
A	Client	Interface	for	interacting	with	
a	privacy-preserving	IoT	middleware	

MASTER 	THESIS 	
SWISS 	 JO INT 	MASTER 	OF 	SC IENCE 	 IN 	COMPUTER 	SC IENCE 	

UNIVERS ITY 	OF 	BERN , 	NEUCHÂTEL 	AND 	FR IBOURG 	

MARCEL	GROSJEAN	
December 2018

Thesis 	supervisors: 	

Prof. Dr. Jacques PASQUIER–ROCHA
Software Engineering Group 	

Pascal Gremaud
Software Engineering Group 	

Software Engineering Group
Department of Informatics

University of Fribourg
(Switzerland)

ii

“If	you	don’t	do	something	because	you	think	you	can’t	do	it,	you’ll	never	be	
able	to	do	anything	in	the	future.”	

- Kira	Yamato,	Mobile	Suit	Gundam	Seed	

1	Introduction	 	 	

1

Abstract	

This work is part of the research project for data confidentiality in IoT led by the University
of Fribourg, Software Engineering Group. It represents the intersection of the domains of the
Internet of Things, software security as well as software engineering.

In the context of research in the IoT, the Softeng group is developing a privacy-preserving
IoT middleware using Trusted Execution Environment, namely Intel Software Guard
Extensions (SGX). This middleware is capable of interacting with smart devices and clients
while all the sensitive data are hidden from the platform hypervisor, enabling trusted computing
in untrusted environment [1]. In this work we have studied the different existing technologies
in order to design a web application for middleware management. The interface was called
RIOT (Responsive Internet of Things) and offers all the features to manage a middleware and
offers in addition a completely secure communication. RIOT implements the ECA (event,
condition and action) programming paradigm.

To run the front end, it was necessary to develop all the infrastructure around it in order to
simulate the final environment in which it will be executed. Vue.js was chosen for the
development of the interface. Encryption is necessary, so we decided to make it as transparent
as possible to the developer. Spring Boot was used to develop the middleware and a software
actuator was develop with NodeJS. The rule engine was also developed in order to dynamically
map rules to events and triggers actions on our software actuator.

Keywords: IoT; Middleware; Privacy-Aware computing; Security; Trusted Execution
Environments; Intel SGX; Web interface; Vue.js; Web Crypto API; Rule engine; Zuul; iFlux;
Material Design; Design Science

1	Introduction	 	 	

2

Acknowledgements	

I want to thank all the people who helped me, guided and supported me during the realization
of my master thesis. These people allowed me to conduct my research work until completion
and helped me to overcome the difficulties encountered throughout the development of this
work.

First of all, I would like to thank Professor Dr. Jacques Pasquier-Rocha because without him
the realization of this research project would not have been possible.

My gratefully thanks also go to Pascal Gremaud for his kindness, his patience and his
availability which allowed me to better understand the project's context. He was able to guide
me during the realization of this software artifact. He was a mentor throughout the project and
he was able to leave me free of my choices while putting me back on track during my periods
of doubt and misguidance.

1	Introduction	 	 	

3

Table	of	Contents	

1	Introduction	 12

1.1 Context .. 13
1.2 Project Objectives .. 13

1.3 Issues and Needs ... 13
1.4 Global Approach ... 14

1.5 Thesis Structure ... 14

1.6 Writing Conventions ... 14

2	Theoretical	foundations	 15

2.1 Introduction ... 16
2.2 Design Science Research Methodology .. 16
2.3 The Internet of Things (IoT) ... 17

2.4 Project Context .. 18
2.5 Project Objectives .. 19

2.6 The iFlux project ... 20
2.6.1 Introduction .. 20
2.6.2 Smart Cities .. 21
2.6.3 The iFlux programming model .. 21

2.7 Trusted Execution Environment (TEE) ... 25
2.7.1 Introduction .. 25
2.7.2 Intel SGX ... 26

2.8 The IoT middleware .. 27

2.9 Communication protocol ... 28
2.9.1 Introduction .. 28
2.9.2 Key exchange algorithms ... 29
2.9.3 Advanced Encryption Standard (AES) .. 31
2.9.4 Message exchange protocol ... 32

2.10 Conclusion ... 36

3	Design	and	Implementation	 37

3.1 Introduction ... 39
3.2 Risks Analysis ... 39

3.3 Global Architecture ... 41

1	Introduction	 	 	

4

3.4 Cryptography middleware ... 42
3.4.1 Introduction .. 42
3.4.2 Web Crypto API .. 42
3.4.3 Java Security .. 44
3.4.4 Benchmark ... 44
3.4.5 Spring Zuul .. 47

3.5 Custom REST API .. 49
3.5.1 Introduction .. 49
3.5.2 Keys ... 49
3.5.3 Users .. 50
3.5.4 Clients .. 51
3.5.5 Auth .. 52
3.5.6 Client Urls .. 52
3.5.7 Event types ... 53
3.5.8 Action types ... 54
3.5.9 Rules .. 55
3.5.10 Event ... 57
3.5.11 Conclusion .. 58

3.6 Enclave middleware .. 59
3.6.1 Introduction .. 59
3.6.2 Spring boot ... 59
3.6.3 Authentification/Authorization .. 62
3.6.4 Errors Handling & Logging ... 64
3.6.5 Database type & model .. 66
3.6.6 Database Access ... 68
3.6.7 Rule engine .. 70

3.7 Action Target ... 78
3.8 Front-end (RIOT) .. 80

3.8.1 Introduction .. 80
3.8.2 Use cases .. 82
3.8.3 Navigation Diagram ... 83

3.9 Practical example of cryptographic functions ... 85
3.9.1 Introduction .. 85
3.9.2 Session Key Creation ... 85
3.9.3 Authentication .. 90
3.9.4 Message exchange ... 94

3.10 Software development organization .. 95
3.10.1 Source code version control .. 95

1	Introduction	 	 	

5

3.10.2 Iterative Development ... 95
3.10.3 Testing ... 96
3.10.4 Deployment ... 97

3.11 Conclusion ... 99

3.12 Improvements & Future Works ... 100

4	Practical	testing	and	evaluation	 101
4.1 Introduction ... 102
4.2 RIOT scenario ... 103

4.2.1 Introduction .. 103
4.2.2 Login .. 104
4.2.3 Verify session key .. 105
4.2.4 Users .. 107
4.2.5 Clients .. 107
4.2.6 Urls (action targets urls) ... 108
4.2.7 Event type .. 109
4.2.8 Action type ... 110
4.2.9 Rules .. 111
4.2.10 Graph explorer .. 114

4.3 Client scenario ... 115
4.3.1 Introduction .. 115
4.3.2 Client .. 116
4.3.3 Emails sent ... 118
4.3.4 Events List ... 119
4.3.5 Action message .. 120

4.4 Conclusion ... 120

5	Administrative	part	 121
5.1 Introduction ... 122

5.2 Planification ... 122
5.3 Logbook ... 123

5.4 Burndown chart ... 128

5.5 Bibliography & Webography .. 129

6	Appendix	 133
6.1 Cryptography benchmark Readme .. 134
6.2 Front-end Readme ... 140

6.3 Enclave Readme .. 142
6.4 Zuul Gateway Readme .. 147

6.5 Email sender Readme .. 151

1	Introduction	 	 	

6

List	of	Figures	

Figure 1: The secure middleware architecture. Illustration from P. Gremaud [1] 19

Figure 2: iFlux components representation .. 24

Figure 3: Intel SGX enclave, trusted/untrusted parts ... 26

Figure 4: General architecture of the system. Illustration by P. Gremaud [1] 27

Figure 5: Graphical example of the AES algorithm .. 31

Figure 6: RIOT global architecture .. 41

Figure 7: Web cryptography benchmark. Native vs JS implementation 43

Figure 8: Gateway source code .. 48

Figure 9: Keys API illustration .. 50

Figure 10: Users API illustration ... 50

Figure 11: Clients API illustration ... 51

Figure 12: Auth API illustration .. 52

Figure 13: Urls API illustration ... 53

Figure 14: Event type API illustration ... 54

Figure 15: Action type API illustration ... 55

Figure 16: Rules API illustration ... 57

Figure 17: Events API illustration ... 58

Figure 18: Enclave project structure part 1 .. 60

Figure 19: Enclave project structure part 2 .. 61

Figure 20: Logic data model .. 67

Figure 21: Rule engine schematic illustration ... 70

Figure 22: Action target API illustration ... 78

Figure 23: Front-end Framework ranking 2018 ... 80

Figure 24: RIOT use cases diagram ... 82

Figure 25: RIOT navigation diagram ... 83

Figure 26: Front-end project structure ... 84

Figure 27: Session establishment sequence ... 85

Figure 28: Authentication sequence ... 90

Figure 29: Message exchange sequence .. 94

1	Introduction	 	 	

7

Figure 30: Login page .. 104

Figure 31: Home page .. 104

Figure 32: User configuration page ... 105

Figure 33: Keys list page ... 105

Figure 34: Session key details page ... 106

Figure 35: User details page for the administrator ... 107

Figure 36: Clients list page .. 107

Figure 37: Clients details page ... 108

Figure 38: Urls list page ... 108

Figure 39: Url details page ... 109

Figure 40: Event types list page ... 109

Figure 41: Event type details page ... 110

Figure 42: Action type list page ... 110

Figure 43: Action type details page ... 111

Figure 44: Rules list page .. 111

Figure 45: Rule details page .. 112

Figure 46: Rule action page ... 113

Figure 47: Graph explorer .. 114

Figure 48: Client left part ... 116

Figure 49: Client right part .. 117

Figure 50: Mailbox after actions triggered .. 118

Figure 51: Logging email ... 118

Figure 52: Detailed email ... 119

Figure 53: Events list page ... 119

Figure 54: Action message page .. 120

Figure 55: Burndown chart .. 128

	 	

1	Introduction	 	 	

8

List	of	Tables	

Table 1: Design Science Research Methodology [2] ... 16

Table 2: Diffie-Hellman private key exchange steps ... 29

Table 3: Example of Diffie-Hellman with numbers .. 30

Table 4: List of risks .. 39

Table 5: Risks matrix ... 40

Table 6: Java vs Web Crypto API scenario ... 45

Table 7: GANTT planification ... 122

Table 8: Logbook ... 123

	 	

1	Introduction	 	 	

9

List	of	source	code	

Code 1: iFlux event .. 22

Code 2: iFlux action target ... 23

Code 3: iFlux rules ... 24

Code 4: Example of session creation ... 33

Code 5: JWE as JWT compact serialization example ... 33

Code 6: JWE header ... 33

Code 7: JWE JSON example ... 34

Code 8: JWS as JWT example ... 34

Code 9: JWS header ... 35

Code 10: JWS payload ... 35

Code 11: Authorization header .. 35

Code 12: Session creation .. 49

Code 13: User creation ... 50

Code 14: Client creation .. 51

Code 15: User authentication ... 52

Code 16: Url creation ... 52

Code 17: Event type creation ... 53

Code 18: Action type creation ... 54

Code 19: Rule creation ... 55

Code 20: Rule action creation .. 56

Code 21: Event fired .. 57

Code 22: GET action messages ... 58

Code 23: JWT example after authentication .. 62

Code 24: Servlet Filter example .. 62

Code 25: Example or protected route .. 63

Code 26: Role enum ... 63

Code 27: Spring Boot annotations handler .. 64

Code 28: Spring Boot exceptions handler ... 65

Code 29: Example of error returned by the API .. 66

1	Introduction	 	 	

10

Code 30: DAO example ... 69

Code 31: KeyRow mapper ... 69

Code 32: Send event for rule engine .. 72

Code 33: Event type example for rule engine .. 72

Code 34: Actions for specific client and event type .. 73

Code 35: Basic string for evaluation .. 73

Code 36: Script that will trigger an action ... 73

Code 37: Actions of a rule ... 74

Code 38: Action type of a rule’s action ... 74

Code 39: Turn String JSON into Java JSON Object ... 74

Code 40: Turn String scheme into a Java Map .. 75

Code 41: Data transformations done by the rule engine .. 76

Code 42: Example of templating ... 76

Code 43: Templating done ... 76

Code 44: Data transformation on numerical values ... 77

Code 45: Final action message .. 77

Code 46: Action target example with NodeJS ... 79

Code 47: Example of action message for sending an email .. 79

Code 48: Example of session creation ... 86

Code 49: Generate a key pair from Java .. 86

Code 50: Generate shared secret in Java .. 87

Code 51: Example of ciphered payload returned by the enclave ... 87

Code 52: Creation of a shared secret on the client side ... 88

Code 53: Shared secret creation and derivation with web crypto API 89

Code 54: Intercept HTTP request with Axios .. 91

Code 55: Decryption of request payload by Zuul .. 92

Code 56: Gateway automated tests .. 96

Code 57: Email sender CURL test ... 96

Code 58: Enclave automated tests ... 97

1	Introduction	 	 	

11

Acronyms	

AES-GCM Advanced Encryption Standard, Galois/Counter Mode
API Application programming Interface
CSS Cascading Style Sheet
DOM Document Object Model
ECA Events Condition Action
ECDH Elliptic Curve Diffie Hellman
GUI Graphical User Interface
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IoT Internet of Things
JS JavaScript
JSON JavaScript Object Notation
MVC Model Vue Controller
NOSQL Not Only SQL
POJO Plain Old Java Object
REST Representational State Transfer
SGX Software Guard Extensions
SQL Structured Query Language
TEE Trusted Execution Enviroments
W3C World Wide Web Consortium

1	Introduction	 	 	

12

	1	
Introduction	

1.1 Context	 13

1.2 Project	Objectives	 13

1.3 Issues	and	Needs	 13

1.4 Global	Approach	 14

1.5 Thesis	Structure	 14

1.6 Writing	conventions	 14

	

 	

1	Introduction	 	 Context	

13

1.1 Context	

In the context of research in the Internet of Things, the Software Engineering Group of the
University of Fribourg is developing a privacy-preserving middleware using Trusted Execution
Environments (TEEs), namely Intel Software Guard Extensions (SGX). This middleware is
capable of interacting with smart devices (Things) and clients, while all the application data are
hidden from the platform hypervisor, enabling trusted computing in untrusted environments. In
particular in cloud computing.

At its current state, the system proposes a REST interface, using symmetric encryption to
safely transmit HTTP (JSON) message with both Things and clients. The middleware receives
sensors events, and depending on given dynamic rules, is able to trigger actions to either Things
or clients. The middleware assumes the platform owner is completely untrusted [1].

1.2 Project	Objectives	

The main goal of the thesis is to develop a web interface to interact with the backend
middleware. We will call this backend an « enclave ». Because the context of the project is data
privacy in IoT, the interface should not store any data on the server hosting the interface [1],
making it a « trusted » component of our framework. For this same reason, JavaScript is
preferred as the main programming language. The Web Crypto API offers a native
implementation of most existing encryption standards and will provide cryptographic
capabilities to the interface.

The web interface should act as an administration tool able to manage the enclave
middleware.

All communications exchanges with the enclave middleware are done using encrypted
messages packed in a JSON format.

1.3 Issues	and	Needs	

The middleware project is currently under development and will be a server implementing a
version derived from the iFlux project to manage data from Things. The management of actions,
rules and events does not exist for the moment and must be done manually with CURL requests,
for example.

A web application would provide a simpler and faster way to enter actions, rules and events
so that events coming from Things can be managed more efficiently.

1	Introduction	 	 Global	Approach	

14

1.4 Global	Approach	

This master thesis requires research for information and continuous technical learning. It is
necessary to understand and analyze the iFlux project as well as standard cryptographic
methods if we want to develop the software.

First, how the different cryptographic methods that are ECDH and AES-GCM work had to
be understood. Then, the iFlux project had to be assimilated.

Secondly, the technical and technological side had to be defined. The technical architecture
of the project as well as the different use cases of the application was the result of the
preliminary analysis. A preliminary learning process was necessary in order to assimilate the
different technologies.

Finally, the application was developed by successive refining and each step was validated.

1.5 Thesis	Structure	

This document is structured in six sections. The first section is the introduction and
introduces the global context. The second section introduces the important theoretical concepts
for developing the complete architecture. It theoretically shows how and why it is necessary to
develop an artifact. The third section is the practical part. It shows how the project was
developed according to the theoretical section. The technological choices as well as the overall
design are presented in this section. The fourth section shows a practical application by
presenting a complete scenario. This scenario allows us to measure the relevance of the project
as well as the technical possibilities related to the project developed. The fifth section presents
the administrative part of the project. Planning, working hours and bibliography are included
here. Finally, the last and sixth section contains appendices describing how to deploy the
artifacts created during this project.

1.6 Writing	conventions	

This document contains several writing conventions. All examples of source code, tables
and images are indexed. All references to them in text have a relative reference. Variables and
important text parts are in italic in the text. The source code is numbered throughout the
document. Any reference to an external author can be found in the administrative section.

2	Theoretical	foundations	 	 	

15

	2	
Theoretical	foundations	

2.1 Introduction	 16

2.2 Design	Science	Research	methodology	 16

2.3 The	Internet	of	Things	(IoT)	 17

2.4 Project	context	 18

2.5 Project	objectives	 19

2.6 The	iFlux	project	 20
2.6.1 Introduction ... 20

2.6.2 Smart cities .. 21
2.6.3 The iFlux programming model .. 21

2.7 TEEs	 25
2.7.1 Introduction ... 25
2.7.2 Intel SGX ... 26

2.8 The	IoT	middleware	 27

2.9 Communication	protocol	 28
2.9.1 Introduction ... 28
2.9.2 Key exchange algorithms .. 29
2.9.3 Advanced Encryption Standard (AES) .. 31

2.9.4 Message exchange protocol ... 32

2.10 Conclusion	 36

	

	 	

2	Theoretical	foundations	 	 Introduction	

16

2.1 Introduction	

This is the theoretical part where we will review the technical and theoretical constraints.
We will see an overview of the different classical cryptographic techniques as well as how to
implement our own version of the API based on the iFlux project. We will also see which
technologies have been selected and why, in order to develop the prototype. Architectural
design, technical implementation and tests are done in the further chapters.

2.2 Design	Science	Research	Methodology	

Design Science Research is an iterative development methodology and a set of techniques
for conducting research in the field of Information Systems. It involves the creation of
innovative artifacts (final product in the form of models or software) that advance the scientific
field to which the project is linked [2].

The design process is a sequence of activities aimed at producing an innovative artifact. The
artifact allows the researcher to have a better understanding of the problem, and an iterative
process allows a re-evaluation of the work to arrive at a new result that better match
expectations. The initial goal is to put forward all the theoretical concepts in order to have a
global vision of the problem. We then start to make several prototypes and evaluate them
rigorously. In Table 1 seven guidelines to be respected during the research project:

Table 1: Design Science Research Methodology [2]

Guideline Description Adaptation for this project

Design of an artifact The research must produce a
functional artifact

By artifacts we mean a
prototype. In this project the
artifact will be the interface
for managing the enclave

Relevance Research must solve a
business problem by offering a
technical solution

The problem is to be able to
quickly manage the enclave
without CURL requests

Evaluation of the
artifacts produced

The utility, effectiveness and
quality of an artifact must be
rigorously demonstrated by
evaluating it using appropriate
methods

Once the interface has been
developed, it must be tested
by the members of the
Softeng group to validate it.
Then conduct various tests
both in terms of software
quality and business
problem resolution.

2	Theoretical	foundations	 	 The	Internet	of	Things	(IoT)	

17

Research contribution The artifact must make a
specific and verifiable
contribution to the scientific
field

In our case, our artifact
would help the security field
in IoT and automate the
treatment of data emitted
from Things

Rigorousness Research must be rigorous,
using methods of creation and
evaluation derived from
knowledge in the field

The application must be
tested, and the results
returned must be consistent
and meet the expectations

Implementation of an
iterative research process

The process of creating the
artifact is iterative

The first solution is never
the right one. Collaboration
with Softeng group members
is required to create a usable
artifact

Communication Research must be presented
for both specialists and non-
specialists

The defense of the master
thesis must be accessible to
a non-specialist audience

2.3 The	Internet	of	Things	(IoT)	

To fully understand this project, it is first necessary to introduce the notions of the Internet
of Things, its ins and outs. The Internet of Things is a network of objects connected to the
internet that exchange information between them or to a server. We use the term IoT to refer to
the Internet of Things. We will also refer IoT “object” as Things in this document.

These Things can be physical objects that take physical measurements such as atmospheric
pressure and share this data with other Things or to a server. Things use the internet as a medium
of communication. A Thing can also be dematerialized, such as software components that sends
information on a regular basis [3].

More simply, Things, whether software or physical, collect data and then share it with other
Things or servers through the internet. We can take as an example of a connected object a sensor
that measures the rain level before sending it to a server for analysis.

The challenge is not to program these Things. Nowadays, it is very simple to program them
with very little knowledge. There exist embedded systems with an impressive number of
sensors that are very easy to program, even for a novice. Their price is also insignificant.

The great challenge nowadays is to be able to receive, store and process the data from these
sensors. Extracting data in real time has become a major challenge. For example, if a sensor
senses an earthquake, it is useful to be notified as soon as possible so that the population can be
evacuated.

2	Theoretical	foundations	 	 Project	Context	

18

As objects all become connected, it has become extremely difficult to extract information,
analyze it and exploit its potential. The challenge nowadays is to find solutions to exploit the
incredible amount of data coming from sensors in order to trigger real-time actions.

The Internet of Things offers a totally unreasonable number of practical applications. The
classical problem of integrating the different heterogeneous components thus arise. How to
integrate Things with such different functions into the same information system? This is an
issue that will be raised in this work. Simplicity and reusability must be emphasized in order to
achieve full information system integration.

A second aspect of the Internet of Things is data security. Sensors can sense data that are
potentially confidential. And the proliferation of this data that passes through the internet poses
security problems. It is possible to either intercept data being transferred from one Thing to
another or to decrypt it directly on the cloud virtualization platforms. Indeed, we consider cloud
computing platforms unreliable and we cannot trust them. There exist secure execution
environments available for running programs in hostile environments.

During this work, we will cover the challenges of data integration in the field of IoT and the
security that goes with it.

2.4 Project	Context	

In the context of research in the Internet of Things, the Software Engineering Group of the
University of Fribourg is developing a privacy-preserving middleware namely Intel Software
Guard Extensions (SGX). This middleware is capable of interacting with smart devices
(Things) and clients, while all the application data are hidden from the platform hypervisor,
enabling trusted computing in untrusted environments. In particular in cloud computing.

At its current state, the system proposes a REST interface, using symmetric encryption to
safely transmit HTTP (JSON) message with both Things and clients. The middleware receives
sensors events, and depending on given dynamic rules, is able to trigger actions to either Things
or clients. The middleware assumes the platform owner is completely untrusted [1].

2	Theoretical	foundations	 	 Project	Objectives	

19

Figure 1: The secure middleware architecture. Illustration from P. Gremaud [1]

2.5 Project	Objectives	

The main goal of the thesis is to develop a client web interface to interact with the backend
middleware. We will call this backend an « enclave ». Because the context of the project is data
privacy in IoT, the interface should not store any data on the server hosting the interface [4],
making it a « trusted » component of our framework. For this same reason, JavaScript is
preferred as the main programming language. The Web Crypto API offers an implementation
of most existing encryption standards and will provide cryptographic capabilities to the
interface.

The interface should act as an administration tool able to:

• Authenticate the user with the middleware and generate a session key.

• Manage clients and Things.

• Manage events, actions and rules.

All communications exchanges with the middleware are done using encrypted messages
packed in a JSON format.

The project goals can be listed as follows:

• Study and get familiar with the different technologies involved in the project,
including TEEs and more precisely Intel SGX but also encryption standards.

• Study and get familiar with the existing middleware solution.

2	Theoretical	foundations	 	 The	iFlux	project	

20

• Understand the encrypted communication protocol in order to communicate with the
middleware.

• Define and prioritize a list of functionalities for the client interface. Depending on
the available time, some of them may not be implemented.

• Find a suitable (JS) framework to develop the interface and get familiar with it.

• Implement the proposed interface. The developed solution should remain easy to
modify and extend.

• Create a concrete scenario to showcase the interface by using existing, available
things or by modifying one to suit the needs of the scenario.

• Write a thesis report describing the whole project.

The main goal of the project is to develop a graphical web interface to manage the enclave.

However, as the enclave running on Intel SGX is not ready yet, it will be necessary to develop
a second enclave simulating the one that will be developed in order to complete the project. The
auxiliary components will also have to be developed. It will not be necessary to develop an
enclave that is compatible with Intel SGX.

2.6 The	iFlux	project	

2.6.1 Introduction	

The iFlux project [5] is led by the HEIG-VD. It was created to provide a lightweight
middleware for integrating Things and data in smart cities. It is based on three abstraction
principles, which are event sources, action targets and rules. iFlux makes it very easy to expose
a REST API to sensors and actuators. It provides to Things a very high-level API to integrate
them into a heterogeneous ecosystem and put them into a workflow. Things can be intelligent
objects or pure software components and iFlux makes no difference between them. The iFlux
programming model allows to integrate data of these Things in order to be able to trigger actions
based on event data with rules. iFlux focuses on smart cities but its scope can, of course, be
extended to other domains.

We will use this project as a model to develop our own integration middleware.

In this section, we will introduce iFlux middleware and see how we can use it to create our
own middleware that suits our needs.

2	Theoretical	foundations	 	 The	iFlux	project	

21

2.6.2 Smart	Cities	

Information and communication technologies can improve the quality of life of a city's
inhabitants by impacting a wide range of areas such as energy consumption, transport, security,
public administration, politics or even culture [5]. Cities that use Things to sense data and use
actuators are called smart cities. For example, we can imagine sensors under public parking
places in order to instantly know what places are available. Another application could be to
know the position of each person on the street in order to activate public street lights at night.
The fields of applications are varied and unlimited.

Things that have a physical dimension will capture physical data and operate actuators. We
can take the example of a gate that closes or opens automatically depending on the RFID chip
that the wearer carries on him. Things can also be software only, such as the GPS position
emitted by a smartphone and stored in a database. The synergy of physical components and
software components makes a city smart. We make no distinction between the two types of
Things because we use a very high-level programming model [5].

In this section, we will describe how the iFlux model works and how it allows cities to
become smart.

2.6.3 The	iFlux	programming	model	

As we have seen before, Things can have a large number of practical applications. The
integration of Things in an information system is a headache itself. In a "normal" information
system, the integration of the various components is a challenge for developers. In the field of
IoT this problem remains unchanged and may even be worse [5]. According to iFlux, the
following questions arise:

• How to integrate heterogeneous systems scattered throughout the city?

