
Building an extensible framework for
automatic employee time logging using

physical markers

Master Thesis

Aleksei Kosozhikhin

Thesis supervisors:
Prof. Dr. Jacques PASQUIER-ROCHA

Pascal GREMAUD

Philosophisch-naturwissenschaftliche Fakultät
der Universität Bern

July 2018

Abstract

Tracking of employee hours historically has been a cornerstone metric for determining
the hired force's pay. In the modern times it is becoming increasingly important to pro-
vide precision and automation to this process. The current state of technology includes
several methods of location and proximity detection, allowing us to use physical markers
for automatic employee time tracking.

In this thesis we construct a concept of an abstract extensible framework for manual
and automatic employee hours tracking by covering the whole time tracking work�ow.
We also build an implementation of the proposed concept suited for all participants of
the employee hours tracking process and using multiple tracking technologies.

Keywords: Bluetooth beacons, QR Codes, RESTful API, Xamarin, ASP.NET Core

i

Acknowledgements

I want to thank my colleagues at Cure-IT AG and especially Christian Wienholz for pro-
viding resources and immeasurable help on this project.

I also want to thank Pascal Gremaud for supervising my project and guiding me.

Last but not least, I want to thank my girlfriend Lisa for being my guiding star in
this life and always helping me to keep my goals in front of me.

ii

Table of Contents

1. Introduction 3

1.1. Motivation . 3

1.1.1. Goals . 4

1.2. Organization . 4

1.3. Notations and Conventions . 4

2. Proximity and location 6

2.1. Introduction . 6

2.2. Technology overview . 6

2.2.1. QR codes and barcodes . 6

2.2.2. Radio-frequency identi�cation . 7

2.2.3. Wi-Fi . 8

2.2.4. Bluetooth beacons . 9

2.2.5. Global Positioning System . 9

2.2.6. Biometrics authentication . 9

2.3. Conclusion . 10

3. Existing solutions 11

3.1. Introduction . 11

3.2. Timedock . 11

3.3. TimeTac . 12

3.4. Calamari . 13

3.5. TimeCamp . 13

3.6. Conclusion . 14

4. Framework proposal 15

4.1. Introduction . 15

4.2. Requirements . 15

4.3. Components . 16

4.3.1. Markers . 16

iii

Table of Contents iv

4.3.2. Clients . 16

4.3.3. Backend . 16

4.3.4. Authentication . 16

4.4. User types . 17

4.5. Typical work�ow scenario . 17

5. Implementation 19

5.1. Time-Tracking Tool . 19

5.2. Backend Application Programming Interface (API) 20

5.2.1. Choosing a framework . 20

5.2.2. Software pattern . 20

5.2.3. Database . 21

5.2.4. Entities . 21

5.2.5. Documentation and hosting . 22

5.2.6. Authorization . 24

5.3. Web User Interface (UI) . 25

5.3.1. Authorization . 25

5.4. Mobile UI . 26

5.4.1. Creating time records . 26

5.4.2. Managing existing time records 27

5.5. Authentication service . 27

5.6. Example scenarios . 27

6. Future work 35

6.1. As a concept . 35

6.2. As a product . 35

7. Conclusion 37

A. Common Acronyms 38

B. License of the Documentation 39

List of Figures

2.1. Example of a Quick Response Code (QR Code) containing a link to the

Software Engineering Group website . 7

2.2. Typical Radio-Frequency Identi�cation (RFID) system 8

2.3. Combined Wi-Fi and Bluetooth tracking system 8

2.4. Estimote sticker beacon . 9

2.5. Example of geofencing areas . 10

3.1. Timedock punch clock machine . 12

3.2. TimeTac web portal . 12

3.3. Calamari �Clock In� through web portal 13

3.4. TimeCamp manual task management . 14

4.1. Framework's main components and data �ow 17

5.1. Database diagram in Microsoft SQL Server notation 22

5.2. Overview of the API in the Swagger UI (part 1 of 2) 23

5.3. Overview of the API in the Swagger UI (part 2 of 2) 24

5.4. Creating a new project . 28

5.5. Creating a new project assignment . 28

5.6. Adding a marker . 29

5.7. A smartphone with a Mobile UI app next to a beacon device 29

5.8. Signing in to the Mobile UI . 30

5.9. Timesheet on the Mobile UI . 30

5.10. Timesheet view on the Web UI . 30

5.11. Creating a new sign-o� request . 31

5.12. Sign-o� request details view on the Web UI 31

5.13. Adding a time record manually on the Mobile UI 32

5.14. Missing time record noti�cation on the Mobile UI 32

5.15. Timesheet view on the Web UI with missing time records 33

5.16. Adding a user proxy permission . 33

1

List of Figures 2

5.17. Adding a time record as a user proxy on the Web UI 34

1
Introduction

1.1. Motivation . 3

1.1.1. Goals . 4

1.2. Organization . 4

1.3. Notations and Conventions 4

1.1. Motivation

Employee hours tracking as an important worker's productivity metric appeared as early
as the nineteenth century[1]. Classic examples of the tools used to track worker's time
are punch cards and timesheets. Precision and automation in this process become in-
creasingly important, especially with employees who are being paid by the hour, such as
freelancers and consultants.

Disadvantages of classic manual time logging include:

• Human error

Employees inaccurately enter their time, making HR departments spend a lot of
time �xing these errors.

• Time theft

Employees might intentionally enter incorrect time or punch in for their absent
colleagues.

• Time consuming process

Manual time logging takes much more time than expected, which might lead to
adding time records later in bulk, causing even more lost time or additional errors.

The American Payroll Association estimated that automation reduces costs related to
payroll management by up to 80%[7], which is in�uenced by reducing the aforementioned
risks. Modern technology provides several methods of tracking employee working hours.
However, tying yourself to a single technology might not be the best decision, as we show
in the following chapters.

