
Universal Explorer for the Web of

Things

Master Thesis

Linus Schwab

Faculty of Science

University of Bern

3. September 2018

Prof. Dr. Jacques Pasquier

Arnaud Durand

Software Engineering Group

Department of Informatics

University of Fribourg

Acknowledgements

First I would like to thank Prof. Dr. Jacques Pasquier for giving me the opportunity to
write my master thesis at the Software Engineering Group of the University of Fribourg.
I would also like to thank Arnaud Durand for his ongoing support and advice during this
project. Additionally, I would like to thank Andreas Hohler and Pascal Giehl for their
support and understanding throughout the project. This made it possible for me to write
my thesis while working almost full-time at our company devedis. Finally, thanks a lot
to Lucie Stöcklin, who took the time to proof-read this thesis and provide me with her
feedback.

i

Abstract

The W3C Web of Things Interest Group collects concepts and technologies to enable
discovery and interoperability of Internet of Things devices and services on a worldwide
basis. To counter the current IoT fragmentation, the Web of Things uses standard com-
plementing building blocks. Among others, the WoT building blocks include the WoT
Thing Description that contains the semantic metadata of a Thing as well as a functional
description of its WoT Interface and the WoT Protocol Binding Templates that include
mappings to support multiple protocols used in the IoT.
Besides the W3C, Mozilla is also taking part in the ongoing standardization e�orts around
the Web of Things. Those include a simple Web Thing Description format based on JSON
and a Things Framework that provides a collection of re-usable software components for
building Web Things.
This thesis introduces the Universal Explorer for the Web of Things, a web-based applica-
tion that acts as a gateway and supports both the W3C and the Mozilla Thing Description
formats to communicate with things. The Universal Explorer implements a simple Thing
Description parser and encoder and includes a JavaScript API, a RESTful HTTP API
with OpenAPI documentation and a WebSocket API for real-time noti�cations.

Keywords: Web of Things, REST, WebSockets, TypeScript, Node.js

ii

Table of Contents

1. Introduction 1

1.1. The Problem . 1

1.2. Motivation and Goals . 2

1.3. Outline . 4

1.4. Conventions . 5

2. WoT Thing Description 6

2.1. Interaction Resources . 6

2.1.1. Properties . 6

2.1.2. Actions . 7

2.1.3. Events . 7

2.2. Serialization . 7

2.3. Type System . 10

2.4. Protocol Bindings . 10

2.5. Mozilla Web Thing Description . 10

3. Related Work 12

3.1. Node-WoT . 12

3.2. Mozilla Things Gateway . 13

3.3. Mozilla Things Framework . 13

4. The Universal Explorer 14

4.1. Virtual Things (JavaScript API) . 14

4.1.1. Methods . 15

4.2. REST API . 17

4.2.1. Structure . 18

4.2.2. Thing Description . 19

4.3. WebSocket API . 20

4.3.1. Protocol . 20

4.3.2. Message Types . 20

iii

Table of Contents iv

5. Technical Implementation 24

5.1. Architecture . 24

5.1.1. Object Model . 25

5.1.2. From the TD to the Object Model and Back 27

5.1.3. OpenAPI Documentation Generation 28

5.1.4. Controllers . 29

5.2. Testing . 31

6. Evaluation 32

6.1. Demo Scenario . 32

6.1.1. Device Setup . 32

6.1.2. Interactions . 35

6.2. Performance . 36

6.2.1. Test Setup . 36

6.2.2. Results . 36

7. Conclusion and Future Work 39

7.1. Conclusion . 39

7.2. Future Work . 40

7.2.1. Web of Things . 40

7.2.2. Possible Improvements for the Universal Explorer 40

A. Installation Manual 42

A.1. Prerequisites . 42

A.2. Installation . 42

A.2.1. Running Tests . 43

A.3. Con�guration . 43

A.4. Usage . 43

B. Repository of the Project 45

C. Common Acronyms 47

References 48

List of Figures

1.1. Architecture of a Web of Things Servient 3

3.1. Screenshot of the Mozilla Gateway user interface (UI) 13

4.1. Overview of the Universal Explorer . 15

4.2. Swagger UI interface with example Things 17

4.3. Example interaction expanded in Swagger UI 18

5.1. UML of the Object Model . 25

5.2. UML of the link model . 26

5.3. Sequence diagram of the Thing Description parsing 28

5.4. Sequence diagram of the Thing Description encoding 29

5.5. UML of the controllers . 30

5.6. Visualization of the test coverage of the code 31

6.1. Device setup of the demo scenario . 33

6.2. Simple hardcoded visualization of the demo devices 35

B.1. Screenshot of the repository of the project 46

v

List of Tables

6.1. Property Report of the myStrom Switch 36

6.2. Action Toggle of the myStrom Switch . 37

6.3. Property Count of the virtual Counter Thing 37

6.4. Action Increment of the virtual Counter Thing 37

vi

Listings

2.1. Example Thing Description serialization in JSON-LD 1.0 format 8

2.2. Example Thing Description serialization in JSON-LD 1.1 format 9

2.3. Data schema example with restriction . 10

2.4. Example Mozilla Thing Description serialization in JSON format 11

4.1. ISubscriber interface, used for subscriber callback functions 15

4.2. subscribe message . 20

4.3. unsubscribe message . 21

4.4. addSubscription message . 21

4.5. removeSubscription message . 21

4.6. getProperty message . 22

4.7. setProperty message . 22

4.8. requestAction message . 22

4.9. propertyStatus message . 23

4.10. action message . 23

4.11. event message . 23

4.12. status messages . 23

5.1. HTTP error handling . 27

6.1. Thing Description written for the myStrom Switch 34

A.1. Installation . 42

A.2. Running tests . 43

A.3. Starting the application . 43

vii

1
Introduction

1.1. The Problem . 1

1.2. Motivation and Goals . 2

1.3. Outline . 4

1.4. Conventions . 5

For a few years now smart devices that are connected to the internet and communicate
with each other are no longer a fantasy only existing in science �nction movies. Nowadays
there are various devices with sensors and actuators available from di�erent manufactur-
ers that can measure and interact with their surroundings and can be used in home
automation, smart cities and many other �elds. These gadgets include many items such
as smart light bulbs, temperature or air quality sensors, wireless buttons or smart power
switches.

With connected devices like these it is e�ortlessly possible to control all the lights in a
house with an app, presence sensors or smart switches or to receive a noti�cation on your
phone if for example the CO2 concentration in a room reaches a certain treshold - as
long as all interacting devices are from the same manufacturer. Connecting devices from
di�erent manufacturers to interact together in automation scenarios or to use them in
other applications is di�cult and takes a lot of time and resources.

1.1. The Problem

Nowadays manufacturers often use di�erent, proprietary communication protocols and
platforms which are not interoperable. They form multiple small islands at the applica-
tion layer [4]. This fragmentation makes it di�cult to integrate devices from di�erent
platforms and use them together in one large system [1][5].

A good example for this is the current situation with home automation devices. A user
study conducted by Brush et al. [18] with owners of home automation systems identi�ed
problems that are barriers for a broad adoption of such devices. Besides the high cost of

1

1.2. Motivation and Goals 2

ownership in either money or time (and sometimes both), proprietary systems are in�ex-
ible. As di�erent platforms are not compatible, the user must choose between either ease
of integration by only using systems used by one manufacturer or �exibility. However,
choosing multiple systems by di�erent manufacturers results in a high e�ort to integrate
the devices. Another problem identi�ed in the study was the poor manageability, as it
is necessary to use the proprietary software provided by the vendor of the devices for
automation. The rule-based automation each manufacturer has to develop separately did
not work reliably and resulted in unexpected behaviour. Aditionally, most user interfaces
of the proprietary applications were complex and unintuitive.

Due to these proprietary systems, smart things remain hard to integrate into composite
applications [4]. Without an uni�ed protocol to interconnect the various devices, a large
amount of time, expert knowledge and resources are required to build applications that
communicate with di�erent things due to the overly complicated process [5][8]. This time
and resources would be much better spent in developing the actual application instead of
wasting it on the integration of proprietary protocols and systems. Of course, there are
currently proprietary Internet of Things plattforms available like IFTTT1 that make it
easy even for regular consumers to integrate devices from di�erent manufacturers and use
them together [6]. However, time and resources are still required to integrate the devices
by the manufacturers, if they even choose to do so.

To solve these issues, an open standard is necessary to connect the many already existing
Internet of Things plattforms. The solution is to enable worldwide discovery and inter-
operability by exposing things trough the Web of Things [3]. The web is an outstanding
candidate for a universal integration platform due to the ubiquitous availability on almost
any device and the development of composite applications [4]. By making smart things
an integral part of the web, they become easier to build upon. This allows the use of
existing popular web technologies such as HTML, JavaScript, PHP or Node.js to build
applications involving smart things [2][7].

1.2. Motivation and Goals

At the time of writing, the W3C Web of Things Interest Group2 is working on the archi-
tecture for the Web of Things, intended to enable interoperability across IoT Platforms.
Its main goal is to allow Internet of Things devices to communicate with each other, in-
dependent of their underlying implementation and across multiple networking protocols,
in a standardized way [19].

To achieve this, the W3C de�nes building blocks that build the architecture for the Web
of Things. Those include a Thing abstraction model that represents a physical device
or a virtual entity to be used in Internet of Things applications, a Thing Description
that provides stuctured metadata about a Thing as the primary building block, protocol
Binding Templates to support the multiple Internet of Things protocols and a Scripting

1https://ifttt.com
2https://www.w3.org/2016/12/wot-wg-2016.html

https://ifttt.com
https://www.w3.org/2016/12/wot-wg-2016.html

1.2. Motivation and Goals 3

Fig. 1.1.: Architecture of a Web of Things Servient

API to ease Internet of Things application development.

