did for variabil-
ity computed using TR-entropy. This was probably caused by the
fact that events were harder to compare between the two condi-
tions, as the removal of spikes sometimes significantly affected
the event boundaries, causing some events to disappear, while
others resulted in large changes in the interquartile range. In
addition, using the TR-entropy measure, we were able to observe
laminar differences in variability that were largely consistent with
previous studies, while the event-based method gave us rather
inconclusive results. A relationship between spike count and
spike time variability that was clarified after removing burst
spikes was also seen with the TR-entropy measure. This relation-
ship was less clear for the event method, and notably did not
improve after burst spikes were removed. Based on these obser-
vations, we believe that our TR-entropy measure complements
the events-based measure and has the ability to analyze spike time
variability for signals in which event identification is problematic.

Our results show that, while a time-varying Poisson process
was a poor model for the temporal variability of cortical neurons,
the variability in spike counts was more consistent with such a
model. A number of studies have uncovered sub-Poissonian
spike count variability in diverse cortical areas (DeWeese et al.,
2003; Uzzell and Chichilnisky, 2004; Gur and Snodderly, 2006;
Benedetti et al., 2009; Maimon and Assad, 2009). However,
Poisson-type variability was shown by Beck et al. (2008) to enable
the brain to make optimal Bayesian decisions. Our results are
consistent with this notion and support the idea that spike count
variability tends to increase as one moves to higher cortical areas
(Kara et al., 2000) (but see Maimon and Assad, 2009).

Our results also support the notion that bursting increases
spike count variability (Kepecs and Lisman, 2003). We observed
a larger fraction of windows with low spike count variability after
removing the bursts, clearly indicating that the first spike in a
burst tended to be more reliable than the subsequent spikes. This
increase in variability caused by burst spikes might be offset by
the ability of these spikes to increase the probability that a down-

stream cell will fire a spike in response to input, thereby increas-
ing the overall reliability of the circuit (Gray and McCormick,
1996; Kara and Reid, 2003; Arganda et al., 2007).

Previous studies have found reliable responses in neurons sen-
sitive to visual motion using drifting artificial stimuli that moved
with non-uniform rates of drifts and directions (Bair and Koch,
1996; de Ruyter van Steveninck et al., 1997; Buracas et al., 1998).
Although neurons in the primary visual cortex are also known to
be sensitive to visual motion, they respond to a much broader
range of stimulus features than just motion. This was also con-
firmed in our data, in which we could only find evidence of a
weak relationship between frame motion and spike time variabil-
ity. Although a single-cell analysis revealed that individual cells
exhibited different spike time variability in response to frames
with different motion content, the motion measure we used was
relatively crude, notably lacking information about motion di-
rection. An alternative motion measurement with higher sensi-
tivity will be required to determine how spike time variability of
cortical cells is modulated by motion in the stimulus.

We showed that the responses of striate cortical cells to natural
scenes exhibited lower spike time variability than responses to
simple grating stimuli (Tolhurst et al., 2009), and this finding was
consistent after matching mean spike counts between the two
types of responses. The fact that spike time variability was lower
for movie responses than for grating responses in windows with
the same mean spike count, is consistent with the current evi-
dence that natural stimuli are sparsely encoded by cortical cells
(Vinje and Gallant, 2000, 2002; Kayser et al., 2004; Yen et al.,
2007). Indeed, low temporal variability allows for more infor-
mation to be encoded in the neural responses, and therefore
our results suggest that information may be encoded with
fewer spikes in the movie responses compared with the grating
responses.

High reliability in neural responses to natural movie stimuli
was recently reported by Haider et al. (2010). Interestingly, reli-
ability, as well as sparseness, increased when the nonclassical re-
ceptive field was stimulated, compared with when only the
classical receptive field received stimulation. This result is consis-
tent with our present study, as the movies we used spanned a large
portion of the visual field. Thus, we believe that the fact that we
found lower temporal variability in the movie responses com-
pared with the grating responses can at least in part be explained
by the same network effects observed by Haider et al. (2010); rich,
full-field stimuli engage the cortical network, whereas these ef-
fects are much less pronounced when simplistic stimuli are pre-
sented. Indeed, previous studies have found that combinations of
simple stimuli, such as bars of different orientations, engage the
visual cortex differently than if those features were presented in
isolation. As a result, spike time variability decreased, which al-
lowed more information about the stimulus to be extracted (Kay-
ser et al., 2004).

Sources of response variability within sensory cortices have
been extensively reviewed previously (Fontanini and Katz, 2008;
Tiesinga et al., 2008). Striate neurons live within a heavily influ-
ential network (Arieli et al., 1996; Tsodyks et al., 1999), in which
the overall “state” augments the receptive field properties
(Wörgötter et al., 1998; Wörgötter and Eysel, 2000), and are not
only influenced by anesthesia type and depth (Villeneuve and
Casanova, 2003), but can also be modulated directly through
cholinergic inputs (Herculano-Houzel et al., 1999; Rodriguez et
al., 2004). These factors likely influence spiking behavior (Azouz
and Gray, 1999, 2000) and should be incorporated into more
sophisticated models (Kelly et al., 2010) that address response
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Figure 14. Illustration of the difficulties encountered in trying to identity events. Several
events were extracted from a single cell. The thick, horizontal red line indicates the 95th per-
centile of the firing rate, which was the threshold we used to extract events, while the vertical,
thin red lines indicate the identified event boundaries. The blue line indicates the firing rate,
while the back dots are individual spikes. As can be seen, some of the events clearly included
multiple “subevents,” which increased the width of event, and therefore also the interquartile
range of the distribution of spikes encompassed by the event.
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variability. Our finding that cells can exhibit high spike count
variability, but low spike time variability, supports the notion
that network modulation is a major cause for neuronal variabil-
ity. A possible explanation for this observation is that spikes may
be actively inhibited at the dendrites, thus failing to participate in
the activation of downstream cells. The failure of a cell to produce
a spike is thus not necessarily a result of variability in the firing
mechanism, which could be highly precise, but may rather be
caused by the influence of surrounding cells.

An interesting question is whether neuronal variability varies
for cells located in different cortical layers. Some evidence for this
exist in the literature [e.g., low spike count variability in layer 4
(Gur et al., 1997; Kara et al., 2000; Lee et al., 2010) and high spike
count variability in layer 2/3 (Gershon et al., 1998; Lee et al.,
2010)], suggesting that cells located in the input layer (layer 4)
tend to be less variable than cells in other layers. Although the
distribution of spike count variability did not exhibit any differ-
ence among different cell types, we did find that chattering cells,
which are mainly located in the lower layer 2/3 and layer 4
(Nowak et al., 2003), exhibited less spike time variability than the
other cells. This suggests that cells in the input layer tended to be
less temporally variable than cells in other layers, consistent with
what has been found for spike count variability (Gur and Snod-
derly, 2006).
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