
RESTful services and automation for

comfort-oriented smart devices

Master Thesis

David Wettstein

December 2017

Thesis supervisors:

Prof. Dr. Jacques Pasquier-Rocha
and

Arnaud Durand,
Software Engineering Group, Department of Informatics,

University of Fribourg (Switzerland)

Abstract

Internet of Things (IoT) services have a huge potential and there is already a growing
market and need for them. However, the IoT is heavily fragmented, lacks interoperabil-
ity across platforms and uses many di�erent standards [21]. This is where the Web of
Things (WoT) comes into play. By using and extending existing, standardized web tech-
nologies, it allows an easy integration of services and things with less development costs
[21].

Having a smart device attached to a service or the internet is useless without the pos-
sibility to control or interact with it. Furthermore, to bring such devices into the WoT,
we need to make them accessible via a RESTful web Application Programming Inter-
face (API) [20]. Finally, as the name WoT suggests, we should be able to wire together
or integrate multiple things into web applications or services.

In this thesis, we address these remarks by implementing a framework containing a REST-
ful web API for a real-life physical device collecting comfort-oriented sensors data. Ad-
ditionally, by integrating an automation tool into the framework, we bring these devices
into the WoT.

Keywords: Internet of Things, Web of Things, RESTful API, Smart Gateway, Smart
Devices, Automation

i

Acknowledgements

I want to thank all the people in the Software Engineering Group and in the Human Cen-
tered Interaction (Human-IST) group for providing me with ideas and feedback about
my project.

Especially, I want to thank Arnaud Durand for working together with me and supervising
my project.

Last but not least, I want to thank my wife for all her patience during the project.

ii

Table of Contents

1. Introduction 2

1.1. Motivation . 2

1.1.1. Goals . 3

1.2. Organization . 3

1.3. Notations and Conventions . 3

2. Smart Devices and the Web of Things (WoT) 5

2.1. Internet of Things (IoT) . 5

2.1.1. WoT vs IoT . 6

2.2. Smart Devices . 6

2.2.1. Comfort-Oriented Smart Devices 6

3. A WoT Framework for Comfort-Oriented Smart Devices 7

3.1. Description . 7

3.2. Big Picture . 7

3.3. Components . 9

3.3.1. Message Broker . 9

3.3.2. Database . 11

3.3.3. API . 13

3.3.4. Work�ow Engine . 14

4. Implementation of the Motivating Example 16

4.1. ComfortBox: the Smart Device . 16

4.1.1. Sensors . 17

4.1.2. Events . 18

4.1.3. Particle Cloud . 18

4.2. Message Broker and Database . 19

4.2.1. Message Broker . 19

4.2.2. Database . 21

iii

Table of Contents iv

4.3. RESTful API . 24

4.3.1. API Framework . 24

4.3.2. Data sources . 24

4.3.3. Models . 27

4.3.4. Remote Methods . 28

4.3.5. API Explorer and Overview of Operations 29

4.3.6. Authentication . 30

4.3.7. Automatic Device Registration 31

4.4. Work�ow Automation . 33

4.4.1. Work�ow Engine . 33

4.4.2. Custom Nodes . 33

4.4.3. Use Cases . 36

4.5. Data Visualization . 38

5. Future Work 39

5.1. Limited to ComfortBox devices . 39

5.2. Proper runtime handling and monitoring 39

5.3. Automated framework installation . 39

5.4. Other ideas . 40

6. Conclusion 41

A. Common Acronyms 42

B. License of the Documentation 43

C. Project Repositories 44

C.1. Framework . 44

C.2. Node-RED plugin nodes . 45

List of Figures

1.1. Logo of the Software Engineering Group 4

3.1. Big picture of framework . 8

4.1. ComfortBox: a 10 x 10 x 10 cm cube . 17

4.2. ComfortBox: Particle function registrations 19

4.3. Particle device registrations . 19

4.4. Message �ow in RabbitMQ (�gure from CloudAMQP) 20

4.5. RabbitMQ queues . 20

4.6. Query of a KairosDB metric with absolute time range and average aggregator 23

4.7. LoopBack data sources (�gure from LoopBack documentation [12]) 24

4.8. Screenshot of API explorer showing all ComfortBox operations 30

4.9. Screenshot of API explorer showing all User operations 31

4.10. Automatic device registration process . 32

4.11. An empty �ow in Node-RED . 33

4.12. A con�guration node to set an AMQP endpoint for the event trigger . . 34

4.13. A con�guration node to set the API services endpoint 34

4.14. Selecting a registered device from the API server https://localhost:3000 . 34

4.15. A node to con�gure a registered ComfortBox device (e.g. set the MQTT

host) . 35

4.16. A node to display one or multiple colors on a ComfortBox device 35

4.17. Color selector . 35

4.18. A node to display ASCII text on a ComfortBox device 35

4.19. A node to trigger a �ow from an AMQP event 35

4.20. A node to query data of a ComfortBox device 36

4.21. A node to register a new ComfortBox device within the API services . . 36

4.22. Work�ow to register multiple devices . 37

4.23. Work�ow to recon�gure all registered devices 37

4.24. Work�ow to listen to a speci�c event . 37

4.25. An example dashboard in Grafana for a ComfortBox device 38

v

https://www.cloudamqp.com/blog/2015-05-18-part1-rabbitmq-for-beginners-what-is-rabbitmq.html

List of Figures vi

C.1. Screenshot of the framework repository 44

C.2. Screenshot of the Node-RED plugin repository 45

List of Tables

3.1. Overview of message brokers . 10

3.2. Overview of API frameworks (features with a � are o�ered by third-party

plugins) . 13

4.1. Overview of ComfortBox sensors . 18

4.2. Overview of ComfortBox events . 18

4.3. Conversion of messages into data points 22

vii

Listings

1.1. A code example . 3

3.1. Message body . 10

3.2. MQTT message topic or AMQP routing key 11

4.1. Snippet of bindings.json �le . 21

4.2. Body of a query request . 22

4.3. Example of a REST API data source . 25

4.4. Example of a HTTP POST operation with a body encoded as

application/x-www-form-urlencoded . 25

4.5. Analog cURL command of listing 4.4 . 25

4.6. Example of a database data source . 26

4.7. Example of a production database data source 26

4.8. De�nition of the ComfortBox model in LoopBack 27

4.9. Example of model remote method speci�cation 28

4.10. Example of a remote method in the model extension �le of the ComfortBox

model . 29

4.11. Response of a user login . 31

1

1
Introduction

1.1. Motivation . 2

1.1.1. Goals . 3

1.2. Organization . 3

1.3. Notations and Conventions 3

1.1. Motivation

In the ever-growing world of IoT and big data, more and more devices for collecting data
arise. Often, these devices have only limited resources in terms of computation, memory,
bandwidth or power available, and thus can only use light weight protocols for communi-
cation. As a consequence, it is not possible to implement a complete RESTful web API
as proposed by Roy Fielding in his Ph.D. thesis [1] and there can be the need for a Smart
Gateway application as proposed and de�ned in Dominique Guinard's Ph.D. thesis [2].

In this work we implement exactly such a Smart Gateway for a smart device, which is
sending MQTT1 messages but has no uni�ed RESTful web API and no data storage.

For such a device, the Smart Gateway should provide the following parts [2]:

� Device Drivers: the API communicating with the devices

� Core Services: the REST application framework for the RESTful web API of the
Smart Gateway

� Pluggable Services: additional services like a storage service or a search service

Since several technologies already exist for each part of the application, we can use them
and combine them such that they ful�ll our needs.

1MQTT on Wikipedia: https://en.wikipedia.org/wiki/MQTT

2

https://en.wikipedia.org/wiki/MQTT

1.2. Organization 3

1.1.1. Goals

Derivated from the motivation, these are the goals of this thesis:

� Choose and deploy a suitable database system to store time-series data.

� Provide an uni�ed RESTful web API for managing the smart devices and for query-
ing data.

� Make use of a process/work�ow engine to automate tasks or work�ows.

1.2. Organization

� Chapter 1: Introduction
The introduction contains the motivation and goals of this work, a short recapitu-
lation of each chapter along with an overview of the formatting conventions.

� Chapter 2: Smart Devices and the Web of Things (WoT)
This chapter introduces the concept of smart devices and explains what can be
understand as the WoT. Furthermore, it explains what is meant by comfort.