These building blocks are planned to be implemented in Servients. A Servient is a soft-
ware stack that can perform either as the server or as client by hosting and exposing
Things and/or consuming Things. As visible in Figure 1.1, the architecture of a Servient
includes Protocol Bindings to communicate with other Servients, Things or Web Clients
to build the Web of Things. Trough the System API, Servients can even implement
proprietary communication protocols to include legacy devices in the Web of Things.
Another possible usage scenario is to implement a Servient as part of a new smart de-
vice and then directly accessing the local hardware to connect the device to the Web of
Things. On top of that, the WoT Runtime generates the Thing Description providing
the metadata and the Scripting API.

Besides the W3C, Mozilla3 is also taking part in the ongoing standardization e�orts and
working on their vision of the Web of Things. They provide their own version of a Thing
Description and a Things Framework to connect smart devices that use other protocols
than web-based ones to the Web of Things.

This thesis introduces the Universal Explorer for the Web of Things, a gateway that can
interact with things providing a W3C or a Mozilla Thing Description. The Universal
Explorer intends to provide a JavaScript, REST and WebSocket API and can translate
and proxy between the two Thing Description formats.

3https://iot.mozilla.org

https://iot.mozilla.org

1.3. Outline 4

1.3. Outline

Chapter 1: Introduction
This introduction chapter provides an overview of the current situation of the Web of
Things and the Internet of Things. Additionally, a brief overview of the general content
and structure of the thesis is given.

Chapter 2: WoT Thing Description
The WoT Thing Description chapter describes the important concepts of the Thing De-
scription, as this is one of the key parts for the new Web of Things architecture and an
integral part for the work of this thesis.

Chapter 3: Related Work
The third chapter shows related work in this area, focussing on the current progress made
in the Web of Things based on the new possible standards.

Chapter 4: The Universal Explorer
The Universal Explorer chapter introduces the web application developed as part of this
thesis. The main focus here is put on the features that the Universal Explorer provides
and the ways that it can be used by developers to facilitate the integration of smart things
into other applications.

Chapter 5: Technical Implementation
This chapter involves the description of the implementation and software architecture. In
addition it explains why and how the application was developed in the chosen way.

Chapter 6: Evaluation
In this chapter the Universal Explorer is assesed in a small demo scenario and performance
tests are executed to measure the delay that it introduces to requests, as it acts as a
gateway.

Chapter 7: Conclusion and Future Work
Finally, the last chapter concludes with the results of this thesis and presents an outlook
for possible future research.

Appendix
The appendix includes a manual on how to install and use the Universal Explorer, a
description and link of the repository of the project, commonly used acronyms and ref-
erences used in this thesis.

1.4. Conventions 5

1.4. Conventions

• The word Thing written with a capital letter refers to the Web of Things model of
a real device. If the word is written with lower case letters, thing refers to the real
device itself.

• In code examples and UML class diagrams, optional parameters are marked with a
question mark (?), as used by the TypeScript4 language.

• Abbreviations and acronyms are written in full before the �rst usage with the
abbreviation in brackets, for example Web of Things (WoT). Additionally, Appendix
C provides an overview of commonly used acronyms.

Apart from these conventions, the notation follows the regular documentation guidelines
of the Software Engineering Group.

4https://www.typescriptlang.org

https://www.typescriptlang.org

2
WoT Thing Description

2.1. Interaction Resources . 6

2.1.1. Properties . 6

2.1.2. Actions . 7

2.1.3. Events . 7

2.2. Serialization . 7

2.3. Type System . 10

2.4. Protocol Bindings . 10

2.5. Mozilla Web Thing Description 10

With the Web of Things (WoT) Thing Description, the W3C is currently working on a
possible new standard to describe the metadata and interfaces of Things in a machine-
understandable way [20]. This makes it possible to easily integrate diverse devices from
multiple manufacturers such as smart light bulbs or connected power switches and there-
fore allows diverse applications to interoperate.

The Thing Description can be considered as the entry point of a Thing that contains
semantic metadata about the Thing itself and its WoT interface that describes the avail-
able interactions and how to interact with them. Interactions are divided into Properties,
Actions and Events, as described in the following Section 2.1.

As the Thing Description is currently a W3C Working Draft, it is constantly evolving.
This chapter provides an overview of the Thing Description at its current state.

2.1. Interaction Resources

2.1.1. Properties

Properties represent readable and possible writable data attributes of a Thing. An exam-
ple for a Property would be the current power state or light color of a smart lamp. The

6

2.2. Serialization 7

metadata of a Property consists of its name, the data schema, communication metadata
and boolean �ags that indicate if it is writable and observable.

2.1.2. Actions

Actions are processes or changes that can be invoked on a Thing. Contrary to a Property
write, Actions in general need some time to complete and cannot be executed instanta-
neously. Example Actions could be to toggle the power state of a lamp or to open an
automatic door. The Action metadata includes the name of the Action, separate schemas
for the input and output data and the communication metadata.

2.1.3. Events

Events are mechanisms to be noti�ed by a Thing if a certain condition is met. This could
be for example an overheating message if a Thing reaches a certain temperature treshold.
The metadata of an Event contains the name of the Event, the data schema and the
communication metadata.

2.2. Serialization

To make the Thing Description machine-readable, the model is serialized in the JSON-
LD format, an extension of JSON with additional semantic information. The following
Listing 2.1 shows an example of a Lamp Thing that provides a status Property, a toggle
Action and an overheating Event. Each interaction contains various meta information as
described in Section 2.1 and provides the link to interact with it, here with the COAP
protocol binding.

Since the start of this thesis, the W3C working group have already been working on the
next version of the Thing Description serialization format. As visible in Listing 2.2, which
represents the exact same Lamp Thing, it has been slightly simpli�ed. Properties, Actions
and Events are separate in the JSON-LD 1.1 format instead of one common interaction
array with "@type" annotations.

The JSON-LD 1.1 format is part of the Editor's Draft at the time of writing, which means
that it is still evolving. The Universal Explorer, which will be introduced in Chapter 4,
supports the JSON-LD 1.0 format, as the 1.1 format could still change and did not yet
exist at the time of development.

In addition to the new JSON-LD version, the Editor's Draft also includes a plain JSON
serialization that excludes the additional semantic information that JSON-LD provides.

2.2. Serialization 8

1 {

2 "@context": ["https://w3c.github.io/wot/w3c-wot-td-context.jsonld"],

3 "@type": ["Thing"],

4 "name": "MyLampThing",

5 "interaction": [

6 {

7 "@type": ["Property"],

8 "name": "status",

9 "schema": {"type": "string"},

10 "writable": false,

11 "observable": true,

12 "form": [{

13 "href": "coaps://mylamp.example.com:5683/status",

14 "mediaType": "application/json"

15 }]

16 },

17 {

18 "@type": ["Action"],

19 "name": "toggle",

20 "form": [{

21 "href": "coaps://mylamp.example.com:5683/toggle",

22 "mediaType": "application/json"

23 }]

24 },

25 {

26 "@type": ["Event"],

27 "name": "overheating",

28 "schema": {"type": "string"},

29 "form": [{

30 "href": "coaps://mylamp.example.com:5683/oh",

31 "mediaType": "application/json"

32 }]

33 }

34]

35 }

List. 2.1: Example Thing Description serialization in JSON-LD 1.0 format

2.2. Serialization 9

1 {

2 "@context": "https://w3c.github.io/wot-thing-description/context/td-context.jsonld",

3 "id": "urn:dev:wot:com:example:servient:lamp",

4 "name": "MyLampThing",

5 "properties": {

6 "status": {

7 "writable": false,

8 "observable": false,

9 "type": "string",

10 "forms": [{

11 "href": "coaps://mylamp.example.com:5683/status",

12 "mediaType": "application/json"

13 }]

14 }

15 },

16 "actions": {

17 "toggle": {

18 "forms": [{

19 "href": "coaps://mylamp.example.com:5683/toggle",

20 "mediaType": "application/json"

21 }]

22 }

23 },

24 "events": {

25 "overheating": {

26 "type": "string",

27 "forms": [{

28 "href": "coaps://mylamp.example.com:5683/oh",

29 "mediaType": "application/json"

30 }]

31 }

32 }

33 }

List. 2.2: Example Thing Description serialization in JSON-LD 1.1 format

2.3. Type System 10

2.3. Type System

For the data schema de�nitions of the interaction types, the Thing Description includes a
type system with semantic annotations. This describes the input and output data formats
that are required to interact with an interaction. The type system includes simple data
types like boolean, integer, number or string and more complex, nested object data
types including arrays. For more precise data type de�nitions, the Thing Description
additionally allows to restrict the values with the usage of restriction terms from the
JSON schema validation1. The following example schema shown in Listing 2.3 de�nes
that the value has to be an integer between 0 and 255.

1 "schema": {

2 "type": "integer",

3 "minimum": 0,

4 "maximum": 255

5 }

List. 2.3: Data schema example with restriction

2.4. Protocol Bindings

The Thing Description supports various protocols to communicate with the thing that it
describes. Protocol binding templates [21] allow the adaption to multiple protocol types.
This is achieved by specifying the URL, protocol methods/options and the media type
as the form object and by using a data schema model that is supported by the speci�c
protocol.