• How to deploy Things and integrate them into the information system while
guaranteeing a long-term support?

• How can we make the data generated by Things shareable and accessible?

• How to make the integration as simple as possible?

The iFlux programming model was inspired by the If This Then That (IFTTT) [6]
programming model. It defines the paradigm events, conditions and actions (ECA). Three levels
of abstraction have been defined based on ECA: the events source, the action targets and the
rules [5]. Basically, it means that Things throw events, the events are caught, and actions are
triggered according to some rules. A rule engine needs to be created in order to infer on data.
Applications developers implement their workflow according to the ECA paradigm and actions
are figured out by the rule engine [5].

2	Theoretical	foundations	 	 The	iFlux	project	

22

The objective of iFlux is simplicity and reusability [5]. Developers can work on micro
services and once these stand-alone components are completed, they can integrate them into
iFlux. It is important to keep a minimum coupling between the different components because
of the great heterogeneity of the different Things to integrate; having a strong coupling would
be very difficult to achieve and maintain [6]. A weak coupling allows us to connect several
autonomous components in an easy and permanent way. iFlux and all its components are based
on the principle of micro services which allow a maximum decoupling. The communications
are done with the JSON format, which is universal and easy to understand. All micro services
in iFlux ecosystem must have a clear, documented and public REST API [5].

Event	Sources	
Events are data that are generated by Things that can either be hardware or software. A Thing

emits a single event or flow of events. They can be regular or irregular. As examples of event
sources, we can for example think of hardware Things that detect and send data on a regular
basis, such as humidity sensors that send data on a regular basis. Software sensors can monitor
stock markets and send alerts when a certain threshold is reached. Data processing services can
merge data from several Things to form a new, more structured data flow. User agent Things
can also transmit data very occasionally, for example, when there is an accident and an alert is
issued [5].

The iFlux middleware exposes a public and documented REST API that allows Things to
send data to the middleware. The API defines that an event is composed of data, a source client,
an event type, and a list of allowed parameters. These parameters depend on the type of event.

The events endpoint only accepts POST requests because an event is unique and
unchangeable. An event can contain a single set of values or an array of values. Code 1 shows
that it is possible for any Thing to send data in a completely decoupled way by specifying an
event type corresponding to the data sent in the event.

1 POST /events http/1.1
2 Content-type: application/json
3
4 [{
5 "timestamp": "2015-01-12T05:21:07Z",
6 "source": "/event-sources/JI8928JFK",
7 "type": "/eventTypes/temperatureEventSchema",
8 "properties": {
9 "temperature": 22.5,
10 "location": "room 1"
11 }
12 }]

Code 1: iFlux event

 	

2	Theoretical	foundations	 	 The	iFlux	project	

23

Action	targets	
The action target is the action that will be triggered by the middleware if the rule engine has

identified a positive condition to a rule based on an event. When a Thing sends an event to the
middleware, it will look for all the rules associated with that client and this event type, then
evaluate all the rules. If a rule is evaluated positively, then the middleware will execute the
action associated with that rule. The action target is a micro service and must expose a REST
API that must be accessible by the middleware. This API will then be called to execute the
action defined in this rule [5].

An example of an action would be to send an email to a recipient or to send a push
notification. The action targets must be implemented by developers or third parties service
providers.

Code 2 shows an example of an action target. As we can see, an action target is composed
of an event type and a rule. If the rule is triggered, then the action in the properties are triggered
on a certain URL. A POST request is then made, and the body request consists of the properties
in Code 2.

13 POST /rules/myAction HTTP/1.1
14 Content-type: application/json
15
16 {
17 "context": {
18 "event": "events/gatherDataFromRoom",
19 "rule": "rules/alertWhenRoomIsTooHot",
20 },
21 "type": "/actionTypes/sendAlertViaEmailSchema",
22 "properties": {
23 "email": "user.name@iflux.io",
24 "subject": "Alert: something has happened!",
25 "body": "An event has been notified to iFLUX by a source and a

rule states that we should inform you about it."
26 }
27 }

Code 2: iFlux action target

Rules	
The endpoint of the rules is used to specify the rules that will be tested in order to trigger or

not an action. A rule is used to link an event to an action. When a Thing throws an event, the
middleware will, thanks to its rule engine, infer on the rules in order to find an action that
corresponds to an event. If the condition present in the rule is positively evaluated, then the
associated action is executed. It is then possible to build rules allowing condition like: if the
temperature of the chamber is higher than 25 degrees then a push notification is sent [5].

As we can see with Code 3, a rule is composed of an event type and a Thing source. If the
condition is evaluated positively then a POST request is made with a certain URL with a
mandatory list of fields.

2	Theoretical	foundations	 	 The	iFlux	project	

24

28 POST /rules/mahRule HTTP/1.1
29 Content-type: application/json
30
31 {
32 "description": "Hot temp ? Notify Bob by email.",
33 "reference": "TEMPERATURE-EMAIL-NOTIFICATION",
34 "enabled": true,
35 "if": {
36 "eventSource" : "/event-sources/JI8928JFK",
37 "eventType" : "/eventTypes/temperatureEventSchema",
38 "eventProperties" : {}
39 }
40 "then" : {
41 "actionTarget" : "https://mail-gateway.iflux.io/api",
42 "actionSchema" : "{\"type\" : \"sendEmail\", \"properties\" :

{\"to\" : \"bob@iflux.io\", \"subject\" : \"New temperature\",
\"body\" : \"The temperature in is now: .\" }}"

43 }
44 }

Code 3: iFlux rules

Recap	
As we have seen with the iFlux project, it is possible to integrate Things into the workflow

of an information system without having to work intensively on software integration. iFlux
operates on three high-level principles: events, rules and actions. A Thing throws an event to
the middleware and the latter will infer on its rules thanks to its rule engine. Once a rule is
positively evaluated then the associated action is executed. An action is a micro service that
exposes a REST API and that can be called by the middleware. They allow Things to POST
events following a certain protocol and it only remains for the developer to specify which
actions to perform based on the data received by Things.

The components diagram in Figure 2 shows how iFLux works in a higher level. We can see
a sensor or Things that sends an HTTP request to the middleware. iFlux API catches the request,
check if it’s valid and then infer on the data with its rule engine. If a rule is evaluated positively,
then the middleware will trigger an action by making an HTTP request on an actuator that also
exposes a REST API.

Figure 2: iFlux components representation

During this project, we will create our own version of iFlux based on its core principles. It
includes the concepts of events, rules and action. We will modify it to include our safety
requirements and some of our technical specifications. The practical part of the document
covers the difference in detail.

2	Theoretical	foundations	 	 Trusted	Execution	Environment	(TEE)	

25

2.7 Trusted	Execution	Environment	(TEE)	

2.7.1 Introduction	

The overall goal of this project is to develop a web interface to manage a middleware that
runs on a protected environment. Even if we are not going to develop software that will run on
these protected environments, it is necessary to theoretically cover their existence in order to
better understand the issues of the project and develop an application that will best serve our
interests and needs.

Trusted Execution Environments (TEEs) are memory areas in the CPU that are isolated from
the operating system. These areas ensure that the data in these presents are stored and processed
in a totally secure way.

The main concepts of TEEs are trust, security and data isolation [7]. They provide to Things
point-to-point security by identifying them and encrypting data. All data in the TEEs are
encrypted as well as the applications running on them. Applications running in TEEs are called
trusted applications [7]. Data handled by these trusted applications are encrypted and executed
securely without any other application being able to intercept the data being processed. For
example, if the architecture offers TEEs functionalities, it can directly access devices such as
the camera or fingerprint reader in order to securely process this data [8]. Communications are
encrypted between the components, which allows for instance components to communicate
with the database in a totally secure way, for example. All entities communicating with an
application running on a TEE must be authenticated and authorized [9, 10].

TEEs are important nowadays because we live in a society where data is everywhere, every
time. We use digital tools to communicate by email or chat. We use the internet to order
products. More and more common devices are connected to the internet. We produce a huge
amount of data every day and it’s becoming essential to protect this storm of data. Data
protection is nowadays essential to prevent our data from being intercepted for misuse. TEEs
in this context play a role in protecting our data against espionage by third parties. The internet
needs trust and scalability. Being able to manage data securely and scale up is the key for
offering a competitive service in the marketplace. TEEs implement data security by encrypting
communications and data processing. Encryption is now assisted by hardware, so it is very
powerful and can be scaled up very easily [10, 9].

TEEs provide new features to support security and scalability in hostile environments. They
allow the development of new technologies as well as services that were previously considered
difficult to provide. We will see in detail in the following part of this document a specific
implementation of TEE which is Intel SGX and how it is used in our context.

2	Theoretical	foundations	 	 Trusted	Execution	Environment	(TEE)	

26

2.7.2 Intel	SGX	

Intel offers its own implementation of TEEs called Intel Software Guarded Extension (SGX).
The principle is that SGX allows developers to run their applications in protected memory areas
called enclaves thanks to the different instruction sets implemented directly in the Intel CPUs.

Deploying an application on the cloud is now really common. The problem is that our
application that will run on the hypervisor of the cloud can be compromised and data intercepted
by the cloud provider itself. The environment in which our application is deployed is considered
hostile and thus untrusted. If the cloud provider exposes the possibility of using Intel SGX, then
we can create secure enclaves isolated from the indiscretions of other applications and even the
cloud provider.

Intel SGX allows the creation of enclave applications composed of both untrusted and trusted
parts. The goal is to use the trusted parts as little as possible, just enough to protect our secrets
[8], and to remain as efficient as possible because calls in the trusted zone are expensive. Intel
SGX does not replace good programming practices, which are to ensure that data is always
consistent and that no buffer overflow is possible [1, 7, 8].

Figure 3 shows an application running on a cloud that offers Intel SGX capabilities. The
untrusted part of the enclave normally runs when the trusted part is directly executed in the
protected memory. When the untrusted part needs to do a protected action, it calls a method
that sends data to the protected/trusted part. The trusted part sees the data in clear and returns
the result when finished.

Figure 3: Intel SGX enclave, trusted/untrusted parts

2	Theoretical	foundations	 	 The	IoT	middleware	

27

2.8 The	IoT	middleware	

The Software Engineering Group of the University of Fribourg is developing a secure
Privacy-Preserving IoT middleware using the Intel SGX CPU set of instructions. The goal of
the project is to propose an application that will expose a REST API to Things [1]. This API
will then, thanks to a rules engine, orchestrate data coming from various Things, then execute
actions according to rules. The iFlux programming model is the inspiration behind the whole
process. This middleware is deployed in a cloud provider that is considered untrusted but offers
the Intel SGX instructions set. The goal is therefore to develop an application running in an
enclave, which exposes a REST API to process data from Things [1, 5, 8].

Figure 4: General architecture of the system. Illustration by P. Gremaud [1]

Figure 4 shows what is the middleware current development state. The gray parts are the
untrusted part while the white parts are the trusted part. The cloud platform is considered
untrusted and the enclave runs the rule engine. Data generated by Things as well as the source
code of the enclave are not accessible by anyone other than the instance of the enclave being
executed [1]. Data in the database do not run in an enclave but are considered trusted since they
are stored as encrypted data.

Intel SGX was not designed to protect a large portion of data. That's why there is a database
containing the different information needed to run the middleware. The data inside the database
are encrypted by the enclave and only the enclave can decrypt it with its private key. As data
are encrypted, we can consider the database to be trusted. The application server is a REST API
that runs on the cloud to communicate with the rest of the world. It is considered untrusted
because it does not run in a protected zone of the memory. As the application server runs in a
cloud considered untrusted, it is necessary to encrypt all communications from Things as well
as from clients. The REST API will therefore intercept the requests in an encrypted manner,
then send the results to the enclave. The latter will decrypt the messages, then infer on the data
received with its rule engine in order to trigger the necessary actions. Messages sent in action
targets are also encrypted because they are considered to be sent in untrusted environments.
There is a semantic distinction between clients and Things. In general, Things are sensors that

2	Theoretical	foundations	 	 Communication	protocol	

28

send data to the enclave. Clients are the owners of the enclave application who have the task of
managing the enclave and its rule engine [1].

As we have seen, an enclave is used to execute code in a protected area of the memory. All
the information contained in it is not visible to anyone else. However, there is a security issue
during communications. All participants in the system exchange information with the HTTP
protocol and pass data in clear text. This information may be intercepted by third parties or the
cloud provider. This is why it’s necessary to encrypt communications between Things, clients,
the application server and the enclave. It is therefore necessary to have an encryption system
and a protocol to respect that allows to secure the data that is transmitted between the different
components. Things and clients must be able to exchange public keys with the server. Standard
symmetric encryption algorithms are then used to encrypt all exchanged messages in order to
secure the entire chain [1].

We saw in this section that a middleware based on the iFlux model is under development.
This middleware runs in an enclave to ensure data security and confidentiality for users.
However, this middleware is still under development and it will be necessary to redevelop our
own middleware application for the needs of this project. For reasons of convenience and
simplicity, the middleware developed will not be compatible with a TEE. The goal of this
project is to develop a web client that manages the middleware data in order to run the rule
engine. This client must also be able to manage data encryption. We will see in this report how
we have developed our client and how we manage encryption with our middleware.

2.9 Communication	protocol	

2.9.1 Introduction	

In the middleware currently under development, clients and Things exchange messages with
the enclave through a REST API. The communications are therefore made using the HTTP(S)
protocol. Encryption of messages is necessary because the HTTPS protocol allows the
confidentiality of data from the client to the server. This is problematic in our case because our
server is considered untrusted. It is then necessary to encrypt all communications to ensure that
messages are transported securely up to the enclave. In this section, we will see which
cryptographic techniques we will use as well as the protocols implemented to ensure connection
establishment and symmetric encryption.

 	

2	Theoretical	foundations	 	 Communication	protocol	

29

2.9.2 Key	exchange	algorithms	

Diffie-Hellman	(DH)	
Symmetric encryption algorithms are very common and powerful. AES for example allows

us to quickly encrypt a large amount of data. It is standardized and widespread. However, it is
necessary to have an identical private key (shared secret) on each side in order to encrypt data.
It is therefore necessary to have a key exchange system. The establishment of an encrypted
connection takes place in two steps. The first step is to exchange both sides public key. Then
the client and server agree on a private key that will be used temporarily to encrypt
communications and that can be revoked at any time. This key is unique for each client. This
process enables the exchange of encrypted messages with a symmetric algorithm such as AES.
The latter will use the key that was defined by Diffie-Hellman [4, 1, 11, 12].

The Diffie-Hellman (DH) algorithm is widely used for key exchange. The purpose is to
create a private key (shared secret) between a client and a server via the exchange of messages
over an unsecured channel. We will see that even if the messages allowing the establishment of
the key are sent in clear on an unsecured channel, it is difficult to deduce the private key for an
attacker who intercepts the messages [11, 13].

The session key must not be stored permanently by the client. This ensures Perfect Forward
Secrecy (PFS). If an attacker records each message and manages to get the private key, he could
only decipher the messages that have been ciphered using the current session key but could not
uncipher previous or future ones [4].

Let suppose we have Alice (the client) who wants to agree with Bob (the server) on a private
key and Takeshi (the thief) listens to the communications between Alice and Bob. The steps for
establishing a private key are in Table 2.

Table 2: Diffie-Hellman private key exchange steps

Steps Alice Bob

1
Alice and bob choose together a very large prime number p and a large number g
such that g: 1 ≤ g ≤ p – 1.

2 Alice chooses a very large random
number x

Bob chooses a very large random
number y

3 Alice computes: p1 = gx mod p Bob computes: p2 = gy mod p

4 Alice and Bob share theirs values of px through an unsecure channel

5 Alice computes the secret key k1 = p2x
mod p

Bob computes the secret key k2 = p1y
mod p

2	Theoretical	foundations	 	 Communication	protocol	

30

The example in Table 3 shows the establishment of a private key on both Alice and Bob with
real numbers:

Table 3: Example of Diffie-Hellman with numbers

Steps Alice Bob

1 a = 3, g = 17

2 x = 15 y = 13

3 p1 = 315 mod 17 = 6 P2 = 313 mod 17 = 12

4 P2 = 12 p1 = 6

5 1215 mod 17 = 10 613 mod 17 = 10

As we can see, in step 5, the calculation ends with the same number, which gives the secret
key. Even if the two equations don’t look the same: 1215 mod 17 = 613 mod 17, they can be
rewritten as ayx mod g = axy mod g or 313*15 mod 17 = 315*13 mod 17 = 10 and we can see that
they both do the same calculation with the same exponents but in different order and end up
with the same result that will be used as the private key. Confidentiality is guaranteed by the
fact that if T (thief) intercepts communications between Alice and Bob, T would have no
reasonable way to find out the private key from the information transmitted through the
unsecure channel. X and y being very large numbers, it is indeed extremely complex to find
their value from the information transmitted in clear in a reasonable amount of time [11, 13].

	

Elliptic	Curve	Diffie-Hellman	(ECDH)	
The previous section presented the Diffie-Hellman algorithm. However, in this project,

another version was used. It’s the Elliptic Curve Diffie-Hellman. It was necessary to introduce
DH first because it is easier to understand than ECDH. The main difference is that DH uses
modular arithmetic to define a secret key while ECDH uses algebraic curves [14]. The maths
behind ECDH it will not be explained here, but the principle of key exchange remains the same
as with DH.

Shared	Secret	derivation	with	SHA-256	
Once a secret key has been established with the ECDH algorithm, it is then necessary to

derive the key. It is not advisable to use the secret key directly [15] because a secret key is not
uniformly random, and an attacker could take advantage of partial information to deduce our
secret key. This is why we will derive the keys with the SHA-256 algorithm to create a 256-
bits hash and use it as a private key [13, 16].

2	Theoretical	foundations	 	 Communication	protocol	

31

2.9.3 Advanced	Encryption	Standard	(AES)	

To encrypt communications, we will use the Advanced Encryption Standard (AES)
algorithm. It is a symmetric encryption algorithm that allows data to be encrypted in 128-bit
blocks with a 256 bits private key in our case. The advantage of AES is that its specification is
open source, it is very resistant to attacks, easily implemented by both software or hardware
components and provides very good encryption performance [15, 17]. In this project, we will
use the AES-GCM implementation (Galois/Counter mode).

AES operates on 128-bit blocks of plain text that it transforms into 128-bit encrypted blocks
by a sequence of n rounds. A 256-bit key will require 14 rounds. The simplified Figure 5
(homemade) shows how the AES algorithm works for ciphering and enciphering text [18]:

Figure 5: Graphical example of the AES algorithm

All the function descriptions were taken from D. McGrew and J. Viega paper on AES-GCM
algorithm [15].

BYTE_SUB is a non-linear function that operates independently on each block from a so-
called substitution table.

SHIFT_ROW is a function that operates offsets (typically it takes the input in 4 bocks of 4
bytes and operates offsets to the left of 0, 1, 2 and 3 bytes for pieces 1, 2, 3 and 4 respectively).

2	Theoretical	foundations	 	 Communication	protocol	

32

MIX_COL is a function that transforms each input byte into a linear combination of input
bytes and can be expressed mathematically by a matrix product on the Galois.

 Kn is the ith subkey calculated by an algorithm from the main key K.

Uncipher a message consists of applying reverse operations, in reverse order and with
subkeys also in reverse order.

Another mechanism used with AES to increase security is the iv. An Initialization Vector is
the initial value used to start some iterated process. It prevents repetition in data encryption to
make harder to an attacker to use a dictionary to find patterns and break the cipher [19]. AES-
GCM requires a 96 bits random iv [20] that is unique for each message encrypted for a given
private key. A random and unique iv ensure that each message is ciphered differently. The IV
can be kept public and must be in our case higher than the previous one.

2.9.4 Message	exchange	protocol	

Introduction	
As we have seen in the theoretical part, the enclave runs in an environment considered

untrusted. Communications can be intercepted either during data transmission over the internet
or directly on the cloud provider platform. Encrypting the data is then necessary and, in this
section, we will explain the protocol used to guarantee the security of the data. We assume here
that a client wants to exchange data with the enclave and we will show how keys are exchanged
and common secret generation and messages sharing are done. Messages exchanged with the
enclave are sent over HTTP(S). They are ciphered at the application level and then HTTP(S) is
used to transport them. Application encryption allows us to keep control over the encryption
mechanisms and ensure that the data arrives securely to the enclave [4]. The protocol uses the
JSON notation with all data coded in base64Url (without padding).

Session	Key	establishment	
The first step to be able to communicate with the enclave from the client is to establish a

session key. We will use ECDH to create a shared secret between the server and the client and
we will use this key to encrypt all data [1, 4]. The first problem is that the enclave only accepts
encrypted connections, and we need an unsecured entry point to establish a session key. Public
key exchange can only be done via an unsecured channel. In our case, the enclave exposes a
single URL that allows for key exchange and is located at POST:/keys/exchange.

Code 4 shows how the client initiate the communication with the enclave by sending its
public key through an unsecured channel and the response from the enclave.

2	Theoretical	foundations	 	 Communication	protocol	

33

45 POST /1.0/keys/exchange HTTP/1.1
46 Content-type: application/json
47
48 {
49 "publickey": “3059301306072A8648CE3D020106082A8648CE3D03010703420

004809CB1C845DF75A504C6B1AC03F33D139DA99EEEA3E140433983C4D61CCF1D42CF25A7
F296816ABB7B49AA644FAAF3E5FC19A632C66EA764CA3E18B71FAEBE68”

50 }
51
52 Response Status 200:
53
54 {
55 "header": "B64Url("{"alg":"dir", "kid": "123456789"}")",
56 "ciphertext": "B64Url(Ciphered("HELLO YOU =D Love from the enclave ;-

)"))",
57 "iv": "ASNFZ4mrze8BI0Vp",
58 "publickey":

"3059301306072A8648CE3D020106082A8648CE3D03010703420004E560F4DD90249D8A3C
FE2C545791D1344D8870D486B481E270D2CBC7C420761EF7CC3F881602B8C5E941CFD9E5C
8B4C6AA238B852A2D662539100B2E112E16E5",

59 "tag": "EZGftO8x2pwMz5mZBnLV6g"
60 }

Code 4: Example of session creation

Once the key exchange request is received by the enclave, the enclave will create a private
key for that client, store it and return some data to the client. The received data is a JSON
document composed of several properties. For now, the three properties we are interested in are
the publickey, iv and ciphertext properties. The client will use the public key of the enclave to
create its own private key. He will then decipher the ciphertext text using iv and if the client
can decipher the text "HELLO YOU =D Love from the enclave ;-)" then it means that he has
managed to create a connection with the enclave and has managed to derive a usable key
between the two parties.

JWE	(JSON	Web	Encryption)	
JWE (JSON Web Encryption) is a specification that standardize the way we represent an

encrypted data structure with JSON [21]. JWE can be represented in two different ways: the
first is as a JSON document and the second is a compact form that is as a token serialized in
Base64 separated with dots. Code 5 shows a JWE as JWT compact serialization.

B64URL(Header).B64URL(Key).B64URL(IV).B64URL(CipheredText).B64URL(Tag)

Code 5: JWE as JWT compact serialization example

The header contains the information in Code 6.

{"alg": "dir", "kid": <session key ID>, "cid": <client ID>}

Code 6: JWE header

2	Theoretical	foundations	 	 Communication	protocol	

34

The property alg with the value dir means that the algorithm used for encryption is direct. It
means that the token is directly encrypted by the application. The kid is the id of the key used
for encryption. The cid is the id of the client that has initiated the session.

The key part is the key used to encrypt the data. In our case, this part will be empty, meaning
that we have used our own private key for encryption and we do not provide the key in the
token. Even if we don’t specify the key, we still have to include the dot and the compact JWE
would look like: header..iv.cipheredtext.tag.

The iv is the Initialization Vector used to cipher the text. We include it in our token and it
will be used to decipher the text. The iv is always higher than the previous one [4].

The cipherertext part is the message that is ciphered. It is encoded in Base64Url without
padding.

The Authenticated Tag is the final element of a JWE structure. It is used to ensure the
integrity of the ciphered text.

We have seen what the compact representation of a JWE looks like. The JWE JSON
representation has the same properties except that it is represented in JSON format instead of a
string with dots. All our request body payload will be encrypted using the JWE JSON
representation. Therefore, all the payloads of the messages will look like the JSON document
in Code 7, except the one used to initiate a session.

61 {
62 "header": {"alg": "dir", "kid": <session key id>},
63 "iv": BASE64URL-ENCODE(<iv>),
64 "ciphertext": BASE64URL-ENCODE(<ciphertext>),
65 "tag": BASE64URL-ENCODE(<tag>)
66 }

Code 7: JWE JSON example

JWT	(JSON	Web	Token)	
A JWT is a token exchanged between a client and one or more servers allowing

authentication and authorization access to certain resources for a given client. In our case, a
JWS is represented as a JWT and is composed of a header, a payload and a signature. All parts
are JSON documents serialized in Base64Url and separated by dots [21]. Code 8 show a
representation of a JWS as JWT token:

B64Url(header).B64Url(payload).B64Url(signature)

Code 8: JWS as JWT example

2	Theoretical	foundations	 	 Communication	protocol	

35

The header is composed of:

67 {
68 “alg”: “dir”,
69 “cid”: <id of the client>,
70 “kid”: <id of the secret key for this session>
71 }

Code 9: JWS header

The header in Code 9 part is composed with only essential information. The kid is the
identifier of the session key used. The cid is the id of the client and the alg here specifies that
we use direct encryption [4]. The payload is composed of:

72 {
73 “cid”: <id of the client>,
74 “mag”: “<signature of the JWE>”,
75 “admin”: 0|1
76 }

Code 10: JWS payload

The mag is present here is intended to make a link between the JWT present in the header
and the JWE present in the body. Its value corresponds to the value of the JWE tag [4]. The
admin property allows you to determine whether or not the client has additional rights.

A JWT is a token that a server distributes to a client after authentication. It is used to identify
the client and contains in its structure information such as the identifiers and accreditation. This
token is readable and editable by the client itself. It is therefore necessary to put additional
protection on to ensure that the client has not changed the content of the token. The signature
part allows the server to verify the authenticity and source of the token using the HMAC
SHA256 algorithm. It creates a signature of the header and payload using a private key. This
way, we can check if a user has modified the token.