� Chapter 3: A WoT Framework for Comfort-Oriented Smart Devices
The third chapter describes the designed framework for achieving the goals de�ned
in chapter 1.1.1. It contains an overview of the framework as well as it explains
each component and why they were chosen.

� Chapter 4: Implementation of the Motivating Example
In this chapter, we present the implementation of the motivating example along
with possible use cases, which can be accomplished with our framework.

� Chapter 5: Future Work
This chapter discusses how the framework could be improved or extended.

� Chapter 6: Conclusion
Finally, the conclusion describes if the original goals were reached and what we
achieved with this thesis.

� Appendix
The appendix contains acronyms, the document license, information about the
project source code and references used throughout this work.

1.3. Notations and Conventions

� Formatting conventions:

� Abbreviations and acronyms are formatted as follows Web of Things (WoT)
for the �rst usage and WoT for any further usage;

� https://localhost:3000/explorer is used for web addresses;

� Code is formatted as follows:

1 public double division(int _x, int _y) {

2 double result = _x / _y;

3 return result;

https://localhost:3000/explorer

1.3. Notations and Conventions 4

4 }

List. 1.1: A code example

� Footnotes use a superscript number: W3C2

� Keywords are formatted in a monospaced font: Authorization

� Inline source code is formatted as: public static void main(String[] args)

� Quotes are formatted as:

�Write Once, Run Anywhere�

� Cites are formatted as: [1]

� Web references are formatted as: [21]

� A sinparaenum environment is formatted as: (i) the �rst; (ii) the second;
(iii) the third;

� The work is divided into six chapters that are formatted in sections and subsections.
Every section or subsection is organized into paragraphs, signalling logical breaks.

� Figure s, Table s and Listings s are numbered inside a chapter. For example, a
reference to Figure j of Chapter i will be noted Figure i.j :

Fig. 1.1.: Logo of the Software Engineering Group

� As far as gender is concerned, I systematically select the masculine form due to
simplicity. Both genders are meant equally.

2World Wide Web Consortium (W3C): https://w3.org

https://w3.org

2
Smart Devices and the Web of

Things (WoT)

2.1. Internet of Things (IoT) . 5

2.1.1. WoT vs IoT . 6

2.2. Smart Devices . 6

2.2.1. Comfort-Oriented Smart Devices 6

2.1. Internet of Things (IoT)

According to the Internet of Things Global Standards Initiative the Internet of Things
(IoT) has been de�ned as follows:

�A global infrastructure for the information society, enabling advanced ser-
vices by interconnecting (physical and virtual) things based on existing and
evolving interoperable information and communication technologies.� [9]

In their book Building the Web of Things, Dominique Guinard and Vlad Trifa described
the IoT slightly di�erent:

�The Internet of Things is a system of physical objects that can be discovered,
monitored, controlled, or interacted with by electronic devices that commu-
nicate over various networking interfaces and eventually can be connected to
the wider internet.� [4]

Both de�nitions have in common that the IoT is about multiple things or objects con-
nected and communicating with each other. However, as mentioned in the abstract, the
IoT is heavily fragmented, lacks interoperability across platforms and uses many di�erent
standards [21]. As a consequence, the term IoT should be rather treated as a general
de�nition or description.

5

2.2. Smart Devices 6

2.1.1. WoT vs IoT

The WoT is a specialization of the IoT. It is only concerned about the OSI1 layer 7, the
application layer, whereas the IoT usually focuses on the lower layers to reduce compu-
tation and power resources [4].

A big advantage of such a high level of abstraction is that it allows us to connect many
devices regardless of their actual transport protocols [4]. Furthermore, by using and ex-
tending existing, standardized web technologies, the WoT allows an easy integration of
services and things with less development costs [21].

D. Guinard and V. Trifa initially proposed an architecture for the WoT including embed-
ding web servers on smart things and applying REST architectural style in two papers
[3], [5].

Additionally, they stated the following goal of the WoT in their book:

�The idea of maximizing existing and emerging tools and techniques used on
the web and applying them to the development of Internet of Things scenarios
is the ultimate goal of the Web of Things.� [4]

2.2. Smart Devices

A smart device or smart thing is a physical object with one or several of sensors (e.g.
temperature), actuators (e.g. display) or computing capacities, and that is generally con-
nected by wired or wireless communication interfaces [4].

For using those devices within the WoT, they need to o�er a (RESTful) web API, hosted
either from the device itself or through a gateway or cloud service [20].

2.2.1. Comfort-Oriented Smart Devices

As comfort-oriented smart devices we classify smart devices containing one or several
sensors regarding personal comfort or convenience, e.g. temperature or humidity sensors.
Such devices gained a lot of attraction in the context of home automation. As we are
only considering smart devices, they are able to send the measured values along with a
timestamp (time series data2) over some communication interface.

The motivating device for the implementation of our proposed framework is exactly such
a comfort-oriented smart device, called ComfortBox. It is described in chapter 4.1.

1OSI model on Wikipedia: https://en.wikipedia.org/wiki/OSI_model
2Time series on Wikipedia: https://en.wikipedia.org/wiki/Time_series

https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/Time_series

3
A WoT Framework for

Comfort-Oriented Smart Devices

3.1. Description . 7

3.2. Big Picture . 7

3.3. Components . 9

3.3.1. Message Broker . 9

3.3.2. Database . 11

3.3.3. API . 13

3.3.4. Work�ow Engine . 14

3.1. Description

As written in chapter 1.1 of this thesis, the main goal of the framework proposed in this
chapter is to provide a Smart Gateway for a comfort-oriented smart device sending time
series data.

The framework consists of several components of existing technologies to provide data
storage, con�guration and automation. However, the main part of the framework is the
RESTful web API. This API allows the user to implement new WoT use cases without
the need to take care of the basics like data storage. Furthermore, this API represents a
uni�ed entry point for the user to the core services of the proposed framework.

In the next sections of this chapter, you can �rst �nd an overview of the framework and
subsequently a closer look at each component of it.

3.2. Big Picture

The framework includes several services. Each service adds more functionality and has
its speci�c role. The �gure 3.1 shows an overview of all components.

7

3.2. Big Picture 8

Fig. 3.1.: Big picture of framework

We already know that a Smart Gateway should consist of the following parts [2]:

� Device Drivers: the API communicating with the devices

� Core Services: the REST application framework for the RESTful web API of the
Smart Gateway

� Pluggable Services: additional services like a storage service or a search service

In �gure 3.1, the bottom part can be considered as the Device Drivers. Often, the API
for communicating with the smart device is proprietary and does not use standard tech-
niques potentially. Since, this part is depending on the used smart devices, it cannot
be generalized easily. However, important is that the device API is integrated into the
Smart Gateway. Additionally, it is an advantage if other devices with di�erent APIs can
be added to the Smart Gateway later to avoid a vendor lock-in1.

1Vendor lock-in on Wikipedia: https://en.wikipedia.org/wiki/Vendor_lock-in

https://en.wikipedia.org/wiki/Vendor_lock-in

3.3. Components 9

The middle and top part of �gure 3.1 are the Core Services and Pluggable Services. The
technologies and applications used in this framework are all open source and have a wide
acceptance. However, to avoid a dependance on a speci�c product, every component
could be easily changed later. Furthermore, the framework is designed to be �exible con-
sidering the installation of each component. They can be on the same server or also split
up on to several servers. Hence, it is possible to distribute the computing load, which
can help to get a more reliable system.

As you can see in �gure 3.1, the smart devices are not sending their data directly to the
database. Although some of the database applications could also handle the data directly,
we are using a message broker in between the smart devices and the database. The reason
for that is on the one hand to be more �exible and on the other hand to increase possible
uses. With a message broker several interested clients could be informed asynchronously
about a new message, whereas data in the database would have to be queried by those
clients separately.

3.3. Components

In this section we describe each component and what the requirements for the selected
application or product were. For doing that we structured every subsection with the
following parts:

� Description and existing tools

� Requirements

� Selected product

3.3.1. Message Broker

The message broker component is the entry point for the data coming from the smart de-
vices. Often, the message producers send their messages to a single endpoint or exchange
along with a routing key or topic. It is then the responsibility of the message broker
system to redirect them to the according queues or to distribute them to the interested
clients.