Supporting multiple protocols o�ers the advantage that almost all devices can be sup-
ported, even battery-powered devices with limited computing power that need a protocol
optimized for this type of device [9]. Besides HTTP, the Thing Description plans to sup-
port multiple alternative protocols like for instance CoAP and MQTT, which could play
an essential part in the Web of Things.

CoAP, the Constrained Application Protocol, is a transfer protocol for constrained nodes
and networks, speci�cally developed for the Web of Things that uses the REST architec-
tural style [16][17]. MQTT is a publish/subscribe protocol that can be run on low-end
and battery-operated devices and can operate over bandwidth-constraint networks [15].

2.5. Mozilla Web Thing Description

Besides the W3C, Mozilla is also working on supporting a Thing Description format.
The Mozilla Web Thing Description is an uno�cial draft that proposes a plain JSON
serialization and concrete HTTP and WebSocket protocol bindings. Their proposal is
intended to complement the W3C Thing Description [23].

1https://tools.ietf.org/html/draft-handrews-json-schema-validation-00

https://tools.ietf.org/html/draft-handrews-json-schema-validation-00

2.5. Mozilla Web Thing Description 11

The JSON serialization format is very similar to the serialization that the W3C is cur-
rently working on, although it is a little simpli�ed by not having to include multiple
protocol bindings for the interactions itself. The following Listing 2.4 is an example of
the serialization of a Mozilla Thing Description for the same Lamp Thing used for the
W3C Thing Description examples. As visible, the links for Actions and Events are not
included in the interaction itself in Mozilla Thing Descriptions, a separate links JSON
property is used instead.

1 {

2 "name":"MyLampThing",

3 "description": "A WoT-connected Lamp Thing",

4 "properties": {

5 "status": {

6 "label": "Status",

7 "type": "string",

8 "description": "Current status of the lamp",

9 "href": "/things/lamp/properties/status"

10 }

11 },

12 "actions": {

13 "toggle": {

14 "label": "Toggle",

15 "description": "Toggle the lamp status"

16 }

17 },

18 "events": {

19 "overheating": {

20 "description": "High temperature alert"

21 }

22 },

23 "links": [

24 {

25 "rel": "properties",

26 "href": "/things/lamp/properties"

27 },

28 {

29 "rel": "actions",

30 "href": "/things/lamp/actions"

31 },

32 {

33 "rel": "events",

34 "href": "/things/lamp/events"

35 },

36 {

37 "rel": "alternate",

38 "href": "wss://mylamp.example.com/things/lamp"

39 }

40]

41 }

List. 2.4: Example Mozilla Thing Description serialization in JSON format

3
Related Work

3.1. Node-WoT . 12

3.2. Mozilla Things Gateway . 13

3.3. Mozilla Things Framework . 13

Together with the work on the Thing Description, there are various projects that imple-
ment the possible new standard by the W3C and Mozilla. This chapter presents the most
important related projects. These include Node-WoT, the reference implementation of
the WoT Scripting API, the Mozilla Things Gateway that implements the Mozilla Thing
Description and the Mozilla Things Framework that allows to script Things according to
the Mozilla Thing Description.

3.1. Node-WoT

The W3C is currently working on many proposals to enable the Web of Things. Besides
the Thing Description and the general WoT Architecture [19], they are also proposing the
WoT Scripting API. The WoT Scripting API [22] is an optional building block to easily
write scripts to expose Things that do not support the new WoT Architecture. Besides
exposing, it also allows to discover and consume things. It is built on top of the Thing
abstraction model and the Thing Description.

The WoT Scripting API speci�cation consists of three main parts:

• The WoT object, which is the entry point to discover, consume, and expose Things

• The ConsumedThing interface that allows clients to consume Things

• The ExposedThing interface that allows servers to expose Things over the network

The Node-WoT1 project is the o�cial reference implementation by the W3C of the WoT
Scripting API and the Servient architecture.

1https://github.com/eclipse/thingweb.node-wot

12

https://github.com/eclipse/thingweb.node-wot

3.2. Mozilla Things Gateway 13

Fig. 3.1.: Screenshot of the Mozilla Gateway user interface (UI)

3.2. Mozilla Things Gateway

With the Things Gateway2, Mozilla is developing a gateway that implements the Mozilla
Thing Description [23] for various home automation devices that use protocols like ZigBee.
It is directed towards consumers and provides a web-based user interface to control the
connected devices, which is shown in Figure 3.1. It o�ers various other features like a
rules engine to create simple automations or a smart assistant to control devices via voice
or text commands.

3.3. Mozilla Things Framework

Similar to the WoT Scripting API, the Mozilla Things Framework3 allows to script Things
that provide a server according to the Mozilla Web Thing speci�cation [23] and a Mozilla
Thing Description. The Things Framework is a collection of re-usable software compo-
nents that help developers to build their own Web Things. It is available in various
programming languages including Node.js, Java, Python and Rust.

2https://iot.mozilla.org/gateway
3https://iot.mozilla.org/things

https://iot.mozilla.org/gateway
https://iot.mozilla.org/things

4
The Universal Explorer

4.1. Virtual Things (JavaScript API) 14

4.1.1. Methods . 15

4.2. REST API . 17

4.2.1. Structure . 18

4.2.2. Thing Description . 19

4.3. WebSocket API . 20

4.3.1. Protocol . 20

4.3.2. Message Types . 20

The Universal Explorer is a gateway that can interact with things that provide a W3C or
Mozilla Thing Description. By parsing the Thing Description, it can recognize the interac-
tions that the thing provides and then model each real thing as a virtual JavaScript Thing
that can control the corresponding real thing. The Universal Explorer then provides a
RESTful HTTP API with a machine-readable OpenAPI1 description and a WebSocket
API for real-time, event-based updates that can be used by other applications. Addition-
ally, it can generate W3C and Mozilla Thing Descriptions from the Virtual Things and
therefore translate between the two Thing Description types.
Figure 4.1 visualizes the features of the Universal Explorer and shows how they interact
with each other.

This chapter provides an overview of the features that are included in the Universal
Explorer. In the next sections, those features are presented in more detail. The technical
details of the implementation will be shown in Chapter 5.

4.1. Virtual Things (JavaScript API)

The JavaScript API allows to use the Virtual Things to interact with the real things
from any JavaScript (or TypeScript) application. It provides methods to read and write

1https://www.openapis.org

14

https://www.openapis.org

4.1. Virtual Things (JavaScript API) 15

Universal Explorer

Virtual Things

TD Parser TD Encoder

API

REST
Client

Real
Things

W3C
TD

Mozilla
TD

Mozilla
TD

W3C
TD

WS
Client

Fig. 4.1.: Overview of the Universal Explorer

Properties, invoke Actions and get past Event data. Moreover it is possible to subscribe
to (and unsubscribe from) each interaction by providing a subscriber callback method
that is called instantly each time an update occurs.

4.1.1. Methods

After the Virtual Thing is generated from a Thing Description, it provides the methods
described in the following subsections. For the subscribe and unsubscribe methods, a
subscriber callback function according to the ISubscriber interface must be provided.
The method needs to accept the interaction and interaction data objects, as shown in
Listing 4.1:

1 export interface ISubscriber {

2 (interaction: InteractionPattern, data: InteractionData) :void;

3 }

List. 4.1: ISubscriber interface, used for subscriber callback functions

4.1.1.1. Properties

readProperty(name)
The readProperty method returns the value of the Property speci�ed by the name pa-
rameter. It is async and therefore returns a Promise, as the real thing needs time to
respond. In case the real thing does not respond, the method throws a TimeoutError.

writeProperty(name, data)
To update the value of a Property, the async writeProperty function is used. It requires
the name of the Property and the new value as parameters. If the real thing does not
respond, a TimeoutError is thrown. An incorrect data schema results in a RequestError.

4.1. Virtual Things (JavaScript API) 16

subscribeToProperty(name, subscriber)
The subscribeToProperty method allows to subscribe to a Property by specifying the
name of the Property and a subscriber callback function. The callback function is then
called each time the value of the observed Property changes. It throws an InteractionError
if the Property is not observable.

unsubscribeFromProperty(name, subscriber)
Similar to the subscribe method, the unsubscribeFromProperty method allows to unsub-
scribe from Property status updates by specifying the name and the reference to the
subscriber callback function that was used.

4.1.1.2. Actions

invokeAction(name, data?)
To invoke an Action, the async method invokeAction can be used, with the name of the
Action as a parameter. If the Action needs any additional information, it has to be spec-
i�ed as data parameter. Otherwise or if the data schema is not correct, a RequestError
is thrown. In case the real thing does not respond, the method throws a TimeoutError.

subscribeToAction(name, subscriber)
The subscribeToAction method is used to subscribe to an Action speci�ed by the name
as a parameter and the subscriber callback function. The callback function is called each
time the Action is executed.

unsubscribeFromAction(name, subscriber)
To unsubscribe from a previously subscribed Action, the unsubscribeFromAction function
is used with the name and subscriber callback function used.

4.1.1.3. Events

getEventData(name, newerThan?, limit?)
The getEventData function allows to get data on Events that have happened in the past.
It requires the name of the Event as a parameter. Optionally, the amount of data can
be limited by specifying the number using the limit parameter. Aditionally, with the
newerThan parameter it is also possible to only get Event data newer than a timestamp.

subscribeToEvent(name, subscriber)
The subscribeToEvent method allows to receive instant noti�cations as soon as an Event
occurs. To subscribe, the function has to be called with the name of the Event and a
subscriber callback function.

unsubscribeFromEvent(name, subscriber)
To unsubscribe, the unsubscribeFromEvent function has to be called with the name of
the Event and the subscriber callback function used.