After a request, the enclave returns a token in every case. However, the token is different in
two cases: when a client requests a key exchange to open a session and the other case is for all
the other requests. Indeed, we need a token to check if a client has access to a resource. Once a
session is created, the enclave returns a token without cid. Once a client has logged in, the
enclave returns a token with the cid in the header specifying that they are connected. Once
connected, the token also changes with each request because the mag must match the JWE tag.

At each request, the token must be sent in the Authorization header like in Code 11.

Authorization: Bearer xxxxx.yyyyy.zzzzz

Code 11: Authorization header

The enclave returns a new token at each request. The client is expected to use this new token.

2	Theoretical	foundations	 	 Conclusion	

36

2.10 Conclusion	

We have seen in the theoretical part that the Softeng group of the University of Fribourg is
currently developing a middleware to manage data from Things. This middleware implements
the latest Intel SGX instruction sets to execute code in a protected memory portion. The purpose
is to ensure the execution of a program processing sensitive IoT data in an untrusted
environment. We also saw classic methods of key exchange as well as symmetric cryptography
algorithms allowing a client to create a session with the enclave, and so, offer point-to-point
data protection. Data are then encrypted starting from the client, then arriving on the cloud
provider before being sent to the enclave where the data will be decrypted.

We have also seen that the iFlux project proposes a programming model based on the three
principles of events, conditions and actions (ECA). An event sent by a Thing is then submitted
to a rule engine that will decide to trigger an action. We will therefore use the iFlux project as
a basis for developing our own version of this ECA model.

The goal of this project is to develop a web interface with the latest technologies available
to manage the middleware. As the project of the University of Fribourg is not ready yet, we will
have to develop our own middleware that will simulate all the requested functionalities.
However, it will not be necessary to make one that is compatible with a protected execution
environment.

The rest of the document will present the technologies that have been selected to develop
the web application and the infrastructure.

3	Design	and	Implementation	 	 Conclusion	

37

	3	
Design	and	Implementation	

3.1 Introduction	 39

3.2 Risks	analysis	 39

3.3 Global	architecture	 41

3.4 Cryptography	middleware	 42
3.4.1 Introduction ... 42
3.4.2 Web crypto API ... 42

3.4.3 Java Security .. 44
3.4.4 Benchmark ... 44
3.4.5 Spring Zuul .. 47

3.5 Custom	REST	API	 49
3.5.1 Introduction ... 49

3.5.2 Keys ... 49
3.5.3 Users .. 50
3.5.4 Clients .. 51
3.5.5 Auth ... 52

3.5.6 Client Urls ... 52
3.5.7 Event types .. 53

3.5.8 Action types ... 54

3.5.9 Rules .. 55
3.5.10 Event .. 57
3.5.11 Conclusion ... 58

3.6 Enclave	middleware	 59
3.6.1 Introduction ... 59

3.6.2 Spring boot .. 59
3.6.3 Authentification/Authorization ... 62

3.6.4 Errors handling & Logging ... 64
3.6.5 Database type & model ... 66

3	Design	and	Implementation	 	 	

38

3.6.6 Database access ... 68
3.6.7 Rule engine .. 70

3.7 Action	target	 78

3.8 Front-end	 80
3.8.1 Introduction ... 80

3.8.2 Use cases ... 82

3.8.3 Navigation diagram ... 83

3.9 Practical	example	of	cryptographic	functions	 85
3.9.1 Introduction ... 85
3.9.2 Session Key creation ... 85

3.9.3 Authentication ... 90

3.9.4 Message exchange ... 94

3.10 Software	development	organization	 95
3.10.1 Source code version control ... 95
3.10.2 Iterative development ... 95
3.10.3 Testing .. 96

3.10.4 Deployment .. 97

3.11 Conclusion	 99

3.12 Improvements	&	future	works	 100

	

	 	

3	Design	and	Implementation	 	 Introduction	

39

3.1 Introduction	

In the section 2, we saw the theoretical foundations that allow us to understand the stakes of
the project and guide us through the realization of our software artifacts. In this section, we will
use our preliminary analysis to define a global software architecture. We will then describe the
technologies used and the important points of the technical implementation of the project. This
part will guide us through all the important technical pieces of the project, the technologies, the
architecture and the design.

3.2 Risks	Analysis	

In a project, a risk analysis is always important because it allows risks to be identified and
quantified. Once a risk has been identified, it is then necessary to assess its probability of
occurrence and impact on the project. For each risk identified, it is necessary to propose an
alternative if possible or to propose a solution to limit its impact. Knowing the risks allows us
to prepare for the difficulties that may arise and to find solutions.

This master's work being an original research work and based on the latest technologies, is
fundamentally at risk. Indeed, there is a large part of unknown and ignorance about the ability
to implement a particular feature based on technical knowledge or technical limitations. Table
4 shows the list of identified risks, their probability of occurrence and possible solutions.

Table 4: List of risks

Likelihood Consequences Details

1 3 1
Risk: Incomprehension of the specifications. The student cannot

define the needs of the project

Solution: Seek help from teachers, assistants and other researchers

2 4 1
Risk:

Impossible to develop all the functionalities in order to
correspond 100% to the original project. For example,
develop an Intel SGX-compatible enclave

Solution: Do not use Intel SGX. Develop as much as possible in order
to best match the project specifications

3 4 2
Risk: Failure to successfully implement the full key exchange

protocol
Solution: Develop a simpler one

4 3 4
Risk: Failure to understand the technical concept of

cryptography and technical implementation
Solution: Use high level libraries

3	Design	and	Implementation	 	 Risks	Analysis	

40

5 2 4
Risk: Web Crypto API (in development) does not work properly

Solution: Use pure JavaScript cryptography libraries

6 1 2
Risk: Cannot develop a front end with the latest technologies

Solution: Learn others front-end framework as alternatives. At least
one should work

7 2 2
Risk: Cannot design an architecture that meets the needs of the

project

Solution: Seek help from teachers, assistants and other researchers

8 2 2
Risk: Cannot create our own API version of the iFlux project

Solution: Seek help from teachers, assistants and other researchers

9 1 4
Risk: Cannot develop a rule engine in order to infer on events

data
Solution: Try to find a solution harder. It should not be that hard

10 2 2
Risk: The architecture is complex and hard to deploy

Solution: Dockerize everything

11 2 4
Risk: Not enough time to complete the project

Solution: Work harder and ask for more time

Table 5 is the risk matrix associated with the identified risks.

Table 5: Risks matrix

 Consequences

 Minor (1) Moderate (2) Major (3) Critical (4)

Li
ke

lih
oo

d Unlikely (1) 6 9
Possible (2) 7, 8, 10 5, 11
Likely (3) 1 4
Certain (4) 2 3

The Table 5 graphically shows how the inherent risks of the project are distributed. As we
can see, the main risks associated with the project have been identified and ranked on a personal
scale. They are mainly of two kinds. The first risk is the understanding of the issues, needs and
technologies related to the development of the project. Conceptual problems can easily be
solved by asking for help. Technological risks can also be solved either by using existing
solutions or by using high-level libraries if really necessary. Blocking risks have not been
identified for this project. If a risk arises, there is always a solution to find an alternative or try
harder to solve it.

3	Design	and	Implementation	 	 Global	Architecture	

41

3.3 Global	Architecture	

Once again, the goal of the project is to create a web interface allowing the management of
a middleware similar to the iFlux project that proposes an events, conditions and actions
programming model [4, 1]. The middleware we have to manage is currently under development,
so it is necessary to develop our own infrastructure from scratch. However, it will not be
necessary to create a middleware compatible with an SGX enclave, which will facilitate the
development of our project.

Figure 6 shows the overall infrastructure as well as the rest of the infrastructure.

Figure 6: RIOT global architecture

The current architecture looks like the illustration in Figure 6. As we can see, it is a multi-

tier architecture composed of several micro services. The front-end is a SPA (Single Page
Application) that is used to manage the middleware. AXIOS is an HTTP client that allows us
to make HTTP requests. Axios will then make requests to the Zuul gateway following the
encryption protocol explained in the theoretical part. Zuul acts as a reverse proxy and intercepts
requests, encrypt/decrypt them and send them to the servlet filter. The servlet filters will check
the validity of the JWT tokens, then if it’s valid it will send the request further to the enclave
application.

We will call our middleware an enclave, even if technically it is not an enclave. Once the
request is received by our enclave, it will then infer on it with the rule engine in order to trigger
an action based on the events received. If a rule is evaluated positive, then the enclave will
trigger an HTTP request to an action target. The action targets are developed with NodeJS.

The session keys generated are stored in a Redis database and all the data required to manage
the rule engine are stored in the MySQL database. All data arriving at the enclave are decrypted,
and it is Zuul’s role as an encryption/decryption middleware to encrypt/decrypt data in order to
make the enclave agnostic of any encryption mechanism. Things and clients are responsible for
encrypting their own data before sending it to Zuul. Our web application is agnostic of all
encryption mechanisms. Indeed, the interface makes a normal HTTP request. Axios will then
transparently intercept the data, then encrypt it according to the protocol. The advantage of

3	Design	and	Implementation	 	 Cryptography	middleware	

42

making the front-end and enclave agnostic of encryption and thus offering a weak coupling
between data and encryption is that if we want to get rid of any encryption or host our enclave
on a trusted provider, it is then very easy to do so because it will not be necessary to remove all
the encryption part in the code.

3.4 Cryptography	middleware	

3.4.1 Introduction	

As we have seen before, the web interface must be able to manage the enclave in a secured
way. The enclave is executed on an untrusted platform and all incoming messages must be
secured. A session must be established, which means that public keys exchange is required.
Then the exchanged messages must be encrypted, which means that another encryption
algorithm must be used. Our web user interface is considered as a client with administrator
privileges by the enclave. It is now time to ask the question of the technologies to be used to
implement these cryptographic mechanisms. We have seen before which algorithms are used
to exchange keys and to encrypt/decrypt. In this section, we will look at the technologies that
will be used to implement encryption.

As a reminder, encryption takes place between the client and the enclave. However, as in
this project, the enclave is not executed in a TEE, we will use other technologies that will help
us to encrypt/decrypt our messages. The advantage is that the time required to develop an
enclave is shorter as it’s not the main goal of this project. On the web interface side, the data
are transmitted by the Axios HTTP client. The data are then received by the Zuul reverse proxy
before being sent to the enclave.

When the web interface makes an HTTP request to the enclave, the request is intercepted by
Axios, then ciphered and sent to Zuul. The latter will take care of deciphering the message and
send it to the enclave. Why did you intercept the messages with Axios and use Zuul as a reverse
proxy, you may wonder? Simply to make the web interface and the enclave agnostic of any
encryption. Indeed, as a web developer, it is not necessary to know the encryption details
because they focus on feature developments. If someday day we decide to run the enclave on a
trusted platform and encryption is no longer needed, then the weak coupling between the
different layers allows us to remove the encryption layer very easily.

3.4.2 Web	Crypto	API	

The web client must perform encryption. However, the scripting language used to execute
code is JavaScript and until recently it did not contain any native cryptographic functions. In
addition, JavaScript is considered slow and performing cryptographic functions with would be
cumbersome.

3	Design	and	Implementation	 	 Cryptography	middleware	

43

Since 2016 the W3C has been proposing recommendations for a low-level interface (API)
of cryptographic primitives [22]. This interface is implemented directly by the browsers. Calls
to these implementations are made through calls of JavaScript function that return a promise.
Once the computing is completed by the interfaces, the promises are then executed, and the
results returned. Thanks to this API, we now have efficient functionalities allowing us to do
hashing, key exchange and encryption. It should be noted that Web Crypto API does not offer
a primitive to handle very large numbers. It is therefore necessary to use an external JavaScript
library to manage the BigInteger, as it’s needed for the iv. We should use Web Crypto API with
caution as it is still in the experimental phase and is not fully supported by all browsers [22].

We have seen that Web Crypto Api offers an interface to use low-level primitives. However,
this API is still under development and the implementation is partial in some browsers. There
are many native JavaScript frameworks that existed long before. For example, we can mention
SJCL, asmcrypto.js or CryptoJS [23]. These implementations have been in existence for several
years and have been successfully tested. We can wonder why it would be necessary to use a
native API when JS implementations already exist. The most logical answer is that JavaScript
is slow, and a native implementation would be much faster.

The following benchmark was performed by the developers of the WebKit [23] engine that
compares the native implementation with non-native implementations. The following
algorithms were used:

• AES-GCM to encrypt a 4MB file.

• SHA-2 to compute the hash of a 512KB file.

• RSA to sign a verify the signature of a 512KB file.

The Figure 7 shows the result after multiple runs with the average value.

Figure 7: Web cryptography benchmark. Native vs JS implementation (Image from WebKit)1 [23]

As Figure 7 shows, a native implementation of cryptography functions is much faster than
JavaScript implementations. Web Crypto API is a major advance in cryptography for web
applications. However, it is necessary to keep in mind that it is under development and is not
fully supported [23, 22, 24]. The other issue is that there are very few examples of how to use
the API and the documentation lack of clarity at the moment.

1 https://webkit.org/blog/7790/update-on-web-cryptography

3	Design	and	Implementation	 	 Cryptography	middleware	

44

For the needs of our project, and as we use all the latest technologies, Web Crypto API will
be privileged for its performance and by the fact that it integrates all the cryptography functions
we need. Namely ECDH, SHA-256 and AES-256-GCM. BigInteger support is not available,
we will then use the BigInteger.js library.

3.4.3 Java	Security	

On the server side, it is also necessary to encrypt/decrypt messages. Cryptographic
operations require a large amount of resources, so it is necessary to use a compiled language
rather than an interpreted language. NodeJS, even if it is very popular, would be a rather bad
choice. We therefore need a language that provides cryptography primitives, that is fast and
offers features to develop a REST API. The language retained is Java because it includes by
default the java.security package which contains all the cryptographic functions we need [25].
It is also well known by the author of this document. The advantage of Java is that it is very
widespread, easy to use and has extensive documentation on its cryptography part. It is stable
and supported on the long term.

The java.security package contains all the necessary classes and interfaces to manage all the
most common aspects of security and cryptography. However, the java.security package does
not implement the algorithms by itself. It acts as a wrapper that provides a generic interface to
a third-party provider [25]. The default implementation of cryptography algorithms is done by
Sun Microsystems (legacy implementation) and other implementations can be specified by
other providers such as OpenSSL for example.

Java security has a deliberate built-in limitation for a maximum key size of 128 bits. Indeed,
if we try to use a 256 bits keys, Java will throw the exception maximum key length permitted
by policy. It makes impossible to use the AES-256-GCM algorithm. Some people say and
including this website [19] that this limitation is here because some countries have restriction
on the permitted key size [19]. This limitation is easily overwritten by replacing files in
lib/security of the JRE folder by the Java Cryptography Extension (JCE) Unlimited Strength
Juridiction Policy files 6 that can be found on Oracle’s website [25, 19].

3.4.4 Benchmark	

We have seen that Web Crypto API allows access to cryptography primitives implemented
by browsers. This offers much better performance than pure JavaScript implementations. We
also saw that Java provides a generic interface to call cryptographic primitives that are
implemented by third parties. It would therefore be interesting to compare the performance of
the two solutions to see if cryptography in the web environment is comparable to precompiled
code.

3	Design	and	Implementation	 	 Cryptography	middleware	

45

In order to compare the performances, we need to do similar operations on both platforms
even though they are not similar at all. Table 6 show the two scenarios that our platforms will
compute.

Table 6: Java vs Web Crypto API scenario

Java scenario Web Crypto API scenario

Java is rather simple to monitor since the
code is synchronous by design. We only
need to measure the time elapsed from the
beginning to the end.

1. Create ECDH instance for both Alice
and Bob

2. Print to the console their keypair
3. Create AES instance for both Alice

and Bob
4. Exchange public keys
5. Creating a shared secret and derive a

key from it
6. Generate the iv
7. Start the process of exchanging

messages. This process will be
executed N times:

i. Defining a string message
ii. Alice crypts the message

with her derived key
iii. The message is parsed to

base64
iv. The message is parsed to

string
v. The message is decrypted by

Bob
vi. Increment the IV

The time elapsed is measured in seconds
from before step 1 to after the last step of 7.

As JavaScript is asynchronous and the Web
Crypto API massively rely on Promises, it's
therefore much harder to measure
performances as things don't go in a
deterministic order.

The following use case describe all the steps
with the use of Promise and await/async.

1. Create the ECDH instance for Alice
2. Extract public key
3. Create the ECDH instance for Bob
4. Extract public key
5. Derive a key for Alice
6. Derive a key for Bob with Bob
7. Start the process of exchanging

messages. This process will be
executed N times: Since this process
is asynchronous, we'll rely on
await/async mechanism to pretend
we're in a synchronous mode

i. Defining a string messages
ii. Generate the iv (new for each

exchange)
iii. Crypt message with Alice

derived key
iv. Decrypt message with Bob

derived key

As you can see here, for the sake of
simplicity we didn't increment the iv and we
skipped the parse to Base64 process.

As we can see in Table 6, we have two similar scenarios that will each test the performance
of cryptographic algorithms that have been implemented in Java and JavaScript. They will be
executed 1'000'000 times and the average of the results obtained will be considered.

3	Design	and	Implementation	 	 Cryptography	middleware	

46

The tests were executed 1’000’000 times on Intel Core i5 2.7Ghz CPU with 4GB of RAM
and in a single Java thread or browser tab. They both use ECDH with 256 bits key, AES-GCM-
256 and 96 bits iv. The message that has to be ciphered/deciphered is “Hello Mah
BOOOYYYYY! This is the raw message !!!” and weights 48 bytes.

Here is the result for Java:

Start benchmarking. Please wait...

Alice Private Key HEX :
3041020100301306072A8648CE3D020106082A8648CE3D03010704273025020101042044B3F3826F19
A948080F1B0F5E59B89A7D38CFBC6B9A7696F21E4898F4F26CCB
Alice Private Key Base64 :
MEECAQAwEwYHKoZIzj0CAQYIKoZIzj0DAQcEJzAlAgEBBCBEs/OCbxmpSAgPGw9eWbiafTjPvGuadpbyHk
iY9PJsyw==
Alice public Key HEX :
3059301306072A8648CE3D020106082A8648CE3D03010703420004809CB1C845DF75A504C6B1AC03F3
3D139DA99EEEA3E140433983C4D61CCF1D42CF25A7F296816ABB7B49AA644FAAF3E5FC19A632C66EA7
64CA3E18B71FAEBE68
Alice public Key Base64 :
MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEgJyxyEXfdaUExrGsA/M9E52pnu6j4UBDOYPE1hzPHULPJa
fyloFqu3tJqmRPqvPl/BmmMsZup2TKPhi3H66+aA==
Alice shared secret HEX :
25265F7A8CD55EECD1DFD7BDDA26662F4F9702E512A989ACAA75C7E69B9544BB

Bob Private Key HEX :
3041020100301306072A8648CE3D020106082A8648CE3D030107042730250201010420320D1236B245
9D75FF3093DAA9675595B42FBE18AB7365C965179DF7BB994D56
Bob Private Key Base64 :
MEECAQAwEwYHKoZIzj0CAQYIKoZIzj0DAQcEJzAlAgEBBCAyDRI2skWddf8wk9qpZ1WVtC++GKtzZcllF5
33u5lNVg==
Bob public Key HEX :
3059301306072A8648CE3D020106082A8648CE3D03010703420004E560F4DD90249D8A3CFE2C545791
D1344D8870D486B481E270D2CBC7C420761EF7CC3F881602B8C5E941CFD9E5C8B4C6AA238B852A2D66
2539100B2E112E16E5
Bob public Key Base64 :
MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE5WD03ZAknYo8/ixUV5HRNE2IcNSGtIHicNLLx8Qgdh73zD
+IFgK4xelBz9nlyLTGqiOLhSotZiU5EAsuES4W5Q==
Bob shared secret HEX :
25265F7A8CD55EECD1DFD7BDDA26662F4F9702E512A989ACAA75C7E69B9544BB

Mode verbose deactivated

Start message exchange… Done
Benchmark Finished:

The whole process took: 11.394719722 seconds
There were 1000000 iterations
Each iteration took in average 1.3394719722E-5 seconds

Here is the result for JavaScript:

Start Benchmarking. Please wait... 1000000 iterations have to run...

Alice key pair generation done. Not extractable.

3	Design	and	Implementation	 	 Cryptography	middleware	

47

Alice's public key: {"crv":"P-
256","ext":true,"key_ops":[],"kty":"EC","x":"SylqEc9eSvaojWYxh56P7Ko4EYFNfOjkP3_e0
ZLahgc","y":"s6sd_uDLrz2pOhyD1-1AgEbM2tuhc8GDfv71FQhjIOs"}
Bob key pair generation done. Not extractable.
Bob's public key: {"crv":"P-
256","ext":true,"key_ops":[],"kty":"EC","x":"GkUMYeNs6WyTTpW9ySFuTBkPtHu3eyNPXpHiU
vANPfs","y":"YU9hhXfrqtopKHfwHXvFWln0XwzhORHIL7gnSjv67Q0"}
Alice derived shared secret generation done. Not extractable.
Bob derived shared secret generation done. Not extractable.

Verbose mode deactivated
Start message exchange… Done
Benchmark Finished:

The whole process took: 239.148 seconds
There were: 1000000 iterations
Each iteration took in average 0.000239148 seconds

We can obviously see which one is the fastest here. Java took 11 seconds to complete the
whole process while JavaScript took 240 seconds. There is a 21-time speed up factor in favor
of Java in this case. In other words, Java can cipher 91’000 messages per seconds or 4363
Kbytes per seconds. JavaScript can cipher 4’100 messages per seconds or 200 Kbytes per
seconds. We now wonder why the JavaScript scenario is slower than the Java one. We know
that Web Crypto API provides an interface to a native implementation provided by the browser.
This means that the code called for cryptographic operations are compiled and should therefore
be at least as fast as the code in Java, whereas this is not the case. The simplest explanation is
that when JavaScript uses the API, it calls a function that returns a promise. Once the result is
available, the API returns the result to the promise. Promises being pure JavaScript
implementation, they provide much lower performance. This point may partially explain the
relative slowness of Web Crypto API.

As we have seen, our Java implementation is unsurprisingly faster than its contender. It is
therefore recommended to use Java as a server-side encryption language to take advantage of
its performance because it may serve a larger number of concurrent users. As it will use several
threads with Spring Boot, it will be even faster in the final implementation. Even if Web Crypto
API is slower, it is fast enough to encrypt a smaller amount of data on the client side.

3.4.5 Spring	Zuul	

We have seen earlier that the front-end makes HTTP requests in a totally transparent way
without worrying about encryption. The request is then automatically intercepted by Axios,
then encrypted and sent to the enclave. We consider that the enclave must also be agnostic of
any encryption. It is therefore necessary to have a mechanism similar to Axios that allows
incoming requests to be intercepted, decrypted and sent to the enclave in clear text. Outgoing
requests are also intercepted and encrypted. It is also necessary to manage private keys.

3	Design	and	Implementation	 	 Cryptography	middleware	

48

We must therefore provide a service that makes encryption transparent. This is where Netflix
Zuul enters. Zuul is a project developed by Netflix and it can be seen as reserve proxy. Zuul
was designed to be put in front of web services in order to add dynamic routing, monitoring,
resilience, and security capabilities [26]. Zuul acts in a totally transparent way and in our case,
it will be useful to encrypt/decrypt HTTP requests. Zuul was written in Java and can be used
with services written in any language.

In this project, we will use Spring Zuul which offers a good implementation of Netflix Zuul.
It will be placed in front of our API and it will intercept all requests. When a request arrives,
the first thing to do is to check if it is a normal request or if it is a session creation request. If
the POST:/keys/exchange URL is called, then the request is considered as a session request.
Zuul will then send the request to the enclave and it will create a private key, store it in the
Redis database, and then send the newly generated public key back to the client. Zuul checks
that there are not more than 1000 session creation requests per IP for a period of 1 hour to avoid
buffer overflow attacks. Once a session has been established, Zuul will then decrypt all requests,
before sending them to the enclave. Requests returned by the enclave are encrypted before being
returned to the client. Sessions keys are stored in the Redis database for a period of 1 hour and
are indexed by kid.

We have seen in this section that it is possible to implement an encrypted and transparent
means of communication for the API as long as the platform on which these two components
are executed is considered trusted. The structure of the gateway source code is in Figure 8.

Figure 8: Gateway source code

The GatewayApplication.java file is the file that will
execute the entire gateway.

The application.properties and yml files contain the
gateway configuration variables.

The crypto package contains all the cryptographic
functions.

The dao package allows access to the keys stored in
Redis.

The filter package contains the code that allows
messages to be intercepted, ciphered and deciphered.

The package model contains the session key
templates in Redis.

 	

3	Design	and	Implementation	 	 Custom	REST	API	

49

3.5 Custom	REST	API	

3.5.1 Introduction	

We have seen that the iFlux project proposes a programming model based on the principle
of events, conditions and actions. When an event occurs, it is evaluated, and an action is taken
and triggered according to a condition. Based on iFlux's research, we have implemented a
similar programming model. It is implemented as a REST API and will be detailed in this
section. A Swagger documentation has been generated by the annotations that can be found in
the enclave’s code. We will briefly describe the different components of the API. For complete
documentation, it will be necessary to run the enclave and go to the Swagger documentation.

A route version management has been implemented at the URL level. By default, all URLs
have the version 1.0. All HTTP verbs have been used and HTTP error codes and their messages
are documented. The API described here is without any encryption.

3.5.2 Keys	

Keys are used to manage sessions. When a client wants to communicate with the enclave,
they must log in by sharing their public key. Code 12 shows how it’s done.

77 POST /1.0/keys/exchange HTTP/1.1
78 Content-type: application/json
79
80 {
81 "publickey":

“3059301306072A8648CE3D020106082A8648CE3D03010703420
004809CB1C845DF75A504C6B1AC03F33D139DA99EEEA3E140433983C4D61CCF1D
42CF25A7F296816ABB7B49AA644FAAF3E5FC19A632C66EA764CA3E18B71FAEBE6
8”

82 }
83
84 Response status 201:
85
86 {
87 “header”: {“kid”: B64Url(kid), “alg”: “dir”},
88 “cipheredtext”: “Ciphered(B64Url(HELLO YOU =D Love from the

enclave ;-)))”,
89 “iv”: “B64Url(iv)”
90 "publickey": "B64Url(enclavePublicKey)",
91 “tag”: “B64Url(tag)”
92 }

Code 12: Session creation

As we can see here, in order to create a session, the client has to POST its public key. The
enclave generates its private session key, store it in Redis and returns its public key to the client.