There exist several messaging protocols, including, but not limited to, Advanced Mes-
sage Queuing Protocol (AMQP), Simple (or Streaming) Text Oriented Message Proto-
col (STOMP) and Message Queue Telemetry Transport (MQTT).

� AMQP - an open application layer internet protocol for business messaging [7]

+ standardized message format and encoding

+ o�ers a wide range of features including queuing and routing

− consists of several layers and is thus rather complex

� MQTT - an open and light weight publish/subscribe messaging transport protocol
[13]

+ standardized and simple message format, designed so as to be easy to imple-
ment

3.3. Components 10

+ small transport overhead with reduced network tra�c makes it ideal for con-
strained environments such as IoT devices

− doesn't o�er queuing, despite the name

� STOMP - a simple interoperable, frame based protocol designed for asynchronous
messaging [18]

+ standardized text based message format and encoding with so called frames
modelled on HTTP

+ builds on simplicity and interoperability

− doesn't o�er a comprehensive messaging API and thus no queues or topics

All of these protocols are based on existing transport layer protocols such as Transmission
Control Protocol (TCP). Furthermore, they are supported by some of the most popular
message broker applications:

Message Broker Website AMQP MQTT STOMP
Apache ActiveMQ http://activemq.apache.org X X X
Mosquitto https://mosquitto.org X
RabbitMQ https://rabbitmq.com X X X

Tab. 3.1.: Overview of message brokers

Requirements

Since our framework is supposed to be used with smart devices collecting data, the mes-
sage broker is an important part of it. The messaging protocol has to be supported by
the smart device and it should not consume a lot of resources from it, as we want the
sensors to work always properly. For compatibility reasons, it should also be possible to
use di�erent protocols within the framework, e.g. on the one hand for the communica-
tion between the smart device and the message broker, and on the other hand for the
communication between the broker and the database (see also �gure 3.1).

Message Format

As the data coming from the smart device is time series data, we need the messages to
be in the following JSON format:

1 {

2 "timestamp": "1506317025000",

3 "value": "23.910000"

4 }

List. 3.1: Message body

Additionally, the MQTT message topic or AMQP routing key is de�ned as follows,
whereas the forward slash (/) is the topic level separator for MQTT [13] and the dot
(.) is the common separator for AMQP version 0.9.1 [6].

http://activemq.apache.org
https://mosquitto.org
https://rabbitmq.com

3.3. Components 11

1 MQTT: comfort/123456789012345678901234/temp

2 AMQP: comfort.123456789012345678901234.temp

List. 3.2: MQTT message topic or AMQP routing key

The �rst part de�nes the type of the device, the second part is the identi�er of it and the
last part speci�es the sensor or event of the device.

Selected Product

For implementing the proposed framework, we used RabbitMQ as message broker. It is
open source and widely used, also within enterprises. Although RabbitMQ is a message
broker application for AMQP version 0.9.1 mainly, it supports also MQTT, STOMP
and AMQP version 1.0 through additional plug-ins2. Furthermore, it has an easy to use
management interface accessible from any web browser.

3.3.2. Database

Usually, a database just takes care of storing data. However, since we want to be able
to query data over time, we use a database application that is optimized for time series
data. These databases are called Time Series Database (TSDB).

As the amount of data can grow big in a relatively short time range, TSDBs o�er built-in
functionality to aggregate data for queries and to downsample data after a while. It is
common to keep high precision data (e.g. at every second) only for a short period of
time, whereas older data is automatically downsampled [19].

With a data aggregator it is possible to aggregate high precision data from a large query
into summarized values to answer speci�c questions. As an example, it is possible to
query the average temperature over the last month. Another example could also be, the
maximum temperature per day over the last week.

Some of the most mature TSDB are:

� In�uxDB - https://influxdata.com

+ High performance with SQL-like queries

+ Data downsampling and retention

+ Query data with a REST API

− Clustering only in enterprise editions

− In�uxData Telegraf with AMQP consumer plugin as additional components
needed

� KairosDB - https://kairosdb.github.io

+ Several built-in collectors

+ Data retention

2Supported protocols by RabbitMQ: https://www.rabbitmq.com/protocols.html

https://influxdata.com
https://kairosdb.github.io
https://www.rabbitmq.com/protocols.html

3.3. Components 12

+ Query data with a REST API

+ Extendable with plugins

− No data downsampling

− Additional plugin for AMQP needed

� ThingSpeak - https://thingspeak.com

+ MATLAB for analytics

− Outdated source code, some parts seems to be proprietary

− Querying data needs expert knowledge

− Unknown data lifecyle management

Requirements

As already mentioned, we don't want to only store the data. The chosen TSDB should
allow us to query and especially to aggregate data through a web API easily. Another
important requirement is the possible collectors. They are used to collect the data (e.g.
from a message queue) and to push it into the database. The more collectors and thus
protocols like MQTT are supported, the better we can integrate the application. These
collectors are used to connect the database application to the message broker from chap-
ter 3.3.1.

Furthermore, having an extendable application would be a plus, but is only an optional
requirement.

Selected Product

The open source TSDB KairosDB has ful�lled the requirements for our framework the
best. Although, it o�ers a wide range of features, it is simple enough to be easy to use
and maintain.

KairosDB has several built-in data collectors and is thus able to communicate through
several protocols. However, as you can see in �gure 3.1 above, we don't send the data
directly to the database, but to the message broker. As a consequence, we need to use
a plugin to receive the data from the queues of the message broker and push it into
KairosDB. We are using an open source plugin originally developed by another person
and updated by ourself3.

A downside of KairosDB is that it can only be used either with the in-memory database
H2 4, which is only useful for development, or with Apache Cassandra5.

Finally, KairosDB has well-de�ned APIs, allows querying data easily and o�ers several
data aggregators.

3KairosDB-RabbitMQ plugin: https://github.com/dwettstein/kairosdb-rabbitmq
4H2 database: http://h2database.com
5Apache Cassandra: https://cassandra.apache.org

https://thingspeak.com
https://github.com/dwettstein/kairosdb-rabbitmq
http://h2database.com
https://cassandra.apache.org

3.3. Components 13

3.3.3. API

The API of our framework is the main entry point for user requests and represents an
uni�ed interface for querying data from the database and for orchestrating the connected
smart devices. Because the smart devices are sending sensitive data, it is mandatory
that the API includes user authentication. Besides, the API should be well documented,
e.g. using Swagger 6 or a similar tool, and it should be able to store metadata about the
registered smart devices in a simple and dedicated database.

This is the most work-intensive component of the framework. However, for implement-
ing a RESTful API we don't have to do everything from scratch, as there exist many
frameworks in di�erent programming languages which can boost the early development
stage.

Requirements

To focus on implementing the important features of the API for our Smart Gateway, the
chosen framework should include the following requirements out of the box:

� User authentication

� API documentation

� Database connectors

� Extendable and adjustable models

� Compatibility with other technologies

Framework Webpage Techn. Auth. Doc. Ext.
ASP.NET https://asp.net/web-api C# X �
Django http://django-rest-framework.org Python X X X
Express https://expressjs.com Node.js � � X
Flask http://flask.pocoo.org Python � � X
Jersey https://jersey.github.io Java X � X
LoopBack https://loopback.io Node.js X X X
Sinatra http://sinatrarb.com Ruby X � X
Spring https://spring.io Java X X

Tab. 3.2.: Overview of API frameworks (features with a � are o�ered by third-party
plugins)

Finally, the used framework and technology should have a good and complete documen-
tation about how to use and integrate it.

Selected Product

For the implementation of our API, we selected the technology Node.js and the frame-
work LoopBack. Node.js is an open source, cross-platform runtime for the programming

6Swagger: https://swagger.io

https://asp.net/web-api
http://django-rest-framework.org
https://expressjs.com
http://flask.pocoo.org
https://jersey.github.io
https://loopback.io
http://sinatrarb.com
https://spring.io
https://swagger.io

3.3. Components 14

language JavaScript, which is one of the most popular programming language over the
last few years according to the analyst company RedMonk [17].

LoopBack builds upon the popular framework Express and has additional built-in features
like an API explorer for the documentation or several database connectors. Moreover,
it can raise the initial development speed with code generators and is able to manage
permissions with an Access Control List (ACL) [11].