4.2. REST API 17

Fig. 4.2.: Swagger UI interface with example Things

4.2. REST API

The REST API [10] enables other applications to control all the things connected to the
Universal Explorer over HTTP requests. It is documented by an automatically gener-
ated, machine-readable OpenAPI documentation that includes models for the input and
output data of each interaction.

To support Event noti�cations, the API provides a GET Event resource, that allows to
poll a list of the latest events that have taken place. This approach was chosen because
the REST architecture does not include a suitable way to directly notify a client, as re-
quests need to be initiated by the client [11]. WebHooks (also known as callbacks2) would
have been a possibility, however those are for server to server communication. Real-time
noti�cations have therefore been implemented by using WebSockets, as described in Sec-
tion 4.3.

Using Swagger UI3, which is served by the Universal Explorer, the available Things and

2https://swagger.io/docs/specification/callbacks
3https://swagger.io/tools/swagger-ui

https://swagger.io/docs/specification/callbacks
https://swagger.io/tools/swagger-ui

4.2. REST API 18

Fig. 4.3.: Example interaction expanded in Swagger UI

interactions can then be explored and consumed directly in the browser. Figure 4.2
demonstrates Swagger UI with some example Things and interactions. The interactions
are grouped by the Thing that they belong to, and can then be expanded by clicking on
them. The expanded view provides additional details about the interaction and allows to
directly interact with the corresponding API endpoint by using the "Try it out" button,
as shown in Figure 4.3.

4.2.1. Structure

The endpoints of the REST API are structured by Thing, interaction type and name
of the interaction. For example, the URI of the Property "count" of a "Counter" thing
would be "/counter/properties/count/". The interaction types are the same as in the
W3C Thing Description working draft, Properties, Actions and Events as described in
Chapter 2.

4.2.1.1. Properties

To get the value of a Property, a GET request has to be made to the corresponding Prop-
erty endpoint. Besides the name of the Property, no additional parameters are necessary.

Updating the value of a Property is possible by sending a PUT request with the new
value as body parameter according to the data schema.

4.2. REST API 19

The API then either responds with a HTTP status 200 and the value of the Property,
a 400 error code if the name of the Property is wrong or a 408 error code in case the
Universal Explorer can not reach the corresponding real thing.

4.2.1.2. Actions

Actions can be invoked by making a POST request to the corresponding Action endpoint.
An Action can have additional parameters beside the name of the Action. If this is the
case, the data model of the payload is speci�ed in the OpenAPI description.

If the Action request was successfully passed to the real thing, the API responds with a
200 success status code. Otherwise, either a 400 error message with the rejection message
of the real thing or a 408 (not reachable) error message is returned.

4.2.1.3. Events

To make it possible to get Event data using REST, the Universal Explorer provides a
GET Event resource. The Universal Explorer monitors the Events of a Thing, logs and
stores the Event noti�cations that occur and allows clients to poll the Event data using
the GET Event resource. There are two optional parameters that the client can provide:
a "timestamp" parameter to only get Event data newer than the speci�ed timestamp,
and a "limit" parameter to limit the maximum amount of Event noti�cations that are
returned for the speci�c Event.

If the request was correct, the API responds with a 200 status code. Otherwise, a 400
bad request status code is returned.

4.2.2. Thing Description

Besides the Things endpoints, the REST API additionally provides endpoints to add new
Things from a Thing Description and to generate a Thing Description from a Thing.

To add a new Thing from a Thing Description, a POST request has to be sent to /td

or to /td/moz for Mozilla Thing Descriptions with the Thing Description serialization as
payload. The new Thing is then automatically added to the Universal Explorer and the
OpenAPI description is regenerated.

To get a generated Thing Description from a Thing added to the Universal Explorer, a
GET request can be sent to /td/name to receive a serialized W3C Thing Description or
to /td/moz/name to receive the Mozilla Thing Description, where the name part of the
URL is the name of the Thing. Those generated Thing Descriptions can then be used by
other applications, the Universal Explorer acts as a proxy for the requests.

4.3. WebSocket API 20

4.3. WebSocket API

In addition to the REST API, the Universal Explorer provides a WebSocket API. The
main advantage that WebSockets provide over REST is two-way communication. This
makes it possible to subscribe to interactions of a thing and get instantly noti�ed as
soon as an interaction happens or an interaction value changes, without having to poll
manually.

4.3.1. Protocol

The message protocol used for the WebSocket API is based on simple JSON messages.
Each message consists of a "messageType" key that indicates the type of the message
and a "data" key for the payload of the message. The protocol used is based on the
"webthing" protocol proposed by Mozilla [23], extended with some additional features.
Those extensions include a more advanced subscription management and the ability to
request Property values over the WebSocket API.

To open a WebSocket connection, the default JavaScript WebSocket API4 can be used,
which takes care of the connection setup. The WebSocket API provides a separate end-
point for each thing in order to keep the protocol as simple as possible.

After the connection is establised, messages can be sent by the client to either subscribe
to an interaction or for interaction requests, which are followed by a response either im-
mediately or as soon as an interaction update happens.

The following section provides an overview over the possible message types.

4.3.2. Message Types

4.3.2.1. Subscription Management

subscribe Message
The subscribe message as shown in Listing 4.2 subscribes the client to all interactions of
the corresponding Thing. By default, there are no active subscriptions for a new client.

1 {

2 "messageType": "subscribe",

3 "data": ""

4 }

List. 4.2: subscribe message

unsubscribe Message
The unsubscribe message shown in Listing 4.3 allows to unsubscribe from all previously
subscribed interactions of the Thing at once.

4https://www.w3.org/TR/websockets

https://www.w3.org/TR/websockets

4.3. WebSocket API 21

1 {

2 "messageType": "unsubscribe",

3 "data": ""

4 }

List. 4.3: unsubscribe message

addSubscription Message
In addition to the global subscribe and unscubscribe messages, the addSubscription mes-
sage allows to subscribe to speci�c interactions only. The client can subscribe to one or
multiple interactions at once by specifying the interaction type as the key and then either
the name of a single interaction as a string or multiple interaction names as an array of
strings as value. An example is shown in listing Listing 4.4.

1 {

2 "messageType": "addSubscription",

3 "data": {

4 "property": "propertyName",

5 "action": ["actionName", "actionName2"]

6 }

7 }

List. 4.4: addSubscription message

removeSubscription Message
To unsubscribe from speci�c interactions, the removeSubscription message is used. The
syntax used to specify the interactions to unsubscribe from is exactly the same as for the
addSubscription message. Listing 4.5 shows an example message.

1 {

2 "messageType": "removeSubscription",

3 "data": {

4 "property": ["propertyName", "propertyName2"],

5 "event": "eventName"

6 }

7 }

List. 4.5: removeSubscription message

4.3.2.2. Interaction Requests

getProperty Message
The getProperty message allows to instantly request one or multiple Property updates.
The name of the Property to obtain is set as the key, the value has to be empty. An
example is shown in Listing 4.6.

4.3. WebSocket API 22

1 {

2 "messageType": "getProperty",

3 "data": {

4 "propertyName": "",

5 "propertyName2": ""

6 }

7 }

List. 4.6: getProperty message

setProperty Message
To update the value of one or multiple properties, the setProperty message is used.
Similar to the getProperty message, the name of the Property is set as the key, with the
new Property value as the JSON value. See Listing 4.7 for an example.

1 {

2 "messageType": "setProperty",

3 "data": {

4 "propertyName": 10,

5 "propertyName2": true

6 }

7 }

List. 4.7: setProperty message

requestAction Message
With the requestAction message it is possible to execute one or multiple actions simulta-
neously. As shown in Listing 4.8, the Action name is set as the key. If the Action requires
any data as a parameter, it can be set as the value. Otherwise the value can be an empty
string.

1 {

2 "messageType": "requestAction",

3 "data": {

4 "actionName": "",

5 "actionName2": "data"

6 }

7 }

List. 4.8: requestAction message

4.3.2.3. Interaction Responses

propertyStatus Message
The propertyStatus message is sent to all subscribers as soon as the value of the Property
changes. The message body contains the name of the Property as the key and the new
value as the JSON value. Listing 4.9 shows an example message for a Property value
update.

4.3. WebSocket API 23

1 {

2 "messageType": "propertyStatus",

3 "data": {

4 "propertyName": 10

5 }

6 }

List. 4.9: propertyStatus message

action Message
Each time an Action is executed, the action message is sent so all subscribers. It contains
the name of the Action that was executed and the Action result data if one is available
for the Action in question, this is shown in Listing 4.10.

1 {

2 "messageType": "action",

3 "data": {

4 "actionName": true

5 }

6 }

List. 4.10: action message

event Message
The event message is sent to all subscribers as soon as an Event happens. The message
data contains the name of the Event and its value, as shown in Listing 4.11.

1 {

2 "messageType": "event",

3 "data": {

4 "eventName": true

5 }

6 }

List. 4.11: event message

4.3.2.4. Status Messages

After the client sends a message, the server responds with a short status message to either
con�rm or reject the message, or to report errors that are not the fault of the client. These
messages contain a HTTP status code and a short error or success message. An example
for a 400 error is shown in Listing 4.12.

1 {

2 "messageType": "error",

3 "data": {

4 "status": 400,

5 "message": "error message"

6 }

7 }

List. 4.12: status messages

5
Technical Implementation

5.1. Architecture . 24

5.1.1. Object Model . 25

5.1.2. From the TD to the Object Model and Back 27

5.1.3. OpenAPI Documentation Generation 28

5.1.4. Controllers . 29

5.2. Testing . 31

The Universal Explorer is a server-side Node.js1 web application. It is written in Type-
Script2, a superset of JavaScript with optional static typing.