3	Design	and	Implementation	 	 Custom	REST	API	

50

Figure 9: Keys API illustration

3.5.3 Users	

As we said earlier, there is a distinction between users and clients. A client is a Thing that
communicates with the enclave while a user is identical to a client except that it is specially
created to use the web interface. A user is used to connect to the web interface to manage the
enclave, sessions and other users.

93 POST /1.0/users HTTP/1.1
94 Content-type: application/json
95 Authorization: Bearer JWTWithAdminRights
96
97 {
98 "email": "marcel.grosjean@unine.ch",
99 "firstname": "Marcel",
100 "lastname": "Grosjean",
101 "password": "password"
102 }
103
104 Response status 201:
105
106 {
107 "insertedId": 1
108 }

Code 13: User creation

Figure 10: Users API illustration

3	Design	and	Implementation	 	 Custom	REST	API	

51

3.5.4 Clients	

A client is used to communicate with the enclave. It can perform all available actions if it
has the admin role. If not, it will only be able to create an event. A client may have some URLs
associated with it.

109 POST /1.0/clients HTTP/1.1
110 Content-type: application/json
111 Authorization: Bearer JWTWithAdminRights
112
113 {
114 "active": true,
115 "admin": true,
116 "name": "KitchenHumiditySensor",
117 "pubkey":"3059301306072A8648CE3D020106082A8648CE3D03010703420

004809CB1C845DF75A504C6B1AC03F33D139DA99EEEA3E140433983C4D61CCF1D
42CF25A7F296816ABB7B49AA644FAAF3E5FC19A632C66EA764CA3E18B71FAEBE6
8"

118 }
119
120 Response status 201:
121
122 {
123 "insertedId": 2
124 }

Code 14: Client creation

A client is identified by its name and we can pre-store its public key if needed. If the client
is admin, it has access to the whole functionalities otherwise it can only post event. A client can
be deactivated.

Figure 11: Clients API illustration

3	Design	and	Implementation	 	 Custom	REST	API	

52

3.5.5 Auth	

Once a session has been established, a key is stored on the server side. A JWT is returned to
the client, but it does not contain any cid. The authentication step allows to obtain a JWT with
a cid.

125 POST /1.0/clients HTTP/1.1
126 Content-type: application/json
127
128 {
129 "email": “string”,
130 "password": “string”,
131 "kid": "string",
132 }
133
134 Response status 200:
135 Authorization: Bearer JWTReturnedInHeaderBewareCORS
136
137 {
138 "token": “JWTToken”
139 }

Code 15: User authentication

The JWT is returned with the cid if errors 401, 403 and 404 have not been thrown.

Figure 12: Auth API illustration

3.5.6 Client	Urls	

A URL is associated with a client. When the rule engine has found an action to trigger then
it will call the URL associated. The URL is the target of a micro-service that the enclave has
access.

140 POST /1.0/urls HTTP/1.1
141 Content-type: application/json
142 Authorization: Bearer JWTWithAdminRights
143
144 {
145 "clientid": 1,
146 "value": “http://actuator01.unifr.ch/emails/tempalert”
147 }
148
149 Response status 201:
150
151 {
152 "insertedId": 3
153 }

Code 16: Url creation	

3	Design	and	Implementation	 	 Custom	REST	API	

53

Figure 13: Urls API illustration	

	

3.5.7 Event	types	

An event type defines the format of an event that a client can post. The client that sends an
event must specify an event type and must strictly comply with it. An event type is a list of
allowed fields, their type (integer, number, string) and whether or not they are required.

154 POST /1.0/eventtypes HTTP/1.1
155 Content-type: application/json
156 Authorization: Bearer JWTWithAdminRights
157
158 {
159 "name": "TempEventType",
160 "scheme": {
161 "properties": {
162 “room”: {
163 “type”: “string”
164 },
165 “temperature”: {
166 “type”: “number”
167 }
168 },
169 "required": [
170 "room", “temperature”
171],
172 "type": "object"
173 }
174 }
175
176 Response status 201:
177
178 {
179 "insertedId": 4
180 }

Code 17: Event type creation

As we have seen here, an event type specifies which fields a client must provide when
posting an event. In our case, a TempEventType event must have two mandatory fields that are
the name of the room and its temperature.

3	Design	and	Implementation	 	 Custom	REST	API	

54

Figure 14: Event type API illustration

3.5.8 Action	types	 	

An action type defines the format of the content body of the HTTP request that the enclave
has to make when it wants to trigger an action. The rule engine, once a rule has been evaluated
positive, will, depending on the data in the event, transform the data and send it to the URL
(action target) in accordance with the action type.

181 POST /1.0/actiontypes HTTP/1.1
182 Content-type: application/json
183 Authorization: Bearer JWTWithAdminRights
184
185 {
186 "name": "TempActionType",
187 "scheme": {
188 "properties": {
189 “from”: { “type”: “string” },
190 “to”: { “type”: “string” },
191 “subject”: { “type”: “string” },
192 “content”: { “type”: “string” },
193 “temperature”: {“type”: “number”},
194 “room”: {“type”: “string”}
195 },
196 "required": [
197 "from", “to”, “subject”, “content”, “temperature”, “room”
198],
199 "type": "object"
200 }
201 }
202
203 Response status 201:
204
205 {
206 "insertedId": 5
207 }

Code 18: Action type creation

As we have seen, the action type defines the format of the HTTP request that the enclave
will have to make to the action target. In our case, the request must have the following
mandatory properties in its request body: from, to, subject, content, room and temperature.
These properties are necessary to build and send an email. In the TempEventType event type,

3	Design	and	Implementation	 	 Custom	REST	API	

55

we had the room and temperature properties only. As seen, we can add properties that don’t
exist in the events and we could imagine a templating system that would put in the content
property the following values "Alert the room {{room}} has a dangerous temperature of
{{temperature}} degrees celcius.".

Figure 15: Action type API illustration

3.5.9 Rules	

Rules are the central concept of the rule engine. They allow the enclave to trigger an action
based on the data sent by a client. A rule is composed of several parts. The first is the rule itself.
It is defined by a name, an event type and a condition that will trigger this rule. Then, a rule can
be composed of several actions that will be executed if the rule is triggered. POST /1.0/rules
HTTP/1.1

208 Content-type: application/json
209 Authorization: Bearer JWTWithAdminRights
210
211 {
212 "name": "MahRoomRule",
213 “active”: true,
214 “clients”: [
215 2, 77, 196
216],
217 “eventtypeid”: 4,
218 “function”: “if((room == ‘child’ || room == ‘kitchen’) &&

temperature > 28)”
219 }
220
221 Response status 201:
222
223 {
224 "insertedId": 6
225 }

Code 19: Rule creation

As we have seen, a rule contains an event type. This will define which properties a client
can send to the enclave and also define which properties we can use in our condition. In our
case, the event type 44 allows a client to send the room and temperature properties. We can
take these properties back into our condition and build a condition that says for instance that if

3	Design	and	Implementation	 	 Custom	REST	API	

56

the temperature in the child's bedroom or kitchen is above 28, then an action is triggered. This
rule can be activated by a certain list of clients only.

The second component of a rule is the list of actions. A rule can consist of one or more
actions. When a rule is evaluated positively then it will trigger the actions associated with it.
An action is composed of an action type, a function and a URL. The action type is used to
specify the content of the body request that the enclave will make to the action target using its
URL. The function allows the enclave to transform the event data sent by the client.

226 POST /1.0/rules/{ruleId}/actions HTTP/1.1
227 Content-type: application/json
228 Authorization: Bearer JWTWithAdminRights
229
230 {
231 "actiontypeid": 6,
232 “function”: “return {
233 “from”: “marcel.grosjean@unine.ch”,
234 “to”: alert@unine.ch,
235 “subject”: “Temperature too high”,
236 “content”: "Alert the room {{room}} has a dangerous temperature

of {{temperature}} degrees celcius.",
237 “room”: “{{room}}”,
238 “temperature”: “Math.round(temperature * 10) / 10”
239 }”,
240 “ruleid”: 6,
241 “urlid”: 3
242 }
243
244 Response status 201:
245
246 {
247 "insertedId": 7
248 }

Code 20: Rule action creation

An action is associated with a single rule and has a single action type and a single URL. The
function property allows the rule engine to perform transformations on the data that will be sent
to the action target. The action type gives us all the fields that are required and are as follows:
from, to, subject, content, room and temperature. For the from and to fields, we have manually
specified who is the recipient of the mail and its source. The subject is also entered manually
and will be the same for all the actions that will be performed. The content field is interesting
because we have put a templating system in place to replace variables with the values sent in
the event. For example, Alert the room {{room}} will be evaluated and the room variable will
be replaced by the value that will have been sent by the client. The action target will receive the
following text: Alert the room kitchen... The room property tells us that it is possible to directly
return the value of the event just by specifying the property name. It is also possible to make
transformations on strings or numerical values. The temperature property shows an example of
rounding a numerical value.

3	Design	and	Implementation	 	 Custom	REST	API	

57

Figure 16: Rules API illustration

3.5.10 	Event	

An event is the data measured by Things, then formatted according to an event type before
being sent to the enclave.

249 POST /1.0/events HTTP/1.1
250 Content-type: application/json
251 Authorization: Bearer JWT
252
253 {
254 "clientid": 2,
255 “eventtypeid”: 4,
256 “properties”: {
257 “room”: “kitchen”,
258 “temperature”: 29.145
259 },
260 timestamp: “2018-10-13T16:41:54.218Z”
261 }
262
263 Response status 201:
264
265 {
266 "insertedId": 8
267 }

Code 21: Event fired

As we can see, an event must be characterized by a client, an event type and a list of
properties. The properties in an event and their data-type must match the properties specified
in the event type. A timestamp that corresponds to the date time when the measurement was
taken must also be specified. Indeed, the date time of the measurement may not be the same as
the date time of sending the data.

3	Design	and	Implementation	 	 Custom	REST	API	

58

Events are immutable messages that are sent once to the enclave. It is possible to add, view
and delete them. However, it is not possible to modify them, which is why there is no PUT
request. Once the data are sent to the enclave from the client, actions will be triggered if the
rule engine decides to do so. Action messages are the results of actions done by the rule engine.
It will therefore record the data sent to the action target and it is possible to get action messages
per client.

268 GET /1.0/events/{clientId}/actionmessages?limit=10 HTTP/1.1
269 Authorization: Bearer JWTWithAdminRights
270 Response status 200:
271 Content-type: application/json
272 [{
273 “id”: 9,
274 “eventid”:2,
275 “actiontypeid”: 5,
276 “clientid”: 2,
277 “completionTime”: “2018-10-13T16:41:54.345Z”,
278 “destclientid”: 1,
279 “ruleid”: 6,
280 “urlid”: 3,
281 “message”: “{“content”: “Alert, the room kitchen has a dangerous

temperature of 29.145 degrees celcius”, “from”:
marcel.grosjean@unine.ch, “to”: alert@unine.ch, “subject”:
“Temperature too high”, “room”: “kitchen”, “temperature”: 29.1}

282 }]

Code 22: GET action messages

As we can see, action messages enable us to check that if an action has been performed then
we can trace the source of the event, when it happened, the target and the content of the message.

Figure 17: Events API illustration

3.5.11 	Conclusion	

We have seen in this section that it is possible to implement our own programming paradigm
of events, condition and actions. This API was inspired by the iFlux project and adaptations
were made to serve the needs of the project. It is therefore possible to process real-time data
from events and initiate actions based on conditions without programming. The web interface
allowing to manage the system is therefore an incredible added value for an enclave because
no line of code would then be necessary in order to manage the enclave.

3	Design	and	Implementation	 	 Enclave	middleware	

59

3.6 Enclave	middleware	

3.6.1 Introduction	

In this section, we will get through all the technologies that have been selected for the
technical implementation as well as the overall architecture of the enclave.

3.6.2 Spring	boot		

Spring is a very popular framework among Java developers for the many features it provides
on web aspects, security, data access and much more. However, it is also known for its complex
and tedious configuration. It is common to spend several hours/days configuring a Spring
project. Spring developers then decided to work on a project to make it easier for developers to
develop Spring applications and they created Spring boot.

Spring Boot is a micro framework that aims to facilitate the configuration of a Spring project
and reduce the time allocated to start a project. The generation of a Spring boot project is done
very quickly and either by a website (https://start.spring.io/) which allows to quickly generate
the structure of a project with its Maven dependencies or by the Eclipse STS plugin (Spring
Tool Suite). Auto-configuration, which applies a default configuration at the start of the
application, simplifies configuration without restricting functionality. It can be enabled with the
annotation @EnableAutoConfiguration. Spring Boot offers other advantages, especially in
terms of application deployment. Usually, the deployment of a Spring application requires the
generation of a .war file that must be deployed on an application server such as Apache Tomcat.
Spring Boot simplifies this mechanism by offering the possibility to directly integrate a Tomcat
server into a .jar executable. When it is executed, an embedded Tomcat will be automatically
started to run the application [27].

There are several other popular web frameworks that are even easier to use than Spring Boot.
We can for example cite Flask or Django which are frameworks in Python or even NodeJs for
JavaScript. Their use is easier and faster than Spring Boot. However, Spring Boot, although
more complicated to use, has a serious infrastructure behind it. It is used by large companies
and has a community and a company that develops and perpetuates it. The documentation is
awesome. Using Spring Boot means having the guarantee of a good compromise between
performance, ease of use, stability and durability.

In this project, we will use Spring Boot with the spring-boot-web-starter dependency that
allows us to quickly create a REST API. In the rest of this chapter, we will discuss the different
components of our REST API.

The structure of the enclave is shown in Figure 18.

3	Design	and	Implementation	 	 Enclave	middleware	

60

Figure 18: Enclave project structure part 1

The package ch.tm.enclave.annotation is
here to check authorization at route level.
It also contains the Role enum that
defines all the roles.

The package ch.tm.enclave.controller
contains all the controllers.

The package ch.tm.enclave.crypto
contains all the cryptography functions.
They are the same as in the gateway. The
ECDH abstract class and AES abstract
class are used for cryptography. The
JWE class is a custom JWT generator
class. The CryptoHelper file contains
helpers for cryptography functions.

The package ch.tm.enclave.dao contains
all the class that are used to access the
database. No ORM are used here and the
design pattern Data Access Object is
used to access the object.

The package ch.tm.enclave.
dao.rowmapper contains all the classes
to transform relational data into Java
POJO.

3	Design	and	Implementation	 	 Enclave	middleware	

61

Figure 19: Enclave project structure part 2

The package ch.tm.enclave.exception contains the
exception catcher and all the possible exceptions that
can be thrown in the enclave.

The package ch.tm.enclave.filter contains the filter
that will authenticate the user based on its JWT.

The package ch.tm.enclave.model.* contains all the
model used in the enclave. There are model for
inserted|updated|deleted id. There are model that are
used by the routes to check the validity of a request.
For instance, the event.EventCreateModel.java is used
to check the values of an event posted by a client. If
the value in the request body does not match the
model, then the request is invalid. The model
event.EventModel.java inherits from
event.EventCreateModel.java and adds an id. It’s used
as an event model to return events to the client.

The package ch.tm.enclave.service is the service layer
used to access the Redis database.

The EnclaveApplication.java is the main Java file that
run Spring Boot in autoconfig mode.

The SwaggerConfig.java file is used to configure
swagger.

The ch.tm.helper package contains helpers functions.

3	Design	and	Implementation	 	 Enclave	middleware	

62

3.6.3 Authentification/Authorization	

It is important to distinguish between the two concepts because they are often mixed.
Although both are related to security and access to shared resources, they are not similar.
Authentication means that it is necessary to prove your identity to access a protected portion of
a system. The authorization defines which resources an authenticated person can access. In
other words, authentication defines who can access the system and authorization defines what
resources an authenticated person can access [28]. To access the resources in the enclave, it is
necessary to authenticate. All resources are protected except the following one:
POST:/1.0/auth. For authentication, the request body must contain a valid login/password
couple. Once accepted, the enclave generates a valid JWT with the class
ch.tm.enclave.crypto.JWE.java. The generation of JWT is done without an external library.
Code 23 shows an example of JWT.

283 B64-URL({
284 “alg”: “dir”,
285 “cid”: <id of the client>,
286 “kid”: <id of the secret key for this session>
287 }).
288 B64-URL({
289 “cid”: “<id of the client>”,
290 “mag”: “<signature of the JWE>”,
291 “admin”: 0|1
292 }).
293 B64-URL(“<JWT Signature>”)

Code 23: JWT example after authentication

Once the login has been successfully completed, the client can access the resources.
Authentication controls are done in the Filters. A Filter is called for each incoming and outgoing
request. They can be used, for example, for redirection or permission checks. Code 24 shows
an example of protection of all roads in the enclave, except login by a servlet Filter.

294 @Component
295 private class ResponseFilter implements Filter {
296 @Value("${jwt.secret}") private String secret;
297
298 @Override
299 public void doFilter(ServletRequest request, ServletResponse

response, FilterChain chain) {
300 String uri = (HttpServletRequest)request.getRequestURI();
301 if (uri.endsWith("/auth"){
302 JWE jwe = new JWE(secret);
303 String token = req.getHeader("Authorization");
304 if(!jwe.verifyTokenValidity(token))
305 throw new InvalidTokenException("This token is

invalid, expired or was not issued by us!");
306 }
307 }
308 }

Code 24: Servlet Filter example

3	Design	and	Implementation	 	 Enclave	middleware	

63

In Spring applications, authorization is traditionally done in Filters. Indeed, each route is
listed one by one in the Filter, and authorization checks are performed at this level. The Filter
is applied to the entire API. If the user cannot access the resource, it is up to the Filter to return
an error. In NodeJS applications, authorization checks are performed in middleware. A
middleware in NodeJS is a function that is called before each route. It is the role of the
middleware to check the authorization and send back an error message if needed. In a Flask
API, authorizations are generally checked before each route is called with the use of
annotations. Annotations are called before each route. The difference between Spring Boot and
NodeJS/Flask is that the Filters are applied to the entire API while the middleware or
annotations are applied individually for each route. Applying the authorization near the route
allows more flexibility and it is not necessary to have a list of routes in the FIlter.

There is not really a simple default mechanism to control route-level authorizations in Spring
Boot. However, it is possible to create annotations and we therefore use the Flask mechanism
as a model for creating our authorization mechanism. We therefore want to tag each route
individually with an annotation. If an annotation is present, then it means that authentication is
required. It is also necessary to specify a role (user|admin) in order to be able to authorize a
certain type of user. Code 25 represents what the annotation would look like.

309 @Authorization(Role = Role.USER)
310 @GetMapping(path="1.0/auth/sayhello")
311 public String hello(){
312 return "{'hello':'hello'}".replace("'", "\"");
313 }

Code 25: Example or protected route

We then need to create an enum of roles in Code 26.

314 public enum Role {
315 USER,
316 ADMIN
317 }

Code 26: Role enum

We then need to create an annotation handler that will be called before each route. The
handler is in Code 27.

3	Design	and	Implementation	 	 Enclave	middleware	

64

318 @Aspect
319 @Component
320 public class CustomAnnotationHandler {
321 @Value("${jwt.secret}") private String secret;
322 @Around("@annotation(Authorization)")
323 public Object Authorization(ProceedingJoinPoint joinPoint)

throws Throwable {
324 MethodSignature signature = (MethodSignature)

joinPoint.getSignature();
325 Method method = signature.getMethod();
326 Authorization auth =

method.getAnnotation(Authorization.class);
327 HttpServletRequest request = ((ServletRequestAttributes)

RequestContextHolder.getRequestAttributes()).getRequest();
328
329 String token = request.getHeader("authorization");
330 JWE jwe = new JWE(secret);
331 JSONObject claims = new JSONObject(claimsString);
332
333 // Check if the user is connected (has cid ?)
334 if (!claims.has("cid"))
335 throw new UnAuthorizedException("You must be logged on

to access this ressource");
336
337 boolean admin = Boolean.valueOf(claims.getString("admin"));
338
339 // Then check if the user is authorized to be here
340 // If he's not admin we throw exception
341 if (auth.Role() == Role.ADMIN && admin == false)
342 throw new ForbiddenException("You are not allowed to

access this ressource");
343
344 // nothing bad happened ? Can now go further
345 return joinPoint.proceed();
346 }
347 }

Code 27: Spring Boot annotations handler

We have seen with the Filters that it is possible to control authentication at the level of the
entire API. It is also possible to control the authorization, but it is less flexible. We took Flask
and its annotation system to create our own authorization system in order to provide a very
flexible mechanism. It should be noted that we can do authorization and authentication directly
in the annotations without Filter.

3.6.4 Errors	Handling	&	Logging	

Handling errors correctly in a REST API and returning a clear and explicit error message to
the user is a very desirable feature for both for the user who immediately understands what is
happening and for the developer who immediately knows the cause of the error [29]. The default
behavior of Spring Boot is to return the stack trace of the error to the user. It is neither user-
friendly nor very secure to do so. A good way is to return a simple and clear error to the client
and log the exception in an error file that the developer looks at the details later.

3	Design	and	Implementation	 	 Enclave	middleware	

65

Spring Boot has a very easy and efficient error handling mechanism. It is based on exceptions
that are thrown in the application without being caught. These exceptions are then caught by
the ResponseEntityExceptionHandler, which will process them. Code 28 is an example of some
exception handling for invalid SQL queries as well as authentication errors.

348 @ControllerAdvice
349 @RestController
350 public class CustomizedResponseEntityExceptionHandler extends

ResponseEntityExceptionHandler{
351 private static final Logger logger =

LoggerFactory.getLogger(CustomizedResponseEntityExceptionHandler.cl
ass);

352
353 @ExceptionHandler(SQLException.class)
354 public final ResponseEntity<Object>

handleUniqueExeption(Exception ex, WebRequest request){
355 logger.error(ex.getMessage());
356 if (ex.getMessage().contains("Duplicate"))
357 return new ResponseEntity(new ExceptionResponse(new

Date(), "Duplicate entry", HttpStatus.CONFLICT.value(),
request.getDescription(false)), HttpStatus.CONFLICT);

358
359 return new ResponseEntity(new ExceptionResponse(new Date(),

ex.getMessage(), HttpStatus.INTERNAL_SERVER_ERROR.value(),
request.getDescription(false)), HttpStatus.INTERNAL_SERVER_ERROR);

360 }
361
362 @ExceptionHandler(UnAuthorizedException.class)
363 public final ResponseEntity<Object>

notAuthorizedAccess(Exception ex, WebRequest request){
364 logger.error(ex.getMessage());
365 return new ResponseEntity(new ExceptionResponse(new Date(),

ex.getMessage(), HttpStatus.UNAUTHORIZED.value(),
request.getDescription(false)), HttpStatus.UNAUTHORIZED);

366 }
367 }

Code 28: Spring Boot exceptions handler

The SQLException and UnAuthorizedException classes must exist and extend either Exception
or RuntimeException class. As we can see, SQL or authorization errors are caught, the message
is logged in a file and a clear error message is sent to the client. It should be noted that
SQLExceptions are difficult to debug because no matter what type of exception, an SQL
exception will always return SQLException with a message inside. To know the type of error,
it is then necessary to look at the content of the message. In our case, we catch the message and
check if it contains the "Duplicate" word in order to see if it is a unique key constraint violation
type error. Code 29 shows an example of a message returned to the client.

3	Design	and	Implementation	 	 Enclave	middleware	

66

368 GET /1.0/events HTTP/1.1
369 Response status 401:
370 Content-type: application/json
371
372 {
373 “timestamp”: “2018-10-15T23:58:47.872+0000”,
374 “status”: 401,
375 “error”: “Unauthorized”,
376 “message”: “Unauthorized”,
377 “path”: “/events”
378 }
379

Code 29: Example of error returned by the API

3.6.5 Database	type	&	model	

The database is necessary to store all the data that are useful for running the rule engine.
Clients making requests are stored as well as action targets. Events sent to the enclave are also
stored. The rule engine and all properties and actions associated with it are also stored. The
results of the actions are stored there. We see here that all data used to manage the rule engine
as well as all incoming events and outgoing actions are stored. We keep a complete history of
incoming and outgoing data.

The problem here is what kind of database it is useful to use. It is indeed possible to use a
relational database or NoSQL database and particularly a document-oriented database. Indeed,
they have their strengths and weaknesses. Relational databases are very effective at managing
structured data and have a powerful query language (SQL). However, they sometimes have
trouble for making complex queries as soon as the amount of data becomes very large. For
example, we can imagine a join on several tables, each of which has a large amount of data.
Non-relational databases have the ability to store large amount of unstructured data and can be
easily scalable [30]. Being able to store unstructured data is particularly useful for storing data
from heterogenous environments. A document-oriented database would be particularly useful
for storing data from sensors.

We have seen that we have two types of data to manage. We have the data of the rule engine
that is structured and in small quantity. Indeed, the rule engine is composed of rules, event
types, action types and actions. These are relational data that are perfectly adapted for SQL
language. The amount of data to manage by the rule engine is very modest. Then the second
type of data are event data and action messages. Events are data sent by sensors and can be sent
in very large quantities. This data does not correspond to any pre-defined schema in the
database. They are formatted according to the event type and then sent. As a result, there is a
large amount of unstructured data coming to the database. Then there are the action messages.
These are the data that results from the actions made by the rule engine. They comply to the
action type and are unstructured. They can also be found in very large quantities in the database.

The first solution to solve this problem is to decide to use only a document-oriented NoSQL
database to store events, action messages and the rule engine. This is quite possible and very
efficient. The advantage is that since most data are unstructured, performance will be very good

3	Design	and	Implementation	 	 Enclave	middleware	

67

and it will be very easy to store unstructured data. However, we lose the SQL query language
that is useful to us in order to retrieve data from our rule engine and making complex requests.

The second solution is to use a mixture of relational and non-relational databases. Thus, we
would store events and action messages in a document-oriented database and the rule engine in
a relational database. We would therefore have the advantage of both types of databases.
However, this is not the chosen solution because it involves managing two different databases
with their maintenance/updates chores and failure probabilities. Moreover, as soon as it is
necessary to make a join between the data in the two databases, it immediately becomes less
easy and less efficient.

The last solution is to use a relational database only. Thus, we store the rule engine and the
events and action messages in the same database. This is the chosen solution because we keep
SQL for the rule engine and event data are mainly intended to be inserted. The cost of queries
will be high to make a join for selection but reduced by the fact that selection queries are less
common in our context. Figure 20 illustrates the implemented data logic model.