3.3.4. Work�ow Engine

The work�ow engine is part of the Pluggable Services. Although it is an optional and not
necessarily needed component of our framework, it can be used to wire together multiple
(web) services or devices and to implement automated work�ows.

The user could execute his requests also directly via our API. However, a visual automa-
tion tool can simplify the usage for users with less programming knowledge. By using
the API within work�ows, one can automate its invocations and increase the number of
possible use cases for the whole system signi�cantly. Moreover, such engines can often
also communicate with other interfaces or services.

Requirements

As we want to enhance our framework, the work�ow engine should include the following
features:

� A visual editor respectively a Graphical User Interface (GUI) with drag and drop
mechanics

� User authentication

� Ability to communicate with any web API

� Extendable with plug-ins or similar

� Ability to consume messages from the message broker

� A user guide with example work�ows

Since, all our previous components are open source, we want the work�ow engine to be
open source as well. Often, there exist a lot of useful work from other developers, if an
application is open source.

Selected Product

We decided that the work�ow engine Node-RED �ts our requirements best. It provides a
browser-based visual work�ow editor and is extendable by implementing so called nodes.
When loaded with the editor, a node can be dragged and dropped into your work�ows.
Although, our API can be called with the built-in nodes directly, we wanted to provide
some custom plugin nodes. The idea is again to simplify the usage of our framework and
also to increase its capabilities.

3.3. Components 15

Because Node-RED builds on Node.js, we can use the same programming language for
implementing the additional nodes as we used for the API implementation. However,
we will not map every API function as a Node-RED node, but only the most important
ones. Nevertheless, for using custom functions the user doesn't have to implement his
own nodes as the editor allows implementing basic scripts written in JavaScript directly
within the work�ow and browser.

4
Implementation of the Motivating

Example

4.1. ComfortBox: the Smart Device 16

4.1.1. Sensors . 17

4.1.2. Events . 18

4.1.3. Particle Cloud . 18

4.2. Message Broker and Database 19

4.2.1. Message Broker . 19

4.2.2. Database . 21

4.3. RESTful API . 24

4.3.1. API Framework . 24

4.3.2. Data sources . 24

4.3.3. Models . 27

4.3.4. Remote Methods . 28

4.3.5. API Explorer and Overview of Operations 29

4.3.6. Authentication . 30

4.3.7. Automatic Device Registration 31

4.4. Work�ow Automation . 33

4.4.1. Work�ow Engine . 33

4.4.2. Custom Nodes . 33

4.4.3. Use Cases . 36

4.5. Data Visualization . 38

4.1. ComfortBox: the Smart Device

The ComfortBox is a smart device consisting of several sensors used for collecting data re-
garding personal indoor comfort or cosiness. It is designed and developed by the Human-
IST1 research group and the supervisor of this thesis, Arnaud Durand, at the University

1Human-IST website: http://human-ist.unifr.ch

16

http://human-ist.unifr.ch

4.1. ComfortBox: the Smart Device 17

of Fribourg.

Fig. 4.1.: ComfortBox: a 10 x 10 x 10 cm cube

The core component of the ComfortBox is a Particle Photon2 (formerly Spark Core) mi-
crocontroller. As an advantage versus other microcontrollers, the Particle Photon o�ers
a built-in Wi-Fi chip. Beside the sensors, the ComfortBox has a 2.42 inch monochrome
OLED screen for displaying ASCII encoded text and a ring with 24 LED lights for dis-
playing colors around it. Additionally, the ComfortBox has an integrated battery.

Although the device has an integrated Wi-Fi, it doesn't have enough resources to run
a complete RESTful API on it directly. Since there is no storage in the ComfortBox
neither, it uses the light weight messaging protocol MQTT for sending the sensor values.

Finally, the ComfortBox provides two buttons and an accelerometer for interacting with
it.

For any technical details, please have a look at the GitHub repository of the ComfortBox
device (https://github.com/DurandA/comfortbox) or contact the developer Arnaud
Durand directly.

4.1.1. Sensors

As already mentioned, the ComfortBox has several built-in sensors. The measured values
of each sensor are regularly sent to the message broker as MQTT messages. As de�ned
in chapter 3.3.1, each message includes a timestamp and a value. The unit of the value
depends therefore directly on the sensor and should be documented by the smart device.
Additionally, for routing the message to the corresponding queue, we need an abbrevia-
tion of the sensor name. This abbreviation is then used for de�ning the topic or routing

2Particle Photon Datasheet: https://docs.particle.io/datasheets/photon-datasheet

https://github.com/DurandA/comfortbox
https://docs.particle.io/datasheets/photon-datasheet

4.1. ComfortBox: the Smart Device 18

key.

The ComfortBox includes the following sensors:

Sensor Abbreviation Unit
Battery level bat %
CO2 co2 ppm
Pressure hpa hPa
Humidity hum %H
Illuminance lux lux
Sound level sound dB
Temperature temp °C
Wind wind km/h

Tab. 4.1.: Overview of ComfortBox sensors

4.1.2. Events

Besides the sensors related to comfort, the ComfortBox sends also some messages about
events. These events can either origin from interactions or from the connection status.

Event Abbreviation
Press button thumb up event/button/0
Press button thumb down event/button/1
Double-tap on device event/dtap
Tap on device event/tap
Device is o�ine o�ine
Device is online online

Tab. 4.2.: Overview of ComfortBox events

4.1.3. Particle Cloud

Although the microcontroller of the ComfortBox has an HTTP web API, it is limited in
functionality and one has to call an external web service called Particle Cloud3, where
all the devices need to be registered. With this service, one can also �ash a new �rmware
for the microcontroller or edit the code within the web Integrated Development Environ-
ment (IDE).

For con�guring or interacting with a Particle Photon device, it is possible to de�ne
variables, functions or event handlers within the device �rmware. However, there exists
some limitations when doing that [15]:

� Variables:

�Up to 20 cloud variables may be registered and each variable name is
limited to a maximum of 12 characters.�

3Particle Cloud: https://build.particle.io

https://build.particle.io

4.2. Message Broker and Database 19

� Functions:

�Up to 15 cloud functions may be registered and each function name is
limited to a maximum of 12 characters.�

� Events:

�A device can register up to 4 event handlers. This means you can call
Particle.subscribe() a maximum of 4 times; after that it will return false.�

Fig. 4.2.: ComfortBox: Particle function registrations

In order to send events or call functions of a Particle Photon device, you need an access
token. Because this token is created and linked with an account on Particle, you need to
register all devices you want to use within that account.

Fig. 4.3.: Particle device registrations

According to chapter 3.2, we can consider the Particle Cloud as the Device Drivers for
our Smart Gateway application.

4.2. Message Broker and Database

As de�ned in chapter 1.1.1, receiving and storing the data sent by the ComfortBox devices
is one of the main tasks of our framework.

4.2.1. Message Broker

As decided in chapter 3.3.1 we used RabbitMQ as message broker. Since RabbitMQ
is mainly used with the AMQP protocol, the MQTT adapter has to be enabled �rst.
How to do that and how the plugin works is described within the documentation of the
RabbitMQ MQTT adapter. However, since MQTT uses slashes (/) for topic segment
separators and AMQP 0-9-1 uses dots (.), the plugin has to translate those characters,
for example, comfort/*/temp becomes comfort.*.temp and vice versa. Unfortunately,

4.2. Message Broker and Database 20

the consequence is that one cannot use dots in MQTT topics or slashes in AMQP routing
keys [16].

Fig. 4.4.: Message �ow in RabbitMQ (�gure from CloudAMQP)

We can see in �gure 4.4 that a binding is used to route the various messages from the
exchange (default amq.topic) to the right queue. For each sensor of a ComfortBox we
create a dedicated queue, since we want to store its data separately. As a guideline, we
name the queue equally to the routing keys used for the exchange binding and de�ned in
chapter 3.3.1. This results in the following setup:

Fig. 4.5.: RabbitMQ queues

The consequence of having a dedicated queue per sensor is that we will end up with
total 14 queues per ComfortBox device. However, we don't have to create and bind

https://www.cloudamqp.com/blog/2015-05-18-part1-rabbitmq-for-beginners-what-is-rabbitmq.html

4.2. Message Broker and Database 21

them manually. Using the special queue comfort.*.online, we implemented a process
for automated device registration. As this feature is part of our API, it is described in
section 4.3.7.