3

1.2. Organization 4

1.1.1. Goals

Following the necessity of modernization and the current state of technology, we formulate
the goals of this work as follows:

• Analyze existing processes and solutions.

• Propose a concept for an extensible and customizable framework, encompassing the
entire work�ow of employee hours tracking.

• Implement a running prototype of proposed concept.

1.2. Organization

• Introduction

The introduction describes the motivation and goals of this work, gives an overview
of the following chapters and provides a description of the formatting conventions
used by the author.

• Proximity and location

This chapter introduces several popular solutions for proximity and location track-
ing along with their pros and cons.

• Existing solutions

The second chapter provides a critical review of the existing employee time tracking
solutions.

• Framework proposal

Here we reiterate over requirements for our system and propose a framework archi-
tecture for further implementation.

• Implementation

This chapter describes our motivational implementation of the proposed framework,
describing used technologies and libraries.

• Future work

In this chapter we explain our ideas on improvement of the framework concept as
well as the implementation project.

• Conclusion

Finally, in conclusion we summarize our achievements made as part of this thesis.

• Appendix

Contains extracts of artifacts or service messages, abbreviations and references used
throughout this work.

1.3. Notations and Conventions

• Formatting conventions:

� Abbreviations and acronyms as follows Uniform Resource Locator (URL) for
the �rst usage and URL for any further usage;

1.3. Notations and Conventions 5

� http://localhost:9090/api is used for web addresses;

� Code is formatted as follows:

1 public double division(int _x, int _y) {

2 double result;

3 result = _x / _y;

4 return result;

5 }

• The work is divided into six chapters that are formatted in sections and subsections.
Every section or subsection is organized into paragraphs, signalling logical breaks.

• Figures, Tables and Listings are numbered inside a chapter. For example, a reference
to Figure j of Chapter i will be noted Figure i.j.

• As far as gender is concerned, I systematically select the masculine form due to
simplicity. Both genders are meant equally.

http://localhost:9090/api

2
Proximity and location

2.1. Introduction . 6

2.2. Technology overview . 6

2.2.1. QR codes and barcodes . 6

2.2.2. Radio-frequency identi�cation 7

2.2.3. Wi-Fi . 8

2.2.4. Bluetooth beacons . 9

2.2.5. Global Positioning System 9

2.2.6. Biometrics authentication 9

2.3. Conclusion . 10

2.1. Introduction

The problem of logging employee hours can be reduced to the problem of attributing
the worker to his workplace. This means that as long as the worker is at his workplace
(e.g. his computer, a conference room or another designated location), the system should
count the time towards his working hours. This prompts us to use di�erent proximity
and location technologies to connect the worker to his workplace. The former allows a
device to provide a reaction (e.g. start logging working time) based on a distance to a
speci�c physical marker, while the latter determines an absolute location, which can be
compared then to a known location of a workplace to initiate time logging. This section
will give a short overview of the existing technologies and analyze their advantages and
disadvantages.

2.2. Technology overview

2.2.1. QR codes and barcodes

Barcode is an optical, machine-readable, representation of data[8]. Since its introduction
in 1966 and to this date it remains the most popular solution for Automatic Identi�cation

6

2.2. Technology overview 7

and Data Capture (AIDC)[9]. Introduced in 1994, QR Code technology became popular
outside of industrial use for its faster readability and greater storage capacity, compared
to original barcodes. However, 2012 Inc magazine study showed[10], that the technology
was unknown to 97% of consumers to the point where a target user wouldn't know how to
scan the QR Code or how to �nd an app able to do that. Another valid point mentioned
in the article is that interaction with a QR Code takes too much steps and can hardly get
automated. However, it still remains an extremely cheap solution, since it can be simply
printed on a surface or displayed from a device's screen. It also requires close proximity
(under 1m) to get recognized, which, depending on circumstances, can be viewed as an
advantage or a disadvantage.

Fig. 2.1.: Example of a QR Code containing a link to the Software Engineering Group
website

2.2.2. Radio-frequency identi�cation

Radio-Frequency Identi�cation (RFID) technology uses radio waves to read and capture
information stored on a tag attached to an object[11]. As demonstrated on Figure 2.2,
the main disadvantage of using an RFID system is its complexity in terms of the amount
of di�erent components: RFID tags, readers, reader control and apps. Near-Field Com-
munication (NFC) builds on top of RFID technology and can be presented as a branch
of high-frequency RFID. The unique feature of NFC is the ability to act as both a reader
and an NFC tag. NFC is widely used in smartphones: according to an IHS Technology
study[12], it will be included in 64% of the phones shipped in 2018, which partly resolves
the infrastructure complexity problem of RFID, even though dedicated NFC tags still
need to be deployed. Furthermore, the frequency range used by NFC presents a distance
limitation (addressed even in the name of the technology), with optimal range of NFC
being around 10cm. Advantages of using NFC include security (it was designed with
security and range limitations to prevent hacking attempts) and low power consumption
(tags operate in passive mode, meaning that they only activate when a reader is present
and don't require their own power source).

2.2. Technology overview 8

Fig. 2.2.: Typical RFID system

2.2.3. Wi-Fi

Wi-Fi is a popular wireless networking technology, but it can be successfully used for
proximity detection[3] as well as location tracking[13]. Due to the complexity of its tech-
nology, Wi-Fi location tracking solutions are generally more expensive than RFID with
tags priced at around $50 on average and requiring more power consumption. While most
of the smartphones are Wi-Fi-enabled and therefore don't require speci�c tag attached to
them, constant usage of Wi-Fi can drain the device's battery signi�cantly and therefore
requires compromises. However, Wi-Fi tracking can operate in a logically passive mode,
meaning that any Wi-Fi-enabled device periodically sends a handshake-message to all
access points in range, which allows the system to track devices based on their MAC
addresses and signal power, although this might be considered a privacy issue. Wi-Fi
tracking also requires a serious investment into router infrastructure and its subsequent
maintenance, which brings the price of the solution even higher.