Figure 20: Logic data model

3	Design	and	Implementation	 	 Enclave	middleware	

68

As we can see, the events and actionmessages tables store events and action results. These
tables can be made up of a very large amount of data and queries can take a considerable amount
of time. However, these tables are mainly intended to be a storage space and selection queries
may be a limited part. Joints are generally avoided in order to keep reasonable performance and
selection on id (primary or foreign key) are done with indexes, which makes selection queries
fast. We can also notice that the data stored in the event and actionmesages table are
unstructured. That is why the JSON data type was used to store data from Things. This makes
possible to store unstructured data in JSON format in a relational database.

The eventtype and actiontype tables are mainly used by the rule engine. The data in the
schemes are unstructured and that is why the JSON data type was used. The rule, url, client and
rulesactionurl tables are much more classic and are mainly used to manage the rule engine.

The relational database chosen is Oracle MySQL because it has all the necessary
functionality to develop our enclave. In addition to being free, it is powerful, can store a
reasonable amount of data and has a tremendous community [31]. We have seen here that it is
possible to store in a relational database, small data with large amounts of data without loss of
performance while keeping the power of the SQL language. Unstructured data is managed with
the JSON data type which also gives us great flexibility.

3.6.6 Database	Access	

Another important point to be addressed is the access to the data from the enclave. Spring
Boot offers Spring Data. The latter is an abstraction layer for Spring JDBC that allows easier
access to data without having to write a huge amount of redundant code and without having to
manage transactions. Spring Data is in charge of object-relational mapping, transaction
management and basic CRUD queries by offering a very high-level API based on the Domain
Driven Design pattern (DDD) [32]. It is then no longer necessary to write code to do the basic
CRUD operations and if we need to make more complex requests, which happens very often,
it is always possible to do an object-relational mapping with Spring Data JPA and to make
requests in JPQL [32]. Having a very high-level API allows us not to be locked by a certain
database vendor, so database modification or migration is relatively easy.

DAO (Data Access Object) is a design pattern that provides an abstraction layer to
communicate with a database without having to know the implementation details. A DAO
manages SQL queries, transactions and directly uses the Spring JDBC driver without going
through a higher-level abstraction layer. The advantage is that it is easy to make requests that
correspond exactly to our needs and that is very efficient in terms of speed and memory
utilization. The disadvantage is that the implementation is done by the developer and there is
therefore a greater risk of errors. If the database changes, it is necessary to modify the source
code accordingly. DAO locks the implementation to a certain database vendor which makes
migration difficult.

Even though Spring Data offers an API allowing very easy access to the data, the solution
retained remains the DAO pattern. Indeed, given the relatively small amount of different CRUD
requests to be made and their complexity, it is much easier to implement them with a DAO.

3	Design	and	Implementation	 	 Enclave	middleware	

69

Data validation at the REST API level is done with domain model classes. It is possible to reuse
these classes with the DAO for CRUD operations. In addition, the nature of this project requires
optimal performance and the DAO provide direct access to Spring JDBC, which makes queries
faster by bypassing the various abstraction layers.

Code 30 shows an example of a DAO for the selection of all clients.

380 @Service
381 public class ClientDAO {
382
383 @Autowired
384 private NamedParameterJdbcTemplate jt;
385
386 public List<ClientModel> findAll(){
387 String sql = String.join("\n", "select id, name, pubkey,

admin, active, created_at ",
388 "from client ",
389 "order by name asc");
390
391 return jt.query(sql, new ClientKeyRowMapper());
392 }
393 }

Code 30: DAO example

This example without transaction shows how simple it is to make a relational-object mapping
with DAO. The ClientModel class is a simple JavaBean that was created to validate the data
posted in the REST API and was reused with the DAO. The ClientKeyRowMapper class is a
class used to map the fields of the SQL query into a POJO. Code 31 is an example of
KeyRowMapper.

394 public class ClientKeyRowMapper implements RowMapper<ClientModel> {
395 @Override
396 public ClientModel mapRow(ResultSet rs, int rowNum) throws

SQLException {
397 return new ClientModel(
398 rs.getLong("id"),
399 rs.getString("name"),
400 rs.getString("pubkey"),
401 rs.getBoolean("admin"),
402 rs.getBoolean("active"),
403

DbHelper.dateTimeFromString(rs.getString("created_at"))
404);
405 }
406 }

Code 31: KeyRow mapper

3	Design	and	Implementation	 	 Enclave	middleware	

70

3.6.7 Rule	engine	

Introduction	
The rule engine is an essential part of the enclave because it allows to perform actions on

events data based on rules. A client sending data must ensure that the data matches the specified
event type. Once the data are received, the enclave must infer on it using its rule engine. The
events are then evaluated according to the rule condition of the rule associated with the client
and the event type. The rule condition is a string hard coded by the enclave administrator. If
this condition is true, then the enclave must perform the actions that are associated with this
rule. An action consists in formatting a message according to an action type. Data
transformation can be performed. Once the action message is created, it is then sent to the action
target. All events are recorded as well as all actions performed.

Figure 21 shows how the rule engine works schematically. Cryptographic functions are not
considered here.

Figure 21: Rule engine schematic illustration

3	Design	and	Implementation	 	 Enclave	middleware	

71

1. A client gathers data and makes an HTTP request to the enclave at the URL
POST:/1.0/events with its clientid, its eventtypeid and the corresponding data.

2. The enclave controls the validity of the request but not the content. If the request is
valid, then it sends the data to the rule engine.

3. The rule engine gets the event type from the database in order to control that the request
really complies with the event type.

4. The rule engine checks if the request complies completely with the event type. If not, it
returns an error message to the client.

5. The event data are saved to the database.

6. The rule engine gets all the rules associated with this client id and event type id.

7. The rule engine starts to create a string that will be evaluated in order to trigger actions.
This string is made of variables that come from the event and event type.

8. For all rules, we associate the rule condition to the evaluation string.

9. There are two possible outcomes for the evaluation. The first is that the condition is not
met then we skip to the next rule. If the condition is met, then we start the action.

10. If the condition is not met, we start over with the next rule.

11. If the condition is met, we first get all the actions for this rule and the action type for
each action.

12. For all actions, the rule engine transforms the data in the events and create a message
that will be sent to the action target. The message must comply with the action type.

13. The rule engine saves the action message in the database.

14. The rule engine gets the URL of the action target and make a HTTP request containing
the action message. Once it’s done, the rule engine makes the same for the next action.

As we can see, the rule engine performs very complex tasks based on unstructured data.

Indeed, the event data are structured according to an event type. The condition that allows an
action to be executed is in the form of a string of characters and the actions and transformations
to be performed are also in the form of a string. In order to run the rule engine, we need to find
a way to read, parse and evaluate string and take actions based on the result.

After careful consideration, it was decided to use JavaScript to dynamically build code that
could be read, parsed and executed by the rule engine. The code built is based on events, event
types, rules condition and action types. This code is then evaluated by the Java’s JavaScript
execution engine to run our string-based rule engine. This is how the rule engine works in detail:

3	Design	and	Implementation	 	 Enclave	middleware	

72

Practical	example	
In this part we will cover a practical use case and see how the rule engine process the event.

Step 1: Code 32 shows a client that gather data and send content to the enclave.

407 POST /1.0/events HTTP/1.1
408 Content-type: application/json
409 Authorization: Bearer JWT
410
411 {
412 "clientid": 2,
413 “eventtypeid”: 4,
414 “properties”: {
415 “room”: “kitchen”,
416 “temperature”: 29.145
417 },
418 timestamp: “2018-10-13T16:41:54.218Z”
419 }

Code 32: Send event for rule engine

Step 2: The enclave validates the event and send the data to the rule engine.

Step 3: The rule engine gets the event type n°2 from the database. Code 33 represents an
event type.

420 {
421 "name": "TempEventType",
422 "scheme": {
423 "properties": {
424 “room”: {
425 “type”: “string”
426 },
427 “temperature”: {
428 “type”: “number”
429 }
430 },
431 "required": [
432 "room", “temperature”
433],
434 "type": "object"
435 }
436 }

Code 33: Event type example for rule engine

Step 4: The rule engine turns the event type JSON scheme string into a readable Map structure.
Then checks one by one if all the required properties are in the event and if the type of the
property match. In our case they correspond, and we can proceed.

Step 5: The event is valid; the rule engine saves it to the database.

3	Design	and	Implementation	 	 Enclave	middleware	

73

Step 6: The rule engines get all the rules associated with this client id and event type id. Code
34 show all the actions for this specific rule.

437 [{
438 "name": "MahRoomRule",
439 “active”: true,
440 “clients”: [
441 2, 77, 196
442],
443 “eventtypeid”: 4,
444 “function”: “if((room == ‘child’ || room == ‘kitchen’) &&

temperature > 28)”
445 }]

Code 34: Actions for specific client and event type

Step 7: The rule engine starts to create a string that will be evaluated in order to trigger
actions. This string is the JavaScript code in Code 35.

446 // theses variables come from the event type
447 var room;
448 var temperature;
449 // theses variables are set with the values from the event
450 room = ‘kitchen’;
451 temperature = 29.145;

Code 35: Basic string for evaluation

Step 8: For all rules, we associate the rule condition to the evaluation string. The JavaScript
code is in Code 36.

452 var room;
453 var temperature;
454 room = ‘kitchen’;
455 temperature = 29.145;
456 if((room == ‘child’ || room == ‘kitchen’) && temperature > 28)
457 print(‘true’); // this will trigger the rule
458 else
459 print(‘false’); // this will NOT trigger the rule

Code 36: Script that will trigger an action

The if condition changes according to the rule. The code above is evaluated by Java’s
JavaScript engine and if the result is true, then the actions of the rules can be triggered.

3	Design	and	Implementation	 	 Enclave	middleware	

74

Step 9: For each valid rule, we get all the actions associated with this rule. They can be
found in Code 37.

460 [{
461 "actiontypeid": 6,
462 “function”: “return {
463 “from”: “marcel.grosjean@unine.ch”,
464 “to”: alert@unine.ch,
465 “subject”: “Temperature too high”,
466 “content”: "Alert the room {{room}} has a dangerous temperature

of {{temperature}} degrees celcius.",
467 “room”: “room”,
468 “temperature”: “Math.round(temperature * 10) / 10”
469 }”,
470 “ruleid”: 6,
471 “urlid”: 3
472 }]

Code 37: Actions of a rule

Step 10: For each action, we get the action type associated in Code 38.

473 {
474 "name": "TempActionType",
475 "scheme": {
476 "properties": {
477 “from”: { “type”: “string” },
478 “to”: { “type”: “string” },
479 “subject”: { “type”: “string” },
480 “content”: { “type”: “string” },
481 “temperature”: {“type”: “number”},
482 “room”: {“type”: “string”}
483 },
484 "required": [
485 "from", “to”, “subject”, “content”, “temperature”, “room”
486],
487 "type": "object"
488 }
489 }

Code 38: Action type of a rule’s action

Step 11: The rule engine turns the function property from step 9 into a readable Java
JSONObject with the Code 39 example.

490 String f = arm.getFunction().substring(8, arm.getFunction().length()
- 1).trim();

491 JSONObject dict = new JSONObject(f);

Code 39: Turn String JSON into Java JSON Object

The arm variable contains the action for this rule as a Map.

3	Design	and	Implementation	 	 Enclave	middleware	

75

Then the rule engines extract the scheme from step 10 and turn it into a Java Map in Code
40.

492 Map<String, Map<String, String>> scheme =
etm.getScheme().getProperties();

Code 40: Turn String scheme into a Java Map

The variable etm contains the action type for this action.

Step 12: So far, we know that this rule is valid. We have all the actions for this rule and the
action type associated. We now need to apply data transformation in order to create the action
message. To do so, we parse the action type and for each property of the action type, we will
create a new JSON object containing the property with the data from the event.

In summary: For each property of the action type, we create a new JSON object with all the
action type properties. For each property of the new JSON document, we set the value as the
same as in the action. And for each action value, we check whether it’s a string or a
number/integer.
If it’s a string, we check with a regex if there is an expression like {{variable}} and we replace
this variable with the variable from the event. It’s a templating process. If it’s a number/integer,
we apply data transformation with a valid JavaScript expression.

Code 41 illustrates the whole process.

3	Design	and	Implementation	 	 Enclave	middleware	

76

493 Map<String, String> actionResult = new HashMap<>(); // final result
494 //Now parse the function dict in order to evaluate the result
495 for (String key : dict.keySet()){
496 String e;
497 // Property is string
498 if

(actionTypeProperties.get(key).get("type").toLowerCase().equals("st
ring")){

499 String finalString = dict.get(key).toString();
500 try {
501 Pattern pattern = Pattern.compile("\\{{2} *[a-zA-Z0-9]+

*}{2}");
502 Matcher matcher = pattern.matcher(dict.get(key)

.toString());
503 while (matcher.find()) {
504 String rawk = matcher.group().toString();
505 String k = rawk.substring(2, rawk.length() -

2).trim();
506 finalString = finalString.replace(rawk.trim(),

props.get(k).get("value").toString().trim());
507 }
508 }
509 catch (Exception ex){}
510
511 e = evalStr.toString() + "print('" + finalString + "') ; ";
512 }
513 else // Property is number/integer
514 e = evalStr.toString() + "print(" + dict.get(key) + ") ; ";
515
516 String evalResult = JSHelper.evalJS(e).toString();
517 actionResult.put(key, evalResult.trim());
518 }

Code 41: Data transformations done by the rule engine

The actionResult variable is the action message. The evalString variable is the content of
step 7. The e variable contains the JavaScript code that will be evaluated by the JSHelper
execution engine.

If the property is a string, it will try to find variables in brackets with a regex. Code 42 shows
an example of templating.

519 Alert the room {{room}} has a dangerous temperature of
{{temperature}} degrees celcius.

Code 42: Example of templating

The rule engine will find the variables in bracket and replace the values by the variables in
the event. The final result looks like in Code 43.

520 Alert the room kitchen has a dangerous temperature of 29.145 degrees
celcius.

Code 43: Templating done

3	Design	and	Implementation	 	 Enclave	middleware	

77

If the property is a number/integer, it will execute the instructions in Code 44 in order to
apply data transformation.

521 var room;
522 var temperature;
523 room = ‘kitchen’;
524 temperature = 29.145;
525 print(Math.round(temperature * 10) / 10);

Code 44: Data transformation on numerical values

The printed temperature will be set as the value of the property temperature.

And finally, once all the step done, the action message looks like in Code 45.

526 {
527 “content”: “Alert, the room kitchen has a dangerous temperature

of 29.145 degrees celcius”,
528 “from”: marcel.grosjean@unine.ch,
529 “to”: alert@unine.ch,
530 “subject”: “Temperature too high”,
531 “room”: “kitchen”,
532 “temperature”: 29.2
533 }

Code 45: Final action message

Step 12: The rule engine saves the action message in the database.

Step 13: The rule engine gets the URL and client for this action and send an HTTP request
to the action target with the action message in the body. Once the request made, it can proceed
to the next action.

Conclusion	
As we have seen, our JavaScript engine allows us to build JavaScript expressions

dynamically according to events, rules, actions and action types. We have implemented the
events, condition, action paradigm with our rule engine.

3	Design	and	Implementation	 	 Action	Target	

78

3.7 Action	Target	

The action target is called by the enclave to perform an action. Once the rule engine has
identified an action to trigger, it gets the URL of the action target, then puts in the request body
the action message that corresponds to an action type. This action type must be identical to the
validation parameters defined in the action target REST API. Each route of the action target
must be accessible from the enclave.

The action target is an actuator that can implement several types of actions. We can imagine
push notifications, emails, SMS or a physical actuator such as a servomotor or an electric car.
For the sake of simplicity, in this project, we stopped at the implementation of an email sending
interface.

The language used to implement the action target is NodeJS with the Express framework.
The API is documented with Swagger, errors are logged in a logfile and we use Gmail as the
mail server. It also uses handlebars.js as a mail templating system.

Figure 22 shows an example of 3 routes to send email:

Figure 22: Action target API illustration

The /emails route is implemented in NodeJS with Code 46.

3	Design	and	Implementation	 	 Action	Target	

79

534 app.post('/emails',
535 expressJoi({body: {
536 sender: Joi.string().email().max(255).required(),
537 dest: Joi.string().email().max(255).required(),
538 subject: Joi.string().min(1).max(4096).required(),
539 content: Joi.string().required()
540 }}),
541 async (req, res) => {
542 let sender = req.body.sender.trim().toLowerCase();
543 let dest = req.body.dest.trim().toLowerCase ();
544 let subject = req.body.subject.trim();
545 let body = req.body.body.trim();
546
547 let mailOptions = {
548 from: sender,
549 to: dest,
550 subject: subject,
551 template: 'template',
552 context: {
553 bodycontent : body,
554 putin: false,
555 complex: false
556 }
557 };
558 try {
559 let result = await transporter.sendMail(mailOptions);
560 console.log(result);
561 res.status(204).json();
562 }
563 catch (err){
564 logger.error(err);
565 res.status(504).json();
566 }
567 });

Code 46: Action target example with NodeJS

As we can see, the route in Code 46 takes the following properties in the body: sender, dest,
subject and body. The action type of the enclave must comply with the data validation of the
middleware. The action message of the enclave must, of course, also comply with it, otherwise,
an error 400 is returned by the action target. Code 47 query shows an example of mail that can
be sent.

568 POST /emails HTTP/1.1
569 Content-type: application/json
570
571 {
572 “from”: “marcel.grosjean@unine.ch”,
573 “to”: alert@unine.ch,
574 “subject”: “Temperature too high”,
575 “content”: "Alert the room kitchen has a dangerous temperature

of 29.145 degrees celcius."
576 }
577 Response status 204:

Code 47: Example of action message for sending an email

3	Design	and	Implementation	 	 Front-end	(RIOT)	

80

3.8 Front-end	(RIOT)	

3.8.1 Introduction	

It was decided to call the front-end RIOT (Responsive Internet of Things). Giving a name to
a project gives a better and clearer vision for the rest of the project development.

We want to create a modern front-end that uses cutting-edge technologies. Single Page
Applications (SPA) are JavaScript framework that allows developers to use the latest web
technologies in order to develop rich web applications. The problem with modern frameworks
is that there is an impressive amount of them on the market and it is very difficult to say at the
moment which framework will be the most appropriate for our needs and especially which one
will offer the best longevity in terms of update and community support. The popularity of
JavaScript as a client-side and server-side programming language has increased from year to
year. JavaScript 6 (ECMAScript 6) has become a must for Single Page Applications. It allows
to quickly prototype a web application and lets developers focus on functionality rather than
code structure. The advantages of using JavaScript frameworks are multiple. The first is
efficiency. Indeed, since frameworks come with a predefined structure, and tools to generate
and compile code, it is then easier for developers to focus on features, which advances the
development speed. Security is another argument for SPAs because they are tested by a large
community to quickly identify bugs and security vulnerabilities. Moreover, the frameworks are
free, however, the hidden price is the learning time necessary to be able to be operational with
these frameworks. Indeed, some are known to have a fairly steep learning curve.

In order to choose a framework, we will base our choice on the popularity of different
frameworks in 2018. And we will arbitrarily choose the most popular framework on GitHub.
Figure 23 shows the popularity of the different frameworks in 2018.

Figure 23: Front-end Framework ranking 20182

As we can see in the illustration, the most popular framework on GitHub at the moment
(2018) is Vue.js. Therefore, we will rely on popular wisdom and use Vue.js for our project.

2 https://risingstars.js.org/2017/en/#section-framework

3	Design	and	Implementation	 	 Front-end	(RIOT)	

81

Vue.js is an open source JavaScript front-end framework for creating web GUIs. It simplifies
development by better organizing the code and separating the different components. The main
concept of Vue.js is to develop reusable components that are the combination of JavaScript and
HTML template code. These components have a weak coupling between them and encourage
reusability throughout the application. Vue.js has several advantages, such as size. Indeed, the
strict minimum of Vue.js has a size of 21KB. It is also very affordable in terms of complexity,
and comes with a very clear documentation, as a result it is easy to develop a prototype quickly
[33]. Vue.js is therefore an appropriate choice because it provides us with all the tools to
develop a SPA as well as normally a long-term support because it has a large community.

The other undeniable advantage that comes with Vue.js is that if we use all the generation
tools, then the deployment becomes very easy. During development, we will use all the features
of ES6 that are not browser compatible. We will then use the webpack tool which will transpile
our ES6 code into browser-compatible JavaScript code. It will also minimize the files and
obfuscate them in order to make them as light and unreadable as possible. The final code are
HTML, CSS and JavaScript files that we will have to put on a CDN in order to serve them. We
therefore do not need a backend to be able to run our application. No backend other than the
enclave is required to run the web interface.

Another challenge is to develop an application that is both effective and aesthetically
pleasing. Indeed, developers are not always the best prepared to develop applications with a
devastating look. That's why they need to use a pre-made user interface kit that is nice looking
and that has been designed to be effective. Material Design was developed by google and offers
a unified graphical user interface that allows us to create digital experiences with proven
techniques and design [34]. Material Design is a set of rules, procedures, components and best
practices to create an application and above all a user experience. Google created Material
Design to unify the look of all their applications. We can therefore reuse their work in order to
create our own application without having to define our own visual identity. Another advantage
of using Google's design is that the end user will feel that the quality will be the same as an
application made by Google itself. The disadvantage is that all applications will look the same.

In this project, we will use the Vuetify.js framework which is an implementation of Material
Design made for Vue.js. It is free, and its documentation and community are very active and
well done.

3	Design	and	Implementation	 	 Front-end	(RIOT)	

82

3.8.2 Use	cases	

Figure 24 shows the global use case schema for the front end.

Figure 24: RIOT use cases diagram

As we can see, we have three external users:

• Client: A client is any Thing that has an open session and is logged in.

• User: A RIOT user is a client with administrator rights. A semantic distinction is made
to separate the client that is used to send events from the user that does the same thing
but in addition can manage the whole system.

• Action target: An action target is a micro service that we call after a rule has been
triggered during an event.

To be able to use the platform, a client must first create a session with the key exchange
protocol. Once the session is created, the client can log in with his email/password combination.
The only action a client can do is to send events to the middleware. These events will be
recorded and then processed by the rule engine. If a rule is triggered, then all actions related to
that rule will be fired. The actions taken are recorded.

A difference was made between clients and users in RIOT. Indeed, a user is actually a client
with the administrator role. A distinction has been made in RIOT because a user who will

3	Design	and	Implementation	 	 Front-end	(RIOT)	

83

manage the system will do so with an email/password credential. Once the user has logged in,
he can then use the platform as a client would with administrator rights.

A user manages the different event types and action types. It defines the rules to be applied
when an event occurs. It also defines which URL to call and actions to be taken in case of a
positive evaluation by the rule engine. It also manages clients, users and cryptographic keys. It
can also see all the events that have been sent and the actions that have been triggered.

3.8.3 Navigation	Diagram	

Figure 25 shows the different pages of the web application with the transitions between all
the pages. All use cases are implemented. Navigation begins with the login page once a session
has been established. Then the user has access to the whole application if he is an administrator
user, otherwise only the green part will be accessible.

Figure 25: RIOT navigation diagram

The RIOT project is also internationalized (i18n) and for now, the only language that is
supported is English, but the project is translation-ready.

3	Design	and	Implementation	 	 Front-end	(RIOT)	

84

Figure 26: Front-end project structure

Figure 26 shows the description of the structure of
the front end.

The index.html file is the base file of the vue HTML
part. The main.js file is the main file for vue
configuration. The router/index.js file contains all
the routes and authorization to access the page.

The components/ folder is where all the vue
components are located. A vue component is the
mix of HTML elements and JavaScript code. The
main component where all the other components
are displayed is the components/main/my-app.vue
file. The components in components/reusable are
registered as reusable across the whole vue app.

The assets/ folder contains all the JavaScript code
that can be imported in the project and that will be
compiled with the rest of the project. The
assets/lang/messages.js file contains all the i18n
strings. The file assets/js/auth.js and
assets/js/crypto.js contains all the functions that
manage authentication and cryptography. The
assets/js/service.js file is a service layer. The
assets/js/utils.js and consts.js files are constants
and functions helpers.

The static/ folder contains all the external
dependencies such as some JavaScript, CSS, and
images.

Once the project is compiled, the executables are
moved in the dist/ folder.

3	Design	and	Implementation	 	Practical	example	of	cryptographic	functions	

85

3.9 Practical	example	of	cryptographic	functions	

3.9.1 Introduction	

In this section, we will use the theoretical concepts presented in the theoretical part as well
as the practical concepts presented in this part to present a practical use cases using all the
mechanisms described. The aim is to present the interesting parts of the code and the essential
concepts that will be illustrated in a practical example. We will cover the different mechanisms
used to create a session, login and exchange messages.

3.9.2 Session	Key	Creation	

Communication between clients and the enclave is secured. The desire to make encryption
transparent from the developer's point of view has led to the creation of several components
necessary for their implementation.

Figure 27: Session establishment sequence

This UML sequence diagram in Figure 27 shows the steps required to create a session
between a client and the enclave. We assume that they have never exchanged messages before
and that session creation is the first step.

 	

3	Design	and	Implementation	 	Practical	example	of	cryptographic	functions	

86

Step	1	
In our web interface, all HTTP communications are done through a service layer. The first

step is to exchange with the enclave their respective public keys.

578 POST /1.0/keys/exchange HTTP/1.1
579 Content-type: application/json
580
581 {
582 "publickey": “3059301306072A8648CE3D020106082A8648CE3D03010703420

004809CB1C845DF75A504C6B1AC03F33D139DA99EEEA3E140433983C4D61CCF1D42CF25A7
F296816ABB7B49AA644FAAF3E5FC19A632C66EA764CA3E18B71FAEBE68”

583 }

Code 48: Example of session creation

Step	2	
The request is intercepted by Axios. The only URL that is not encrypted is

POST:/1.0/keys/exchange. Axios will send the request as it is.

Step	3	
The request is intercepted by Zuul pre-filter. It sends the request as it is.

Step	4	
The request is intercepted by the enclave filter. It sends the request to the controller as it is.

Steps	5	&	6	 	
The enclave receives the public key of the client. It creates a shared secret and derives it. It

then saves the session key and all the information related to the key and the session to the Redis
database. With the newly created shared secret, the enclave adds the following encrypted string
to the response payload: “HELLO YOU =D Love from the enclave ;-)”. This string will be used
as a test to check whether the client has created a correct shared secret in order to decrypt it.