4.2.2. Database

Once the sensors data is ready in the corresponding RabbitMQ queues, it has to be
consumed and stored into the database. These tasks are done by KairosDB with an
additional plugin acting as a collector.

In chapter 3.3.2, we mentioned that KairosDB can be either used with the H2 in-memory
database or with Apache Cassandra. Nevertheless, changing the used datastore can be
easily done by editing the kairosdb.properties �le [10]. Additionally, we had to con-
�gure the plugin and set the connection parameters to RabbitMQ.

For subscribing to the relevant queues, the plugin has to know all queue names and the
associated binding keys. This information is added to the �le bindings.json.

1 {

2 "bindings": [

3 {

4 "exchange": "amq.topic",

5 "exchangeType": "topic",

6 "exchangeDurable": "true",

7 "exchangeAutoDelete": "false",

8 "exchangeInternal": "false",

9 "binds": [

10 {

11 "bindingkey": "comfort.123456789012345678901234.temp",

12 "queueName": "comfort.123456789012345678901234.temp"

13 },

14 ...

15]

16 }

17],

18 "queues": [

19 {

20 "queueName": "comfort.123456789012345678901234.temp"

21 },

22 ...

23]

24 }

List. 4.1: Snippet of bindings.json �le

The binding keys or routing keys respectively are then used to create a data point in
KairosDB. As we know from chapter 3.3.1, each message body contains a timestamp and
a value formatted as JSON. The following table shows how the AMQP messages are
mapped to KairosDB data points:

4.2. Message Broker and Database 22

Message => Data Point
Routing Key => Metric Name
Message Timestamp in Unix time => Data Point Timestamp
Message Value => Data Point Value

Tab. 4.3.: Conversion of messages into data points

For more information about the KairosDB plugin, please have a look at the README
within the Git repository: https://github.com/dwettstein/kairosdb-rabbitmq.

Database Queries

Querying and aggregating data were some main requirements described in chapter 3.3.2.
With KairosDB both tasks can be easily achieved through its REST API.

For a data point query the following API endpoint is used:

1 POST http://[host]:[port]/api/v1/datapoints/query

The query parameters are added to the request body formatted as JSON:

1 {

2 "metrics": [

3 {

4 "tags": {},

5 "name": "comfort.123456789012345678901234.temp",

6 "aggregators": [

7 {

8 "name": "avg",

9 "align_sampling": true,

10 "sampling": {

11 "value": "1",

12 "unit": "days"

13 },

14 "align_start_time": false

15 }

16]

17 }

18],

19 "cache_time": 0,

20 "start_absolute": 1496268000000,

21 "end_absolute": 1497045540000

22 }

List. 4.2: Body of a query request

In the metrics list, one or multiple metrics can be speci�ed to query. For each metric,
only the name parameter is mandatory. Optionally, one or multiple aggregators can be
de�ned for a given metric. If multiple aggregators are given, they will be processed in the
given order [10]. In the listing above, an average aggregator with a sampling of 1 value
per day is used.

https://github.com/dwettstein/kairosdb-rabbitmq

4.2. Message Broker and Database 23

Beside the metrics, a start and end time for specifying the time range is also needed.
Both times can be either absolute, as a Unix timestamp in milliseconds, or relative. The
relative time will be calculated by subtracting the given time, e.g. 1 day, from the current
date and time [10]. While one of the parameters start_absolute or start_relative is
mandatory, the end time doesn't have to be speci�ed. In this case, the current date and
time will be assumed as end time [10].

For all time parameters, including the aggregator sampling, the following units can be
used [10]: (i) milliseconds (ii) seconds (iii) minutes (iv) hours (v) days (vi) weeks
(vii) months (viii) years

To aggregate data, KairosDB o�ers the following aggregators4: (i) avg (ii) count (iii) dev
(iv) diff (v) div (vi) first (vii) gaps (viii) last (ix) least_squares (x) max (xi) min
(xii) percentile (xiii) rate (xiv) sampler (xv) save_as (xvi) scale (xvii) sum (xviii) trim

When installing KairosDB, a web GUI is automatically installed for development pur-
poses. Using this GUI, one can get familiar with executing queries as it allows us to set
up queries conveniently and looking at the corresponding query JSON. In the following
�gure, you can see the same query as written above in listing 4.2.

Fig. 4.6.: Query of a KairosDB metric with absolute time range and average aggregator

4KairosDB Aggregators Documentation: https://kairosdb.github.io/docs/build/html/restapi/

Aggregators.html

https://kairosdb.github.io/docs/build/html/restapi/Aggregators.html
https://kairosdb.github.io/docs/build/html/restapi/Aggregators.html

4.3. RESTful API 24

4.3. RESTful API

4.3.1. API Framework

As decided in chapter 3.3.3 we used LoopBack for implementing the RESTful web API of
our framework. LoopBack not only ful�lls the requirements for our API, but also o�ers
almost everything out of the box. Hence, we were able to focus on implementing the
actual functionality of our API, which involved the following tasks:

� Add the data sources for the Particle API, the KairosDB API and the dedicated
database for metadata

� Create the ComfortBox model

� Implement the needed API functions

� Enable authentication

� Implement automatic device registration by leveraging the message broker

4.3.2. Data sources

�LoopBack data sources represent backend systems such as databases, external
REST APIs, SOAP web services, and storage services.� [12]

Fig. 4.7.: LoopBack data sources (�gure from LoopBack documentation [12])

As shown in �gure 4.7, LoopBack uses so called connectors built on the corresponding
database driver or client API. The framework provides connectors for several relational
and non-relational (NoSQL) databases as well as for backend systems like SOAP or REST
APIs and even for push noti�cations. Furthermore, there exist also plenty of connectors
developed by the community and it is also possible to implement your own connector [12].

For implementing our API, we only needed to use data sources for REST APIs and for
databases. Adding those data sources can be easily achieved by editing the datasources.json
�le.

Each data source has a property connector, which de�nes the type of the data source
entry. In listing 4.3 below the type is rest. Other types are, for example, memory or
postgresql as used in section 4.3.2.

4.3. RESTful API 25

1 {

2 "ParticleAPI": {

3 "name": "ParticleAPI",

4 "baseURL": "https://api.particle.io/",

5 "crud": false,

6 "connector": "rest",

7 "options": {

8 "headers": {

9 "accept": "application/json",

10 "content-type": "application/json",

11 "Authorization": "Bearer 0000000_your_Particle_token_here_0000000"

12 }

13 },

14 "operations": [

15 ...

16]

17 }

18 }

List. 4.3: Example of a REST API data source

A REST data source can contain several operations. Each operation de�nition consists
of the HTTP parameters within the template part and the functions of your API (not
the external API) within the functions part.

1 {

2 "template": {

3 "method": "POST",

4 "url": "https://api.particle.io/v1/devices/events",

5 "form": {

6 "name": "{particleId}/display",

7 "data": "{text}"

8 },

9 "responsePath": "$"

10 },

11 "functions": {

12 "displayText": ["particleId", "text"]

13 }

14 }

List. 4.4: Example of a HTTP POST operation with a body encoded as
application/x-www-form-urlencoded

When using REST APIs, the URI or request body often contains variables (e.g. ids). In
a LoopBack data source operation, one can annotate these variables using curly brackets.
By adding the variable names to the corresponding function in the functions part, the
variable values can be set within the source code of the function.

1 curl "https://api.particle.io/v1/devices/events" -d "name={particleId}/display" -d "

data={text}"

List. 4.5: Analog cURL command of listing 4.4

4.3. RESTful API 26

Database

In section 3.3.2 we already described the database for storing the data sent by the Com-
fortBox devices. Because we want to be able to serve more than one smart device,
we need a dedicated database for our API too. In this database, we store metadata
about the devices registered within the application. This includes not only the name and
particleId of a ComfortBox, but also a timestamp of when the device was registered
(property created) and optionally some labels, which allow us to describe or even group
the smart devices.

During the development stage, using an in-memory database is often su�cient. The def-
inition of this data source is also the easiest one, as shown in the following listing 4.6.

1 {

2 "db": {

3 "name": "db",

4 "connector": "memory"

5 }

6 }

List. 4.6: Example of a database data source

However, for the production environment an in-memory database is not what you want
to have, since a system reboot due to maintenance or power failure would reset the whole
database with the consequence of data loss.

