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Abstract: This paper characterizes the optimal time path of R&D and capital
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the US, the R&D subsidy should significantly jump upwards and then slightly decrease

over time. There is a small loss in welfare, however, from immediately setting the R&D

subsidy to its optimal long run level, compared to a time-varying R&D subsidy. The

results do not depend on the financing scheme, namely lump sum taxation or factor

income taxation. The optimal capital subsidy is time-varying under factor income

taxation, but time-invariant when subsidies are financed by lump sum taxes.
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Introduction

A large body of empirical evidence suggests that the social return to R&D exceeds

the private return by a wide margin (e.g. Scherer, 1982; Grilichis and Lichtenberg,

1984).1 By focussing on the long run, a similar finding is typically derived from cal-

ibrated endogenous growth models. In fact, positive externalities from R&D seem to

substantially outweigh negative externalities (e.g. Romer, 2000; Jones and Williams,

∗University of Leipzig; CESifo, Munich. Address: Institute for Theoretical Economics, Grimmais-
che Strasse 12, 04109 Leipzig, Germany, e-mail: steger@wifa.uni-leipzig.de.

1See also Jones and Williams (1998) for a discussion of the empirical literature in the light of

endogenous growth theory.
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2000; Steger, 2005; Grossmann, Steger and Trimborn, 2010). For instance, Jones and

Williams (2000) argue on basis of a semi-endogenous growth model in the spirit of Jones

(1995), that the optimal long run R&D effort may be about twice the decentralized

R&D effort.

One widely discussed policy implication from the apparent R&D underinvestment

problem is to provide R&D subsidies to innovating industries. According to empirical

evidence, such tax incentives indeed seem to be successful in stimulating R&D invest-

ments (e.g. Bloom, Griffith and van Reenen, 2002). The question is thus not so much

whether or not R&D subsidies should be provided to innovating industries. One rather

needs to know to what extent R&D should be subsidized and how R&D subsidization

should change over time as the economy develops.

The existing literature has examined optimal R&D subsidization by either focussing

on static models or exclusively on the steady state in dynamic models.2 However, as it

is well known, in R&D-based models of economic growth the speed of convergence is

typically low.3 Thus, any attempt to provide a careful policy recommendation requires

to investigate the entire time path of the first-best R&D subsidy along the transition

to the steady state. This is true even for advanced economies, which may have come

close to their decentralized steady state. The reason is that current R&D subsidy

rates may be far away from their long run social optimum. In this case, implementing

the optimal long run policy would induce transitional dynamics with potentially long

lasting adjustment to the new steady state. Hence, it is a priori not clear whether

looking at the long run optimal R&D subsidization is indeed meaningful when it comes

to providing careful policy recommendations.

2One exception is Arnold (2000), who derives the optimal production and R&D subsidy for Romer’s

(1990) model. Nuño (2012) analyzes optimal R&D subsidies during business cycles rather than in an

endogenous growth context.
3See, for instance, Steger (2003) who examines the speed of convergence in the endogenous growth

model of Segerstrom (1998). Grossmann, Steger and Trimborn (2010) find a similar pattern for an

extended Jones (1995) model.
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This paper attempts to characterize the dynamically optimal, i.e. first-best, invest-

ment subsidies on R&D and capital costs on the basis of a calibrated, semi-endogenous

R&D-based growth model with accumulation of both knowledge and physical capital.

We deliberately choose to analyze the optimal dynamic R&D tax in a standard frame-

work, i.e. a version of the semi-endogenous growth model by Jones (1995). The reason

is that, for a first numerical analysis of a dynamically optimal R&D policy, we consider

it an advantage to be able to analytically derive the steady state (decentralized equilib-

rium and social planner solution) and to draw on a deep understanding of its properties

(e.g. Jones, 2005). Thus, given the stylized nature of the model, the main contribution

of the paper is not so much to find the magnitude of optimal R&D subsidies, which

is inherently difficult and potentially model-specific.4 Rather, our goal is to study a

well-known, tractable framework which allows us to focus on the following questions.

First, how does the optimal time path of the R&D subsidy and important allocation

variables depend on the initial conditions of the economy? Second, and maybe most

original, how large is the welfare loss, in terms of permanent consumption-equivalent

changes, when we implement the long run optimal (time-invariant) policy rather than

the dynamically optimal one (i.e. the time-varying, first-best policy). This question

may be of high relevance for real-life policy. Policy makers may be constrained to set

policy instruments at time-invariant levels for the sake of simplicity. We would like to

have an idea about the magnitude of the loss from such a political constraint. More-

over, policy makers do not know at which point along the transition path the economy

is located.

Our results indicate that the optimal R&D subsidy is time-dependent and adjusts

monotonically towards the steady state. Whether it should decrease or increase over

time depends on the gap in the knowledge stock and the capital stock to their optimal

4For instance, we neglect factor reallocation costs, possibly leading to an overstatement of optimal

R&D subsidies.
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steady state levels. For instance, if the knowledge stock is far away from the optimal

steady state relative to the capital stock, the optimal R&D subsidy should initially start

above its optimal long run level and decrease over time when the economy approaches

the steady state. For the US, our analysis suggests that the R&D subsidy should jump

up significantly from its current level and then slightly decrease over time.

The most important and striking result from our analysis is that the welfare loss

from immediately setting the R&D subsidy to its optimal long run level (i.e. the con-

strained optimum) is rather small compared to the case where the dynamically optimal

policy path is implemented. In other words, the error of neglecting the transitional dy-

namics when designing the optimal R&D subsidy is small, despite the fact that the

speed of convergence to the steady state is fairly low.5

We start out with the standard assumption that investment subsidies are financed

by a lump-sum tax. Alternatively, we assume that they are financed by a mix of factor

income taxes. As is well known, capital income taxation distorts capital accumulation

from the supply-side. We show that, as a consequence, the optimal subsidy on capital

costs of firms depends on the tax rate on bond yields. Moreover, we find that it

should change over time, whereas with lump sum taxes the capital subsidy should be

time-invariant. When implementing the optimal long run subsidy rates for R&D and

capital costs under factor income taxation rather than the dynamically optimal policy

program, the loss of intertemporal welfare is somewhat higher than in the case of lump

sum taxation, but still small.

Dynamic optimal tax problems have been extensively studied in neoclassical growth

models with fixed government expenditure (e.g. Judd, 1985; Chamley, 1986). For

instance, it is well known that the optimal Ramsey-tax on capital income is highly

time-variant in a closed-economy neoclassical growth framework with endogenous labor

5Our analysis suggests that after a policy reform in the US which implements the optimal R&D

subsidization it takes more than 200 years to close half of the gap of per capita consumption to the

new steady state.
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supply. Early in the transition, capital should be taxed at high rates due to the lump-

sum tax character of taxing the existing capital stock. However, in an infinite horizon

context the optimal capital tax becomes zero when the economy approaches the steady

state (i.e. required tax revenue is exclusively financed by labor income taxation).6 In an

endogenous growth model there is no analogy with respect to R&D subsidies.7 Rather

than studying a second-best Ramsey-tax problem, we seek for dynamically optimal

Pigouvian subsidies which eliminate inefficient investment incentives into R&D and

physical capital under laisser-faire. These are distorted, for instance, by intertemporal

knowledge spillovers. We show that the first-best allocation can be restored with

two linear (though potentially time-varying) policy instruments in our framework, i.e.

subsidies on R&D and capital costs of firms. Somewhat surprising, this result still

holds when these subsidies are financed by a distortionary, linear tax on capital income.

In other words, the efficiency of capital accumulation can be fully restored with one

(possibly time-varying) instrument despite multiple sources of market failures which

distort capital accumulation, i.e. the market power of capital good producers and

capital income taxation.