Node.js was chosen as it allows to write high-performance applications that can handle
many connections concurrently, using asynchronous I/O with an event-driven program-
ming model [12]. As JavaScript is a dynamically typed language, only a limited amount
of code completion is possible. Due to static typing, TypeScript facilitates improved code
completion and can detect 15% of the bugs automatically, according to a study by Gao
et al. [13].

The source code of the Universal Explorer is licensed under the MIT License3 and can be
found on GitHub: https://github.com/linusschwab/wot-universal-explorer

5.1. Architecture

To make it possible to easily extend and adapt the application and to allow to reuse
components, the architecture of the Universal Explorer is based on the MVC pattern [14].

1https://nodejs.org
2https://www.typescriptlang.org
3https://opensource.org/licenses/MIT

24

https://github.com/linusschwab/wot-universal-explorer
https://nodejs.org
https://www.typescriptlang.org
https://opensource.org/licenses/MIT

5.1. Architecture 25

InteractionPattern

+ name: string

+ links: Link[]

+ data: InteractionData[]

+ subscribers: ISubscriber[]

+ registerLink(link)

+ subscribe(subscriber)

+ unsubscribe(subscriber)

+ notifySubscribers(data)

+ storeData(data)

Thing

+ name: string

+ base: string

+ interactions: InteractionPattern[]

+ readProperty(name)

+ writeProperty(name, data)

+ invokeAction(name, data?)

+ getEventData(name, newerThan?, limit?)

+ subscribeTo...(name, subscriber)

+ unsubscribeFrom...(name, subscriber)

Property

+ schema: DataSchema

+ writable: boolean

+ observable: boolean

+ read()

+ write(data)

+ update(data?)

Action

+ outputSchema: OutputSchema

+ inputSchema: InputSchema

+ invoke()

Event

+ schema: DataSchema

+ poll()

+ update(data?)

+ getData(newerThan?, limit?)

Fig. 5.1.: UML of the Object Model

The application is divided into the Object Model that represents the Virtual Things
(JavaScript API), controllers to provide the REST and WebSocket API and parser and
encoder classes for the W3C and Mozilla Thing Descriptions. The following subsections
will explain the di�erent application parts in more detail.

5.1.1. Object Model

The Object Model is the central part of the Universal Explorer. It represents the real
things as Virtual Things and provides the JavaScript API, which is also used by the
controllers to provide the REST and WebSocket API. The structure of the Object Model
closely represents the structure of the W3C Thing Description working draft that was
introduced in Chapter 2.

As shown in Figure 5.1, the Object Model is represented by the Thing class. Besides the
methods provided for the JavaScript API, it consists of some basic attributes such as the
name and base URI of the real thing and contains the available interactions. To keep the
UML readable, some class attributes and methods have been left out. Optional method

5.1. Architecture 26

Link

+ href: string

+ host: string

+ mediaType: string

+ execute(data)

HTTPLink

+ http: AxiosInstance

+ execute(data?)

executeProperty(data)

executeAction(data)

executeEvent()

- handleError(error)

MozillaHTTPLink

executeProperty(data)

executeAction(data)

COAPLink

Fig. 5.2.: UML of the link model

parameters are marked by a question mark.

The interactions of the real thing are modelled by the Property, Action and Event classes,
that inherit from an abstract InteractionPattern class. They contain the input and out-
put data schemas, implement the Observer pattern to notify subscribers and manage the
links that allow to communicate with the interactions of the real thing.

Even though the Universal Explorer only supports the HTTP protocol for links in the
current version, the HTTPLink class extends an abstract Link class, as visible in Fig-
ure 5.2. The reason for this is to make it as easy as possible to add additional protocol
bindings like COAP or MQTT later.

Each HTTPLink class instance handles the communication with a REST API endpoint
provided by the real thing. To achieve this, the Promise-based (and therefore supporting
async/await) axios4 library was used. Additionally, the class provides an error handling
method that catches and interprets the generic errors thrown by the network communi-
cation. Instead it throws new custom, meaningful error classes that can easily be handled
in other parts of the application. This is shown in Listing 5.1.

4https://github.com/axios/axios

https://github.com/axios/axios

5.1. Architecture 27

1 private handleError(e: any) {

2 if (e.code === 'ECONNABORTED'

3 || e.code === 'EHOSTUNREACH'

4 || e.code === 'ENETUNREACH') {

5 throw new TimeoutError('Remote thing did not respond');

6 }else if (e.response && e.response.status === 400) {

7 throw new RequestError('Request data schema not correct');

8 }else {

9 throw e;

10 }

11 }

List. 5.1: HTTP error handling

The MozillaHTTPLink subclass is used for minor adaptions in the communication with
Mozilla Things. This is necessary because according to the Mozilla Thing Description,
primitives like booleans or integers have to be wrapped in an object, while the W3C
Thing Description speci�es that it must not be wrapped. To solve this, the owerwritten
methods in the MozillaHTTPLink class automatically wrap unwrapped primitives before
forwarding them to the real thing and unwrap the response.

To communicate with the WebSocket that the Mozilla Thing Description includes, a
MozillaThing subclass of the regular Thing class is used. This class also uses the ws
(client) library and connects to the WebSocket of the real thing. It further tries to
reconnect automatically if the connection is lost.

5.1.2. From the TD to the Object Model and Back

5.1.2.1. Parsing

To add a new thing to the Universal Explorer, the W3C or Mozilla Thing Description is
parsed by the application. The JSON and JSON-LD �les are initially transformed into
a JavaScript object using the JSON.parse() method. From this plain object, the Object
Model is then iteratively created by manually parsing the di�erent parts and instantiating
the corresponding Object Model class by the TDParser and MozillaTDParser classes.

The Universal Explorer automatically reads Thing Descriptions that are placed in the
correct folders (public/td or public/td-moz) at the start of the application. Alter-
natively it is also possible to add new things using the REST API during runtime, as
explained in Section 4.2.2.

Figure 5.3 shows the parsing process over the REST API as a sequence diagram. The
API request is handled by the TDController, which forwards the Thing Description to
the TDParser that parses it into a Virtual Thing. Finally, the Thing is then stored in the
ThingsManager class that is responsible for storing and managing the Thing instances of
the Universal Explorer.

5.1. Architecture 28

:TDParser

thing

:ThingsManager:TDController

200 OK

POST TD parse()

addThing(thing)

Fig. 5.3.: Sequence diagram of the Thing Description parsing

5.1.2.2. Encoding

Virtual Things are encoded back into W3C or Mozilla Thing Descriptions using the
JSON.stringify() method. For each class of the Object Model, the TDEncoder and
MozillaTDEncoder classes contain a custom replacer function that transforms the JavaScript
class instance into the correct JSON or JSON-LD representation.

To get the encoded Thing Descriptions, the REST API can be used. The Universal Ex-
plorer acts as a proxy for these generated Thing Descriptions, as the requests formats
are di�erent for the W3C and Mozilla Thing Descriptions and the real thing might not
support both types.

Figure 5.4 explains the encoding process as a sequence diagram. The Thing Description
request from the client is handled by the TDController that retrieves the Thing from
the ThingsManager with the Thing name provided by the client. The Thing is then
forwarded to the TDEncoder that handles the actual encoding and returns the generated
Thing Description as a string. The TDController then returns the Thing Description to
the client.

5.1.3. OpenAPI Documentation Generation

The OpenAPI documentation is directly generated from the Object Model. Similar to
the Thing Description encoding, the OpenAPIEncoder class generates the JSON docu-
ment using the JSON.stringify() method with custom replacer functions for each class
instance of the Object Model.

As the structure of the OpenAPI 3.0 standard is not as similar as the Thing Descrip-
tion is to the Object Model, various helper functions were necessary. For example, the

5.1. Architecture 29

:TDEncoder

encode(thing)

TD

:ThingsManager

thing

:TDController

TD

GET TD getThing(name)

Fig. 5.4.: Sequence diagram of the Thing Description encoding

Object Model interactions also include Operation classes, that specify the HTTP REST
operations that are required to interact with this interaction. This made the OpenAPI
document generation much easier, as the interactions need to be represented as path
objects with operations at the top level.

5.1.4. Controllers

For the REST and WebSocket APIs, the Universal Explorers uses controllers to handle
requests. The IndexController is responsible for serving Swagger UI. The TDController
provides endpoints to add new W3C and Mozilla Thing Descriptions and to generate both
Thing Description types from the Virtual Things Object Model. The ThingsController
handles the actual thing requests by both REST and WebSocket clients and forwards
them to the Virtual Things. All controllers extend from an abstract BaseController class
that provides the basic structure and helper methods.

To provide the REST API, Koa was used. Koa5 is a modern web framework that aims
to provide a lightweight, robust foundation for API development and is fully based on
async/await, without the use of callbacks. For the WebSocket API, the ws6 library was
used, a simple and fast WebSocket client and server implementation.