In LoopBack, a de�ned data source can be overwritten in a production environment with
the �le datasources.production.json. For overwriting a existing data source, the prop-
erty name needs to be equal. LoopBack �rst initializes all data sources de�ned in the �le
datasources.json and then overwrites equally named data sources with the de�nition
from the �le datasources.production.json.

As an example, with the following data source de�nition we can overwrite the data source
with name db of type memory, which is used for development, with a data source of type
postgresql for production.

1 {

2 "db": {

3 "name": "db",

4 "host": "localhost",

5 "port": 5432,

6 "database": "comfortboxapi",

7 "user": "comfortboxapi",

8 "password": "comfortboxapi",

9 "connector": "postgresql"

10 }

11 }

List. 4.7: Example of a production database data source

4.3. RESTful API 27

4.3.3. Models

According to the documentation of LoopBack, the model de�nition JSON �le declara-
tively de�nes a LoopBack model. This �le (modelName.json) is in either the server or
the common project sub-directory, depending on whether the model is server-only or de-
�ned for both server and client [12]. In this model �le, not only all the options, properties,
permissions, methods, etc. are de�ned, it is also used for generating the API explorer,
an interactive documentation to get started with the available API operations. For our
API, we had to declare only one JSON �le respectively model, the ComfortBox.

1 {

2 "name": "ComfortBox",

3 "plural": "ComfortBoxes",

4 "base": "PersistedModel",

5 "idInjection": true,

6 "options": {

7 "validateUpsert": true

8 },

9 "properties": {

10 "name": {

11 "type": "string"

12 },

13 "particleId": {

14 "type": "string",

15 "required": true

16 },

17 "created": {

18 "type": "date"

19 },

20 "labels": {

21 "type": ["string"]

22 }

23 },

24 "validations": [],

25 "relations": {},

26 "acls": [

27 ...

28],

29 "methods": {

30 ...

31 }

32 }

List. 4.8: De�nition of the ComfortBox model in LoopBack

As we can see in listing 4.8, a ComfortBox object has the following properties:

� name - An optional name for the ComfortBox. This name will only be stored
within the API database and won't be sent to Particle Cloud.

� particleId - The id of the device from Particle Cloud. This property is mandatory.

� created - An optional date and time formatted in ISO 8601 standard:
yyyy-mm-ddThh:mm:ss.sssZ (e.g. 2017-12-13T14:26:59.993Z).

� labels - An optional list of labels, which can be used to tag or group devices.

https://en.wikipedia.org/wiki/ISO_8601

4.3. RESTful API 28

Furthermore, each ComfortBox device will get a unique id while registration. Apart from
the properties, the model �le also de�nes the ACL permissions. However, these are kept
as simple as possible: all authenticated users are allowed to execute operations, whereas
all unauthenticated ones will be denied.

The methods list in the model �le speci�es additional model methods, which are not
provided by LoopBack itself. These methods are called remote methods [12].

4.3.4. Remote Methods

A remote method can be speci�ed by adding the method name as a key and its options
as a value under the methods list in the model de�nition �le.

1 {

2 ...

3 "methods": {

4 "prototype.displayText": {

5 "accepts": [

6 {

7 "arg": "text",

8 "type": "string",

9 "required": true,

10 "description": "Text to display on the ComfortBox"

11 }

12],

13 "returns": {

14 "arg": "response",

15 "type": "string",

16 "root": true,

17 "description": "Response from Particle API"

18 },

19 "description": "Display a message on a ComfortBox",

20 "http": [

21 {

22 "verb": "post"

23 }

24]

25 },

26 ...

27 }

28 }

List. 4.9: Example of model remote method speci�cation

By using the prototype preposition, one can declare a method as an instance method,
which means the method can only be executed on a given instance of the model (e.g.
POST /ComfortBoxes/{id}/displayText, where {id} is the id of the ComfortBox instance).

The options object is given as the value of the remote method declaration. It contains
mainly the following properties:

� accepts - De�nes all arguments needed by the remote method.

4.3. RESTful API 29

� returns - De�nes the return value of the remote method.

� description - Describes the remote method. This description is shown in the API
explorer.

� http - Speci�es information about the HTTP route (e.g. verb, path)

Principally, it is not mandatory to specify any options property. However, if the remote
method requires arguments, the accepts option has to be set. The same applies to
returns [12].

Finally, the actual code or functionality of a remote method is implemented in the model
extension �le (modelName.js).

1 module.exports = function(ComfortBox) {

2 ...

3 ComfortBox.prototype.displayText = function(text, callback) {

4 var response = 'Called function displayText with param text: ' + text;

5 callback(null, response);

6 };

7 ...

8 };

List. 4.10: Example of a remote method in the model extension �le of the ComfortBox
model

To return a value to the caller at the end of a remote method, LoopBack automatically
provides the argument callback. This argument is actually a reference to the method
callback(error, response). While the error argument is assumed by LoopBack, the re-
maining arguments correspond to the arguments de�ned in the returns option of the
remote method.

4.3.5. API Explorer and Overview of Operations

A usable API needs a good documentation and overview of all available operations and
how they have to be requested. LoopBack uses the power of Swagger UI 5 to automatically
generate such a documentation based on the model de�nition �les. This documentation
can be viewed in any browser and it is even possible to try out operations immediately.

Besides the built-in basic CRUD operations, our API o�ers the following operations for
interacting with the registered ComfortBoxes :

5Swagger UI: https://swagger.io/swagger-ui/

https://swagger.io/swagger-ui/

4.3. RESTful API 30

Fig. 4.8.: Screenshot of API explorer showing all ComfortBox operations

4.3.6. Authentication

In general, authentication is an important part of every API. Thankfully, LoopBack
o�ers a User model and ACL mechanisms out of the box. Principally, the authentication
system of LoopBack is based on a few main concepts [12]:

� Principal - An entity (e.g. a user, an application, a role) that can be identi�ed or
authenticated.

� Role - A group of principals with the same permissions.

� RoleMapping - Assignments of principals to roles.

4.3. RESTful API 31

� ACL - Access control list: Controls if a principal can perform a certain operation
against a model.

By leveraging the full authentication system, we would be able to de�ne very granular
permissions. Nevertheless, those models are not published on the API as we want to keep
authentication as simple as possible. As a consequence, we don't need the full feature set
of the User model and we just take advantage of the following User operations:

Fig. 4.9.: Screenshot of API explorer showing all User operations

Since to create new users one has to be authenticated already, our API uses a default user
or master account, which can be con�gured in the API options. Beside the username and
password of this account, you can even set a default access token optionally. Considering
that the password and the access token are stored in plain text, it is your responsibility
to keep them hidden and save on the underlying operating system.

When logging in with an existing user, one has to use the following format for the re-
quest body: {"username": "defaultUser", "password": "defaultPassword"}. If the provided
credentials were correct, the response contains an access token, which can be used for
succeeding requests during a certain time range. The default Time To Live (TTL) for a
token is 14 days.

1 {

2 "id": "64abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789",

3 "ttl": 1209600,

4 "created": "2017-12-17T20:45:19.354Z",

5 "userId": 1

6 }

List. 4.11: Response of a user login

While authenticated with the initial default user, the request POST /Users allows us to
create new users, e.g. service accounts. In the end, LoopBack would o�er full CRUD op-
erations for the User and AccessToken models, but they are not essential for a straight-
forward authentication process.

4.3.7. Automatic Device Registration

Our Smart Gateway is designed to run even when each component is installed on di�erent
servers, as shown in the big picture �gure 3.1. If you don't have to separate all compo-
nents, you can take advantage of the automatic device registration feature when running
at least the API service and KairosDB on the same server. To enable this feature, the

4.3. RESTful API 32

API service must have access to RabbitMQ and to the KairosDB bindings �le.

When running, the API service listens on a dedicated queue named comfort.*.online.
Whenever a ComfortBox device sends a online message, the API service checks in its
own database if this device was already registered or not. If the particleId, which is
the number between comfort. and .online as de�ned in section 3.3.1, is unknown, the
API service will automatically register or create the device in its dedicated database.

Fig. 4.10.: Automatic device registration process

To create the device instance, the API service will query Particle to �nd out the device
name. In cases where the device is not in your own Particle account as explained in
section 4.1.3 and thus can't be requested nor con�gured through the ParticleAPI, the
name unknown will be used.