Our paper is closely related to Arnold (2000), who shows for Romer’s (1990) model

how the first best allocation can be achieved by subsidies on intermediate good produc-

ers and R&D. His qualitative findings parallel ours. A constant subsidy for intermediate

good producers combined with a time-varying optimal R&D subsidy restores the first

best allocation. While Arnold explores optimal subsidies qualitatively, he abstains from

numerical analysis and does not investigate to which degree implementing a constant

R&D subsidy rather than a dynamically optimal one affects welfare. Also related to

our paper are studies which derive the long run optimal R&D subsidy in an endogenous

6The result is potentially modified in overlapping-generation models (e.g., Conesa, Kitao and

Krueger, 2009).
7Moreover, the transitional dynamics are more complex when, in addition to physical capital

accumulation, R&D-based innovations are a second engine of growth.
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growth framework. For instance, Sener (2008) studies an endogenous growth model

without scale effects where the steady state growth rate depends on the R&D subsidy.

Calibration exercises indicate that the optimal steady state R&D subsidy should range

between 5 and 25 percent. More recently, Nuño (2011) analyzes optimal long run invest-

ment subsidies in a Schumpeterian growth model with business cycles. However, these

contributions abstract from transitional dynamics when deriving the optimal policy

scheme. Grossmann, Steger and Trimborn (2010) extend the semi-endogenous growth

framework of Jones and Williams (2000) to capture distortions from the tax-transfer

system. Their results suggest that in the long run firms should be allowed to deduct at

least twice the R&D costs from sales revenue to calculate corporate income. This policy

recommendation still holds when the intertemporal welfare gain from a policy reform

is maximized, provided that the subsidy rates are constrained to be time-invariant. In

this paper, we relax the latter restriction and analyze the socially optimal transitional

dynamics.

The paper is organized as follows. Section 2 presents an endogenous growth model

with linear subsidies on capital costs and R&D costs, derives the dynamic system in de-

centralized equilibrium and analytically characterizes the dynamically optimal capital

and R&D subsidization. Section 3 presents and discusses the calibration of the model.

Based on the calibration strategy, section 4 numerically analyzes the socially optimal

evolution of important allocation variables and the R&D subsidy under alternative ini-

tial conditions. Most importantly, it also compares the optimal dynamics with the one

resulting from implementing the time-invariant, optimal long run R&D subsidy from

the start. Section 5 allows for distortionary taxation. The last section concludes.
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Basic Model

Consider the following continuous-time model with semi-endogenous economic growth,

based on Jones (1995). There is a homogenous final output good with price normalized

to unity. Final output is produced under perfect competition according to

 = ( )1−
Z
0

()
 (1)

0    1, where  is labor input in the manufacturing sector,  is the mass

(“number”) of intermediate goods and  denotes the quantity of intermediate good .

(Time index  is omitted whenever this does not lead to confusion.) The number of

varieties, , expands through horizontal innovations, protected with patent rights of

infinite length. As usual,  is interpreted as the economy’s stock of knowledge. 0  0

is given. The labor market is perfect.

In each sector  there is one firm − the innovator or the buyer of a blueprint for
an intermediate good − which can produce good  with a one-to-one technology: one

unit of foregone consumption (capital) can be transformed into one unit of output.

Capital depreciates at rate  ≥ 0. Capital supply in the initial period, 0, is given.

The capital market is perfect.

Moreover, in each sector  there is a competitive fringe which can produce a per-

fect substitute for good  (without violating patent rights) but is less productive in

manufacturing the good: one unit of output requires  units of capital; 1   ≤ 1.8

There is free entry into the R&D sector. Ideas for new intermediate goods are

8See Aghion and Howitt (2005), among others, for similar way of capturing a competitive fringe.

Allowing for a competitive fringe is useful to calibrate the mark-up factor over marginal costs and to

disentangle price setting power from output elasticities.
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generated according to

̇ = ̃ with ̃ ≡ 
¡

¢−

 (2)

where  is the labor input in the R&D sector,   0,   1, 0 ≤   1. ̃ is taken as

given in the decision of the representative R&D firm. That is, R&D firms perceive a

constant returns to scale R&D technology, although the social return to higher R&D

input is decreasing when   0. The wedge between the private and social return may

arise because firms do not take into account that rivals may work on the same idea

such that there is redundant R&D in market equilibrium.  measures the strength of

such “duplication externality”. If  6= 0, there is a second R&D externality;   0

captures a standard “standing on shoulders” effect, whereas the case   0 reflects

by contrast that R&D productivity declines with the number of preceding innovations

(possibly because the most obvious innovations are detected first; see Jones, 1995, for

a discussion).9

There is an infinitely-living, representative dynasty with initial per capita wealth,

0  0. Household size,  , grows with constant exponential rate,  ≥ 0. 0 is given

and normalized to unity. Preferences are represented by the standard utility function

 =

∞Z
0

()
1− − 1
1− 

−(−) (3)

  0, where  is consumption per capita. Households take factor prices as given.

The government may subsidize both R&D costs (R&D sector) and capital costs

(intermediate goods sector). In the basic model, we assume that both subsidies are

financed by lump-sum taxes ( ) on households. In section 5, we allow for distortionary

9In his seminal contribution on endogenous technical change, Romer (1990) assumes  = 1. This
assumption has been modified by Jones (1995) as  = 1 implies that the economy’s growth rate
depends on the aggregate human capital level (“strong scale effect”), a prediction which seems to be

largely inconsistent with the data. We therefore follow Jones (1995).
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taxation. The subsidy rates are independent of total costs at one point in time (i.e.

linear), but possibly time-variant. They are denoted by  (R&D) and  (capital),

respectively.

Let  and  denote the wage rate and the interest rate, respectively. Financial

wealth per individual, , accumulates according to

̇ = ( − )+  − −  (4)

with 0 being given.

It turns out that, for the transversality conditions to hold, we have to restrict the

parameter space such that

− + ( − 1)  0 with  ≡ (1− )

1− 
 (A1)

As will become apparent,  is the economy’s long run growth rate in decentralized equi-

librium as well as in social planning optimum. According to (2), ̇ = 
¡

¢1−

−1.

Thus, if R&D labor  grows with population growth rate  (which we confirm) we

immediately see that ̇ =  in steady state. Moreover, substitute  = 0
 into (3)

to confirm that utility  is finite if and only if −+(−1)  0 holds. We maintain
assumption A1 throughout.

Market Equilibrium

We first derive the decentralized equilibrium and show how the steady state allocation

of labor and the steady state savings rate (equal to the investment rate) depends on

policy parameters.

We start with intermediate goods producers. Note that  +  is the user cost per

unit of capital for an intermediate good firm. As one unit of capital is required for one
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unit of output, if the government subsidizes capital costs at rate  , producer  has

profits

 = [ − (1− )( + )] (5)

where  is the price of good . According to (1), the inverse demand function for

intermediate good  reads  = ( )
1−.

Profit maximization implies that the optimal price of each firm  is given by

 =  = (1− )( + ) (6)

To see this, note that a firm which owns a blueprint would choose a mark-up factor

which is equal to 1 ≥  if it were not facing a competitive fringe. Moreover, the

competitive fringe would make losses at a price lower than (1−)(+). Thus, each

firm  sets the maximal price allowing it to remain monopolist. We can substitute (6)

into the inverse demand function and solve for  to obtain output

 =  =

µ


(1− )( + )

¶ 1
1−

  (7)

Substituting (7) into (1) gives

 = 

µ


(1− )( + )

¶ 
1−

 (8)

Moreover, as the total amount of physical capital is  ≡ R 
0
 = , the capital-

output ratio is given by




=



(1− )( + )
 (9)

Thus, if the interest rate  is stationary in the long run, the total capital stock and

aggregate income grow at the same rate along a balanced growth path.

Let us denote the present discounted value of the profit stream generated by an
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innovation by  (being equal to the price an intermediate good producer pays to the

R&D sector for a new blueprint and to the stock market evaluation of a firm). In

equilibrium, there are no arbitrage possibilities in the capital market. Noting that all

intermediate goods producers have the same profit due to the symmetry in their sector,

i.e.  =  for all , this implies the standard capital market equilibrium condition

̇


+




=  (10)

Let us define  ≡ 1 − . In the R&D sector, under R&D subsidy rate , a

representative firm maximizes

Π = ̃| {z }
=̇

−  (11)

taking , ̃ and prices as given. That is, in equilibrium, Π = 0.