Fig. 2.3.: Combined Wi-Fi and Bluetooth tracking system

2.2. Technology overview 9

2.2.4. Bluetooth beacons

Bluetooth beacons are a class of Bluetooth Low Energy (BLE) devices that periodically
broadcast their identi�er or other speci�c message to the nearby devices. By placing such
device at a known location, a developer of positioning system might pinpoint the location
of a receiving device (such as a smartphone) when it recognizes the broadcasted identi�er.
Usage of BLE technology allows to improve the beacon lifetime up to 2 years without
recharging it and at the same time decrease the size of its battery (e.g. many beacon
devices operate on �coin� batteries). Due to wide spread of Bluetooth technology, it is
supported on most of the smartphones. Key platform holders invest in their own BLE
beacon standards, such as iBeacon by Apple and Eddystone by Google. Besides trivial
proximity detection, Bluetooth beacons can be used for indoor positioning, as proposed
by Rida et al [5]. Di�erent standards allow to send di�erent payload with every frame
of a beacon broadcast, e.g. a Uniform Resource Locator (URL) or a Universally Unique
Identi�er (UUID).

Fig. 2.4.: Estimote sticker beacon

2.2.5. Global Positioning System

Global Positioning System (GPS) is a global navigation satellite system that provides
geolocation and time information to any receiver with unobstructed line of sight to four
or more GPS satellites. Geofencing uses location data provided by GPS to match it
against a virtual perimeter assigned to a real-world area. While the GPS technology
is widespread among modern smartphones, its constant usage results in major power
drain, and indoor location becomes increasingly inaccurate due to the satellite signal
being obstructed by the building's walls. Thus, using the GPS technology for geofencing
would require some implementation compromises, such as reduced activation frequency
and wide area de�nition, which would a�ect precision.

2.2.6. Biometrics authentication

Biometrics describe human body's characteristics, allowing computer systems to identify
a person by an image of his face, audio of his voice or other measures [2]. Biometric
identi�ers are unique to individuals, thus making them more reliable in identi�cation

2.3. Conclusion 10

Fig. 2.5.: Example of geofencing areas

compared to other technical means, especially when using multiple modalities at once.
However, using biometric data often causes privacy and discrimination concerns by pro-
viding information about a person without his consent[4]. Nevertheless, use of biometrics
authentication in attendance tracking is predicted to grow in the next years[21].

2.3. Conclusion

State of the art technology provides many solutions to the proximity and location problem,
di�ering in their parameters. Some technologies guarantee close proximity (QR Codes,
NFC) while others work in big or arbitrary range (Bluetooth beacons, GPS). Another
important charateristic is battery use, which limits the applicability of several technolo-
gies, like Wi-Fi and GPS. This diversity allows for great customization for individual
customer's needs, based on price, maintainability, complexity, reliance and other param-
eters.

3
Existing solutions

3.1. Introduction . 11

3.2. Timedock . 11

3.3. TimeTac . 12

3.4. Calamari . 13

3.5. TimeCamp . 13

3.6. Conclusion . 14

3.1. Introduction

Due to the high demand for a modern solution of the time tracking problem, several
products were developed to try to meet that demand. In this chapter we provide an
overview of a few popular solutions and try to analyze their advantages and disadvantages.

3.2. Timedock

https://timedock.com/

Timedock provides a hosted solution connected to wall-mounted NFC card readers or
special apps installed on work supervisors' mobile devices (Android and iOS). Every
worker gets equipped with an ID card containing an NFC chip and a QR Code that can
be used interchangeably for �badging� in or out. Timesheet data can be accessed in a
hosted Web portal through a simplistic interface. Any additional reporting has to be done
through external tools with data exported in Comma-Separated Values (CSV) format.
Pricing model is another downside � customer has to pay a �xed rate per employee,
which becomes complicated and costly.

11

https://timedock.com/

3.3. TimeTac 12

Fig. 3.1.: Timedock punch clock machine

3.3. TimeTac

https://www.timetac.com/en/

TimeTac covers employee personal working time tracking, time tracking per project and
absence management. Time logging is done through a web portal or mobile app manually.
Alternatively, TimeTac provides wall-mounted terminals for manual and NFC-based log-
ging, as well as NFC stickers for location-based logging through mobile app. Detailed
timesheets and calendars are available for manager personnel through the same web por-
tal. However, it provides an outdated user experience with all of its featured crammed on
the same portal and sometimes the same page. Furthermore, as in Timedock's example,
pay-per-user subscription becomes bloated and unmanageable for bigger companies.

Fig. 3.2.: TimeTac web portal

https://www.timetac.com/en/

3.4. Calamari 13

3.4. Calamari

https://calamari.io/

Calamari o�ers a plethora of integrations and solutions for employee time tracking, from
manual time logging through a mobile app to automatic tracking with BLE Beacons and
QR Codes. Software integrations are also possible, with several pre-existing ones like
Slack1 or Toggl2 and ability to create customized integrations through their documented
Application Programming Interface (API). However, it doesn't go beyond simple �check
in�/�check out� work�ow and doesn't allow any metadata with time logs on top of user's
name. On the other hand, Calamari provides a more �exible tier-based pricing scheme.

Fig. 3.3.: Calamari �Clock In� through web portal

3.5. TimeCamp

https://www.timecamp.com/

TimeCamp provides manual time logging with project speci�cation, as well as automatic
project tracking based on user's activity. As with most of the solutions, it gives pay-
per-user subscription options and hosted solution for bigger companies (as opposed to
cloud service in the basic package). It also o�ers many app and service integrations, e.g.
GitHub and Atlassian Jira. However, its activity tracking technology raises privacy
concerns: it determines what the user has spent his time on by tracking automatically in
the background the running processes and browser navigation history, as well as taking
screenshots of the desktop.