Together with creating the device in the dedicated database, the API service will create
the according queues and bindings in the KairosDB bindings �le (see listing 4.1). This
step is needed such that the data coming from the device messages will be stored in
KairosDB and that we will be able to query this data �nally.

4.4. Work�ow Automation 33

4.4. Work�ow Automation

4.4.1. Work�ow Engine

In chapter 3.3.4 we decided to use Node-RED as work�ow engine and automation tool.
The installation of Node-RED is straightforward, as it can be done with npm, the default
package manager of Node.js. After the installation, it can be instantly run with Node.js
and viewed in your favorite browser.

Fig. 4.11.: An empty �ow in Node-RED

In �gure 4.11 we can see an empty �ow in the middle pane, some information on the right
pane and all available nodes on the left pane. These nodes can be drag and dropped to
the �ow and then wired together.

Since our Smart Gateway o�ers an HTTP API, one could already start automating
work�ows or managing ComfortBox devices. Nevertheless, with Node-RED it is possible
to implement your own customized nodes. Such nodes can simplify using the API for
example when querying data, or take over repetitive tasks such as showing a list of all
devices registered within our API. For our API, we implemented several Node-RED
nodes combined in a package6. The following section lists and brie�y explains those
nodes, which can be installed either by cloning the repository into the Node-RED user
data directory $HOME/.node-red/nodes or, if packaged and published, with npm [14].

4.4.2. Custom Nodes

Overall we implemented 6 custom nodes and 2 additional con�gurations, which are used
within the other nodes. Each of those nodes is shown below.

6Node-RED nodes package: https://github.com/dwettstein/node-red-contrib-comfortbox

https://github.com/dwettstein/node-red-contrib-comfortbox

4.4. Work�ow Automation 34

Con�gurations

� comfortbox-amqp-server

� comfortbox-api-server

Fig. 4.12.: A con�guration node to set
an AMQP endpoint for the
event trigger

Fig. 4.13.: A con�guration node to set
the API services endpoint

When there is a successfully con�gured API server, all nodes will query and list the
registered ComfortBox devices when editing them. Those devices can then be selected
and their boxId and particleId will be �lled automatically.

Fig. 4.14.: Selecting a registered device from the API server https://localhost:3000

Nodes

� con�gure box

� display color

� display text

� event trigger

� query data

� register box

4.4. Work�ow Automation 35

Fig. 4.15.: A node to con�gure a registered ComfortBox device (e.g. set the MQTT host)

Fig. 4.16.: A node to display one or multiple colors on a
ComfortBox device

Fig. 4.17.: Color selector

As you can see in �gure 4.16, you can either choose to use the same color for all 24 LEDs
or to select each color individually. To simplify the selection of a color, a color selector
will pop up (�gure 4.17) when clicking on a color �eld. If you select the color black, it
won't be seen on the box as its background is black.

Fig. 4.18.: A node to display ASCII text
on a ComfortBox device

Fig. 4.19.: A node to trigger a �ow from
an AMQP event

4.4. Work�ow Automation 36

Fig. 4.20.: A node to query data of a
ComfortBox device

Fig. 4.21.: A node to register a new
ComfortBox device within
the API services

4.4.3. Use Cases

To demonstrate the possibilities of using a work�ow engine, we prepared three demo use
cases. The following subsections show and explain each of those use cases.

Use Case 1: Register multiple devices

When using comfort-oriented smart devices, such as the ComfortBox, you have usually
more than one device. As a consequence, registering every device within our API service
one by one would take a lot of time. With a work�ow you can script this process such
that you just have to provide a list of device ids, which have to be registered.

4.4. Work�ow Automation 37

Fig. 4.22.: Work�ow to register multiple devices

Use Case 2: Recon�gure all devices

As we know that the devices are sending their data to an external message broker, it can
happen that the connection to this broker change and you thus need to recon�gure all
registered devices. This can be achieved with a work�ow as well.

Fig. 4.23.: Work�ow to recon�gure all registered devices

Use Case 3: Listen to button thumb-down

The third use case shows a more advanced use case of the work�ow engine. By con�guring
the message broker within the work�ow engine, it is possible to directly listen on certain
events sent by a device. In our example, we listen to thumb-down button events.

Fig. 4.24.: Work�ow to listen to a speci�c event

Every time the button is pressed and thus sends an event, we execute a query for getting
the average temperature during the last 24 hours. This value is then sent back to the de-
vice along with some text. Additionally, we display a certain color depending on the value.

4.5. Data Visualization 38

This use case shows how to assign interaction possibilities to a device. Furthermore, it
demonstrates how to react and to execute subsequent actions when receiving a certain
event.

4.5. Data Visualization

As a supplementary component, we installed Grafana7 on the same server. Since we
are not focusing on data visualization in this thesis, we choosed this software just be-
cause of personal preferences and compatibility reasons. A possible alternative would be
freeboard8. Nevertheless, Grafana is very popular and the leading open source software
for time series analytics, according to their website. Furthermore, Grafana o�ers a data
source plugin for KairosDB, which we are using as our database.

Fig. 4.25.: An example dashboard in Grafana for a ComfortBox device

7Grafana: https://grafana.com/
8freeboard: https://freeboard.io/

https://grafana.com/
https://freeboard.io/

5
Future Work

5.1. Limited to ComfortBox devices 39

5.2. Proper runtime handling and monitoring 39

5.3. Automated framework installation 39

5.4. Other ideas . 40

5.1. Limited to ComfortBox devices

Currently, our implemented framework only works with ComfortBox devices. With the
growing market of smart devices, including thermostats or hygrometers, it would be
useful to extend the framework such that various devices could be connected and used.
A popular device would be the Raspberry Pi and its Sense HAT 1, which o�ers similar
sensors compared to the ComfortBox.

5.2. Proper runtime handling and monitoring

By now, our API services and Node-RED instance have to be run with the nohup2 com-
mand to ignore the terminal logout signal. This is a quick and dirty solution and should
be improved, e.g. with a systemd service unit.

Furthermore, the di�erent components of our framework should be monitored properly,
but this is only possible by having a decent runtime handling �rst.

5.3. Automated framework installation

Installing all components of our framework takes some time and requires some operating
system knowledge currently. By putting everything into a container application, e.g.

1Sense HAT for Raspberry Pi: https://www.raspberrypi.org/products/sense-hat/
2nohup on Wikipedia: https://en.wikipedia.org/wiki/Nohup

39

https://www.raspberrypi.org/products/sense-hat/
https://en.wikipedia.org/wiki/Nohup

5.4. Other ideas 40

like Docker 3, or a virtual machine appliance, e.g. using the Open Virtualization Format
(OVF)4 standard, the installation could be reasonably simpli�ed and automated.

5.4. Other ideas

Beside the above main points, the following ideas could also help to improve our work:

� Extend user model for more granular access roles

3Docker: https://www.docker.com/
4OVF standard: http://www.dmtf.org/standards/ovf

https://www.docker.com/
http://www.dmtf.org/standards/ovf

6
Conclusion

IoT or smart devices are getting more and more popular. Nevertheless, these devices are
often too constrained in terms of computing capacities and power to run a whole RESTful
web API on themselves. This is where a Smart Gateway application, as proposed by Do-
minique Guinard [2], comes into play.

In this thesis we implemented such a Smart Gateway application for a real-life physical
device collecting comfort-oriented sensors data. We de�ned not only the data storage,
but implemented primarily an uni�ed RESTful web API including authorization for man-
aging and communicating with the devices, and querying data from the data storage.

Finally, the orchestration and maintenance of those devices can be automated by using a
work�ow engine or similar tool, just as we did in our implemented framework. This tool
can further be used to create mashups of several existing services or devices.

With our framework, we showed that we can bring physical devices into the WoT and ex-
tend their capabilities or possible uses. Additionally, we proved that this can be achieved
with existing and open source components.