Figure 5.5 shows an UML of the controllers. The ctx parameter used by almost all
methods is the Koa Context7 object that contains the request and response objects used
by Node. The ws parameter is a WebSocket connection. As visible in the UML, the
ThingsController is supported by the WebSocketManager class to handle WebSocket re-
quests. The WebSocketManager is responsible for the connection setup, message parsing

5https://koajs.com
6https://github.com/websockets/ws
7https://koajs.com/#context

https://koajs.com
https://github.com/websockets/ws
https://koajs.com/#context

5.1. Architecture 30

ThingsController

+ wsSubscribers: Map<WebSocket, ISubscriber>

+ routes(): Router

+ wsRoutes(thing, ws, message)

+ getProperty(ctx)

+ putProperty(ctx)

+ postAction(ctx)

+ getEvent(ctx)

+ wsSubscribe(thing, ws, message)

+ wsUnsubscribe(thing, ws, message)

+ wsAddSubscription(thing, ws, message)

+ wsRemoveSubscription(thing, ws, message)

+ wsGetProperty(thing, ws, message)

+ wsSetProperty(thing, ws, message)

+ wsRequestAction(thing, ws, message)

- wsSubscriber(ws): ISubscriber

- handleError(ctx, error)

WebSocketManager

+ server: WebSocket.Server

- controllers: ControllerManager

- things: ThingsManager

+ connection(ws, req)

+ handleMessage(thing, ws, data)

+ getThing(req)

+ parseMessage(data): string

+ notify(ws, interaction, data)

+ confirm(ws, type, message)

+ reject(ws, message)

+ handleError(ws, error)

BaseController

+ router: Router

things: ThingsManager

+ routes(): Router

getThing(ctx): Thing

TDController

+ routes(): Router

+ postTD(ctx)

+ getTD(ctx)

+ postMozillaTD(ctx)

+ getMozillaTD(ctx)

- regenerateOpenApi()

IndexController

+ routes(): Router

+ getIndex(ctx)

Fig. 5.5.: UML of the controllers

and validating. Furthermore it provides static helper methods to send responses. Valid
messages are forwarded and routed to the correct ThingsController method.

5.2. Testing 31

Fig. 5.6.: Visualization of the test coverage of the code

5.2. Testing

To increase the robustness of the code and to minimize the amount of bugs, Jest8 was
used to write unit and integration tests. Jest is a testing platform developed by Facebook
that runs tests fast and sandboxed and provides instant feedback. It introduces snap-
shot testing to easily test serializable values like for example JSON messages used for the
WebSocket API.

In the end, a total of 97 tests were written, which resulted in a test coverage (line coverage)
of 87.26% according to Jest, or 82.29% according to Codecov. Figure 5.6 provides an
overview of the test coverage of the di�erent classes of the whole application. The colors
indicate the coverage percentage: green means a high test coverage (up to 100%), yellow a
medium coverage, and red a low coverage (down to 50% or lower). This coverage sunburst
was generated by Codecov9. An interactive version which allows to inspect the coverage
of the speci�c classes by hovering and clicking on them can be found here:
https://codecov.io/gh/linusschwab/wot-universal-explorer

8https://jestjs.io
9https://codecov.io

https://codecov.io/gh/linusschwab/wot-universal-explorer
https://jestjs.io
https://codecov.io

6
Evaluation

6.1. Demo Scenario . 32

6.1.1. Device Setup . 32

6.1.2. Interactions . 35

6.2. Performance . 36

6.2.1. Test Setup . 36

6.2.2. Results . 36

To evaluate the Universal Explorer, a small demo scenario was used with multiple devices
interacting with each other in a real-world environment. Additionally, performance tests
were executed to measure the delay that it introduces, as it acts as a gateway.

6.1. Demo Scenario

6.1.1. Device Setup

For the scenario, a total of four smart devices were used. Those include a myStrom
Switch, a Philips Hue lamp, a Philips Hue motion sensor and a Nordic Thingy:52. Fig-
ure 6.1 provides an overview of the device setup, which will be explained in detail in the
following subsections.

The Universal Explorer run on a laptop connected to a WiFi router, to which the myStrom
Switch was directly connected. The Mozilla Gateway and the Mozilla Things Framework
were both run on a Raspberry Pi1 that was connected to the same router.

6.1.1.1. myStrom Switch

The myStrom WiFi Switch2 is a power switch with a relay, that provides a simple REST
API. This is one of the devices that was used to test the Universal Explorer in general

1https://www.raspberrypi.org
2https://mystrom.ch/wifi-switch-ch

32

https://www.raspberrypi.org
https://mystrom.ch/wifi-switch-ch

6.1. Demo Scenario 33

Mozilla
Gateway

Universal
Explorer

Things
Frame-

work

WS
Client

Fig. 6.1.: Device setup of the demo scenario

during development. As it does not provide a Thing Description, a W3C one was writ-
ten for its API. Listing 6.1 shows the Thing Description, including the Property Report
that shows the current power usage and the Action Toggle that switches the relay state.
Additionally the myStrom Switch includes On and O� Actions to set the relay to the
speci�c state, those were left out to keep the example readable.

For the scenario, the myStrom Switch was used with a regular fan attached that could
be turned on and o� over the REST API. It was directly connected to the Universal
Explorer using the written W3C Thing Description.

6.1.1.2. Philips Hue Lamp and Motion Sensor

With the Hue3 system, Philips has an ecosystem of smart lamps and accessories that
communicate over ZigBee and are connected to a Hue Bridge WiFi gateway that provides
a REST API. In the scenario, a Hue color lamp and a Hue motion sensor were used. Both
of them were connected to the Mozilla Gateway, which already supported the Hue Bridge.
The Mozilla Gateway generated a Mozilla Thing Description, that could be parsed by
the Universal Explorer and used to communicate with the REST and WebSocket API of
the Mozilla Gateway.

3https://www.meethue.com

https://www.meethue.com

6.1. Demo Scenario 34

1 {

2 "@context": ["https://w3c.github.io/wot/w3c-wot-td-context.jsonld"],

3 "@type": ["Switch"],

4 "name": "myStrom Switch",

5 "base": "http://192.168.0.3/",

6 "interaction": [

7 {

8 "@type": ["Property"],

9 "name": "report",

10 "schema": {

11 "type" :"object",

12 "field": [

13 {

14 "name": "power",

15 "schema": {"type": "integer"}

16 },

17 {

18 "name": "relay",

19 "schema": {"type": "boolean"}

20 }

21]

22 },

23 "writable": false,

24 "observable": false,

25 "form": [

26 {

27 "href": "report",

28 "mediaType": "application/json"

29 }

30]

31 },

32 {

33 "@type": ["Action"],

34 "name": "toggle",

35 "inputSchema": null,

36 "outputSchema": {

37 "type" :"object",

38 "field": [

39 {

40 "name": "relay",

41 "schema": {"type": "boolean"}

42 }

43]

44 },

45 "form": [

46 {

47 "href":"toggle",

48 "mediaType":"application/json"

49 }

50]

51 },

52 ...

53]

54 }

List. 6.1: Thing Description written for the myStrom Switch

6.1. Demo Scenario 35

Fig. 6.2.: Simple hardcoded visualization of the demo devices

6.1.1.3. Nordic Thingy:52

The Nordic Thingy:524 is a small battery-powered device with multiple sensors like hu-
midity or CO2 sensors, a button and a color LED. It provides Bluetooth 5 low energy
for the communication that was used to connect it to the Raspberry Pi. To communi-
cate with the Universal Explorer, the Mozilla Things Framework was used to generate a
Mozilla Thing Description and to provide a REST and WebSocket API server.

6.1.2. Interactions

With all these devices connected to the Universal Explorer, a very basic web application
that acted as a WebSocket client was written. This web application visualized the state
of the devices with hardcoded images to keep it as simple as possible and contained some
automation scenarios written in JavaScript. Figure 6.2 shows the visualization of the
devices used.

The following automations were used for the scenario:

• If the Hue motion sensor detects any motion, turn on the Hue lamp and o� again
after there was no motion detected anymore for a couple of seconds

• If the CO2 concentration in the room measured by the Thingy:52 is high (above
1400 ppm), turn on the myStrom Switch with the connected fan (and o� again as
soon as it is below a certain treshold)

• If the button on the Thingy:52 is pressed, measure the color below it with its sensor
and set the measured color as the light color of the Hue lamp

This small scenario demonstrated that the Universal Explorer can communicate with
various real-world devices using both W3C and Mozilla Thing Descriptions, with a much
reduced developer e�ort compared to having to manually integrate the devices.

4https://www.nordicsemi.com/eng/Products/Nordic-Thingy-52

https://www.nordicsemi.com/eng/Products/Nordic-Thingy-52

6.2. Performance 36

6.2. Performance

As the Universal Explorer acts as a gateway and is therefore the middle-man in the
communication between the client and the thing, it is important that it adds as little
delay as possible to a request. To make sure that this is the case, multiple performance
tests were executed.

6.2.1. Test Setup

To measure the performance of the Universal Explorer, the Apache JMeter5 load testing
tool was used. For each interaction tested, 100 requests were sent to both the thing
directly and with the Universal Explorer as a gateway in between, with a small delay of
100 milliseconds between the requests. The average, median, minimum and maximum
time calculated by JMeter were then compared to calculate the delay that the Universal
Explorer introduces.

The test devices consisted of the myStrom Switch and a virtual Counter Thing provided
by the Node-WoT library that was described in Section 3.1. Both the Universal Explorer
and the virtual Counter Thing were run on the same computer, together with Apache
JMeter to measure the delay introduced by the application as close as possible instead
of the network delay. The myStrom Switch was connected via WiFi to a wireless router,
which was connected to the computer via cable.

6.2.2. Results

6.2.2.1. myStrom Switch

For the myStrom Switch, the Property Report (returns the current power usage) and the
Action Toggle (switches the relay state) were used to perform the performance test.