1A popular cloud-based set of team collaboration tools
2A time-tracking application

https://calamari.io/
https://www.timecamp.com/

3.6. Conclusion 14

Fig. 3.4.: TimeCamp manual task management

3.6. Conclusion

There are several solutions on the market solving time tracking problem in some way,
however they all focus on a speci�c target audience:

• Single developers: those solutions tend to concentrate on many projects that the
developer works on in parallel. They often implement a ToDo mechanism as well
as some rudimentary billing functionality.

• External workforce: the main focus is tracking work on a remote site.

• Project managers: focusing on the task management within projects and tracking
planned vs spent hours.

4
Framework proposal

4.1. Introduction . 15

4.2. Requirements . 15

4.3. Components . 16

4.3.1. Markers . 16

4.3.2. Clients . 16

4.3.3. Backend . 16

4.3.4. Authentication . 16

4.4. User types . 17

4.5. Typical work�ow scenario . 17

4.1. Introduction

Following the state of technology and market research, as well as our personal professional
experience with time tracking, we accumulate the features of existing solutions, but design
our work�ow based on employer/workforce relationship. From the employer side, the
main focus will be on tracking time that the employee spent on a project, while from the
employee side the expected result is his working time approved before billing the customer
or his representative.

4.2. Requirements

According to these goals, we design the framework concept with the following require-
ments:

• The system has to allow tracking working hours.

• Tracking has to follow the �badging� logic (i.e. �badge in� to signify start of work
and �badge out� for end of work).

15

4.3. Components 16

• The system has to be technology-agnostic, i.e. providing a framework able to en-
compass many di�erent proximity and location technologies based on the customer's
needs.

• Logged time can and has to be attributed with project details.

• Digital process has to include all stakeholders from actual workers to persons re-
sponsible for signing o� the time records.

• Attempts of forging time records have to be prevented by the system.

4.3. Components

We subsequently propose a framework design based on the following three main compo-
nents.

4.3.1. Markers

A worker's workplace is associated with a logical marker. Depending on the chosen
technology, this logical marker can in turn be represented by a physical marker, i.e. a
device providing information to a client, or existing solely as a model of workplace. As an
example, a map area corresponding to the company campus could be used for detecting
user's attendance through GPS geofencing.

4.3.2. Clients

End-users of the system work with it through its clients. The framework is designed to
separate backend from frontend to support any number of di�erent clients for di�erent
use cases. A client application has to unload from the backend as much logic pertaining
to generation of time records (including worker authentication, marker detection and so
forth) as possible before supplying the complete time record. An example of such client
would be a software integration to a badging system: when a user unlocks the doors to his
o�ce building by using his badge, the software would recognize his identi�er and create
a time record in the system. The same would be done on user leaving the building, thus
creating a pair of �check in� and �check out� time records.

4.3.3. Backend

Framework's backend provides functionality of the system to the clients through a com-
mon API. It is completely client-agnostic: the set of features, provided by client to a user,
depends only on the client implementation. However, access to the features is limited by
role-based authorization policies based on the authenticated user's session.

4.3.4. Authentication

To achieve modularity, the framework is designed to use an external authentication ser-
vice. It is accessed independently by clients and the backend. It is designed only to

4.4. User types 17

provide authentication, with authorization de�ned and implemented on the backend for
fuller control.

Fig. 4.1.: Framework's main components and data �ow

4.4. User types

Following the decision to authorize users' access to the system's features based on their
roles, we propose the following roles and their responsibilities:

• Worker

Responsible for time record creation. Can provide additional metadata with a time
record, browse his recently created records and �x recent inconsistencies.

• Time manager

Gets an overview of workers and their time records. Assigns projects to workers.
On special occasions can act as a proxy for a speci�c worker to add time records
on his behalf. Responsible for overviewing the correctness of time records before
sending them for signing o�.

• Signee

Signs o� on time records for speci�c worker's month of work and locks them from
further changes.

• User manager

Adds new users and deletes them from the system. Manages users' roles. Creates
user proxy rules for time managers.

• System manager

Manages markers and projects in the system. Can act as a user manager.

The system allows to combine multiple roles for a single user, which is handy in smaller
companies where employees might have more responsibilities.

4.5. Typical work�ow scenario

1. System manager adds user manager.

2. System manager adds project and marker.

3. User manager adds time manager, worker and signee.

4. Time manager assigns worker to the project.

4.5. Typical work�ow scenario 18

5. Worker uses marker to create time records for the project.

6. Time manager checks if time records are valid and sends them to signee.

a) If time records are invalid, time manager requests proxy permissions from user
manager.

b) User manager grants time manager proxy permissions on the worker.

c) Time manager adds missing time records and/or removes extra records.

7. Signee checks the provided time sheet and signs o� on it.

5
Implementation

5.1. Time-Tracking Tool . 19

5.2. Backend API . 20

5.2.1. Choosing a framework . 20

5.2.2. Software pattern . 20

5.2.3. Database . 21

5.2.4. Entities . 21

5.2.5. Documentation and hosting 22

5.2.6. Authorization . 24

5.3. Web User Interface (UI) . 25

5.3.1. Authorization . 25

5.4. Mobile UI . 26

5.4.1. Creating time records . 26

5.4.2. Managing existing time records 27

5.5. Authentication service . 27

5.6. Example scenarios . 27

5.1. Time-Tracking Tool

The Time-Tracking Tool (TTT) is an implementation of the proposed employee time
tracking framework we developed as a commercial product prototype for Cure-IT AG.
The idea and requirements for TTT stemmed from the consulting work that employees of
Cure-IT AG did for other companies. This also helped to specify target audience of the
project as IT specialists: o�cial employees, consultants or freelancers. Initial meeting
with my supervisor in the company resulted in the list of requirements, architecture
outline and other details described in the previous chapter.