41

A
Common Acronyms

ACL Access Control List
AMQP Advanced Message Queuing Protocol
API Application Programming Interface
ASCII American Standard Code for Information Interchange
CRUD Create, Read, Update, Delete
DBMS Database-Management System
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IDE Integrated Development Environment
IoT Internet of Things
JSON JavaScript Object Notation
LED Light-Emitting Diode
MOM Message-Oriented Middleware
MQTT Message Queue Telemetry Transport
OLED Organic Light-Emitting Diode
OSI Open Systems Interconnection
OVF Open Virtualization Format
RFID Radio Frequency Identi�cation
REST Representational State Transfer
SOAP Simple Object Access Protocol
SQL Structured Query Language
STOMP Simple (or Streaming) Text Oriented Message Protocol
TCP Transmission Control Protocol
TSDB Time Series Database
TTL Time To Live
URI Uni�ed Resource Identi�er
URL Uniform Resource Locator
W3C World Wide Web Consortium
WoT Web of Things
XML eXtensible Markup Language

42

B
License of the Documentation

GNU Free Documentation License

Copyright (c) 2017 David Wettstein.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.3 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts.

A full copy of the license text can be read from [8].

43

C
Project Repositories

The following source code repositories are released under the MIT license. You can �nd
the according license �les in the root folder of each repository within a �le named LICENSE.

C.1. Framework

The code repository for the framework can be found on the following website:
https://github.com/dwettstein/comfortbox-api-services

Fig. C.1.: Screenshot of the framework repository

On this site you will �nd:

� The source code of the API service

� The documentation for preparing, installing and con�guring the API

� The documentation for installing each framework component

44

https://github.com/dwettstein/comfortbox-api-services

C.2. Node-RED plugin nodes 45

� Example con�gurations for each framework component

� A Postman1 collection with the ParticleAPI operations of a ComfortBox

C.2. Node-RED plugin nodes

The code repository for the Node-RED plugin nodes can be found on the following website:
https://github.com/dwettstein/node-red-contrib-comfortbox

Fig. C.2.: Screenshot of the Node-RED plugin repository

On this site you will �nd:

� The source code of the Node-RED plugin nodes

� The documentation for the plugin

� The example �ows, which can be imported into any Node-RED instance

1Postman: https://www.getpostman.com/

https://github.com/dwettstein/node-red-contrib-comfortbox
https://www.getpostman.com/

References

[1] R. Fielding. Architectural Styles and the Design of Network-based Software Architec-
tures. PhD thesis, University of California, Irvine, United States, 2000.

[2] D. Guinard. A Web of Things Application Architecture - Integrating the Real-World
into the Web. PhD thesis, ETH Zürich, Switzerland, 2011.

[3] D. Guinard and V. Trifa. Towards the web of things: Web mashups for embedded
devices. Technical report, ETH Zürich, Switzerland, 2009.

[4] D. Guinard and V. Trifa. Building the Web of Things. Manning Publications Co., 20
Baldwin Road, PO Box 761, Shelter Island NY 11964, United States, 2016.

[5] D. Guinard, V. Trifa, and E. Wilde. Architecting a mashable open world wide web of
things. Technical report, ETH Zürich, Switzerland, 2010.

46

Referenced Web Resources

[6] Advanced message queuing protocol (amqp) speci�cation, version 0.9.1. https:

//www.rabbitmq.com/resources/specs/amqp0-9-1.pdf (accessed October 27,
2017).

[7] Oasis advanced message queuing protocol (amqp) speci�cation, version 1.0. http://
docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html

(accessed October 13, 2017).

[8] Free documentation licence (gnu fdl). http://www.gnu.org/licenses/fdl.txt (ac-
cessed July 01, 2017).

[9] Internet of things global standards initiative. https://www.itu.int/en/ITU-T/

gsi/iot/Pages/default.aspx (accessed December 31, 2017).

[10] Kairosdb documentation. https://kairosdb.github.io/docs/build/html/

GettingStarted.html (accessed December 06, 2017).

[11] Loopback compare. http://loopback.io/resources/#compare (accessed October
16, 2017).

[12] Loopback documentation. http://loopback.io/doc/en/lb3/index.html (ac-
cessed November 02, 2017).

[13] Oasis mqtt speci�cation, version 3.1.1. http://docs.oasis-open.org/mqtt/mqtt/
v3.1.1/os/mqtt-v3.1.1-os.html (accessed October 13, 2017).

[14] Node-red documentation. https://nodered.org/docs/ (accessed December 20,
2017).

[15] Particle cloud reference. https://docs.particle.io/reference/ (accessed Octo-
ber 28, 2017).

[16] Rabbitmq mqtt adapter documentation. https://www.rabbitmq.com/mqtt.html

(accessed December 03, 2017).

[17] Redmonk programming languages. http://redmonk.com/sogrady/category/

programming-languages/ (accessed October 16, 2017).

[18] Stomp protocol speci�cation, version 1.2. https://stomp.github.io/

stomp-specification-1.2.html (accessed October 13, 2017).

[19] Time series database (tsdb) explained. https://www.influxdata.com/

time-series-database/ (accessed December 31, 2017).

[20] Web thing model. https://www.w3.org/Submission/wot-model/#dfn-web-thing
(accessed July 26, 2017).

47

https://www.rabbitmq.com/resources/specs/amqp0-9-1.pdf
https://www.rabbitmq.com/resources/specs/amqp0-9-1.pdf
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://www.gnu.org/licenses/fdl.txt
https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
https://kairosdb.github.io/docs/build/html/GettingStarted.html
https://kairosdb.github.io/docs/build/html/GettingStarted.html
http://loopback.io/resources/#compare
http://loopback.io/doc/en/lb3/index.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://nodered.org/docs/
https://docs.particle.io/reference/
https://www.rabbitmq.com/mqtt.html
http://redmonk.com/sogrady/category/programming-languages/
http://redmonk.com/sogrady/category/programming-languages/
https://stomp.github.io/stomp-specification-1.2.html
https://stomp.github.io/stomp-specification-1.2.html
https://www.influxdata.com/time-series-database/
https://www.influxdata.com/time-series-database/
https://www.w3.org/Submission/wot-model/#dfn-web-thing

[21] W3c white paper for the web of things. https://w3c.github.io/wot/charters/

wot-white-paper-2016.html (accessed July 26, 2017).

https://w3c.github.io/wot/charters/wot-white-paper-2016.html
https://w3c.github.io/wot/charters/wot-white-paper-2016.html

Index

Abstract, i
API Implementation, 24

API Explorer and Overview of Oper-
ations, 29

API Framework, 24
Authentication, 30
Automatic Device Registration, 31
Data sources, 24
Database, 26
Models, 27
Remote Methods, 28

Big Picture, 7

Comfort-Oriented Smart Devices, 6
ComfortBox, 16

Events, 18
Particle Cloud, 18
Sensors, 17

Conclusion, 41

Data Visualization Implementation, 38
Database Implementation, 21

Database Queries, 22

Future Work, 39

Goals, 3

Implementation, 16
Internet of Things, 5
Introduction, 2

License, 43

Message Broker Implementation, 19
Motivation, 2

Notations and Conventions, 3

Organization, 3

Project Repositories, 44

Smart Devices, 6

Work�ow Automation Implementation, 33
Custom Nodes, 33
Use Cases, 36
Work�ow Engine, 33

WoT Framework, 7
WoT Framework Components, 9

API, 13
Database, 11
Message Broker, 9
Work�ow Engine, 14

WoT vs IoT, 6

49

	Introduction
	Motivation
	Goals

	Organization
	Notations and Conventions

	Smart Devices and the Web of Things (WoT)
	Internet of Things (IoT)
	WoT vs IoT

	Smart Devices
	Comfort-Oriented Smart Devices

	A WoT Framework for Comfort-Oriented Smart Devices
	Description
	Big Picture
	Components
	Message Broker
	Database
	API
	Workflow Engine

	Implementation of the Motivating Example
	ComfortBox: the Smart Device
	Sensors
	Events
	Particle Cloud

	Message Broker and Database
	Message Broker
	Database

	RESTful API
	API Framework
	Data sources
	Models
	Remote Methods
	API Explorer and Overview of Operations
	Authentication
	Automatic Device Registration

	Workflow Automation
	Workflow Engine
	Custom Nodes
	Use Cases

	Data Visualization

	Future Work
	Limited to ComfortBox devices
	Proper runtime handling and monitoring
	Automated framework installation
	Other ideas

	Conclusion
	Common Acronyms
	License of the Documentation
	Project Repositories
	Framework
	Node-RED plugin nodes