The household’s problem is to solve

max
{}

∞Z
0

()
1− − 1
1− 

−(−) s.t. (4), lim
→∞


−
R 
0
(−) ≥ 0 (12)

The household chooses the optimal consumption path, where savings are supplied to

the financial market.

Definition. A market equilibrium in this economy consists of time paths for the

quantities {
  


   {}=0   }∞=0 and prices {

  {}=0  }∞=0 such
that

1. final goods producers, intermediate goods producers and R&D firms maximize

profits,

2. households maximize intertemporal welfare,
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3. the capital resource constraint

Z
0

 =  holds,

4. the capital market equilibrium condition, equ. (10), holds,

5. the labor market, the intermediate goods market, and the financial market clear,10

6. the government budget is balanced.

We define per capita measures  ≡  ,  ≡   ,  ≡  ,  ≡  and

 ≡  . Clearing of the financial market requires

 =  +  (13)

Moreover, in labor market equilibrium,

 +  = 1 (14)

Along a balanced growth path, all variables grow at a constant (possibly zero)

rate. We descale those variables which turn out to grow, as in Jones (1995), with rate

 = (1−)
1− in steady state and define "adjusted" levels ̃ = 

1−
1− , ̃ = 

1−
1− and

̃ = 
1−
1− . Proposition 1 (below) presents the full dynamical system which governs

the evolution of the market equilibrium and its steady state. Steady state levels are

indicated by superscript (*).

Proposition 1. (Dynamic system for market equilibrium)

(i) Under lump-sum taxation, given the time paths of  = 1 −  and , the

evolution of ̃, , ̃, ̃, ,  = 1 −  is governed by the following dynamic system

10According to Walras’ law, the final goods market then clears as well.
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(together with appropriate boundary conditions)

·
̃

̃
= ̃−1 ¡¢1− −  (15)

̇


=  − − (− 1) ()

1
1− (1− )

[(1− )( + )]


1−
 (16)

·
̃

̃
=

Ã
̃(1− )

̃

!1−
− ̃

̃
−  − −  (17)

·
̃

̃
=

 − 


−  (18)

 +  =


(1− )

Ã
̃(1− )

̃

!1−
 (19)

̃−1()− = (1− )

Ã
̃

̃(1− )

!

 (20)

(ii) In the long run, there exists a unique balanced growth equilibrium, where

 =  +  ≡ ∗ (21)

 =
1

(1−1)(+−)
(1−1) + 1

≡ ()∗ (22)

̃ =

Ã

¡
()∗

¢1−


! 1
1−

≡ ̃∗ (23)

 =
(− 1) () 1

1− (1− ()∗)
[(∗ + )(1− )]


1− (∗ − )

≡ ()∗ (24)

̃ = ̃∗(1− ()∗)
µ



(1− )(∗ + )

¶ 1
1−
≡ ̃∗ (25)

̃ = (̃∗)(̃∗)1−(1− ()∗)1− − ( + + )̃∗ ≡ ̃∗ (26)

In the long run, , ,  and  grow at rate  = (1−)
1− . The savings and investment
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rate, s ≡ 1− 

, is given by

s =
(+  + )

(1− )( + + )
≡ s∗ (27)

Proof. See Appendix.

Like in Jones (1995), the growth rate of per capita income along a balanced growth

path is independent of economic policy (in contrast to the level of income). Proposition

1 also implies that life-time utility (3) is finite if and only if assumption (A1) holds.

Moreover, Proposition 1 suggests that subsidizing physical capital does not affect

the allocation of labor in long run equilibrium, but an increase in  raises the long

run savings and investment rate, s∗. Similarly, an increase in the R&D subsidy rate 

(i.e. a decline in ) stimulates R&D activity of firms (i.e. ()∗ increases); it does not,

however, affect the long run equilibrium rate of investment in physical capital, s∗.

Social Planning Optimum

A social planner chooses a symmetric capital allocation across intermediate firms, i.e.

 =  for all . Using this in production function (1) yields per capita output

( = ):

 = ( )1− (28)

Thus, using the goods market clearing condition ̇ =  −− , the capital stock

per capita ( = ) evolves according to

̇ = ( )1− − ( + ) −  (29)
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Also note that the social planner takes R&D externalities into account such that the

relevant knowledge accumulation technology is

̇ = ()1− (30)

The social planner’s problem thus is to solve

max (3) s.t. (14), (29), (30), (31)

and non-negativity constraints, where , ,  are control variables and ,  are state

variables.

Comparing the social planning optimum to the decentralized equilibrium, we may

ask if the two policy instruments, a subsidy to R&D and capital costs, can restore the

first best optimum, in view of the following market failures. First, due to monopolis-

tic competition as compared to marginal cost pricing, intermediate goods supply and

therefore the demand for capital is inefficiently low. Thus, savings (and thus capital

investment) may be too low, calling for a capital cost subsidy. Moreover, there are

three sources of inefficient R&D incentives. The duplication externality (  0) pro-

motes overinvestment in R&D, whereas a standing on shoulders effect (  0) promotes

underinvestment. (In the case where   0, there is a force towards overinvestment.)

Finally, innovators can only appropriate part of the economic surplus from raising the

knowledge stock of the economy. To see this, first note that  =  = 

= 




.

Substituting this into (5) and using (6) and (9) implies that instantaneous profit of an

intermediate goods firm reads  = (1 − 1

)

. Moreover, according to (8), we have



= 


. Since (1 − 1


)  1, the per-period profit  for an innovator is lower than

the contribution of an additional blueprint to output, 

. In other words, there is a

“surplus appropriability problem” which promotes underinvestment.
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The next proposition shows that appropriately setting  = 1 −  and  in the

market economy can indeed implement the first best optimum. Moreover, it turns out

that the optimal R&D subsidy is time-variant rather than being equal to the time-

invariant long run optimum, whereas the optimal capital subsidy does not change over

time. We will closely examine the implications of this insight below.

Proposition 2. (Social optimum) Under lump sum taxation, the first-best opti-

mal evolution of the economy can be supported by setting a time-invariant capital cost

subsidy

 = 1− 1

≡ ( )

∗ (32)

together with a time-variant R&D subsidy  = 1 −  , where the optimal  , denoted

by  , evolves according to

̇ 

 
=

∙µ
1−  − 1

 
1− 1
1− 1

¶µ
1


− 1
¶
+ 

¸
̃−1 ¡¢1− (33)

with terminal condition (long-run optimal R&D subsidy)

 =
1− 1
1− 1

( − 1) + − 

(1− )( + − )
≡ ( )∗ (34)

Proof. See Appendix.

A higher mark up factor  drives, in absence of policy intervention, a bigger wedge

between the equilibrium investment rate and the socially optimal investment rate, call-

ing for a higher subsidy on capital costs to ensure the first best savings and investment

rate. The optimal subsidy rate which implements the first-best is time-invariant under

lump sum taxation.11 At the same time, if  rises, the surplus appropriability problem,

which promotes sub-optimally low investment in R&D, becomes less severe, such that

11Notice that market power of intermediate good producers precludes the case   ( )∗.
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the optimal long run R&D subsidy, ( )
∗ := 1− ( )∗, decreases. This suggests that

stronger patent protection should be accompanied by lower R&D subsidies. As long

run growth is policy-independent and the dynamically optimal Pigouvian subsidies im-

plement the first best allocation, Proposition 2 implies that the long-run growth rate

in social optimum coincides with the one arising in decentralized equilibrium.

The important question we examine below is whether the optimal R&D subsidy

should increase or decrease over time, given that the capital cost subsidy is set op-

timally. Moreover, as previous studies of optimal R&D subsidies have exclusively fo-

cussed on the long run, it is interesting to compare the evolution of important variables

(including welfare) under the first-best (i.e. time-varying) R&D subsidy and the op-

timal steady state (i.e. the time-invariant) R&D subsidy. As both requires numerical

analysis, we need to calibrate the model first.