19

5.2. Backend API 20

5.2. Backend API

The Backend API is the core component of the framework, providing data access and
manipulation functionality to the clients. Following the idea of decoupling the client and
server components, providing a uniform interface and making the client software handle
state on its own, we decided to develop the Backend API as RESTful. It also provides
predictable and logical API speci�cation, which helps client software developers.

5.2.1. Choosing a framework

Streamlining the development of the Backend API implementation would require the
selected framework to use a common language of development and be well-documented
or have a large user-generated know-how database. The selected framework also has to
support third-party extensions and have a large database of such extensions. It has to
provide built-in authentication and authorization mechanisms or provide easy integration
of third-party services. It also has to provide �exibility in hosting solutions and database
integration based on customer's needs: from centralized cloud hosting to deployment in
customer's infrastructure.

This allows us to formulate the following set of requirements:

• Familiar codebase

• Large developers community

• Extensibility through third-party plugins

• Integrated user authentication and authorization

• Simple deployment

• Database connectors

We selected ASP.NET Core 2.0 for implementation of the Backend API as it follows
all of the requirements. Its main programming language is C#, which takes a 5th spot in
TIOBE's programming language popularity index for June 2018[16]. ASP.NET Core is
highly extensible through o�cial and uno�cial NuGet repositories: NuGet Gallery faces
around 150 million downloads a week[17]. It provides a built-in Identity mechanism[18],
as well as integration of external auth services. It is also one of the fastest Web application
platforms, according to TechEmpower's benchmarks[15].

5.2.2. Software pattern

For the implementation of the Backend API we are using the Model-View-Controller
(MVC) pattern, with models represented by database entities, views being JSON repre-
sentations of a relevant Data Transfer Object (DTO) and controllers � the code con-
necting the two. ASP.NET Core provides very good MVC integration out of the box
utilizing �le naming conventions, making development very easy. We grouped controllers
by the resources they provide, each controller providing functionality from simple set
of Create/Read/Update/Delete (CRUD) operations to grouping, �ltering and combining
di�erent models.

5.2. Backend API 21

5.2.3. Database

For the database engine we chose Microsoft SQL Server with Entity Framework (EF) as
an Object-Relational Mapping (ORM) framework on top of it. The choice was made for
the sake of the development simplicity, since EF provides handy data annotations in model
classes and Migrations mechanism for incremental database schema updates. The solution
can be updated to use di�erent other SQL database engines through Database Providers,
while NoSQL databases have to be used through external libraries. The simplicity of
SQL connection allowed us to use a local database for debugging and an Azure-hosted
one in release.

5.2.4. Entities

In our data scheme we propose the following entities as part of our framework's work�ow:

• Time record is a basic unit of user's work activity. It signi�es either start or
end of work, either holding this �ag explicitly or deriving it from surrounding time
records. Each time record is associated with a worker user, a customer project, a
type of time record's source and (optionally) a marker. To follow the main purpose
of the framework (tracking working time), time record records a timestamp of its
creation.

• Marker is a logical representation of a workplace. It contains a displayable name,
an identi�er in form of a UUID and it is always associated with a customer project.
Upon marker's recognition in a client, it is supposed to check against the Backend
API to �nd the marker by its ID. In addition to this, it can store metadata (serialized
in the database in form of a JSON object) with client-speci�c schema.

• Source type represents a single type of time record's originating source. It can
optionally require a marker to be associated with every time record using the source
type. In this prototype we use two source types without markers (for regular manual
and automatic conditional time record creation) and two with markers (QR Code
and Beacon).

• Customer project represents a work project that a worker user is assigned to. It
is used for �ltering and categorization of logged time;

• Project assignment is a link between a worker user and a project. It always has
a starting and ending date. Without a project assignment a worker user cannot
create a time record for a project.

• User represents any user of the framework, from worker to management personnel.

• Roles help the system to authorize users' access to certain features. Every user
can be member of one or many roles.

• User roles serve to link users and roles in a many-to-many relationship.

• User proxy provides time managers temporary rights to add a time record on
behalf of a worker user.

• Sign-o� requests are a �nal step in time management work�ow. They get created
when time manager is ready to provide worker's timesheet to responsible signee user.
After signee accepts the request, worker user's work gets locked in the request's time
period, make �nal any changes made before.

5.2. Backend API 22

Fig. 5.1.: Database diagram in Microsoft SQL Server notation

5.2.5. Documentation and hosting

The API documentation is done with Swagger, which provides an automatically generated
Web UI. While we use Internet Information Services (IIS) Express to deploy the Backend
API for debugging, ASP.NET Core supports (and promotes) lightweight Kestrel server,
which can be run on all platforms supported by ASP.NET Core, including Windows and
Linux. This prototype is hosted on Azure services and can be easily deployed directly
through the Integrated Development Environment (IDE), but using Kestrel would even
allow running the web server from a console application on a regular PC.

5.2. Backend API 23

Fig. 5.2.: Overview of the API in the Swagger UI (part 1 of 2)

5.2. Backend API 24

Fig. 5.3.: Overview of the API in the Swagger UI (part 2 of 2)

5.2.6. Authorization

While Authentication is a di�erent component of the framework, represented by an exter-
nal service, the Authorization mechanism is implemented within the Backend API. Every
user has one or many roles associated with him, which limits the methods he can call on
the API. Although ASP.NET Core supports role-based authorization through Identity

5.3. Web UI 25

mechanism, implementation of Identity is not straightforward, therefore we decided to
exclude it from this prototype. Instead we apply a policy-based authorization, where
every policy checks for one or several roles of a user.