Then it created a JWT without cid. The final step is that it returns its public key to the client.
The Code 49 generate a public/private key pair in Java.

584 public KeyPair genKeyPair() {
585 return kpg.generateKeyPair();
586 }

Code 49: Generate a key pair from Java

Code 50 shows the creation of the derived shared secret in Java with the Java private key
and the client public key.

3	Design	and	Implementation	 	Practical	example	of	cryptographic	functions	

87

587 public byte[] genSharedSecret(KeyPair key, byte[]
OtherPublickeyBase64) throws ECDHException {

588 byte[] secret = null;
589 try {
590 KeyFactory kf = KeyFactory.getInstance("EC");
591 X509EncodedKeySpec pkSpec = new

X509EncodedKeySpec(OtherPublickeyBase64);
592 PublicKey otherPublicKey =

kf.generatePublic(pkSpec);
593 // Key agreement for ECDH
594 KeyAgreement ka =

KeyAgreement.getInstance("ECDH");
595 ka.init(key.getPrivate());
596 ka.doPhase(otherPublicKey, true);
597 byte[] sharedSecret = ka.generateSecret();
598 // derive a key
599 MessageDigest hash =

MessageDigest.getInstance("SHA-256");
600 hash.update(sharedSecret);
601 secret = hash.digest();
602 }
603 catch (NoSuchAlgorithmException |

InvalidKeySpecException | InvalidKeyException ex) {
604 throw new ECDHException(ex.getMessage());
605 }
606 return secret;
607 }

Code 50: Generate shared secret in Java

Step	7	
The request is intercepted by the Zuul post-filter. It does nothing and return the query.

Step	8	
The Code 51 shows an example of payload is received and intercepted by Axios.

608 Response status 200:
609
610 {
611 "header": {"kid": B64Url(kid), "alg": "dir"},
612 "cipheredtext": "Ciphered(B64Url(HELLO YOU =D Love from the

enclave ;-)))",
613 "iv": "B64Url(iv)"
614 "tag": "B64Url(tag)"
615 "publickey":

"3059301306072A8648CE3D020106082A8648CE3D03010703420004E560F4DD90
249D8A3CFE2C545791D1344D8870D486B481E270D2CBC7C420761EF7CC3F88160
2B8C5E941CFD9E5C8B4C6AA238B852A2D662539100B2E112E16E5"

616 }

Code 51: Example of ciphered payload returned by the enclave

A JWT comes along in the Authorization header that contains the kid. Now that we have
both the client public key and the enclave public key, the process of the creation of the shared
secret on the client side can start. This process is much more complicated than on the enclave
part and will be detailed here.

3	Design	and	Implementation	 	Practical	example	of	cryptographic	functions	

88

Code 52 shows how are generated the public/private and shared secrets on the client side
using pure JavaScript and the Web Crypto API.

617 function requestNewKey(){
618 return new Promise(async (resolve, reject) => {
619 let alice; // frontend key pair
620 let hello; // enclave welcome message
621 let myIV; // enclave IV
622 let derivedKey; // derived shared secret
623 let kid; // id of the session in the enclave
624 try {
625 // first we generate a new keypair for the client
626 alice = await crypto.generateECDHKeyPair();
627 // Export client public key
628 let publicKey = await

crypto.exportECDHPublicKey(alice.publicKey);
629 // we send the public key to the enclave in Base64Url
630 let res = await axios.post

(`${baseURL}/1.0/keys/exchange`, { publickey:
utils.arrayBufferToBase64String(publicKey)});

631
632 let enclavePublicKey =

utils.base64StringToArrayBuffer(res.data.publickey);
633 hello = res.data.ciphertext; // enclave message
634 myIV = res.data.iv; // iv BigInteger formatted in base64
635 kid = res.data.header.kid; // key id encoded in base64
636 // we then need to import the enclave public key
637 let epubkey = await

crypto.importPublicKey(enclavePublicKey);
638 // They key is imported and now we use it to generate

the derived shared secret with the frontend private key
639 derivedKey = await

crypto.genDerivedSecret(alice.privateKey, epubkey);
640 // we decrypt the message in the response body with our

newly created shared secret
641 let message = await crypto.decrypt(
642 derivedKey,
643 utils.base64StringToArrayBuffer(myIV),
644 utils.base64StringToArrayBuffer(hello)
645);
646 if (utils.arrayBufferToString(message) == 'HELLO YOU =D

Love from the enclave ;-)'){
647 let secret = await

crypto.exportSecretKey(derivedKey);
648 resolve(utils.arrayBufferToBase64String(secret));
649 }
650 else
651 reject('Failed to decrypt enclave message with the

generated shared key');
652 }
653 catch (err){
654 reject(err);
655 });
656 }

Code 52: Creation of a shared secret on the client side

As we can see in the code, the first step is to create a key pair on the client. Each key to be
used outside the Web Crypto API must be exported. Similarly, if a key comes from outside, it

3	Design	and	Implementation	 	Practical	example	of	cryptographic	functions	

89

must be imported. Once the key exchange is done with the enclave, we create our shared secrets
and then derive it. To test the encryption function, the "hello" message must be sent encrypted
from the enclave and must be decrypted correctly. Once decrypted, the session key and the JWT
are stored in the browser's localStorage. The crypto class is a wrapper that contains the Web
Crypto API code.

Code 53 is used to create and derive a key.

657 function genDerivedSecret(privateKey, publicKey){
658 return new Promise(async (resolve, reject) => {
659 try {
660 let keydata = await window.crypto.subtle.deriveKey({
661 name: 'ecdh',
662 namedCurve: 'P-256',
663 public: publicKey,
664 //hash: 'SHA-256', // does not work, bug ?
665 },
666 privateKey,
667 { name: 'AES-GCM',
668 length: 256},
669 true, // extractable
670 ['encrypt', 'decrypt']); // use to encrypt and

decrypt data
671 let exportedKey = await

window.crypto.subtle.exportKey('raw', keydata);
672 let exportedDigestedKey = await

crypto.subtle.digest('SHA-256', exportedKey);
673 let importedDigestedKey = await

window.crypto.subtle.importKey(
674 'raw', // raw is full binary
675 exportedDigestedKey,
676 { name: 'AES-GCM',
677 namedCurve: 'P-256'},
678 true, // extractable
679 ['encrypt', 'decrypt']);// use to encrypt and

decrypt data
680 resolve(importedDigestedKey);
681 }
682 catch (err){
683 reject(err);
684 }
685 });
686 }

Code 53: Shared secret creation and derivation with web crypto API

The rest of the Web Crypto API code to export/import keys, encrypt/decrypt are pretty
straightforward and comments in the code help to understand the details.

By default, there is no support for BigInteger in Web Crypto API. In order to support
BigInteger, the BigNumber.js pure JavaScript library was used. Particular attention must be
paid to the choice of the library. Indeed, the most used library to manipulate large numbers in
JavaScript is BigInteger.js. However, during the development, this library generated incorrect
big numbers without any warning, which greatly delayed development.

3	Design	and	Implementation	 	Practical	example	of	cryptographic	functions	

90

3.9.3 Authentication	

Once the session keys have been established, it becomes then possible to exchange messages
following the protocol established in the theoretical part. We can now communicate with the
enclave, but it is necessary to authenticate because for the moment, access to resources is
subject to authorization.

Figure 28: Authentication sequence

The UML sequence diagram in Figure 28 shows the steps required to authenticate on the
enclave. We assume here that the session key was already established.

Step	1	
The service layer creates a POST:/1.0/auth request with the password and email address in

the request body.

Step	2	
The request is intercepted by Axios, which will retrieve the session key from the

localStorage and then encrypt the request body using the protocol. Code 54 allows Axios to
intercept requests and encrypt them.

3	Design	and	Implementation	 	Practical	example	of	cryptographic	functions	

91

687 axios.interceptors.request.use(async config => {
688 // do we encrypt at all ?
689 if (!consts.doCrypto) return config;
690 // we won't encrypt this url
691 if (config.url.endsWith(`/1.0/keys/exchange`)) return config;
692
693 // everything below will be encrypted
694 let key = auth.getKeys();
695 let token = auth.getToken();
696 // Set the token if it exists
697 if (token != null) config.headers['Authorization'] =

token.token;
698 //Replace the body content by the ciphered body content
699 let secret = utils.base64StringToArrayBuffer(key);
700 let iv =

crypto.incrementIV(utils.base64StringToArrayBuffer(token.iv));
701 try {
702 let iKey = await crypto.importSecretKey(secret);
703 let cipheredData = await crypto.encrypt(iKey, iv,

utils.stringToArrayBuffer(JSON.stringify(config.data)));
704 cipheredData =

utils.arrayBufferToBase64String(cipheredData);
705 config.data = {
706 header: {
707 alg: 'dir',
708 kid: token.header.kid
709 },
710 iv: utils.arrayBufferToBase64String(iv),
711 ciphertext: cipheredData,
712 tag: '1234'
713 };
714 return config;
715 }
716 catch(err){
717 console.log(err);
718 }
719 }, error => {
720 return Promise.reject(error);
721 });

Code 54: Intercept HTTP request with Axios

Step	3	
The request is intercepted by Zuul. It will at first get the session key in Redis using the kid

provided by the client. Then it will decrypt the request body, update the iv in Redis and send
the request to the enclave. The code used to decide whether the request body will be decrypted
or not and the actual decryption code is in Code 55.

3	Design	and	Implementation	 	Practical	example	of	cryptographic	functions	

92

722 @Override
723 public boolean shouldFilter() {
724 RequestContext ctx = getCurrentContext();
725 HttpServletRequest request = ctx.getRequest();
726 String uri = request.getRequestURI().toString();
727 if (request.getMethod().equals("GET") ||

request.getMethod().equals("DELETE") ||
uri.endsWith("/1.0/keys/exchange")){

728 System.out.println("NO decryption needed");
729 return false;
730 }
731 return true;
732 }
733 @Override
734 public Object run() {
735 try {
736 RequestContext context = getCurrentContext();
737 InputStream in = (InputStream) context.get("requestEntity");
738 if (in == null) in = context.getRequest().getInputStream();
739 // encrypted body
740 String body = StreamUtils.copyToString(in,

Charset.forName("UTF-8"));
741 EncryptedPayload o = new Gson().fromJson(body,

EncryptedPayload.class);
742 String kid = o.getHeader().getKid();
743 String iv = o.getIv();
744 String ciphertext = o.getCiphertext();
745 SessionKeyModel skm = skp.findOne(kid);
746 // decrypt the payload as an array of bytes
747 byte[] ivByteArray = ch.Base64Url2byteArray(iv);
748 byte[] message = aes.decrypt(
749 ch.Base64Url2byteArray(ciphertext),
750 ch.Base64Url2byteArray(skm.getSharedKey()),
751 ivByteArray
752);
753 // increment the IV and save it in Redis
754 String newIV =

ch.byteArray2Base64Url(aes.nextIV(ivByteArray));
755 skm.setIv(newIV);
756 skp.findOne(kid);
757 // replace the encrypted body by the unencrypted body
758 context.setRequest(new

HttpServletRequestWrapper(getCurrentContext().getRequest()) {
759 @Override
760 public ServletInputStream getInputStream() throws

IOException { return new ServletInputStreamWrapper(message);}
761 @Override
762 public int getContentLength() {return message.length;}
763 @Override
764 public long getContentLengthLong() {return message.length;}
765 });
766 }
767 catch (Exception e) {
768 rethrowRuntimeException(e);
769 }
770 return null;
771 }

Code 55: Decryption of request payload by Zuul

3	Design	and	Implementation	 	Practical	example	of	cryptographic	functions	

93

Step	4	
The request is intercepted by the enclave filter. It will check if the token is valid and was

issued by the enclave. Once it’s done, it will send the request to the controller.

Step	5	
The authentication controller will get the tuple in the database corresponding to the values

provided by the client. If there is a correspondence, the controller will create a new JWT but
this time with the user cid in the header. The presence of the cid in the header of the JWT means
that the user has provided correct credentials and is authenticated. The enclave returns the token
in both the response body and the Authorization header.

Step	6	
The response body is intercepted by Zuul. It will get the session key in Redis with the kid

provided by the enclave. It will then increment the iv and encrypt the response body with a very
similar code used in step 3, but instead it will be used for encryption. Once the body is ciphered,
the Zuul gateway updates the iv in Redis. The ciphered response body is returned to Axios.

Step	7	
The response body is intercepted by Axios. It will decrypt the response body with a very

similar code from step 2 and it will save and increments the JWT and iv in the localStorage.
Once done it returns the decrypted response body to the service layer.

Step	8	
The service layer gets the message and return the content to the caller.

3	Design	and	Implementation	 	Practical	example	of	cryptographic	functions	

94

3.9.4 Message	exchange	

Once the session key has been defined and the user has authenticated, it is then possible to
exchange messages with the enclave in a secure way. The following diagram shows the steps
for message exchange between a client and the enclave:

Figure 29: Message exchange sequence

The UML sequence in Figure 29 shows the sequence of message exchange between an
authenticated client and the enclave where the client creates a new rule. Here the sequence is
very similar to the login. The difference comes at step 5 where the enclave performs an
authorization control with an annotation to access the resource. It will extract the JWT provided
by the client, then check if its role in the JWT matches the role defined in the route annotation.

3	Design	and	Implementation	 	 Software	development	organization	

95

3.10 Software	development	organization	

3.10.1 Source	code	version	control	

The whole project was developed on a local machine, and each version of the code was
committed on a Gihub private repository. The following private repositories have been created
and are accessible by all project stakeholders:

• https://github.com/grosjeanma/TM-enclave (enclave, Zuul gateway & email sender)

• https://github.com/grosjeanma/TM-frontend

• https://github.com/grosjeanma/TM-documentation

• https://github.com/grosjeanma/TM-client

• https://github.com/grosjeanma/TM-benchmark-crypto

3.10.2 Iterative	Development	

An iterative development approach was chosen to develop this software artifact. The Design
Science Research methodology tells us that at the beginning of an original research project, the
theoretical and practical issues of the project must be presented in the theoretical part. Then,
based on the theoretical part, it is necessary to quickly create a prototype that meets the needs
in order to evaluate it and to arrive to a final prototype that meets the initial challenges,
requirements and advances science.

In this project, we covered the initial research project on the middleware and the technologies
it uses. Then the iFlux project was presented as well as the different cryptographic methods to
ensure point-to-point security. Based on these elements, a prototype was created and sent for
evaluation to assess the relevance of the artifact created. Based on the remarks, the prototype
was refined.

3	Design	and	Implementation	 	 Software	development	organization	

96

3.10.3 Testing	

Introduction	
It is important to implement some automated tests to validate the quality of the code that has

been developed. They are important because they validate the proper functioning of the code
on different platforms as well as with different versions. Automatic tests allow us to get a quick
overview of the current quality of the code and whether it is necessary to fix problems before
developing new features. We will test bits of code automatically with JUnit. We will not test
the architecture as a whole with all components working together because of its complexity.
Performance tests will not be performed here.

Gateway	
For the gateway, we will run one unit test to test the key generation and symmetric

cryptography function. We will use maven in order to run the JUnit:

772 mvn test

Code 56: Gateway automated tests

There should be no error in the console output.

Email	sender	
The email sender component, or action target, implements actuators that are called by the

enclave. This component is developed with NodeJS and exposes a REST API. There are
frameworks to test REST APIs such as Mocha and which allow to automate testing. However,
in our case, we will just use a simple CURL request to test sending an email with the command
in Code 57.

773 curl --header "Content-Type: application/json" \
774 --request POST \
775 --data

'{"sender":"marcel.grosjean@unine.ch","dest":"marcel.grosjean@uni
ne.ch","subject":"test","body":"test"}' \

776 http://localhost:7010/emails

Code 57: Email sender CURL test

An email should have been sent.

 	

3	Design	and	Implementation	 	 Software	development	organization	

97

Enclave	
For the enclave, we will run two unit tests to test the key generation, symmetric cryptography

function and database connectivity. We will use maven in order to run the JUnit test.

777 mvn test

Code 58: Enclave automated tests

There should be no error in the console output.

Front-end	
Automated testing can be done in Single Page Application (SPA) using the WebDriver.io

application, for example. It executes SPA pages and put values in the code of the pages
generated in order to test the user interface. In our case, manual tests were performed because
the interface is rather small and therefore easy to test manually.

3.10.4 Deployment	

Introduction	
The infrastructure developed during this project is complex. We have developed a multi-tier

software architecture. Indeed, we have a front end that communicates with an enclave. The data
is intercepted by the gateway, and actions are taken on remote targets. Two databases, Redis
and MySQL, are used to manage persistent data. We can count the following 7 third parties:
front end, Zuul, enclave, action targets (1 only in our case), the client, Redis and MySQL.

It is therefore necessary to document in detail the deployment procedures in order to be able
to run the architecture. A precise deployment procedure allows a team of developers to take
over the project more easily in order to apply updates and continue to add functionalities. In
this section, we will cover two ways of deploying software: local deployment and in Docker
containers.

Local	Deployment	
By local deployment we mean the following: the local machine, a remote physical server, a

remote virtual server (VPS) or a platform on the cloud (Amazon EC2, ...). Local deployment is
the oldest and most common solution for deploying an application. Indeed, it is necessary to
install all the dependencies, compile and execute the binaries in order to have a version that
runs locally. The problem is that it is necessary to install in advance all the dependencies,
libraries and external components in order to make it work. Versions management of all the
dependencies can very quickly become a problem because depending on the OS and version of
the app. Local deployment can become very complex. In addition, it is necessary to monitor the

3	Design	and	Implementation	 	 Software	development	organization	

98

state of the machine in case of a failure or insufficient resources. The system administrator is
responsible for the scalability and updates (both hardware and software).

Although the deployment of a local infrastructure can be complex and labor-intensive, it is
still the simplest and most common way to deploy an application.

A procedure for installation of the dependencies, compilation, execution for testing and
execution as a service has been done and is available in appendix for the following components:
front end, Zuul gateway, enclave and email sender. By carefully following the procedures, it
will be possible to deploy the infrastructure locally for testing and production purposes.

Docker		
Docker allows developers to deploy and execute code efficiently. A container wraps

everything an application needs to run. This includes the operating system, application code,
system tools, libraries and interactions with other containers, databases or external API. Docker
containers are built from Docker images. They are lightweight, portable and allow developers
to efficiently deploy and run distributed applications. In addition, they allow an application to
be packaged and moved easily, increasing the simplicity of an infrastructure. Containers are
less isolated from each other than virtual machines and inter-container communication and
access to the code in a container is easier [35].

The difference between Docker and our local deployment procedure is that it is no longer
necessary to install all the components ourselves. By just specifying which components and
libraries we need to run, Docker takes care of downloading and installing all the dependencies.
This is very useful for sharing our code for third-party developers but also to deploy our
application. Indeed, once we have created our Docker images and everything works locally, it
is just necessary to send the images to the cloud so that it can build the architecture for
production on its own. Admittedly, there is a time cost for the installation of the various
containers and their proper functioning. But once everything is working, deployment is
incredibly easy. In a few minutes it would therefore be possible to deploy our project locally or
in the cloud. Not to mention that the scalability is also made easier thanks to the containers.

In this project, in addition to the local deployment procedure, the procedure for creating
Docker images and the execution of containers was documented. The advantage here is that the
project will be incorporated into more global academic research and having an easier means of
deployment allows researchers to easily take over the project and adapt it to their research. The
following containers were created to run the project: One for the front end, one for the enclave,
one for the gateway, one for the action target, one for MySQL and one for Redis. Simply follow
the procedure described in the appendix in the READMEs to create the Docker containers and
launch them.

 	

3	Design	and	Implementation	 	 Conclusion	

99

3.11 Conclusion	

In this section, we have seen the choices made both in terms of architectural design and
technical choices. Our risk analysis indicates that the difficulties are mainly at the technical
implementation level and that all the technologies used for development exist or are under
development. The risks we had identified can all be mitigated because for each of them, there
is an alternative.

The overall architecture is a multi-tier architecture. We do indeed have a front end which is
the main artifact of this project. To run the front end, it was necessary to develop all the
infrastructure around it in order to simulate the final environment in which it will be executed.
Vue.js was chosen for the development of the interface for the simple reason that it was the
most popular in 2018.

Encryption is necessary, so we decided to make it as transparent as possible to the web
developer. It was therefore decided to create an encryption middleware to intercept the requests
and encrypt/decrypt them in a transparent way. The advantage is that the web developer can
focus on developing features rather than dealing with cryptographic functions. The new Web
Crypto API native implementation has been used for client-side encryption. The data are
intercepted by the Axios middleware and ciphered before being sent to the enclave. The request
is then intercepted by the Zuul reverse proxy in order to be deciphered before sending it to the
enclave. Cryptography is thus transparent to the eyes of the front end and the enclave. The
enclave is responsible for authentication and authorization.

In order to implement the ECA paradigm in our enclave, we took the iFlux project developed
by the HEIG-VD which exposes the concepts of event sources, action targets and rules. We
used these concepts to create our own REST API with Spring Boot. After implementing our
own version of these concepts, we were able to process data from Things, infer on this data
according to rules and trigger actions with an action target. To be able to infer on the data, we
have created a rule engine that dynamically generate JavaScript code that will be evaluated by
the enclave rule engine. The action targets are actuators that can be either software or hardware.
We have developed an action target that sends emails and exposes a REST API. It can be
accessed by the enclave.

In order to facilitate the deployment of the entire project, a deployment procedure for testing,
another procedure for production and a procedure for creating a Docker image has been created.

We have seen in this section that the project was very complex both in terms of the concepts
to be implemented and the technologies that haven been used. These are risks and fortunately
each of these risks had alternatives if a problem was met. The front end that has been developed
meets the defined use cases. The cryptography middleware implements the protocol defined
and operates transparently. The enclave developed uses iFlux concepts to implement the ECA
paradigm. The rules engine works and allows actions to be triggered according to rules and
events. And finally, the action target executes the requested actions. From a purely functional
point of view, this project is a success because it meets both technical and conceptual
expectations. It is also easily portable, which makes it easier to take over within the context of
the current Softeng Group project.

3	Design	and	Implementation	 	 Improvements	&	Future	Works	

100

3.12 Improvements	&	Future	Works	

There are many areas for improvement in this project. The main goal is to develop a web
application. For the moment the application responds to all the use cases defined but it would
be interesting to discover other use cases. In a second step, the message exchange protocol
could be improved. Indeed, the original protocol proposed at the beginning of the project is an
adaptation based on the ECDHOC [36] protocol. However, it was not retained during
development because it was considered too difficult to implement and a lighter version was
developed instead. One possible improvement would be to modify the current protocol to
correspond to the one proposed by EDHOC.

Improvements can also be applied to the enclave and especially on the rule engine. Indeed,
when a client sends an event, the enclave processes it and sends it to the rule engine that will
infer on it and then trigger an action if necessary. All these steps are made synchronously. If a
very large number of events occur concurrently, this could create a problem because the entire
process would take too long. One possible improvement would be for the enclave to send the
event in a queue. The rule engine would run in another process and consume the events in this
queue. Thus, the enclave would only be concerned with controlling that the event is in the right
format and would have more resources to handle many concurrent requests. Other
modifications on the enclave, gateway or target actions are possible but are not considered
because they will not be included in the project led by the Softeng group.

4	Practical	testing	and	evaluation	 	 	

101

	4	
Practical	testing	and	evaluation	

4.1 Introduction	 102

4.2 RIOT	scenario	 103
4.2.1 Introduction ... 103

4.2.2 Login ... 104
4.2.3 Verify session key ... 105
4.2.4 Users .. 107

4.2.5 Clients .. 107
4.2.6 Urls (action targets urls) .. 108
4.2.7 Event type .. 109

4.2.8 Action type .. 110
4.2.9 Rules .. 111
4.2.10 Graph explorer ... 114

4.3 Client	scenario	 115
4.3.1 Introduction ... 115
4.3.2 Client ... 116

4.3.3 Emails sent .. 118
4.3.4 Events list .. 119

4.3.5 Action message .. 120

4.4 Conclusion	 120

	

	 	

4	Practical	testing	and	evaluation	 	 Introduction	

102

4.1 Introduction	

In this section we will briefly present the web application developed in this project with a
practical case study. This case study will cover most of the use cases defined in the project and
we will test the configuration of the rule engine with a client that we have developed specifically
for testing. We will then test our enclave configured by our web application with real life data
from our client.

Throughout the theoretical part, we talked about how this project could improve our lives
and in particular how our quality of life could be improved if we made our cities smart.
However, for the tests we will take a different point of view and use our project for spying
purposes. We're going to spy on people with a camera and a microphone.

We will measure two things. The first is what people say with the help of a microphone. We
have created an application that captures the sound of microphones and processes language in
order to understand what people are saying. The second thing is the facial emotion that people
have when they talk. This emotion is captured with a camera. For example, we can recognize
through the microphone, if a person says suspicious things about another person and what their
feeling is about that person.

For example, we want to install our client on all smartphones of the citizen of a country to
find out what people think about the president. If the citizen quotes the president's name during
a discussion and have an angry face while talking, then action could be taken.

Another practical application would be to install our client at airport camera when foreigners
arrive in custom areas. We could also hide microphones to listen to what they say. If a person
in the crowd has suspicious comments and a nasty look, then the custom officer would be
informed before that person arrives at the desk.

We will therefore feed our rule engine with data from the microphone and camera. Once the
rule engine has identified an action to execute, we will fire the associated action targets. In our
practical case, we will perform two actions. The first is sending a logging email just saying that
an action has been taken and the second is still an email but with more detailed information
such as a picture of the suspect individual with what he or she said.

 	

4	Practical	testing	and	evaluation	 	 RIOT	scenario	

103

4.2 RIOT	scenario	

4.2.1 Introduction	

In order to configure the enclave with RIOT, we will execute the following scenario:

• Login into the application and configure the user account.

• Verify the session key used by the interface.

• Check the details of the connected user.

• Create two clients. One as smartphone_marcel and the second as email_server.

• Create two URLs. One for logging emails and the other for an email with a photo. They
are both associated with the email_server client.

• Create the event type Photo event that will be used to monitor the angriness of a person.
It takes as parameters the photo (string), the angry (number), and the talking (string).

• Create two action types. One for sending an email with the following properties: sender
(string), subject (string), body (string) and dest (string). The second action type is similar
to the first one but with the following properties added: photo (string) and angry
(number).