Calibration

We calibrate the model for the US economy. The strategy is to match steady state

values of important variables. First,  is set to the average US GDP per capita growth

rate for the period 1990-2004. Taking data from the Penn World Tables (PWT) 6.2

(Heston, Summers and Baten, 2006), we find that approximately  = 002.12 Moreover,

for the same period and again from PWT 6.2, the average population growth rate is

approximately  = 001.

We use measures for the investment rate and the capital-output ratio to calibrate

the depreciation rate of physical capital as follows. The investment share is given by

s = (̇ + ) = (̇ + ) . Using ̇ = +  and solving for  yields

 =
s


− −  (35)

12Averaging over some years takes out business cycle phenomena.
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Averaging over the period 1990-2004, s is equal to about 21 percent, according to

PWT 6.2. For the capital-output ratio,  , we take averages over the period 2002-

2007 calculated from data of the US Bureau of Economic Analysis. The capital stock is

measured by total fixed assets (private and public structures, equipment and software).

When measuring  and  in current prices, this gives us  = 3. From (35), the

evidence thus suggests  = 004, a standard value in the literature.

Moreover, the steady state interest rate is set to ∗ = 007, which coincides with the

real long-run stock market return estimated byMehra and Prescott (1985).13 According

to (21), for  = 002, ∗ = 007, and a typical value for the time preference rate of

 = 002, one gets  = 25.

We also assume that the capital cost subsidy rate,  , is at the optimal level, for two

reasons: First, this allows us to focus on the consequences of deviating from the optimal

path of the R&D subsidy rate. Second, one may argue that  actually is at the optimal

level ( )
∗ at present in the US. In line with estimates for the average mark up factor

in the economy (e.g. Norrbin, 1993), setting  = 43 implies ( )
∗ = 1− 1 = 025.

Now, given a rate of depreciation allowances for capital investments, , and a corporate

income tax rate,  , the behaviorally relevant capital cost subsidy is  = 
1− (e.g.

Grossmann, Steger and Trimborn, 2010). According to Devereux, Griffith and Klemm

(2002), in the US, we approximately have  = 075. For large corporations, the federal

US statutory corporate income tax rate is 35 percent (and about 39 percent including

sub-governments).14 For small corporations, it is 15 (with sub-governments, about 20)

percent. We may thus base our calibration on   = 025, which together with  = 075

indeed implies  = 025.

Next, using (9), we find that (1 − ) = 1,  = 007,  = 004 and  = 3

13Jones and Williams (2000) argue that this rate of return is more appropriate for calibration of

growth models than the risk-free rate of government bonds. Setting a lower level for  does not affect

the results when comparing the optimal dynamic R&D subsidy with the optimal long run policy.
14See the OECD tax database.
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implies  = 033, which is a typical value of the output elasticity of capital used in the

growth literature.15

Parameter  is irrelevant for the steady state allocation of labor in both market

equilibrium and social optimum. Moreover, for a given growth rate of per capita

income () and population size (), we can use the relationship between the standing

on shoulders parameter () and the duplication externality parameter () which is

implied by  = (1−)
1− . Hence, from  = 002 and  = 001 we get

 = 05(1 + ) (36)

This leaves us with one degree of freedom. We focus our discussion on the case

where  = 05 (medium degree of duplication externality), which implies that  =

075. According to (34), this implies an optimal long run R&D subsidy rate, ( )
∗ ≡

1− ( )∗, of 81.5 percent.16 In a model with corporate income taxation, assuming a
corporate tax rate   = 025, this would mean that innovating firms should be allowed

to deduct 1 + (1−)


= 34 times their R&D costs from sales revenue to compute

the corporate income tax base (Grossmann, Steger and Trimborn, 2010). Our main

results and conclusions are unchanged when we use other values for , as long as  is

not too high (obviously, for  → 1 no R&D should be conducted). For instance, for

 = 025 we find that 3.6 times the R&D costs and for  = 075 about three times

the R&D costs should be deductible. The current US R&D subsidy rate is given by

15We consider it to be an advantage of our calibration strategy that we do not have to assume

a value for , but infer it from observables. Although  is one minus the labor share of income in

neoclassical models, we cannot use this standard argument in our context where labor is not only used

in final goods production. Moreover, as discussed by Krueger (1999), measurement of the labor share

is difficult and inevitably depends on strong assumptions.
16This may seem high at the first glance. However, it is in line with previous calibration exercises.

For instance, Grossmann, Steger and Trimborn (2010) show that a R&D subsidy of that kind of

magnitude is required to solve the R&D underinvestment problem which is identified by Jones and

Williams (2000). Notice that the focus of this paper is not on the size of the optimal long run R&D

subsidy, ( )∗, but the comparison with the dynamically optimal R&D subsidy.
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 = 0066 (OECD, 2009),
17 which means that in the US only 1.2 times the R&D costs

are deductible. With  = 0066, we find that the share of labor devoted to R&D,

()∗, is about 4.2 percent for our calibration, according to (22). This corresponds to

a steady state R&D intensity,  , of 2.9 percent.

Quantitative Analysis

In this section, we make use of Proposition 1 and 2 to examine, based on the calibra-

tion described above, the optimal time path of the R&D subsidy rate () and main

allocation variables and compare the results to the case where the optimal steady state

R&D subsidy ( )
∗ = 1−( )∗ is implemented from the start. We also discuss policy

implications from our analysis for the US economy.

Despite the simplicity of the model in terms of steady state properties, the numerical

analysis is challenging. As Proposition 1 and 2 suggest, to examine the evolution of

the variables of interest along the transition to the steady state requires the solution

of highly dimensional, non-linear differential equation systems. We are able to do so

by applying a novel numerical procedure which was suggested recently by Trimborn,

Koch and Steger (2008). The essence of the method is described in appendix.

The Role of Initial Conditions

Panel (a) of Fig. 1 shows how the optimal level of  = 1−  evolves over time when

the adjusted capital stock per capita (̃) and/or the adjusted stock of knowledge (̃)

start below their optimal long run levels. Denote the optimal long run levels of ̃ and ̃

17OECD (2009) reports a R&D subsidy rate  = 1 − , where the so-called B-index

is given by  = (1 − Ξ)(1 −  ), with   being the statutory corporate income tax rate and

Ξ the net present discounted value of depreciation allowances, tax credits and special allowances on
R&D assets. We have Ξ =  (1 + ), where  is the subsidy rate at which R&D costs which can

be deducted from pre-tax profits. Thus,  =  (1−  ). Grossmann et al. (2010) show that
 is equal to the behaviorally relevant R&D subsidy rate, .
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by (̃)∗ and (̃)∗, respectively, which result from setting optimal long run subsidy

rates. For instance, suppose the initial knowledge stock is at 50 percent of its optimal

long run level and the capital stock is initially optimal, which is Scenario (i) in Fig.

1. That is, ̃0 = 05(̃)∗ and ̃0 = (̃)∗. Then  should start below the long

run optimum, ( )∗, and increase over time. That is, the optimal R&D subsidy rate,



 = 1−  , should be high initially in view of the high initial gap in the knowledge

stock (“knowledge gap”) and decrease over time when ̃ comes closer to the optimal

steady state level (̃)∗.18 Quantitatively, however, the variation in 

 over time is

small.

FIGURE 1

A qualitatively similar evolution is induced for the fraction of R&D labor, , as

displayed by the solid line in panel (b) for Scenario (i). In this scenario the social

planner reallocates labor in favor of R&D to close the initial knowledge gap, as seen

in panel (b). This implies a drop in final output production and, holding the saving

rate constant, would also imply a low level of consumption. To achieve a comparably

smooth consumption path, however, the social planner reduces the savings rate, s, in

parallel to high R&D investment. Subsequently, s rises quite quickly over time (panel

(d)). Panel (c) shows the evolution of (adjusted) per capita consumption level (̃),

discussed below.