Policy speci�cation is very simple and can be done in the main services con�guration
method of the project:

1 services.AddAuthorization(options =>

2 {

3 options.AddPolicy("IsSystemManager", policy =>

4 {

5 policy.RequireAuthenticatedUser();

6 policy.RequireAssertion(async context => await IsOfAnyRoles(

7 new[] {"systemmanager"}, services, context));

8 policy.Build();

9 });

10 }

List. 5.1: Policy speci�cation

In Listing 5.1 policy.RequireAssertion() calls a custom-written function that retrieves
the set of the current user's roles and checks them against the set of roles provided in the
function's argument.

5.3. Web UI

As part of this prototype we developed a Web Interface as a possible client interface to
the Backend API. Its audience is any type of management user. For its implementation
we again decided to use ASP.NET Core 2.0, following the list of its advantages we
described in the previous section.

5.3.1. Authorization

The set of features the Web UI provides to every user is limited by his roles. We're using
the same policy-based authorization mechanism as in the Backend API. However, since
authorization checks can be (and are) used on controller level, controller's method level
and anywhere else in the code or on the view, calls to IsOfAnyRoles() tend to be very
frequent. Every call requires acquiring current user's roles through an expensive API
call. Thus, we implemented caching of user's role in the session storage via cookie, which
is very well supported by ASP.NET Core. The storage uses lazy initialization to save
current user's roles on �rst request.

Policy-based authorization mechanism in ASP.NET Core allows conditional View ren-
dering based on user's policy. Listing 5.2 demonstrates its implementation.

1 @if ((await AuthorizationService.AuthorizeAsync(User, this.ViewContext, "

CanWorkWithProjects")).Succeeded)

2 {

3

4 Projects

5

5.4. Mobile UI 26

6 }

List. 5.2: Policy speci�cation

ASP.NET Core uses the Razor engine for creating dynamic pages by running arbitrary
.NET code snippets. As seen in this example, a method is called on AuthorizationService
instance that was injected to the page's code before, running an authorization check
against a policy �CanWorkWithProjects�. Based on the result of that check, a button will
be displayed or hidden on this page. This mechanism provides us with great �exibility
and code reuse in View development.

5.4. Mobile UI

For a worker user we implemented a separate client application in the form of a mobile
application. While this prototype focuses on an Android application, we developed it with
cross-platform capability in mind. With that requirement, we chose Xamarin Forms as
a framework for Mobile UI. Like ASP.NET Core for other components, Xamarin uses C#
as development language and has a plethora of third-party libraries accessible through
NuGet repositories. It allows to reuse most of the code across di�erent platforms (includ-
ing currently iOS, Android and Windows 10 Universal Windows Platform), resorting to
platform-speci�c code only to call speci�c platform APIs.

Like Windows Presentation Foundation (WPF) on desktop Windows systems, Xamarin
supports binding View Model classes to Views, allowing extensive use of Model-View-
View Model (MVVM) software design pattern. We use the FreshMVVM library that
adds further support of MVVM with naming conventions, built-in dependency injection
containers and page navigation stack improvements.

Mobile UI provides two main groups of functionality: creating time records and dis-
playing time record history.

5.4.1. Creating time records

The main page allows the user to quickly create a time record by choosing a project and
pressing a button. The projects selection is limited by project assignments created by
time manager through Web UI. The time record gets created using the current time as
a timestamp and sent to the Backend API.

Alternatively, the user can activate the QR Code-scanning functionality. This will display
a camera view, which the user can use to point the device to a QR Code on his workplace.
After the code is scanned and recognized, the Mobile UI checks it against the Backend
API to determine if it is a valid Marker ID and is corresponding to a project that the
user is assigned to. If everything is correct, the user can apply the project and marker
data to a new time record.

Finally, a background task is constantly scanning via Bluetooth for new Beacons. When-
ever a Beacon is detected, it decodes the Beacon frame payload to get its identi�er and,

5.5. Authentication service 27

like with the QR Code, sends it to the Backend API in order to receive marker and project
information. However, the main di�erence is that it does not prompt the user before cre-
ating a time record, making this method completely automatic. When the beacon leaves
the receiving range of the device, after a speci�c timeout (e.g. 60 seconds) another time
record gets created to tell the system that the worker left his workplace.

5.4.2. Managing existing time records

On a di�erent page the worker user gets an overview of his previous time records. This
list gets updated every time he creates a new time record and provides �ltering by month
and year. In case of a missing time record, the application will display a warning message,
prompting the user to take action. We designed the system to give worker an opportunity
to �x inconsistencies in a previous day. Any other dates would require involvement of his
time manager.

5.5. Authentication service

While ASP.NET Core can provide authentication service on its own through Identity
mechanism, proper cross-component authentication might be more easily achieved through
an external authentication service. ASP.NET Core has built-in support for Google, Face-
book and other popular means of authentication. We decided to use Azure Active Direc-
tory (AD) since it provides �exible authentication mechanisms, integration to ASP.NET
Core and Xamarin through o�cial and third-party libraries, allowing all components of
our solution to use a single Azure AD tenant. It is also well-connected to regular AD and
O�ce 365, which are widely used in the corporate sector[19].

5.6. Example scenarios

The following steps describe a typical scenario for the implemented prototype's users. The
company �Small Company� was recently signed up for a new project with their customer
�Wealthy Customer, Inc�. The example work�ow includes a member of the �Wealthy Cus-
tomer, Inc� management team George Manager, who's responsible for managing the new
project, two software developers from �Small Company�: Bob Skilled and John Newguy,
as well as their colleague Tim Finalsay, who's a manager in �Small Company�, and Bill
Admin, the system administrator.