• Create a rule that trigger an action for the event type Photo event and the client
smartphone_marcel where the action will be triggered if the user is angry (angriness >
0.5) and the recorded text by the microphone contains “Trumps” or “Obama”. If the
rule is triggered, then do the following actions:

o Send a simple logging email.

o Send a more sophisticated email with the photo of the person, a formatted text
and the angriness rounded at the tenth superior.

• Check the result of all the actions in the graph explorer

 	

4	Practical	testing	and	evaluation	 	 RIOT	scenario	

104

4.2.2 Login	

The login page in Figure 30 is the only page accessible without being logged. The button at
the top left allows to show/hide the navigation menu.

Figure 30: Login page

Once the user is logged in, he will be taken to the home page as in Figure 31. It displays all
the available pages. The Navigation section is accessible by normal users while the
Administration section is accessible by administrators only.

Figure 31: Home page

4	Practical	testing	and	evaluation	 	 RIOT	scenario	

105

The button at the top right allows the user to either log out or access the user's configuration
page as in Figure 32.

Figure 32: User configuration page

4.2.3 Verify	session	key	

The session key page shows which session keys are generated and currently valid. The
number 17 in Figure 33 next to the user icon means that this session has been assigned to the
user with id 17.

Figure 33: Keys list page

4	Practical	testing	and	evaluation	 	 RIOT	scenario	

106

The session key detail shows all the details associated with the session. These are the data
present in Redis. It is possible at any time to revoke a session key. Figure 34 show the session
page.

Figure 34: Session key details page

4	Practical	testing	and	evaluation	 	 RIOT	scenario	

107

4.2.4 Users		

An administrator can list and filter users. He can then define if this user is active and create
or delete a user as in Figure 35.

Figure 35: User details page for the administrator

4.2.5 Clients		

The clients page shows all the clients. The user can create or filter all the clients. The green
icons mean that the clients is active. Red icons mean inactive client. Figure 36 illustrates this.

Figure 36: Clients list page

4	Practical	testing	and	evaluation	 	 RIOT	scenario	

108

Figure 37 shows the client details page. A client has a name and a public key. The public
key is not used here. A client can have several URLs and they can be added from here. The user
can define here if the client is admin or active and can delete the client if needed. From here,
the user can see all the action messages for this client.

Figure 37: Clients details page

4.2.6 Urls	(action	targets	urls)	

Figure 38 shows the list of the URLs. The user can filter or add a URL from this page.

Figure 38: Urls list page

4	Practical	testing	and	evaluation	 	 RIOT	scenario	

109

Figure 39 shows the details of a url. A url is associated with a client.

Figure 39: Url details page

4.2.7 Event	type		

Figure 40 lists all the event types. They can be filtered or added here.

Figure 40: Event types list page

4	Practical	testing	and	evaluation	 	 RIOT	scenario	

110

Figure 41 shows the details of an event type. Here the event type Photo event has 3
mandatory properties. The photo (string), angry (number) and talking (string). Parameters can
be freely added/removed and can be set as required or not. The available data types are string,
number and integer.

Figure 41: Event type details page

4.2.8 Action	type	

Figure 42 lists all the action types. They can be filtered or added here.

Figure 42: Action type list page

4	Practical	testing	and	evaluation	 	 RIOT	scenario	

111

Figure 43 shows the details of an action type that aims to send an email with multiple
parameters. Here the action type Send email with photo has 6 mandatory properties. The photo
(string), angry (number), talking (string), sender (string) subject (string), body (string) and dest
(string). Parameters can be freely added/removed and can be set as required or not. The
available data types are string, number and integer.

Figure 43: Action type details page

4.2.9 Rules	

Figure 44 lists all the rules of the enclave. They can be added or filtered from here. An active
rule is green while an inactive one is gray.

Figure 44: Rules list page

4	Practical	testing	and	evaluation	 	 RIOT	scenario	

112

The rules window in Figure 45 is divided into two parts. The left part which makes it possible
to define a name for a rule which, once added, is associated with only one type of event, in our
case the Photo event. This rule can be used by one or more clients. Here, our rule exists for the
smartphone_marcel client who will send a Photo event type event. A rule can be disabled, in
which case it will not be taken into account by the rule engine.

The right part is used to define which conditions will allow the rule to be triggered and which
actions to perform if the rule is triggered. At the top right is the list of properties associated with
the event type that will be used to build the function. The function must be a valid JavaScript
condition, and the variables must be in the event type properties. The condition says that if the
angriness is greater than 0.5 and the captured text contains "Trump" or "Obama" then the
associated actions are triggered.

The lower right part is dedicated to the actions of this rule. We can either add an action or
modify an action. Here we have two actions. The first one is to send a simple email and the
second one is to send an email with a photo and the angriness.

Figure 45: Rule details page

4	Practical	testing	and	evaluation	 	 RIOT	scenario	

113

Figure 46 shows the details for the Send email with photo action. It is divided into two parts.

The left part defines what this action is made of. An action is composed of an action type
and an URL. A reminder of the event type and the action type is displayed to help build the
action.

The right part allows you to define the structure of the action. An action property can have
several types: string, integer and number. If the action is a string, then we can return either
literally a string or a string with variables from events. The property sender is a string. The
photo property is only the content of the photo property of the event type. The body property is
a mixture between string and the content of the variable {{talking}} will be replaced by the
content of the talking variable in the event. If the property is an integer or number, it is possible
to either return directly the content or perform data transformation. The angry property is a
JavaScript expression that rounds up the content of the angry variable that comes from the
event.

Figure 46: Rule action page

4	Practical	testing	and	evaluation	 	 RIOT	scenario	

114

4.2.10 Graph	explorer	

The graph explorer in Figure 47 allows us to have a spatial and graphical view of all the
elements present in the enclave in order to operate the rule engine.

Figure 47: Graph explorer

As we can see, the Smartphone_marcel and home_RPI_1 client can trigger the OBAMA
TRUMP photo rule. This rule is linked to the Photo event event type and has two action types:
Send email with photo and Send simple email. If this rule is triggered, then both the /emails and
/email/photo URLs will be fired. These two URLs belong to the email_server client.

Thanks to this graphical explorer, we can be sure that our rule engine corresponds to the
rules that have been decided beforehand.

 	

4	Practical	testing	and	evaluation	 	 Client	scenario	

115

4.3 Client	scenario	

4.3.1 Introduction	

In this section, we will introduce the JavaScript client that was developed to test the enclave
configured with our web application. This JavaScript client implements the same session
creation and authentication protocol as a normal client or as RIOT. Its purpose is to capture
information using two sensors. The first is the microphone that recognizes your spoken English.
The second sensor is the camera that allows you to recognize a face and its facial expression.

In the previous part, we configured our enclave so that a rule is triggered if a person is not
happy (angry > 0.5) and says in a sentence "Obama" or "Trump". The following scenario will
be carried out with the client in order to test the correct configuration of the enclave by our
RIOT interface:

• Open the client and configure the parameters as follows:

o Client Id = 14, Event Type ID = 30, Email = marcel.grosjean@unine.ch,
password = 123456

• Generate a public/private key keypair.

• Generate a shared secret.

• Login.

• Do not forget to turn on and authorize camera and microphone on the client.

• Stare at the camera while making an angry face and saying, “I want to kill Donald
Trump”.

• Check if the action was triggered.

• Check if the event was recorded.

• Check if the action message was recorded.

4	Practical	testing	and	evaluation	 	 Client	scenario	

116

4.3.2 Client	

The client in Figure 48 is a web client written in JavaScript. It is divided into three parts
delimited by color.

The upper green part displays the content currently being filmed by the camera as well as a
tracking device to identify in real time if a face is present. The Client parameters section also
displays the basic parameters that will be used by our client, which are the ID client, the event
type ID, the email and the password.

The green part of the upper middle with the title Emotions... corresponds to the emotions
recognized by our classifier. There are the following 4 emotions: Angry, Sad, Surprised and
Happy. We will only use the angry emotion. An emotion is quantified on a scale from 0 to 1.

The lower middle part displays the text spoken in English recognized by the microphone and
the lower part performs a screenshot when text is identified.

Figure 48: Client left part

4	Practical	testing	and	evaluation	 	 Client	scenario	

117

The right part in Figure 49 is more technical and is divided into two parts. It is used to
visually see which keys are used for encryption as well as to see which data are being sent and
received by the client.

The yellow part allows you to perform three actions. Once the data in the green part has been
correctly filled in, it is then possible to create a key pair with the Gen ECDH key pair button.
Once this is done, it is possible to create a session with the enclave with the Generate shared
secret button. Once completed, it is possible to connect with the Login button. Each step, if
executed correctly, will display the result in the corresponding textarea.

The blue part shows which data are sent by the client (before encryption) and which data is
received by the client and sent by the enclave.

Figure 49: Client right part

4	Practical	testing	and	evaluation	 	 Client	scenario	

118

An HTTP request is sent every time a sentence is identified. The following JSON shows an
example of request.

778 {
779 "clientid": 14,
780 "eventtypeid": 30,
781 "timestamp": "2018-11-01T11:23:00.861Z",
782 "properties": {
783 "talking": {
784 "type": "string",
785 "value": "I want to kill Donald Trump"
786 },
787 "angry": {
788 "type": "number",
789 "value": 0.603957140325086
790 },
791 "photo": {
792 "type": "string",
793 "value": ""
794 }
795 }
796 }

4.3.3 Emails	sent	

The actions to be taken are to send two emails. The first is a logging email while the second
is a more complete email. As we can see in Figure 50, both emails were received in our inbox.

Figure 50: Mailbox after actions triggered

Figure 51 is the content of the logging email:

Figure 51: Logging email

4	Practical	testing	and	evaluation	 	 Client	scenario	

119

Figure 52 is the content of the detailed email:

Figure 52: Detailed email

We find in this email all the elements present in the event type. The data transformations in
the angryness level and in the text have been applied as shown in the illustration.

4.3.4 Events	List	

The list of events in Figure 53 allows you to list all the events that have occurred. Filters by
date, clients and event type are applicable. It is also possible to fire an event directly without
going through a client. The client can also directly delete an event. As we can see, our event
sent by smartphone_marcel has been created.

Figure 53: Events list page

4	Practical	testing	and	evaluation	 	 Conclusion	

120

4.3.5 Action	message	

Action messages in Figure 54 allow you to see which actions have been taken by a certain
client. The content of the message is the same as the one sent to the action target. As we can
see, the rule engine has performed the email sending actions correctly.

Figure 54: Action message page

4.4 Conclusion	

This practical example shows that it is now possible to trigger actions on very complex and
heterogeneous data. Indeed, we were able to trigger actions based on data from the camera and
microphone. Thanks to a very weak coupling between Things and the enclave, and thanks to
the notion of event type, it is then possible to connect a very large number of Things and perform
actions according to the content sent. Practical limits are not limited to espionage, but can be
applied to areas such as smart cities, health, finance, transport, etc. Practical and commercial
applications are endless because nowadays the value is in the data and being able to exploit
them in real time allows us to give real added value to data flows.

5	Administrative	part	 	 	

121

	5	
Administrative	part	

5.1 Introduction	 122

5.2 Planification	 122

5.3 Logbook	 123

5.4 Burndown	chart	 123

5.5 Bibliography	&	Webography	 128

	

 	

5	Administrative	part	 	 Introduction	

122

5.1 Introduction	

This master thesis is meant to show at an advanced and high level, the student’s capacities
and abilities for analysis, synthesis and critical thinking. Written, oral and communication skills
must be shown in this work as well as scientific and technical approaches.

The first meeting with the project manager was in April 2018. It provided an opportunity to
present the scope of the project and define the context and objectives to be achieved. The official
start of the project is the first of June 2018. The official end of the project is the first of
December 2018. It was planned to submit a report as well as the software artifacts developed
during this period. During the project, no meetings are planned other than the usual email
communications.

This work is worth 30 ECTS credits.

5.2 Planification	

A GANTT diagram shows the overall task planning that takes place at the beginning of the
project. Then, we mark the actual tasks in order to compare the original planning with the final
planning.

Table 7: GANTT planification

 June
2018

July
2018

August
2018

September
2018

October
2018

November
2018

Task Type 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Analyse ECDH +
AES
for Java

Planified

Done

Implement secure
protocol from
enclave to
backend

Planified

Done

Analyse the whole
architecture

Planified

Done

Implement the
frontend
+ enclave + email
+ Zuul

Planified

Done

Test (front +
backend +
enclave)

Planified

Done

Project
documentation

Planified

Done

5	Administrative	part	 	 Logbook	

123

5.3 Logbook	

Table 8: Logbook

Date
[dd.mm.yyyy] Task Time

[hours] Description

31.05.2018 Meeting 1 - Meeting with P.Gremaud for the project start

31.05.2018 Documentation 2 - Creation of the private git repos
- Creation of the basic documentation structure for the project

01.06.2018 Research 3 - Looked for Java documentation on ECDH and AES

03.06.2018 Research 3 - Continuation of research documentation on ECDH and AES

03.06.2018 Development 4

- Project initialization for the enclave. Installation of
-> spring boot
-> MYSQL + JPA
-> Bouncy Castle

03.06.2018 Documentation 1 Readme of the enclave

04.06.2018 Development 4

- Playing a bit with java.security => Trying to generate keys with ecdh
-> Managed to generate public and private key
-> Now trying to export public key as string and reimporting string key as
PublicKey

06.06.2018 Development 6

- Still playing with ECDH. Managed to do some cool stuff
-> Starting routes in spring boot
-> some controllers
-> Good exception handling
-> Some Spring JDBC
-> some testing with database pooling and hikaricp
-> Some doc

07.06.2018 Development 6 Swagger 2 configuration + autogeneration for enclave
JWT integration for enclave

08.06.2018 Development 1 Replacing the current jwt libary by jose because the current lib does not
support JWE

08.06.2018 Research 3 -> Research about JWE
-> Research about Web Crypto API

09.06.2018 Research 2 Research about web crypto and how it could be used with standard crypto

09.08.2018 Research 6

Better organization of my java code for the cryptographic part
Creation of a benchmark with java.crypto
I managed to get rid of all third party cryptography package (no need of
bouncy castle anymore) and used only
java.security standard package

09.08.2018 Development 3 Developing the prototype for testing the web crypto API

09.08.2018 Documentation 1 Readme of the benchmark

15.08.2018 Development 10

Starting vuejs project and installing the following dependencies +
configuration
-> axios
-> vuetify
-> vuei18n
-> vue-router

Confguration of the vueapp and login page

16.06.2018 Development 8

Got rid of the keys management on the enclave
Adding the user management in the enclave
Tester a bit mongodb
Added the classes for the crypto to the enclave
Added routes for authentication
Started exchanging keys with the frontend
Got rid of JPA
Got rid of mongodb

17.06.2018 Research 2 Further research about JWE and analysing the protocol

5	Administrative	part	 	 Logbook	

124

17.06.2018 Development 4 Added redis for session management
Started to play with frontend -> enclave connection

20.06.2018 Development 6

Better organization of my java code for the cryptographic part
Creation of a benchmark with java.crypto
I managed to get rid of all third party cryptography package (no need of
bouncy castle anymore) and used only
java.security standard package

21.06.2018 Documentation 1 -> Burndown chart
-> Modify documentation of the project on github

21.06.2018 Development 4 -> limits the number of keys a client can create within one minute
-> Add filter functionalities to turn object into standard response

23.06.2018 Research 5 Trying to understand and implement the new exchange protocol

25.06.2018 Research 6 Trying to implement the new protocol, failed, I decided to stick to a simpler
version of the protocol

26.06.2018 Research 12 Trying to make web crypto work with Keys that comes from Java. Not obvious
at all !!

27.06.2018 Development 3
I decided to give up the full key exchange protocol and stick with a simpler
version
I managed to import the java keys in webcrypto

27.06.2018 Development 5

I managed to derive the public key from java in web crypto. I had issues
because:
-> Web crypto doesn't like padding and java don't care => leads to many
problems
-> To derive a keys there are many steps in web crypto and it's not that
obvious
-> web crypto is not very verbose when there is an exception but i managed
to derived a key and decrypt
messages from the enclave

28.06.2018 Development 9

-> derived key in web crypto
-> fix IV generation from enclave
-> import correct IV and increment it in web crypto
-> Encrypt data with sharedsecret in webcrypto
-> post encrypted data from web crypto et enclave and decrypt data in
enclave
-> Refactor code

29.06.2018 Development 4

-> added routes to manage the keypair in the enclave
-> added 2 new windows to the frontend
-> list all valid keypair
-> see the details of a keypair and delete it

30.06.2018 Development 5 CRUD for user accounts with frontend input

02.07.2018 Development 10

-> Found out that the library that I used does not allow the usage of hmac for
signature so I changed to nimbus
library for JWE/JWT/WS tokens generation
-> Crypt JWE in IWT with nimbus and trying to decrypt in the frontend
-> Continuing the filter and axios interceptor middleware

03.07.2018 Research 1 Some research about Spring Zuul

03.07.2018 Development 4

-> Fixed problems with CORS and returning custom headers
-> modifying request filter for decryption (not finished yet)
-> Axios interceptor does not like promises, had to modify and use
await/async

04.07.2018 Development 5
Trying to make filter request wrapper works but it still does not work !!!!!!!!
Thinking about finding a new solution before sending ciphered data to the
controller

05.07.2018 Development 3 Made attempts to make Filter request wrapper workd correctly but it doesn't

05.07.2018 Research 2 Made further research about Netflix Zuul

05.07.2018 Development 2 Developped a simple gateway with zuul and it seem to work !!!

06.07.2018 Development 7

-> Decrypt payload in gateway and replace with original payload and send it
to the enclave
-> Create custom java annotation for Authorization for each request
-> The NIMBUS library for generating JWE doesn't really meet my
requirements, I decided to develop my own
JWE library

5	Administrative	part	 	 Logbook	

125

07.07.2018 Development 9

-> Finished to develop my own library to create and verify JWE
-> I made authentication in enclave filter
-> I made custom AUTHORIZATION with custom Java Annotaiton for each
route based on user role

08.07.2018 Development 8 I made (or try to make working) the chiptography gateway with spring zuul,
many errors

09.07.2018 Development 8

I managed to make the gateway with Zuul works and there were a big with
the javascript library when
increasing biginterger number.
-> I found another library that works when increasing really huge numbers

11.07.2018 Development 1 Correction of some bugs

11.07.2018 Research 2 Read articles on iflux and wrote some comments

12.07.2018 Research 1 Read some articles about iflux and try to install iflux but not enough disk
space xD

12.07.2018 Development 4 Change some parts of the base UI

13.07.2018 Development 3 Fixed some bugs in the UI while trying to use the kid stored in the
localstorage

14.07.2018 Development 6
-> Continued to fix the kid problem in localstorage
-> Added some ui to manage user own settings and better display of the
informations according to user role

15.07.2018 Development 5
-> Fixed bug in frontend
-> update some ui component due to the new version of vuetify
-> Started CRUD for clients

16.07.2018 Development 4 -> Clients CRUD Done
-> Fixed a bug with swagger and the servlets filter

17.07.2018 Development 4 -> Started events and eventstype

18.07.2018 Development 5 -> FInished CRUD events type

20.07.2018 Development 8 -> Remade CRUD events type and validation according to the comments of
Pascal

21.07.2018 Development 6 -> Events CRUD with custom filter

22.07.2018 Development 4 -> Urls CRUD
-> Some modifications in enclave code structure

23.07.2018 Development 2 -> Started CRUD Actions types

24.07.2018 Development 4 -> Finished CRUD Actions types

26.07.2018 Research 2 -> research about iflux

27.07.2018 Research 3 -> still researching about iflux

28.07.2018 Development 4 -> better filter for events, action type and event type

03.08.2018 Development 5 -> better ergonomy
-> added url and link from url to client in graph

03.08.2018 Documentation 3 -> github enclave doc
-> made a global burndown chart instead of multiple one

04.08.2018 Development 6 -> Started the Rules add interface

05.08.2018 Development 8 -> Finished the client rules add interface
-> Started rules controller

06.08.2018 Development 5 -> Continued CRUD Rules

07.08.2018 Development 10 -> Finished CRUD Rules in frontend and enclave
-> Added actiontype, eventtype and rules to the graph

08.08.2018 Development 4 -> Started processing the rules for incoming events. => java sucks for
javascript eval...

11.08..2018 Development 5 -> Continued the rules and try to eval js

12.08..2018 Development 5 -> Finished rules evaluation

5	Administrative	part	 	 Logbook	

126

13.08.2018 Development 5
-> Started the email sender component wth nodejs. Added routes, swagger
doc, logging, route validation,
exception handling and email sending

17.08.2018 Development 5 -> Started to make a client in python but decided finally to do it in javascript

18.08.2018 Development 5 -> Started to do a client in JavaScript

19.08.2018 Development 5 -> Continued client + added key exchange + added emotion and speech
recognition

20.08.2018 Development 5 -> Try to send data from client to enclave, fix some errors

21.08.2018 Development 7

-> Managed to send data to the enclave and evaluate the function.
-> Fixed timeout issues with RestTemplate
-> Manage to send picture to the emailsender
-> Started handlebar for email sending formatting

22.08.2018 Development 7 -> fixed many bugs
-> Started action message

23.08.2018 Development 6
-> Finished action message
-> Finished formatting mail with handlebarjs
-> Some minors changes in the UI

24.08.2018 Documentation 1 -> Deployment diagram

24.08.2018 Development 4

-> Added active switch to rules
-> Started modifying the rules interface and enclave because it does not
match the swagger api provided by
Pascal

25.08.2018 Development 2 -> Added active status to rules (forgot to add it before)
-> Continue multiple action to rule

26.08.2018 Development 6 -> Continued multiple action for a rule

28.08.2018 Development 6
-> Finished multiple action for a rule
-> Changed the events rule engine in order to manage several rules for an
event

29.08.2018 Documentation 2 -> Created a video to show how developped is the project

29.08.2018 Documentation 3 -> Started to see how i'm going to do the doc

10.09.2018 Documentation 3 Report

18.09.2018 Documentation 6 Report

19.09.2018 Documentation 6 Report

21.09.2018 Documentation 12 Report

22.09.2018 Documentation 12 Report

23.09.2018 Documentation 5 Report

24.09.2018 Documentation 5 Report

26.09.2018 Documentation 2 Report

28.09.2018 Documentation 3 Report

29.09.2018 Documentation 5 Report

30.09.2018 Documentation 5 Report

01.10.2018 Documentation 7 Report

02.10.2018 Documentation 6 Report

03.10.2018 Documentation 5 Report

04.10.2018 Documentation 3 Report

05.10.2018 Documentation 2 Report

5	Administrative	part	 	 	

127

06.10.2018 Documentation 5 Report

08.10.2018 Documentation 13 Report

10.10.2018 Documentation 5 Report

11.10.2018 Documentation 5 Report

13.10.2018 Documentation 5 Report

14.10.2018 Documentation 5 Report

15.10.2018 Documentation 5 Report

16.10.2018 Development 2 Errors logging and bug fixes

16.10.2018 Documentation 7 Report

17.10.2018 Documentation 9 Report

19.10.2018 Documentation 3 Report

20.10.2018 Documentation 3 Report

22.10.2018 Development 2 Some development and bud fixes

22.10.2018 Documentation 7 Report

23.10.2018 Documentation 10 Report + readme + starting dockerize infrastructure

24.10.2018 Documentation 5 Continued dockerizing everything

26.10.2018 Documentation 10 Continued again to dockerize everything. Fix bug with database and docker
mysql. Docker brrrrrrr

27.10.2018 Documentation 8 Report

28.10.2018 Documentation 10 Report

30.10.2018 Documentation 6 Report

31.10.2018 Documentation 4 Report

01.11.2018 Documentation 10 Report

03.11.2018 Documentation 5 Report

04.11.2018 Documentation 1 Report

05.11.2018 Documentation 12 Report

06.11.2018 Documentation 1 Report correction with antidote 9

07.11.2018 Documentation 2 Mini ppt presentation for demo

08.11.2018 Meeting 1 Demo at unifr

10.11.2018 Documentation 1 Report

11.11.2018 Documentation 5 Report & ZIP containing the whole thesis

	

	 	

5	Administrative	part	 	 Burndown	chart	

128

5.4 Burndown	chart	

The burndown chart is a graph that shows the progress of the actual working time of a project
compared to the planned schedule. The project lasts a total of nine hundred hours and ends
when these nine hundred hours have elapsed. The blue line shows the elapsed time from nine
hundred to zero. The developer must follow this blue line by providing an adequate volume of
hours. The red line shows the actual work done by the developer. If the red line is above, it
means that the developer has not worked enough hours. If the red line is below the blue line, it
means that the developer is ahead of schedule.

Figure 55: Burndown chart

As we can see, the actual work was constant at the beginning of the project. If we compare
this chart to the GANTT, the first part represents the cryptography part. Then a short break was
taken before starting the development of the infrastructure, which will last until the middle of
the project. This pause will increase the delay in relation to the blue line. Then a second break
was taken between the end of the development before starting the report. This second break
will again increase the delay compared to the blue line. The red line is not finished because the
project ended before the official planned end.

The actual working time for this master's work amounts to six hundred and eleven hours
(611), or 70.11% of the total work requested.

 	

5	Administrative	part	 	 Bibliography	&	Webography	

129

5.5 Bibliography	&	Webography	

[1] P. Gremaud, A. Durand and J. Pasquier, "A secure, privacy-preserving IoT middleware
using Intel SGX," ACM, no. Proceedings of the Seventh International Conference on the
Internet of Things, 2017.

[2] A. Hevner, S. March, J. Park and S. Ram, "Design Science in Information Systems
Research," MIS Quarterly, 2004.

[3] Wikipedia, "Internet of Things," [Online]. Available:
https://en.wikipedia.org/wiki/Internet_of_things. [Accessed 22 09 2018].

[4] P. Gremaud, "Trustno1," [Online]. Available: https://github.com/polchky/Trustno1-doc.
[Accessed 01 October 2018].

[5] O. Liechti, L. Prévost, V. Delaye, J. Hennebert, V. Grivel, J.-P. Rey, J. Depraz and M.
Sommer, "Enabling reactive cities with the iFLUX middleware," WoT ’15, Seoul,
Republic of Korea, no. ACM 978-1-4503-4045-8/15/10, 2015.

[6] IFTTT, "IFTTT Plateform documentation," [Online]. Available:
https://platform.ifttt.com/docs. [Accessed 23 09 2018].