In panels (b)-(d) of Fig. 1, we also compare the time paths of the allocation vari-

ables ( and s) and consumption under dynamically optimal R&D subsidization (solid

lines) with the ones under the optimal steady state R&D subsidy (dashed lines). A

time-invariant R&D subsidy rate which is set at its long run level may be referred to

18A gap expresses the proportional difference between the initial value of the state variable under

consideration and its socially optimal steady state value.
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as “constrained optimal policy”.19 The constraint captures the potential difficulty to

write tax laws which specify how policy rates change over time as well as the difficulty

to know at which point along the transition path the economy is located. We see rather

small differences in the respective time paths. It should also be observed that the differ-

ence between the first-best solution (solid line) and the solution under the constrained

optimal steady state policy (dashed line) appears small. This raises the question about

the welfare loss which results from implementing the constrained optimal steady state

policy rather than dynamically optimal R&D subsidy path. The intertemporal welfare

difference from the two associated consumption streams is expressed in terms of a (hy-

pothetical) permanent loss of consumption (∆̃) from implementing the constrained

optimal policy program, in percent of the optimal long run consumption ((̃)∗). (See

appendix for details.) Formally, we denote  := ∆̃(̃)∗. We find that the

magnitude of  is small. For Scenario (i), it is merely about 037 per mill. This

result is in line with our finding that, although an unconstrained social planner would

like to reduce the R&D subsidy rate as the knowledge gap narrows, quantitatively the

initial dynamically optimal R&D subsidy rate is close to the optimal long run value,

( )
∗. Intuitively, the result is an implication of the standard consumption-smoothing

motive which prevents the social planner to close the knowledge gap too fast at the

cost of lower consumption early on.

Fig. 1 also contains the scenarios where only the capital stock is at 50 percent of its

optimal long-run level (Scenario (ii)) and the scenario where both the capital and the

knowledge stock are at 50 percent of their long run levels (Scenario (iii)). In Scenario

(ii), the dynamically optimal R&D subsidy rate and the fraction of labor devoted

to R&D both increase over time (i.e.   decreases and  increases). Moreover,

19There is an alternative notion of a constrained optimum, where the welfare gain from a policy

reform is maximized under the constraint that the R&D subsidy is constant over time (but taking

into account the transition phase, assuming the economy is initially in steady state under the status

quo policy). As shown in Grossmann, Steger and Trimborn (2010), a R&D policy which is optimal in

this sense is very close to the optimal long run policy.
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the savings rate (s) decreases over time. Hence, these variables qualitatively follow the

opposite paths than in Scenario (i), since now the focus of the social planer is on capital

accumulation during the transition. In Scenario (iii), neither the allocation variables

( and s) nor the first-best R&D subsidy change much over time and are close to

their steady state values right from the start. This is unsurprising given the contrary

evolution of these variables over time in Scenario (i) and (ii). In Scenario (iii) the gaps

in both stock variables (knowledge and capital) have to be closed simultaneously. Fig.

1 thus suggests that when the gap (i.e. the proportional difference between the initial

value of the state variable and its socially optimal steady state) in knowledge is large

relative to the gap in the capital stock, then in the beginning one should, relative to

the steady state optimum, save little and invest much in R&D via a high R&D subsidy,

whereas the opposite holds when the initial conditions constitute a relatively large gap

in the capital stock.

Interestingly, the welfare loss from not choosing the dynamically optimal R&D

subsidy but the constrained optimal steady state policy is again very small in Scenario

(ii) and (iii). The equivalent permanent loss in the per capita consumption level is

003 and 005 per mill, respectively, and thus even smaller than in Scenario (i).

We now consider sensitivity analysis with respect to the intertemporal elasticity of

substitution, 1, and the time preference rate, , in two ways. First, both  and  are

varied together such that we still end up with a steady state interest rate ∗ = 007.

Secondly, we vary  and  separately, which alters ∗. Moreover, we consider changes in

the extent of duplication externality , and the strength of the “standing on shoulders”

effect  simultaneously to fulfill (36), i.e. we maintain the steady state growth rate

 = 002. Finally, the mark up factor is alternatively set to  = 11.20 Tab. 1 presents

these consumption equivalent losses in per mill (), for the three Scenarios (i)-(iii)

20Recall that the optimal capital cost subsidy is always at its (time-invariant) optimal level. Thus,

in the last column in Tab. 1,  = 11 implies an optimal capital subsidy ( )∗ = 1 − 1 = 111

instead of ( )∗ = 025 in the other parameter sets.
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under alternative parameter sets.

TABLE 1

Our sensitivity analysis suggests that the welfare loss () from not implement-

ing the dynamically optimal R&D subsidy is generally low, i.e. does not vary much

with alternative parameter sets. To gain intuition, consider the time path of (adjusted)

consumption, ̃, with initial conditions ̃0 = 05(̃
)∗, ̃0 = (̃)∗ (Scenario (i)). In

Fig. 2, we see the paths of ̃ for the baseline parameter set (i.e.  = 25,  = 002) and

the one where  = 15,  = 004 under the two policy schemes (the solid lines indicate

the paths of ̃ under the dynamically optimal policy, whereas the dashed line shows the

path of ̃ under the constrained optimal policy for the baseline set of parameters and

the dotted line gives the path of ̃ under the constrained optimal policy for  = 15,

 = 004). It becomes evident that for both parameter sets, the dynamically opti-

mal R&D policy implies slightly lower consumption in the beginning than under the

constrained optimal policy. As we know from Fig. 1, this results from a higher R&D

subsidy than the long run optimal one in the transition phase, and therefore more labor

allocated to R&D, to close the knowledge gap. Eventually, the consumption level in the

first-best optimum overtakes the one under the constrained optimal R&D subsidy at a

later stage of development. In Scenario (i),  is thus related to the welfare loss

from giving up consumption in the early transition phase under the first best policy

compared to the constrained optimal policy in order to gain consumption later on.21

Balancing gains and losses from the two alternative consumption paths results in a

very small overall welfare loss. For both parameter sets in Fig. 2, the consumption

paths cross approximately at the time when consumption starts to grow faster than

21According to Fig.1 (panel (c)), in Scenario (ii), where the capital stock is initially lower than in

the optimal steady state, the social planer allows a higher consumption in an early transition phase

in the dynamically optimal policy at cost of lower consumption later on.
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at the steady state growth rate  (i.e. ̃ starts to rise). For  = 15, the consumption

smoothing motive is less important than for the baseline case  = 25, so the volatility

of consumption is higher.

FIGURE 2

The US Economy

We now consider the optimal R&D policy in the US. Obviously, as shown in section 3,

the long run optimal subsidy rate ( )
∗ = 0815 (for  = 05) exceeds the current one,

 = 0066, dramatically. When we calculate from Proposition 1 the steady state values

of the adjusted knowledge level and adjusted per capita capital level, respectively, for

 = 0066 and compare the results with those when assuming  = 0815, we find that

the current knowledge stock and capital stock are merely at 5.4 percent and 6.3 percent

of the long run optimal levels, respectively (when assuming that the US is currently in

steady state). That is, in the US, ̃∗(̃)∗ = 0054 and ̃∗(̃)∗ = 0063.

Starting from these initial conditions, a policy reform which implements the dy-

namically optimal R&D subsidy is characterized as follows, shown in Fig. 3 (solid

lines). The R&D subsidy rate, 

 = 1 −  , should initially jump upwards signif-

icantly (to about 83.6 percent) and then slightly decrease over time to ( )
∗ (panel

(a)). Again, the change in 

 over time is small, despite the fact that we start far

away from the long run optimum. Also the fraction of labor devoted to R&D (initially

at about 4.2 percent under current R&D subsidization in the US), , should jump

upwards dramatically and then decrease considerably over time towards 18.2 percent

(panel (b)). Thus, in steady state, the US should devote about four times as much

labor to R&D than at present. The importance of knowledge accumulation for the

growth process in the model is so high, that the initial savings rate should be slightly

negative in the beginning under the optimal resource allocation (panel (d)). Overall,
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adjusted per capita consumption (̃) increases significantly during the transition to the

optimal steady state level (̃)∗ (panel (c)). Notably, there is a long transition towards

the new steady state with a half life of more than 200 years.