As visible in Table 6.1, the average response time for the direct Property request were
about 6 milliseconds and 13 milliseconds over the REST API of the Universal Explorer.
Therefore, a delay of 7 milliseconds is introduced here for the processing and forwarding
of the request.

Average Median Min Max
Direct 6 ms 4 ms 3 ms 17 ms
Explorer 13 ms 12 ms 10 ms 25 ms

+ 7 ms + 8 ms + 7 ms + 8 ms

Tab. 6.1.: Property Report of the myStrom Switch

For the Action request, the direct communication took 292 milliseconds and 313 millisec-
onds indirect on average. With 21 milliseconds, the delay was much larger. This is shown

5https://jmeter.apache.org

https://jmeter.apache.org

6.2. Performance 37

in Table 6.2.

The reason for this is that the API of the myStrom Switch uses GET requests for every-
thing. However, the W3C Thing Description Working Draft speci�es that Action requests
have to be done as POST requests. As a workaround, the Universal Explorer tries again
using a GET Request if a thing returns a 405 "method not supported" error message.
As this requires an additional request, the total time required is increased by a couple of
milliseconds.

Average Median Min Max
Direct 292 ms 281 ms 274 ms 394 ms
Explorer 313 ms 300 ms 291 ms 417 ms

+ 21 ms + 19 ms + 17 ms + 23 ms

Tab. 6.2.: Action Toggle of the myStrom Switch

6.2.2.2. Virtual Counter

The second testing device used is a virtual Counter Thing. This is a simple JavaScript
application that provides a REST API and an automatically generated W3C Thing De-
scription and was run on the same machine that was used to run JMeter. The Property
Count (returns the current counter value) and the Action Increment (increments the
counter value by 1) were used to test the performance.

For the Count Property, a direct request took 2 milliseconds on average, the Universal
Explorer required 8 milliseconds to respond. Therefore, a delay of 6 milliseconds was
introduced on average, as visible in Table 6.3.

Average Median Min Max
Direct 2 ms 1 ms 1 ms 8 ms
Explorer 8 ms 8 ms 6 ms 16 ms

+ 6 ms + 7 ms + 5 ms + 8 ms

Tab. 6.3.: Property Count of the virtual Counter Thing

A direct Action request took on average 3 milliseconds, an indirect request 10 millisec-
onds. The delay here is similar with 7 milliseconds, as shown in Table 6.4.

Average Median Min Max
Direct 3 ms 3 ms 2 ms 12 ms
Explorer 10 ms 9 ms 8 ms 21 ms

+ 7 ms + 6 ms + 6 ms + 9 ms

Tab. 6.4.: Action Increment of the virtual Counter Thing

6.2. Performance 38

6.2.2.3. Summary

To summarize, the Universal Explorer increases the time it takes to complete a regular
request by approximately 6 to 8 milliseconds. This is clearly measureable, but not per-
ceptible by users. Faster response times could most likely be achieved over a WebSocket
connection. However, the real things would need to communicate over the WebSocket
protocol too to really decrease the response time.

7
Conclusion and Future Work

7.1. Conclusion . 39

7.2. Future Work . 40

7.2.1. Web of Things . 40

7.2.2. Possible Improvements for the Universal Explorer 40

7.1. Conclusion

The Universal Explorer for the Web of Things makes it possible to interact with smart
things implementing the W3C or Mozilla Thing Description. The gateway can parse the
available interactions of a thing and provides a RESTful API with OpenAPI documenta-
tion, a WebSocket API and a JavaScript (TypeScript) API. It serves as a proof-of-concept
that a possible new standard like the W3C Thing Description based on open web tech-
nologies could make it much easier for developers to connect and interact with multiple
smart things. This could allow them to spend their time on actually building useful ap-
plications instead of wasting it to connect proprietary systems.

Not only for developers, but especially also for regular consumers the future looks bright.
If the possible new Web of Things architecture gains a broad adoption, it could be easily
possible to combine smart devices from multiple manufacturers - without being depen-
dent on the app and device ecosystem of a speci�c manufacturer to support a particular
use case.

The main contributions of this thesis are the following:

1. A simple parser and encoder for W3C and Mozilla Thing Descriptions that allows
to translate between the two types

2. A JavaScript (TypeScript) API with interactive Virtual Things that each represent
a real smart thing

3. A RESTful API with automatically generated endpoints for all the interactions of a
Thing, with machine-readable OpenAPI documentation including schemas for the
input and output data of each interaction

39

7.2. Future Work 40

4. A WebSocket API with real-time, event-based interaction updates and interaction
subscription management for each Thing

7.2. Future Work

7.2.1. Web of Things

For the Web of Things to succeed, a broad adoption is necessary. Manufacturers will need
to design new devices with direct support for the Web of Things architecture to ensure
that they are compatible with other devices instead of building proprietary ecosystems.
Large, already established companies could be less interrested to support the possible new
standard. It is bene�cal for them if customers have to buy devices from their ecosystem
for them to be compatible with the existing devices. Nevertheless, this could be a chance
for smaller companies to increase their market share.

Besides that, the W3C, Mozilla and other organizations involved in the Web of Things
should work together and unify their standardization e�orts for the architecture for the
Web of Things to end up with one, solid standard.

7.2.2. Possible Improvements for the Universal Explorer

7.2.2.1. Support Additional Protocol Bindings

Currently, the Universal Explorer only supports the HTTP protocol, other protocol bind-
ings in a W3C Thing Description �le like CoAP or MQTT are being ignored. However,
the application was built with expandability in mind. It should therefore be easy to im-
plement and support additional protocols. It would even be possible to provide APIs for
the additional protocols and to translate between the di�erent protocols, as the current
REST and WebSocket APIs already use the Virtual Thing proxy objects of the common
JavaScript API to achieve decoupling. This would allow developers to use regular HTTP
REST requests to communicate with a CoAP thing for example.

7.2.2.2. Full Type System and Validation of Data Schemas

For the OpenAPI documentation generation, the Universal Explorer only supports simple
data types at the moment. More complex, nested object structures are not supported yet,
as the W3C Thing Description currently is a working draft with regular changes. This is
something that should be supported in a possible future version. Additionally, the data
schemas are not validated in the current version of the Universal Explorer, however in
case the real thing does not accept the data of a request a bad request error message is
sent to the requester.

7.2.2.3. Scriptable Things

In addition to Virtual Things, the Universal explorer could also o�er the possibility to
directly script JavaScript Things that are connected to legacy things. This could be

7.2. Future Work 41

easily added, however as mentioned in Section 3.1 and 3.3 there are already existing
solutions available for this, that provide W3C and Mozilla Thing Description compliant
Thing servers with APIs. It is therefore already possible to import and parse the Thing
Descriptions generated by those libraries. Directly integrating scriptable things would
make it obsolete to run an additional server.

7.2.2.4. User Interface and Visualization of Things

A user interface with a visualization of the Things and their interactions would make
the Universal Explorer appealing to regular users instead of just developers. With the
semantic information that the W3C Thing Description provides, it would even be possible
to build a smart, easy to use mashup editor similar to Node-RED1. Any future device im-
plementing a W3C Thing Description could then easily be used for complex automations,
without the need to understand programming languages.

1https://nodered.org

https://nodered.org

A
Installation Manual

A.1. Prerequisites . 42

A.2. Installation . 42

A.2.1. Running Tests . 43

A.3. Con�guration . 43

A.4. Usage . 43

This short manual provides directions on how to install and use the Universal Explorer.
The application is open source and can be downloaded on GitHub as shown in Appendix
B.

A.1. Prerequisites

The latest version of Node.js is required to run the application. The o�cial website
nodejs.org1 allows to download the JavaScript runtime and provides detailed installation
instructions for each platform.

A.2. Installation

To install the application, the following command shown in Listing A.1 needs to be run:

1 npm install

List. A.1: Installation

1https://nodejs.org/en

42

https://nodejs.org/en

A.3. Con�guration 43

A.2.1. Running Tests

The tests can be run by using the following command visible in Listing A.2:

1 npm test

List. A.2: Running tests

A.3. Con�guration

To communicate with Things from a Mozilla Things Gateway, the following environment
variables need to be set:

• MOZ_BASE: URL of the Mozilla Gateway

• MOZ_AUTH: Mozilla Gateway bearer token

Until the Mozilla Gateway provides a way to generate access tokens for other applications,
it is necessary to use the developer tools of a browser to get the bearer token. To do so,
the network tools can be used to inspect a request sent to the web application of the
Mozilla Gateway, where the authorization header can be found that includes the bearer
token.

A.4. Usage

To start the application, the following command shown in Listing A.3 needs to be run:

1 npm start

List. A.3: Starting the application

The web interface (Swagger UI) can then be accessed on http://localhost:5000. After
the installation, there are already example Things provided. However, it is necessary to
have real devices available to really use the application.

To add devices, the Thing Descriptions must be placed in the correct folder, the devices
are then automatically added at the start of the application:

• public/td for W3C Thing Descriptions

• public/td-moz for Mozilla Thing Descriptions

Things connected to a Mozilla Gateway can be added by getting the corresponding Thing
Description by sending a GET request with a "Accept: application/json" header to the
/things URL of the Gateway and copying the JSON Thing Description to the path
above. The response received by the Gateway is an array, it is important to only put one
Thing per �le. Alternatively it is also possible to script a new Thing by using the Mozilla
Things Framework2.