1. Bill Admin signs in to the Web UI in order to create the new project in the system.

5.6. Example scenarios 28

Fig. 5.4.: Creating a new project

2. After Bill is done, George Manager assigns John Newguy to the project by creating
a project assignment for him.

Fig. 5.5.: Creating a new project assignment

3. Since �Wealthy Customer, Inc� is an old customer of �Small Company�, they have
installed a licensed beacon device in the developers' room. George wants to use it
to track John's work and asks Bill Admin to add the beacon to the system, linking
it to the new project.

5.6. Example scenarios 29

Fig. 5.6.: Adding a marker

4. Before going to work, John Newguy signs in to the Mobile UI on his Android device.

5. When he arrives to the �Wealthy Customer, Inc� o�ce, the Mobile UI detects the
beacon and �checks in� John.

Fig. 5.7.: A smartphone with a Mobile UI app next to a beacon device

6. At the end of the day, John leaves the o�ce. After his phone loses the beacon
signal, it �checks out� John from work.

7. John checks the timesheet in the Mobile UI to see if everything got created correctly.

5.6. Example scenarios 30

Fig. 5.8.: Signing in to the Mobile UI Fig. 5.9.: Timesheet on the Mobile UI

8. On the 1st of the next month George Manager from �Wealthy Customer, Inc� decides
to check on John's work. He signs in to the Web UI, selects John as a worker and
the previous month to have an overview of his logged time.

Fig. 5.10.: Timesheet view on the Web UI

5.6. Example scenarios 31

9. Since everything seems correct to George, he sends a sign-o� request to Tim Finalsay
so that John can get paid for his work.

Fig. 5.11.: Creating a new sign-o� request

10. Tim receives a noti�cation email and uses the included URL to navigate to the
sign-o� request details.

11. After reviewing the time records, Tim accepts the sign-o� request, locking the
project for John on that month from any further changes.

Fig. 5.12.: Sign-o� request details view on the Web UI

12. Tim also prints out the timesheet for his archive.

5.6. Example scenarios 32

The next scenario demonstrates how a di�erent method of creating time records ties in
to the system and shows additional management features.

1. Tim decides to send another employee, Bob Skilled, to an o�-site location to work
on the project. When Bob arrives to work, he signs in to the Mobile UI and creates
a time record manually, since there's no beacon there.

2. When he comes to work next day the app noti�es him that he forgot to check out
yesterday.

Fig. 5.13.: Adding a time record manu-
ally on the Mobile UI

Fig. 5.14.: Missing time record noti�ca-
tion on the Mobile UI

3. He's able to �x his mistake by adding a missing time record.

4. Next month George Manager sees that Bob forgot to check out once more and wants
to �x that.

5.6. Example scenarios 33

Fig. 5.15.: Timesheet view on the Web UI with missing time records

5. Bill Admin grants him the temporary rights to create time records for Bob.

Fig. 5.16.: Adding a user proxy permission

6. George adds the missing time record and proceeds by sending the sign-o� request
to Tim.

5.6. Example scenarios 34

Fig. 5.17.: Adding a time record as a user proxy on the Web UI

These scenarios show how multiple technologies and clients can be combined within the
same framework, complementing each other and helping the customer to gather the re-
quired working time data in di�erent environments.

6
Future work

6.1. As a concept . 35

6.2. As a product . 35

6.1. As a concept

Our current implementation only supports detalization on the project level. However,
often it is important to manage working time on a lower level, e.g. tasks within the
same project. We will follow up with adding this level of detail, making it possible to
specify task on creating the time record. This will also help further integration with
task-management solutions like Atlassian Jira or GitHub: logging time spent on a task
on those platforms would automatically create time records in our system and vice versa,
specifying work item number in the time record comment would update it in the task
management system.

We also plan to investigate how well other positioning technologies �t into our model.
Two top-priority directions of research are geofencing with GPS technology and precise
positioning with multiple Bluetooth Beacons.

6.2. As a product

Since the project is developed with support of Cure-IT AG, we are planning to release
it as a marketable product by the end of the year. This will require many quality of life
improvements, from better thought-through user interface to localization.

A crucial feature missing from the current implementation of the Mobile UI is work
in background. Major mobile operating systems like Android and iOS put applications
into background after a period of no user interaction, practically freezing their oper-
ations. This will stop scanning for Beacons and prevent them from creating new time
records. Thus, it is required to implement periodic scanning in a background task through
platform-speci�c mechanisms.

35

6.2. As a product 36

Another important step is the implementation of an iOS Mobile UI. According to Stat-
Counter, iOS is a third most popular operating system in the world[20], making it a good
decision to expand the framework there.

7
Conclusion

Employee hour tracking is a problem that doesn't have a �silver bullet� technology. How-
ever, modern state of technology provides a wide choice of technologies that can be
selected or combined based on speci�c customer's needs.

In this thesis we propose a framework concept able to incorporate di�erent technolo-
gies of proximity and location tracking to log employees' working time. We de�ne the
core backend with universal API and an abstract client registering time records and com-
municating them to the API.

Furthermore, we developed a prototype implementation of the proposed framework, show-
ing the possibility and feasibility of combining several proximity and location technologies
for employee time tracking. Using am extensible framework as a basis for a time tracking
system can be very useful for customer-speci�c customization.

37

A
Common Acronyms

AD Active Directory
AIDC Automatic Identi�cation and Data Capture
API Application Programming Interface
BLE Bluetooth Low Energy
CRUD Create/Read/Update/Delete
CSV Comma-Separated Values
DTO Data Transfer Object
EF Entity Framework
GPS Global Positioning System
IDE Integrated Development Environment
IIS Internet Information Services
MVC Model-View-Controller
MVVM Model-View-View Model
ORM Object-Relational Mapping
NFC Near-Field Communication
QR Code Quick Response Code
RFID Radio-Frequency Identi�cation
TTT Time-Tracking Tool
UI User Interface
URL Uniform Resource Locator
UUID Universally Unique Identi�er
WPF Windows Presentation Foundation
XAML Extensible Application Markup Language

38

B
License of the Documentation

Copyright (c) 2018 Aleksei Kosozhikhin.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts.