With respect to the welfare gain when the dynamically optimal policy rather than

the constrained steady state optimal R&D subsidy is implemented, the insights of

the previous subsection are confirmed also for the US. Despite the dramatic R&D

underinvestment in the US, which is suggested by the model, the welfare difference is

equivalent to a permanent change in per capita consumption () of 2.5 percent.

This is much higher than in the previous thought experiments (Tab. 1). The higher

figure results from starting much farther away from the optimal steady state. Again,

the time paths for per capita consumption and the savings rate are strikingly similar

in the first-best and the constrained-optimum case. The fraction of R&D labor under

the first-best policy should be somewhat higher than in the constrained optimum,

especially in the beginning, but the difference in the two paths is rather small.

FIGURE 3

Distortionary Taxation

So far we have assumed that the subsidies on R&D and capital costs are financed by

lump sum taxes. We now consider the case where they are financed by linear taxes on

bond yields and labor income. The tax rates are denoted by t and t, respectively. In

this case, the intertemporal budget constraint of the representative household modifies

from (4) to

̇ = [(1− t) − ] + (1− t) −  (37)
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Moreover, the no-arbitrage condition on the capital market changes to

̇


+




= (1− t) (38)

That is, the after-tax interest rate (when bond yields are taxed) must equal the sum of

capital gains and the dividend-price ratio. We keep the balanced budget assumption.

Thus, the tax revenue per capita, t + t, equals government expenses per capita,

(+ )+ 
, in each period. This means that the four tax/subsidy instruments

cannot be set independently from each other. For instance, given investment subsidies

 ,  and bond yield tax t, the labor income tax rate t is set such that the govern-

ment budget is balanced. It is easy to see that (38) is consistent with the intertemporal

budget constraint of the household when bond yields are taxed. The after-tax income

from asset holding of a household is (1−t)+̇+ . Using  = − ,

according to (13), this equals (1− t)−
h
(1− t) − ̇

 − 


i
 = (1− t),

according to (38).

Analogously to the previous analysis, we employ notation  =  ,  = 

and ̃ = 
1−
1− for  ∈ {  }. As a consequence of distortionary taxation,

Proposition 1 modifies to

Proposition 3. (Dynamic system for market equilibriumwith distortionary taxes)

(i) Under factor income taxation, the evolution of ̃, ̃, , , , ̃, t, ̃, ̃ is
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governed by (15), (17), (19), ( 20),

̇


= (1− t) − − (− 1) ()

1
1− (1− )

[(1− )( + )]


1−
 (39)

·
̃

̃
=

(1− t) − 


−  (40)

t̃ + t̃ = ( + )̃ + ̃
 (41)

̃ = ̃ + ̃ (42)

̃ = (1− )̃1−
Ã

̃

1− 

!

 (43)

(ii) In the long run, there exists a unique balanced growth equilibrium, where , ,

 and  grow at rate  = (1−)
1− and

 =
 + 

1− t ≡ ∗∗ (44)

 =
1

(1−1)(+−)
(1−1) + 1

≡ ()∗∗ £= ()∗¤  (45)

̃ =

Ã

¡
()∗∗

¢1−


! 1
1−

≡ ̃∗∗
h
= ̃∗

i
 (46)

 =
(− 1) () 1

1− (1− ()∗∗)
[(∗∗ + )(1− )]


1− ( + − )

≡ ()∗∗ (47)

̃ = ̃∗(1− ()∗∗)
µ



(1− )(∗∗ + )

¶ 1
1−
≡ ̃∗∗ (48)

̃ = (̃∗∗)(̃∗)1−(1− ()∗∗)1− − ( + + )̃∗∗ ≡ ̃∗∗ (49)

̃ = ̃∗∗ + ()∗∗̃∗∗ ≡ ̃∗∗ (50)

̃ = (1− )
³
̃∗∗
´1−Ã ̃∗∗

1− ()∗∗
!

≡ ̃∗∗ (51)

t
∗∗̃∗∗ + t̃∗∗ = (

∗∗ + )̃∗∗ + ̃
∗∗()∗∗ (52)
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The savings and investment rate is given by

s =
(+  + )

(1− )
³
+
1−t + 

´ ≡ s∗∗ (53)

Proof. See Appendix.

In addition to the government budget constraint, which can be written as in (41),

the capital income tax rate appears only in the differential equations which are as-

sociated with the intertemporal household budget constraint (37), i.e. the modified

Keynes-Ramsey rule (40), and (39) which is associated with financial market clearing

condition (38). The modified steady state values (44) and (47) follow directly from the

dynamic system in Proposition 3. The other expressions are analogous to the case of

lump sum taxation in Proposition 1. The labor income tax rate affects the equilibrium

only through the government budget constraint, i.e. is non-distortionary.22

Equ. (50), (51) and (52) must obviously hold in steady state, according to (42),

(43) and (41), respectively. (42) comes from the capital market clearing condition (13),

 =  + . Equ. (43) simply says that the wage rate, , equals the marginal

productivity of labor in the manufacturing sector; we can use (28) and  = 1−  from
(14) to derive the latter. A higher long run equilibrium capital tax rate t, reduces the

steady state savings and investment rate, s∗∗. This result simply reflects the standard

insight from in infinite-horizon models that capital income taxation depresses capital

accumulation. Consequently, as we show in the next Proposition, the optimal subsidy

to capital costs of firms should increase in t (for a given interest rate).

Proposition 4. (Social optimum) Under factor income taxation, the first-best

22The result would change if we allowed for human capital accumulation. See Grossmann et al.

(2010).
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optimal evolution of the economy can be supported by setting the capital cost subsidy to

 = 1− (1− t) + 

( + )
≡ 


 (54)

together with R&D subsidy 

 = 1−  , where   evolves according to (33). Ter-

minal conditions (optimal long run subsidy rates) are given by ( )
∗∗ := 1 − ( )∗

(see (34)) and

 = 1−  + + 


³
+
1−t + 

´ ≡ ( )
∗∗ (55)

Proof. See Appendix.

According to (54), the optimal subsidy to capital costs is generally time-variant

under factor income taxation, in contrast to the case of lump-sum taxation. As the

distortion of capital accumulation is fully internalized by the optimal capital investment

subsidy and the steady state allocation of labor is not affected by factor income taxes,

according to Proposition 3 and 4, optimal steady state levels of ̃∗∗, ̃∗∗ and ()∗ do

not depend on factor income tax rates. Substituting ∗∗ from (44) and  = (

 )

∗∗

from (54) into (52) yields

t =

µ
1− 1



¶
( + + )

̃∗∗

̃∗∗
+ ( )

∗∗()∗∗ ≡ (t )
∗∗ (56)

Thus, in steady state, the labor income tax rate which balances the government budget,

(t )
∗∗, is independent of the tax rate on bond yields, t.

Similarly to the case of lump sum taxation, the loss in intertemporal welfare ()

under factor income taxation when implementing the optimal long run subsidy rates,

now for R&D and capital costs, rather than the dynamically policy program is small.

For the baseline parameter set,  is 0.56   when starting at a knowledge

stock of 50 percent of the optimal steady state but 100 percent of the optimal cap-
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ital stock (Scenario (ii) above), 0.09   when initial conditions are vice versa

(Scenario (ii)), 0.06   when both state variables are 50 percent of the optimal

steady state (Scenario (iii)) and 3 per cent when the knowledge stock and capital stock

are merely at 5.4 percent and 6.3 percent of the long run optimal levels, respectively,

which is the US case (assuming that the US is currently in steady state). These figures

are only slightly higher than under lump sum taxation. Moreover, like in the case of

lump sum taxation,  does not vary substantially under alternative parameter

sets (sensitivity analysis available upon request).