2https://iot.mozilla.org/things

http://localhost:5000
https://iot.mozilla.org/things

A.4. Usage 44

To connect things using a W3C Thing Description, it is possible to manually write a
Thing Description for devices that provide a HTTP REST API. For the myStrom WiFi
Switch3, a working one is already provided - it is just necessary to adapt the URL to the
correct IP address in the local network. Otherwise, it is also possible to script Things
using the Node-WoT4 library, however the Universal Explorer does only support the W3C
Thing Description 1.0 JSON-LD serialization format.

3https://mystrom.ch/wifi-switch-ch
4https://github.com/eclipse/thingweb.node-wot

https://mystrom.ch/wifi-switch-ch
https://github.com/eclipse/thingweb.node-wot

B
Repository of the Project

The Universal Explorer is open source and licensed under the permissive MIT license.
The repository of the application, where it can be downloaded, can be found on GitHub:
https://github.com/linusschwab/wot-universal-explorer

Besides the code of the application, the repository contains a readme with badges for
the test status (provided by Travis CI1), the code coverage calculated by Codecov and
the dependency status monitored by the David2 dependency manager. Additionally the
readme contains a copy of the installation manual from Appendix A and a quick intro-
duction to the REST, WebSocket and JavaScript APIs. Figure B.1 shows a screenshot of
the repository at its current state.

1https://travis-ci.org/linusschwab/wot-universal-explorer
2https://david-dm.org/linusschwab/wot-universal-explorer

45

https://github.com/linusschwab/wot-universal-explorer
https://travis-ci.org/linusschwab/wot-universal-explorer
https://david-dm.org/linusschwab/wot-universal-explorer

46

Fig. B.1.: Screenshot of the repository of the project

C
Common Acronyms

API Application Programming Interface
CoAP Constrained Application Protocol
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IoT Internet of Things
IP Internet Protocol
JSON JavaScript Object Notation
JSON-LD JavaScript Object Notation for Linked Data
MQTT Message Queue Telemetry Transport
MVC Model View Controller
REST Representational State Transfer
TD Thing Description
UI User Interface
UML Uni�ed Modeling Language
URI Uni�ed Resource Identi�er
URL Uniform Resource Locator
W3C World Wide Web Consortium
WoT Web of Things

47

References

[1] Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari, Moussa
Ayyash. Internet of Things: A Survey on Enabling Technologies, Protocols, and Ap-
plications. IEEE Communications Surveys & Tutorials (Volume 17, Issue 4), IEEE,
2015. 1

[2] Dominique Guinard, Vlad Trifa, Friedemann Mattern, Erik Wilde. From the Internet
of Things to the Web of Things: Resource Oriented Architecture and Best Practices.
Springer, 2011. 2

[3] Dave Raggett. The Web of Things: Challenges and Opportunities. Computer (Volume
48, Issue 5), IEEE, 2015. 2

[4] Dominique Guinard. A Web of Things Application Architecture � Integrating the Real-
World into the Web. Doctoral dissertation, ETH Zurich, 2011. 1, 2

[5] Vlad Trifa. Building Blocks for a Participatory Web of Things: Devices, Infrastruc-
tures, and Programming Frameworks. Doctoral dissertation, ETH Zurich, 2011. 1,
2

[6] Dominique Guinard, Vlad Trifa. Towards the Web of Things: Web Mashups for Em-
bedded Devices. WWW (International World Wide Web Conferences), Enterprise
Mashups and Lightweight Composition on the Web (MEM 2009) Workshop, 2009.
2

[7] Dominique Guinard, Vlad Trifa, Erik Wilde. A Resource Oriented Architecture for the
Web of Things. Internet of Things 2010 International Conference (IoT 2010), 2010. 2

[8] Vlad Trifa, Samuel Wieland, Dominique Guinard, Thomas Bonhert. Design and im-
plementation of a gateway for web-based interaction and management of embedded
devices. International Workshop on Sensor Network Engineering (IWSNE 09), 2009.
2

[9] Soma Bandyopadhyay, Abhijan Bhattacharyya. Lightweight Internet protocols for web
enablement of sensors using constrained gateway devices. 2013 International Confer-
ence on Computing, Networking and Communications (ICNC), IEEE, 2013. 10

[10] Roy Fielding. Architectural Styles and the Design of Network-based Software Archi-
tectures. Doctoral dissertation, University of California, Irvine, 2000. 17

[11] Bruno Costa, Paulo Pires, Flávia Delicato, Paulo Merson. Evaluating a Represen-
tational State Transfer (REST) Architecture: What is the Impact of REST in My
Architecture?. 2014 IEEE/IFIP Conference on Software Architecture, IEEE, 2014. 17

48

References 49

[12] Stefan Tilkov, Steve Vinoski. Node.js: Using JavaScript to Build High-Performance
Network Programs. IEEE Internet Computing (Volume 14, Issue 6), IEEE, 2010. 24

[13] Zheng Gao, Christian Bird, Earl Barr. To Type or Not to Type: Quantifying De-
tectable Bugs in JavaScript. 2017 IEEE/ACM 39th International Conference on Soft-
ware Engineering (ICSE), IEEE, 2017. 24

[14] Glenn Krasner, Stephen Pope. A Cookbook for Using the ModeL-View-Controller
User-Interface Paradigm in Smalltalk-80. Journal of Object-Oriented Programming,
SIGS Publication, 1988. 24

[15] Urs Hunkeler, Hong Linh Truong, Andy Stanford-Clark. MQTT-S � A publish/sub-
scribe protocol for Wireless Sensor Networks. 3rd International Conference on Com-
munication Systems Software and Middleware and Workshops, IEEE, 2008. 10

[16] Carsten Bormann, Angelo Castellani, Zach Shelby. CoAP: An Application Protocol
for Billions of Tiny Internet Nodes. IEEE Internet Computing (Volume 16, Issue 2),
IEEE, 2012. 10

[17] Matthias Kovatsch. CoAP for the web of things. 4th International Workshop on the
Web of Things (WoT 2013), 2013. 10

[18] A.J. Bernheim Brush, Bongshin Lee, Ratul Mahajan, Sharad Agarwal, Stefan Saroiu,
Colin Dixon. Home Automation in the Wild: Challenges and Opportunities. ACM
Conference on Computer-Human Interaction, 2011. 1

Referenced Web Ressources

[19] Kazuo Kajimoto, Matthias Kovatsch, Uday Davuluru. Web of Things (WoT)
Architecture. W3C Working Draft, 2017. https://www.w3.org/TR/2017/

WD-wot-architecture-20170914/ 2, 12

[20] Sebastian Kaebisch, Takuki Kamiya. Web of Things (WoT) Thing De-
scription. W3C Working Draft, 2018. https://www.w3.org/TR/2018/

WD-wot-thing-description-20180405/ 6

[21] Michael Koster. Web of Things (WoT) Protocol Binding Templates.
W3C Working Group Note, 2018. https://www.w3.org/TR/2018/

NOTE-wot-binding-templates-20180405/ 10

[22] Zoltan Kis, Kazuaki Nimura, Daniel Peintner, Johannes Hund. Web of Things
(WoT) Scripting API. W3C Working Draft, 2018. https://www.w3.org/TR/2018/
WD-wot-scripting-api-20180405/ 12

[23] Ben Francis. Web Thing API. Mozilla, Uno�cial Draft, 2018 (accessed 21. June
2018). https://iot.mozilla.org/wot/ 10, 13, 20

50

https://www.w3.org/TR/2017/WD-wot-architecture-20170914/
https://www.w3.org/TR/2017/WD-wot-architecture-20170914/
https://www.w3.org/TR/2018/WD-wot-thing-description-20180405/
https://www.w3.org/TR/2018/WD-wot-thing-description-20180405/
https://www.w3.org/TR/2018/NOTE-wot-binding-templates-20180405/
https://www.w3.org/TR/2018/NOTE-wot-binding-templates-20180405/
https://www.w3.org/TR/2018/WD-wot-scripting-api-20180405/
https://www.w3.org/TR/2018/WD-wot-scripting-api-20180405/
https://iot.mozilla.org/wot/

Index

API, 13, 16, 18, 24, 27

CoAP, 8, 25, 33

Fragmentation, 1

Interaction
Action, 6, 15, 18, 21
Event, 6, 15, 18, 22
Property, 5, 14, 17, 20

JavaScript, 13, 24

Mozilla, 3, 8, 12, 13
MQTT, 8, 25, 33
MVC, 23

Node.js, 23

OpenAPI, 13, 27

REST, 16, 27

Thing Description, 2, 5, 13, 18, 26
TypeScript, 23

W3C, 2, 5, 11, 13
WebSocket, 18, 27

51

	Introduction
	The Problem
	Motivation and Goals
	Outline
	Conventions

	WoT Thing Description
	Interaction Resources
	Properties
	Actions
	Events

	Serialization
	Type System
	Protocol Bindings
	Mozilla Web Thing Description

	Related Work
	Node-WoT
	Mozilla Things Gateway
	Mozilla Things Framework

	The Universal Explorer
	Virtual Things (JavaScript API)
	Methods

	REST API
	Structure
	Thing Description

	WebSocket API
	Protocol
	Message Types

	Technical Implementation
	Architecture
	Object Model
	From the TD to the Object Model and Back
	OpenAPI Documentation Generation
	Controllers

	Testing

	Evaluation
	Demo Scenario
	Device Setup
	Interactions

	Performance
	Test Setup
	Results

	Conclusion and Future Work
	Conclusion
	Future Work
	Web of Things
	Possible Improvements for the Universal Explorer

	Installation Manual
	Prerequisites
	Installation
	Running Tests

	Configuration
	Usage

	Repository of the Project
	Common Acronyms
	References