The GNU Free Documentation Licence can be read from [6].

39

References

[1] Willard Le Grand Bundy. Workman's time-recorder., May 1891. US Patent 452,894.
3

[2] Anil K. Jain, Patrick Flynn, and Arun A. Ross. Handbook of Biometrics. Springer-
Verlag, Berlin, Heidelberg, 2007. 9

[3] Clemens Nylandsted Klokmose, Matthias Korn, and Henrik Blunck. Wi� proximity
detection in mobile web applications. In EICS, 2014. 8

[4] Emilio Mordini and Holly Ashton. The transparent body: Medical information, phys-
ical privacy and respect for body integrity. In Second generation biometrics: the
ethical, legal and social context, pages 257�283. Springer, 2012. 10

[5] M. E. Rida, F. Liu, Y. Jadi, A. A. A. Algawhari, and A. Askourih. Indoor location
position based on bluetooth signal strength. In 2015 2nd International Conference on
Information Science and Control Engineering, pages 769�773, April 2015. 9

40

Referenced Web Resources

[6] Free Documentation Licence (GNU FDL). http://www.gnu.org/licenses/fdl.

txt (accessed July 30, 2005).

[7] How to Automate Payroll. https://www.inc.com/guides/2010/12/

how-to-automate-payroll.html (accessed June 19, 2018). 3

[8] Barcode. https://en.wikipedia.org/wiki/Barcode (accessed June 21, 2018). 6

[9] Bar code technology remains most popular AIDC. https://searcherp.

techtarget.com/feature/Bar-code-technology-remains-most-popular-AIDC

(accessed June 21, 2018). 7

[10] QR Codes? Don't Bother. 5 Reasons. https://www.inc.com/eric-v-holtzclaw/
qr-codes-dont-bother-five-reasons.html (accessed June 21, 2018). 7

[11] What is RFID? https://www.epc-rfid.info/rfid (accessed June 23, 2018). 7

[12] Two in three phones to come with NFC in 2018. https://www.nfcworld.com/2014/
02/12/327790/two-three-phones-come-nfc-2018/ (accessed June 23, 2018). 7

[13] WiFi Location Tracking: Is It The Right Technology For Your Application? https:

//www.airfinder.com/blog/wifi-location-tracking (accessed June 23, 2018).
8

[14] What is geofencing? Putting location to work. https://www.cio.com/article/

2383123/mobile/geofencing-explained.html (accessed June 21, 2018).

[15] Web Framework Benchmarks. https://www.techempower.com/benchmarks/ (ac-
cessed June 27, 2018). 20

[16] TIOBE Index for June 2018. https://www.tiobe.com/tiobe-index/ (accessed
June 27, 2018). 20

[17] NuGet Gallery - Statistics. https://www.nuget.org/stats (accessed July 01,
2018). 20

[18] Introduction to Identity on ASP.NET Core. https://docs.microsoft.com/

en-us/aspnet/core/security/authentication/identity?view=aspnetcore-2.

1&tabs=visual-studio%2Caspnetcore2x (accessed July 01, 2018). 20

[19] Microsoft Azure Active Directory - Review 2017. http://uk.

pcmag.com/microsoft-azure-active-directory/71365/review/

microsoft-azure-active-directory (accessed July 02, 2018). 27

[20] Operating System Market Share Worldwide - June 2018. http://gs.statcounter.
com/os-market-share (accessed July 03, 2018). 36

41

http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt
https://www.inc.com/guides/2010/12/how-to-automate-payroll.html
https://www.inc.com/guides/2010/12/how-to-automate-payroll.html
https://en.wikipedia.org/wiki/Barcode
https://searcherp.techtarget.com/feature/Bar-code-technology-remains-most-popular-AIDC
https://searcherp.techtarget.com/feature/Bar-code-technology-remains-most-popular-AIDC
https://www.inc.com/eric-v-holtzclaw/qr-codes-dont-bother-five-reasons.html
https://www.inc.com/eric-v-holtzclaw/qr-codes-dont-bother-five-reasons.html
https://www.epc-rfid.info/rfid
https://www.nfcworld.com/2014/02/12/327790/two-three-phones-come-nfc-2018/
https://www.nfcworld.com/2014/02/12/327790/two-three-phones-come-nfc-2018/
https://www.airfinder.com/blog/wifi-location-tracking
https://www.airfinder.com/blog/wifi-location-tracking
https://www.cio.com/article/2383123/mobile/geofencing-explained.html
https://www.cio.com/article/2383123/mobile/geofencing-explained.html
https://www.techempower.com/benchmarks/
https://www.tiobe.com/tiobe-index/
https://www.nuget.org/stats
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-2.1&tabs=visual-studio%2Caspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-2.1&tabs=visual-studio%2Caspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-2.1&tabs=visual-studio%2Caspnetcore2x
http://uk.pcmag.com/microsoft-azure-active-directory/71365/review/microsoft-azure-active-directory
http://uk.pcmag.com/microsoft-azure-active-directory/71365/review/microsoft-azure-active-directory
http://uk.pcmag.com/microsoft-azure-active-directory/71365/review/microsoft-azure-active-directory
http://gs.statcounter.com/os-market-share
http://gs.statcounter.com/os-market-share

[21] Technavio Predicts Strong Growth in Biometric Workforce Management. https:

//findbiometrics.com/technavio-biometric-workforce-management-303317/

(accessed July 05, 2018). 10

https://findbiometrics.com/technavio-biometric-workforce-management-303317/
https://findbiometrics.com/technavio-biometric-workforce-management-303317/