Of course, in an alternative framework where all taxes are distortionary (e.g. with

endogenous human capital accumulation the labor income tax would be distortionary

as well), the first best allocation could not be implemented. In this case, one would have

to analyze a "Ramsey-type" second-best policy problem, which, however, is beyond the

scope of the present paper. This important issue in the context of dynamically optimal

growth policy is left for future research.

Conclusion

We characterized the time path of first-best (i.e. time-varying) R&D subsidization

in a semi-endogenous growth model and compared the allocative impact to the one

arising from implementing the optimal steady state (i.e. time-invariant) policy from

the start. We find that the differences in the time paths of per capita consumption and

the allocation variables which result from the comparison between the first-best and

the constrained optimal steady state policy are rather small. Our results suggest that

the optimal R&D subsidization should change little over time, even when the economy

starts far away from its socially optimal steady state. As a result, the welfare loss from

a possible political constraint to use time-invariant policies is generally small. This

insight is striking, and at a first glance surprising, given the slow speed of convergence
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to the steady state in R&D-based endogenous growth models and given the large R&D

underinvestment gap suggested by our stylized model. The economic reasoning for

this observation lies in the standard consumption-smoothing motive which prevents

the social planner to sacrifice a high level of consumption in the early transition phase.

The results regarding R&D subsidization do not hinge on whether investment sub-

sidies are financed by lump sum taxation or factor income taxation. By contrast, the

optimal subsidy on capital costs, which corrects inefficiency of capital accumulation

from goods market power, is time-varying under taxation of bond yields, but not when

subsidies are financed by lump sum taxes.

Future research should investigate optimal growth policy in alternative models to

obtain a robust picture. Although our paper suggests that policy makers may focus on

policy rates which are optimal in the long run, it is necessary to substantiate also this

conclusion in alternative frameworks.
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Appendix

Proof of Proposition 1: The current-value Hamiltonian which corresponds to the

household optimization problem (12) is given by

H = 1− − 1
1− 

+  (( − )+  − −  )  (57)
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where  is the co-state-variable associated with constraint (4). Necessary optimality

conditions are H7 = 0, ̇ = (−)−H7, and the corresponding transversality
condition. Thus,

 = − i.e.
̇


= − ̇


 (58)

̇


= −  (59)

lim
→∞


−(−) = 0 (60)

Combining (58) with (59), we obtain the standard Keynes-Ramsey rule

̇


=

 − 


 (61)

Using ̇ =  together with definitions ̃ = 
1−
1− and  = (1−)

1− confirms (18). In

a similar fashion, (15) can be derived from (2).

According toWalras’ law, the goods market is in equilibrium, i.e. ̇ =  −−.
Thus, the capital stock per capita ( = ) evolves according to

̇ =  − ( + ) −  (62)

Using  =  for all  in production function (1) gives us for per capita output

( = ) the expression

 = ( )1− (63)

where  =   has been used. Combining (62) and (63) as well as using  = 1− 

from (14), ̇ = , ̃ = 
1−
1− and  = (1−)

1− confirms (17). From (9), we find in

addition that

 =


(1− )




−  (64)

Substituting (63) into (64) and using that  = ̃̃ then confirms (19).
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Next, substitute (6) and (7) into (5) to obtain the following expression for the profit

of each intermediate goods producer :

 =  = (− 1)
³


´ 1
1−
[(1− )( + )]−


1−   (65)

Now recall definition  =  as well as   =  = 1−  from (14) to rewrite

(10) such as to confirm (16).

Since final goods producers take the wage rate as given, we have  = (1−) .

Thus,

 = (1− )1−
µ




¶

 (66)

according to (63) and the fact that  =  . Moreover, due to free entry in the

R&D sector, in equilibrium, Π = 0 holds, i.e. 1−()− = , according to

(2) and (11). Inserting (66) implies

(1− )1−
µ




¶

=
1−()−


 (67)

Using the definitions of ̃ and ̃ (thus, −11− = ̃−1), we then obtain

(1− )

Ã
̃

̃

!

=
̃−1()−


 (68)

Substituting  = 1−  into (68) confirms (20). This concludes the proof of part (i).

To prove part (ii), we suspect (and later confirm) that in steady state,  grows with

the same rate () as , i.e.
·
̃ = 0. Using this in (18) confirms (21). Next, set ̇ = 0

in (16) to find

 =
(− 1) () 1

1− (1− )

( − )[(1− )( + )]


1−
 (69)
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Moreover, substituting (8) into  = (1− ) implies




= (1− )

µ


(1− )( + )

¶ 
1−

 (70)

We know that with a time-invariant labor allocation in steady state knowledge stock

 grows with rate . From condition Π = 0, i.e. ̇ = , we find that ̇ = 

implies

 =  (71)

Substituting both (69) and (70) into (71) and using (21) leads to (22). According

to (15),
·
̃ = 0 implies (23). (24) immediately follows from (69). (25) follows from

rearranging (19). To confirm (26), set
·
̃ = 0 in (17).

The savings rate (and investment share) is given by

s = (̇ + ) = (̇ + ) (72)

As
·
̃ = 0, we have ̇ =  +  in steady state. Substituting this and (9) into (72)

and using (21) confirms (27).

Finally, using ̇ = − from (58) and ̇ = , we find that if  grows with rate

 in the long run, the transversality condition (60) holds under assumption (A1). To

see this, use from (13) that  =  + . Thus, in steady state,  grows at the same

rate  as  and .23 This concludes the proof. ¥

Proof of Proposition 2: The current-value Hamiltonian which corresponds to

23Also per capita lump sum tax  grows at rate  in the long run. To see this, consider the

government budget constraint  = ( + ) + 
. Since  grows at the same rate as ,

according to (70), and  is time-invariant, we see that ̇  = ̇ = ̇ =  in steady state.
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the social planning problem (31) is given by

H = 1− − 1
1− 

+ (

̇z }| {
( )1−| {z }

=

− ( + ) − ) + 

=̇z }| {
1−(1− | {z })

=

1−
 (73)

where  and  are co-state variables associated with constraints (29) and (30), re-

spectively. Necessary optimality conditions are H7 = H7 = 0 (control vari-

ables), ̇ = (−)−H7 for  ∈ {} (state variables), and the corresponding
transversality conditions. Thus,

 = −, i.e.
̇


= − ̇


 (74)

(1− )1−
µ




¶

=



(1− )1−()−| {z }

=̇

 (75)

̇


= − 

µ




¶1−
+  (76)

̇


= − − 


(1− )

µ




¶

( )1−| {z }
=

− 
̇


(77)

lim
→∞


−(−) = 0  ∈ {} (78)

( denotes the co-state variable associated with state variable  at time .)

To find the optimal capital cost subsidy, first note that from (58) and (74) that we

must have  =  in social optimum; thus, according to (59) and (76),

 +  = 

µ




¶1−
 (79)

Comparing (79) with (19), by using  = 1−  and the definitions of ̃, ̃, ̃, we find

that (1 − ) = 1 must hold in social optimum at all times, which is equivalent to
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(32).

Next, note from (67) and (75) that a R&D subsidy which implements the social

optimum must fulfill

 = (1− )



, i.e. (80)

̇


=

̇


−
Ã
̇


− ̇



!
 (81)

Moreover, substituting optimality conditions 1−  = 1 and (80) into (16), we find

̇


=  − − (1− 1)(1− )

( ) (1− )




 (82)

Rewriting (75) to




=
(1− )

¡
 

¢
(1− )

̇


(83)

and substituting into (82) leads to

̇


=  − − (1− 1)(1− )

(1− 1)
̇


 (84)

Moreover, combining (76) and (77) by subtracting both sides of the equations from

each other and substituting (83), we have

̇


− ̇


= 

µ




¶1−
−  − − (1− )




̇


− 

̇


 (85)

Substituting (84) and (85) into (81) and making use of (79) and  = 1−  then leads

to

̇


=

∙µ
1−  − 1



1− 1
1− 1

¶
1− 


+ 

¸
̇


 (86)
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From (30) and the definition of ̃ we find

̇


= ̃−1 ¡¢1−  (87)

Substituting (87) into (86) confirms (33).

It remains to confirm terminal condition (34), i.e. the optimal long run R&D policy.

We seek for a steady state where ,  and  all grow at rate  and ̇ = ̇ = ̇ = 0.

Setting ̇  = 0 in (33) implies that, in long run social optimum,

µ
1−  − 1

 
1− 1
1− 1

¶µ
1


− 1
¶
+  = 0 (88)

To infer (34) from (88) we need to find the steady state value for the fraction of R&D

labor, . From (74), ̇ = −; combining with (76) implies



µ




¶1−
−  =  +  (89)

From (83) and ̇ = , together with the property that   are  are constant

in the long run, we find ̇ = ̇. Using ̇ = ̇, ̇ = , (89) and

 = 1−  in (85) we can solve for . Doing so and using (1− ) = (1− ) from

the definition of  in (A1) implies

 =
1

(−1)+−
(1−) + 1

 (90)

Substituting (90) into (88) and using (1− ) = (1− ) confirms (34).

From (74) and ̇ = , we have ̇ = −. Using that ̇ = ̇ =

− for  → ∞ and ̇ = ̇ = , transversality condition (78) is fulfilled under

assumption (A1) for both state variables,  and .

So far we have shown that the policy mix in Proposition 2 is necessary for a first-
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best optimum. To show that it is also sufficient, we need to prove that under this

policy mix, the market equilibrium is the same as the social planning optimum.

From (29) we obtain

̇


=

µ




¶1−
−  − − ̃

̃
 (91)

which coincides with (17) by using  = 1−  and the definitions of ̃, ̃, ̃. Similarly,

(87) coincides with (15) and combining (74) with (76) leads to (18) when using (79).

Finally, combining (80) with (83) and using (87) leads to (20). This concludes the

proof. ¥

Proof of Proposition 3: First, note that we can use analogous reasoning as in

the proof of Proposition 1 to see that (15), (17), (19), (20) still hold. Moreover, (41),

(42) and (43) were confirmed in the text.

The current-value Hamiltonian which corresponds to the household optimization

problem now reads

H = 1− − 1
1− 

+  ([(1− t) − ] + (1− t) − )  (92)

Thus, we can replace (59) by

̇


= − (1− t) (93)

which leads to the modified Keynes-Ramsey rule

̇


=
(1− t) − 


 (94)

Using the definition of ̃ confirms (40). Moreover, substituting (65) into (38) and using

 =  as well as   =  = 1−  confirms (39). This concludes the proof of

part (i).
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Also the derivation of the steady state (part (ii) of Proposition 3) is analogous to

the proof of Proposition 1. Using
·
̃ = 0 in (40) confirms (44) and using ̇ = 0 in (39)

together with (44) confirms (47). Substituting both (47) and (70) into (71) and using

(44) confirms that  = ()∗ in steady state. Moreover, combining (15) and
·
̃ = 0

implies  = ∗. Substituting ̇ = +  and (9) into (72) and using (44) confirms

(53). The reminder of the proof is obvious. ¥

Proof of Proposition 4: The result is proven analogously to Proposition 2. First,

to find the optimal capital cost subsidy, note that using  =  and combining (76)

with (93) implies

(1− t) +  = 

µ




¶1−
 (95)

Moreover, (19) and  = 1−  imply

( + )(1− ) = 

µ




¶1−
 (96)

Equating the left-hand sides of (95) and (96) confirms (54). Using  = ∗∗ as given by

(44) also confirms (55).

Next, substitute ( + )(1 − ) = ()
¡
 

¢1−
from (96) into (39) and use

both (80) and (83) to find

̇


= (1− t) − − (1− 1)(1− )

(1− 1)
̇


 (97)

Substituting (85) and (97) into (81) and using (95) confirms that (86) still holds. As

also (87) still applies, we also confirm (33) for the long run. ¥

Measuring Welfare Differences: We first quantify the welfare difference, de-

noted by ∆ , between implementing the dynamically optimal policy mix and the opti-

mal steady state policy mix, taking into account the whole transition path to calculate
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the respective welfare levels. We then use ∆ to calculate the hypothetical permanent

percentage loss of the optimal steady state per capita consumption of not implementing

the dynamically first best policy. Formally, recall that in the long run adjusted per

capita consumption, ̃ = 
1−
1− , is stationary. Thus, per capita consumption  grows

with rate  = (1−)
1− . Thus, in the long run under the optimal policy,  = (̃)∗.

Denote the hypothetical loss in adjusted steady state per capita consumption from not

implementing the dynamically optimal R&D subsidy by ∆̃. Then we have:

∆ =

Z ∞

0

((̃)∗)1− − 1
1− 

−(−)−
Z ∞

0

(((̃)∗ −∆̃))
1− − 1

1− 
−(−)

(98)

which we can rewrite to find, as reported in the text and in Tab. 1 and 2, the percentage

loss,

 :=
∆̃

(̃)∗
= 1− [((̃

)∗)1− +∆( − 1)(− + ( − 1))] 1
1−

(̃)∗
 (99)

Numerical evaluation - the relaxation algorithm: Trimborn, Koch and Steger

(2008) have developed a powerful numerical evaluation method in order to simulate

highly-dimensional, non-linear systems of differential equations even when starting far

away from the steady state. The principle of the method is to construct a large set

of non-linear algebraic equations. The root of these equation represents the solution

trajectory. The set of equations is obtained by discretizaton of the differential equations

on a mesh of points in time augmented by conditions representing initial and final

boundary conditions. Then, the whole set of equations is solved simultaneously. The

advantage of this procedure is that it calculates the solution taking non-linearities

of the model into account. Therefore, it allows to obtain trajectories representing

transitional dynamics up to an arbitrarily small error. This property is especially

useful for calculating utility, for which a high degree of accuracy is needed to receive a

40



precise ranking of policy scenarios.
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Figure Legends

Figure 1: Transitional dynamics (solid lines: first-best solution, dashed lines: con-

strained optimal policy). Scenario (i): ̃0 = 05̃
∗ and ̃0 = ̃∗; Scenario (ii): ̃0 = ̃∗

and ̃0 = 05̃
∗; Scenario (iii): ̃0 = 05̃∗ and ̃0 = 05̃

∗.

Figure 2: Time paths of ̃ for baseline set of parameters (i.e.  = 25,  = 002)

and  = 15,  = 004 under the two policy schemes (solid lines: dynamically optimal

policy; dashed line: constrained optimal policy under baseline; dotted line: constrained

optimal policy under  = 15,  = 004).

Figure 3: Transitional dynamics for the US economy (solid lines: first-best solution,

dashed lines: constrained optimal policy). In panel (b) and (d) the circles indicate the

initial steady state values under the status quo policies in the US.
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Tables

Parameter set  in (i)  in (ii)  in (iii)

Baseline 037 003 005

 = 15,  = 004 033 001 017

 = 3,  = 001 042 005 002

 = 15 ⇒ ∗ = 005 034 002 016

 = 001 ⇒ ∗ = 006 031 004 002

 = 07,  = 085 018 002 001

 = 03,  = 04 059 004 001

 = 11 037 003 005

Table 1. The welfare loss from implementing the long run rather than the

dynamically optimal R&D policy under lump sum taxation, in per mill.

Notes. We assume  = ( )
∗ = 1 − 1 throughout. Scenario (i): ̃0 =

05(̃)∗, ̃0 = (̃)∗, Scenario (ii): ̃0 = (̃)∗, ̃0 = 05(̃)∗, Scenario (iii):

̃0 = 05(̃)∗, ̃0 = 05(̃)∗. The baseline parameter set is  = 002,  = 001,

 = 004,  = 033,  = 43,  = 25,  = 002  = 05,  = 075. The indicated

parameter(s) display the respective deviations from the baseline set of parameters.
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