[7] Intel, "Intel Software Guard Extensions (Intel SGX)," [Online]. Available:
https://software.intel.com/en-us/sgx. [Accessed 29 September 2018].

[8] Intel, "Introduction to Intel Software Guard Extensions webinar," 18 April 2017.
[Online]. Available: https://software.intel.com/sites/default/files/managed/81/61/intel-
sgx-webinar.pdf. [Accessed 29 September 2018].

[9] Wikipedia, "Trusted execution environment," [Online]. Available:
https://en.wikipedia.org/wiki/Trusted_execution_environment. [Accessed 28 09 2018].

[10] R. Hayton, "Trusted execution environments: What, how and why?," IOT Agenda, 18
April 2018. [Online]. Available: https://internetofthingsagenda.techtarget.com/blog/IoT-

5	Administrative	part	 	 Bibliography	&	Webography	

130

Agenda/Trusted-execution-environments-What-how-and-why. [Accessed 29 September
2018].

[11] Wikipedia, "Diffie-Hellman key exchange," [Online]. Available:
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange. [Accessed 01
October 2018].

[12] Wikipedia, "Advanced Encryption Standard," [Online]. Available:
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard. [Accessed 01 October
2018].

[13] A. Ansel, "L’algorithme d’échange de clés Diffie-Hellman," 29 Fébuary 2016. [Online].
Available: https://medium.com/@antoine.ansel/l-algorithme-d-%C3%A9change-de-
cl%C3%A9s-diffie-hellman-6f9681d1418c. [Accessed 01 October 2018].

[14] A. Corbellini, "Elliptic Curve Cryptography: ECDH and ECSDA," 30 May 2015.
[Online]. Available: http://andrea.corbellini.name/2015/05/30/elliptic-curve-
cryptography-ecdh-and-ecdsa/. [Accessed 01 October 2018].

[15] M. David and V. John, "The Galois/Counter Mode of Operation (GCM)," [Online].
Available: http://luca-giuzzi.unibs.it/corsi/Support/papers-cryptography/gcm-spec.pdf.
[Accessed 02 October 2018].

[16] N. Madden, "Ephemeral elliptic curve Diffie-Hellman key agreement in Java," 20 May
2016. [Online]. Available: https://neilmadden.blog/2016/05/20/ephemeral-elliptic-
curve-diffie-hellman-key-agreement-in-java/. [Accessed 02 October 2018].

[17] M. Rouse, "Advanced Encryption Standard (AES)," March 2017. [Online]. Available:
https://searchsecurity.techtarget.com/definition/Advanced-Encryption-Standard.
[Accessed 02 October 2018].

[18] S. Info, "L'AES : Advanced Encryption Standard," 4 November 2001. [Online].
Available: https://www.securiteinfo.com/cryptographie/aes.shtml. [Accessed 02 October
2018].

5	Administrative	part	 	 Bibliography	&	Webography	

131

[19] N. Coffey, "Removing the 128-bit key restriction in Java," 2012. [Online]. Available:
https://www.javamex.com/tutorials/cryptography/unrestricted_policy_files.shtml.
[Accessed 09 October 2018].

[20] M. Dworkin, "Recommendation for Block Cipher Modes of Operation: Galois/Counter
Mode (GCM) and GMAC," NIST, U.S. Department of Commerce, November 2007.

[21] P. Siriwardena, "JWT, JWS and JWE for Not So Dummies!," 26 April 2016. [Online].
Available: https://medium.facilelogin.com/jwt-jws-and-jwe-for-not-so-dummies-
b63310d201a3. [Accessed 03 October 2018].

[22] W3C, "Web Crypto API," 29 September 2018. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API. [Accessed 09
October 2018].

[23] J. Tan, "Update on Web Cryptography," 21 July 2017. [Online]. Available:
https://webkit.org/blog/7790/update-on-web-cryptography/. [Accessed 09 October
2018].

[24] Encryb, "Comparing Performance of JavaScript Cryptography Libraries," 09 Jun 2015.
[Online]. Available: https://medium.com/@encryb/comparing-performance-of-
javascript-cryptography-libraries-42fb138116f3. [Accessed 09 October 2018].

[25] Oracle, "Package java.security," [Online]. Available:
https://docs.oracle.com/javase/7/docs/api/java/security/package-summary.html.
[Accessed 09 October 2018].

[26] J. Kunter, "Using Netflix Zuul to Proxy your Microservices," 02 March 2016. [Online].
Available: https://blog.heroku.com/using_netflix_zuul_to_proxy_your_microservices.
[Accessed 11 October 2018].

[27] S. P. R. Katamreddy, "Why Spring Boot ?," 20 May 2016. [Online]. Available:
https://dzone.com/articles/why-springboot. [Accessed 14 October 2018].

[28] S. Khillar, "Difference between Authentication and Authorization," 30 October 2017.
[Online]. Available: Difference between Authentication and Authorization. [Accessed
15 October 2018].

5	Administrative	part	 	 Bibliography	&	Webography	

132

[29] B. Leite, "Guide to Spring Boot REST API Error Handling," [Online]. Available:
https://www.toptal.com/java/spring-boot-rest-api-error-handling. [Accessed 16 October
2018].

[30] Xplenty, "The SQL vs NoSQL Difference: MySQL vs MongoDB," 28 September 2017.
[Online]. Available: https://medium.com/xplenty-blog/the-sql-vs-nosql-difference-
mysql-vs-mongodb-32c9980e67b2. [Accessed 16 October 2018].

[31] T. Kadlecsik, "Node.js + MySQL Example: Handling 100's of GigaBytes of Data," 06
June 2017. [Online]. Available: https://blog.risingstack.com/node-js-mysql-example-
handling-hundred-gigabytes-of-data/. [Accessed 16 October 2018].

[32] T. D. C. S. M. P. J. B. Oliver Gierke, "Spring Data JPA - Reference Documentation," 15
October 2018. [Online]. Available: https://docs.spring.io/spring-
data/jpa/docs/current/reference/html/. [Accessed 16 October 2018].

[33] E. Korotya, "5 Best JavaScript Frameworks in 2017," 17 January 2017. [Online].
Available: https://hackernoon.com/5-best-javascript-frameworks-in-2017-
7a63b3870282. [Accessed 06 October 2018].

[34] W. Woodhead, "Should you use Material Design?," 11 April 2018. [Online]. Available:
https://medium.com/pilcro/should-you-use-material-design-bfb596a04bae. [Accessed 08
October 2018].

[35] S. J. Vaughan-Nichols, "What is Docker and why is it so darn popular?," 21 Mach 2018.
[Online]. Available: https://www.zdnet.com/article/what-is-docker-and-why-is-it-so-
darn-popular/. [Accessed 27 October 2018].

[36] G. Selander, J. Mattsson and F. Palombini, "Ephemeral Diffie-Hellman Over COSE
(EDHOC)," 25 April 2017. [Online]. Available: https://tools.ietf.org/html/draft-
selander-ace-cose-ecdhe-06. [Accessed 28 October 2018].

[37] M. Fowler, Uml Distilled: A Brief Guide to the Standard Object Modeling Language,
??: Addison-Wesley, 2000.

6	Appendix	 	 	

133

	6	
Appendix	

6.1 Cryptography	benchmark	Readme	 134

6.2 Front-end	Readme	 140

6.3 Enclave	Readme	 142

6.4 Zuul	Gateway	Readme	 147

6.5 Email	sender	Readme	 151

	

 	

6	Appendix	 	 Cryptography	benchmark	Readme	

134

6.1 Cryptography	benchmark	Readme	

Benchmark: Java.security vs Web Crypto API
This repository compares the performances of both Java and Web Crypto API for
generating ECDH keys, encode and decode messages with AES-GCM algorithms.

Java uses java.security which is the Java default security package. It does not
implement anything since it's only a wrapper for third party implementation. The
default implementation used is the one made by Sun Microsystems. A third party
implementation like OpenSSL can be easily specified. We won't use any other third
party library.

The Web Crypto API is an interface allowing javascript to use cryptographic
primitives directly implemented in modern browsers. It's supposed to be much faster
than pure JavaScript security library.

We're going to compare both java.security and Web Crypto Api in terms of pure
performance to see which is the fastest.

Requirements

• Java JDK 1.8
• A recent version of (Safari, Chrome, Firefox, Edge)

Installation

For the web crypto API you don't need to install anything apart from having the latest
version of your browser.

We are using Java default library (java.security) that wraps Sun Microsystems
primitives for encryption.

By default the maximum Java key size is 128 bits... Why ? Because some countries
limit the key size at 128 bits and the java default library complies with theses
limitations...

In order to override this limitation, you need to download the extended Java
Cryptography Policy from Oracle. Then unzip the content and replace the content of
the following directory with the unzipped content:

${java.home}/jre/lib/security/

Use case

In order to compare the performances, we need to do similar operations on both
platform even though they are not similar at all.

6	Appendix	 	 Cryptography	benchmark	Readme	

135

Java usecases

Java is rather simple to monitor since the code is synchronous by design. We only
need to measure the time elapsed from the beginning to the end.

1. Create ECDH instance for both Alice and Bob
2. Print to the console their keypair
3. Create AES instance for both Alice and Bob
4. Exchange public keys
5. Creating a shared secret and derive a key from it
6. Generate the iv
7. Start the process of exchanging messages. This process will be executed N

times:
i. Defining a string message
ii. Alice crypts the message with her derived key
iii. The message is parsed to base64
iv. The message is parsed to string
v. The message is decrypted by Bob
vi. Increment the IV

The time elapsed is measured in seconds from before step 1 to after the last step of
7.

Javascript use cases

As Javascript is asynchronous and the Web Crypto API massively rely on Promises,
it's therefore much harder to measure performances as things don't go in a
deterministic order.

The following use case describe all the steps with the use of Promise and
await/async.

1. Create the ECDH instance for Alice with Promise
2. Extract public key (private key is not extractable)
3. Create the ECDH instance for Bob with Promise
4. Extract public key (private key is not extractable)
5. Derive a key for Alice with Promise
6. Derive a key for Bob with Bob with Promise
7. Start the process of exchanging messages. This process will be executed N

times: Since this process is asynchronous, we'll rely on await/async
mechanism to pretend we're in a synchronous mode

i. Defining a string messages
ii. Generate the iv (new for each exchange)
iii. Crypt message with Alice derived key

6	Appendix	 	 Cryptography	benchmark	Readme	

136

iv. Decrypt message with Bob derived key

As you can see here, for the sake of simplicity we didn't increment the iv and we
skipped the parse to Base64 process.

Results

We're going to see the results here.

The tests were executed on a Intel core i5 2.7Ghz Machine with 4Gb of RAM.

They both use:

• ECDH with 256 bits key
• AES-CGM 256
• A 12 bytes IV

Java security

In order to run the java application we need to install JDK 1.8 and do the importing
step of the JCE. Otherwise we won't be able to run the app.

Before compiling the application we need to check the
class ch.tm.bench.App.java and make sure that the following values are correct:

final boolean VERBOSE = false;
final int ITERATIONS = 1000000;
The simplest way to compile and run (due to classpath) is to use eclipse and run the
application from there.

The result of the execution is:

Start benchmarking. Please wait...

Alice Private Key HEX :
3041020100301306072A8648CE3D020106082A8648CE3D03010704273025020101042044B3F3826F19
A948080F1B0F5E59B89A7D38CFBC6B9A7696F21E4898F4F26CCB
Alice Private Key Base64 :
MEECAQAwEwYHKoZIzj0CAQYIKoZIzj0DAQcEJzAlAgEBBCBEs/OCbxmpSAgPGw9eWbiafTjPvGuadpbyHk
iY9PJsyw==
Alice public Key HEX :
3059301306072A8648CE3D020106082A8648CE3D03010703420004809CB1C845DF75A504C6B1AC03F3
3D139DA99EEEA3E140433983C4D61CCF1D42CF25A7F296816ABB7B49AA644FAAF3E5FC19A632C66EA7
64CA3E18B71FAEBE68
Alice public Key Base64 :
MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEgJyxyEXfdaUExrGsA/M9E52pnu6j4UBDOYPE1hzPHULPJa
fyloFqu3tJqmRPqvPl/BmmMsZup2TKPhi3H66+aA==
Alice shared secret HEX :
25265F7A8CD55EECD1DFD7BDDA26662F4F9702E512A989ACAA75C7E69B9544BB

6	Appendix	 	 Cryptography	benchmark	Readme	

137

Bob Private Key HEX :
3041020100301306072A8648CE3D020106082A8648CE3D030107042730250201010420320D1236B245
9D75FF3093DAA9675595B42FBE18AB7365C965179DF7BB994D56
Bob Private Key Base64 :
MEECAQAwEwYHKoZIzj0CAQYIKoZIzj0DAQcEJzAlAgEBBCAyDRI2skWddf8wk9qpZ1WVtC++GKtzZcllF5
33u5lNVg==
Bob public Key HEX :
3059301306072A8648CE3D020106082A8648CE3D03010703420004E560F4DD90249D8A3CFE2C545791
D1344D8870D486B481E270D2CBC7C420761EF7CC3F881602B8C5E941CFD9E5C8B4C6AA238B852A2D66
2539100B2E112E16E5
Bob public Key Base64 :
MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE5WD03ZAknYo8/ixUV5HRNE2IcNSGtIHicNLLx8Qgdh73zD
+IFgK4xelBz9nlyLTGqiOLhSotZiU5EAsuES4W5Q==
Bob shared secret HEX :
25265F7A8CD55EECD1DFD7BDDA26662F4F9702E512A989ACAA75C7E69B9544BB

Mode verbose deactivated

Benchmark Finished:

The whole process took: 11.394719722 seconds
There were 1000000 iterations
Each iteration took in average 1.3394719722E-5 seconds

Web Crypto API

All you need to run the Web Crypto API demo is to open the bench.html file directly in
the browser.

The tests were made with Chrome browser.

Once the page is opened, you need to click the button "Start computation" and wait
for its completion. You must not click twice on this button otherwise things could go
wrong...

Before starting the application, we need to make sure that the following variables are
like below:

const VERBOSE = false;
const ITERATIONS = 1000000;
The result of the execution is:

Start Benchmarking. Please wait... 1000000 iterations have to run...

Alice key pair generation done. Not extractable.

Alice's public key: {"crv":"P-
256","ext":true,"key_ops":[],"kty":"EC","x":"SylqEc9eSvaojWYxh56P7Ko4EYFNfOjkP3_e0
ZLahgc","y":"s6sd_uDLrz2pOhyD1-1AgEbM2tuhc8GDfv71FQhjIOs"}

Bob key pair generation done. Not extractable.

6	Appendix	 	 Cryptography	benchmark	Readme	

138

Bob's public key: {"crv":"P-
256","ext":true,"key_ops":[],"kty":"EC","x":"GkUMYeNs6WyTTpW9ySFuTBkPtHu3eyNPXpHiU
vANPfs","y":"YU9hhXfrqtopKHfwHXvFWln0XwzhORHIL7gnSjv67Q0"}

Alice derived shared secret generation done. Not extractable.

Bob derived shared secret generation done. Not extractable.

Verbose mode deactivated

Benchmark Finished:

The whole process took: 239.148 seconds

There were: 1000000 iterations

Each iteration took in average 0.000239148 seconds

Conclusion

We can obviously see which one is the fastest here.

Java took 11 seconds to complete the whole process while JavaScript took 240
seconds. A a reminder, the process involves crypt/decrypt 1'000'000 messages with
AES-CGM. Javascript has also less work to do as we skipped conversion from binary
to Base64.

There is a 21-time speed up factor in favor of Java in this case!

Without further research I can easily guess that Promises and the use of async/await
add overhead and massively slow down the process.

It would be good to see if there were a faster way to the process in Javascript.

Here are the pros and cons of both:

Java.security pros:

1. Lightning fast
2. Java.security wrapper is rather simple to use
3. Still portable and have many framework for REST (Spring,...)

Java.security cons:

1. Rely on third party implementation (can be obscure sometime).
2. JavaDoc still super difficult to use

Web Crypto pros:

1. Dead simple to use for simple usage

6	Appendix	 	 Cryptography	benchmark	Readme	

139

2. Super super portable since all browsers implement it (who don't update their
browsers in 2018?)

Web Crypto cons:

1. Difficult to use for complex use case
2. No native support for BigInteger
3. Can't customize everything since most of the API is hidden to the developer
4. Slow due to the use of Promises

To sum up, I would still go with Java as it's lightning fast and beats Web crypto hands
up. Performance is crucial because our project deals with Internet of things that by
nature require high velocity.

Web Crypto API is still a good choice as long as we have a low velocity application.

 	

6	Appendix	 	 Front-end	Readme	

140

6.2 Front-end	Readme	

Frontend for enclave
Project name: RIOT (Reactive Internet Of Things)

Requirements

In order to successfully install, run and build the application, you need to install the
following dependency:

• NodeJS 8.5+

Installation of the app

You need to navigate to the root folder and type:

npm install

Technologies used

The following technologies and dependencies were used to develop the web client:

• VueJS 2
• Vuetify 1
• vue-router 3
• axios 0.18
• vue-i18n

Configuration of the application

All the constants are kept in one single file and need to be updated according the the
production specs.

The constants file is located at:

./src/assets/js/consts.js

Run the development server

The nodemon service is called and is listening on all changes on the classpath. It will
rebuild and reload the application after each update of the code.

npm run dev

6	Appendix	 	 Front-end	Readme	

141

Building the application for production

It will build the application and all the dependencies in order to run the application for
production.

The app still needs to be hosted on a webserver like nginx.

npm run build
The built application is located at:

./dist

	
Running the application with Docker

It is also possible to run the application with Docker containers.

First we need to make sure that the ./Dockerfile has all the correct values:

FROM node:9.11.1-alpine

RUN npm install -g http-server

WORKDIR /app

COPY package*.json ./

RUN npm install

COPY . .

RUN npm run build

CMD ["http-server", "dist"]
Then we need to build a docker image with the following command:

docker build -t frontend .

Then in the console type the following command to run the frontend in a docker
image:

docker run -it -p 8080:8080 --rm --name dockerized-frontend frontend

The application should be available at: http://localhost:8080

 	

6	Appendix	 	 Enclave	Readme	

142

6.3 Enclave	Readme	

TM-enclave
This repository contains the code for the enclave server. It will not be used as the
real enclave but rather as a simulator that is used to develop the web frontend and
compare the performances between Java and C++ for encryption.

Spring boot is used as the Java Framework. By default maven package manager is
used to manage the packages. MySQL is used as the database.

REQUIREMENTS

• Java JDK 1.8
• Maven
• MySQL

Installation

This section describes all the steps to make the application running.

Extend default key size

We are using Java default library (java.crypto) that wraps third party libraries for
encryption.

By default the maximum key size is 128 bits... Why ? Because some country limits
the key size at 128 its and the java default library complies with theses limitations...

In order to override this limitation, you need to download the extended Java
Cryptography Policy from Oracle. Then unzip the content and replace the content of
the following directory with the unzipped content:

${java.home}/jre/lib/security/

Configuration

First you need to create the schema and import all the data in the database. All you
need to do is to create the schema enclave in mysql and type the following
command to import all the tables and data:

mysql -u root -p enclave < db.sql
You need to edit the file src/main/resources/application.properties and make sure
that the following parameters are correct and match your local configuration in order
to make run everything:

6	Appendix	 	 Enclave	Readme	

143

Spring boot configuration
server.port=7000

Application name
spring.application.name=enclave

Cache request (necessary for not caching encryption)
spring.cache.type=NONE

MySQL
spring.datasource.driver-class-name=com.mysql.jdbc.Driver
spring.datasource.url=jdbc:mysql://localhost:3306/enclave?useSSL=false
spring.datasource.username=root
#spring.datasource.password = "abc" # Keep commented if null

Redis
spring.redis.host=localhost
spring.redis.port=6379
#spring.redis.password= ""
spring.redis.ssl=false
spring.cache.redis.cache-null-values=false

Many many many stuff printed on the console
#logging.level.org.springframework = debug

Hikaricp (jdbc pooling) conf
spring.datasource.hikari.connection-timeout=60000
spring.datasource.hikari.maximum-pool-size=5

disable white page error
#server.error.whitelabel.enabled=false

JWT
Token expires after one hour
jwt.expireTimeSeconds=3600
jwt.secret=MahPrivateKeeey
Defines the maximum ecdh key exchange we can do per minute with a certain IP
jwt.maximumCertificatesPerIp=1000

#Loging
logging.level.org.springframework.security= DEBUG
logging.file = logfile.log

Dependencies

In order to make everything work you first need to install all the dependencies.
They're all managed by the maven. Go to the root directory and type:

mvn clean install

Compilation and execution

This section will describe how to compile and deploy the application.

6	Appendix	 	 Enclave	Readme	

144

Compile with maven

We'll use maven to compile the project. The jar will be generated by default in
the target/ directory.

If you want to configure the name of the jar file you need to go to the pom.xml file
and configure the XML tags name and version.

By default the fat jar name is: target/enclave-0.1.jar

To compile and run the tests at the same time:

mvn package

Compile and run for development

Manual reloading takes time during development and executing the application
with java -jar will run in production mode. This mode will ignore all changes in
classpath.

In order to allow the autoreload we need to make sure that the following dependency
is found in the pom.xml file:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-devtools</artifactId>
 <scope>runtime</scope>
</dependency>

Now to trigger autoreload when code changes you need to have a look at your IDE
documentation. (see eclipse, netbeans or intellij documentation)

Or if you want to reload manually you can simply type the command:

mvn package -T 1C -DskipTests && java -jar target/enclave-0.1.jar

The link to the Swagger documentation is:

http://localhost:7000/swagger-ui.html#/

Run as a service with systemd

We can run the enclave as a long-running service with systemd.

First we need to create a file with the following command:

touch /lib/systemd/system/enclave.service

This file contains the following informations:

6	Appendix	 	 Enclave	Readme	

145

[Unit]
Description=Enclave demo service
After=network.target # Enclave is executed after the network is ready
StartLimitIntervalSec=0
[Service]
Type=simple
Restart=always
RestartSec=1
User=root # user that executes the Enclave
Command to run the application
ExecStart=/usr/bin/env java -jar /path/to/enclave-0.1.jar

[Install]
WantedBy=multi-user.target
And the following command is used to enable the service at startup and run the
enclave:

systemctl enable enclave
systemctl start enclave

Running the application with Docker
It is also possible to run the application with Docker containers.

First of all, you need to update the JCE files by following the instructions are above.

We're going to run Redis and MySQL in their own Docker container, but Spring can't
connect directly to the container using the loopback address. We need to modify
the application.properties file and update the Redis and MySQL conf like the
following:

MySQL
spring.datasource.driver-class-name=com.mysql.jdbc.Driver
spring.datasource.url=jdbc:mysql://mysql:3306/enclave?allowPublicKeyRetrieval=true
&useSSL=false
spring.datasource.username=dbuser
spring.datasource.password=dbpass

Redis
spring.redis.host=redis
spring.redis.port=6379
#spring.redis.password= ""
spring.redis.ssl=false
spring.cache.redis.cache-null-values=false

Then we need to recompile our enclave:

mvn package -T 1C -DskipTests
We need to make sure that a Redis container (not persistent) is up and running:

docker run -it -p 6379:6379 --rm --name dockerized-redis redis

6	Appendix	 	 Enclave	Readme	

146

Then we need to make sure that a MySQL container (not persistent) is up and
running:

docker run -it --rm -p 3306:3306 --name=dockerized-mysql -e
MYSQL_ROOT_PASSWORD=root -e MYSQL_DATABASE=enclave -e MYSQL_USER=dbuser -e
MYSQL_PASSWORD=dbpass mysql

It's time now to import the database (from the console in the root directory):

docker exec -i dockerized-mysql mysql -uroot -proot enclave < db/db.sql

We need to make sure that the ./Dockerfile has all the correct values:

FROM java:8

VOLUME /tmp/enclave

EXPOSE 7000

ADD /target/enclave-0.1.jar enclave-0.1.jar

ENTRYPOINT ["java","-jar","enclave-0.1.jar"]

Then we need to build a docker image with the following command:

docker build -t enclave .

Then in the console type the following command to run the enclave in a docker
container with a link to the Redis, MySQL and emailsender containers:

docker run -it --rm --link dockerized-redis:redis --link dockerized-mysql:mysql --
link dockerized-emailsender:emailsender -p 7000:7000 --name dockerized-enclave
enclave

If the action target is located in the emailsender container, we need to specify the
following url in the RIOT interface:

#example of url using a docker container with the RIOT web interface.
http://emailsender:7010/emails

If we don't use docker container, we can replace emailsender by the ip or hostname
of the action target.

The API should be available at: http://localhost:7000

 	

6	Appendix	 	 Zuul	Gateway	Readme	

147

6.4 Zuul	Gateway	Readme	

TM-gateway
This repository contains the code for the gateway cryptography middleware. This
middleware is used as a reverse proxy to catch HTTP request and use common
cryptography technique in order to uncipher incoming requests and cipher outgoing
requests.

The Spring Zuul implementation of Netflix Zuul is used as the reverse proxy. By
default maven package manager is used to manage the packages. Redis is used as
the database.

Requirements

• Java JDK 1.8
• Redis
• Maven

Installation

This section describes all the steps to make the application running.

Extend default key size

We are using Java default library (java.crypto) that wraps third party libraries for
encryption.

By default the maximum key size is 128 bits... Why ? Because some country limits
the key size at 128 its and the java default library complies with theses limitations...

In order to override this limitation, you need to download the extended Java
Cryptography Policy from Oracle. Then unzip the content and replace the content of
the following directory with the unzipped content:

${java.home}/jre/lib/security/

Configuration

First you need to edit the file src/main/resources/application.properties and make
sure that the following parameters are correct and match your local configuration in
order to make run everything:

Url of the enclave
zuul.routes.enclave.url=http://localhost:7000

ribbon.eureka.enabled=false

6	Appendix	 	 Zuul	Gateway	Readme	

148

Port of the reverse proxy
server.port=7001

Redis
spring.redis.host= localhost
spring.redis.port= 6379
#spring.redis.password= ""
spring.redis.ssl= false
spring.cache.redis.cache-null-values=false

#jwt
jwt.secret=MahPrivateKeeey

Secondly you need to edit the file src/main/resources/application.yml and make
sure that the following parameters are correct and match your local configuration in
order to allow cross domain queries and disable caching:

zuul.ignored-headers: Access-Control-Allow-Credentials, Access-Control-Allow-
Origin

zuul.ignoreSecurityHeaders: false

zuul:
 sensitive-headers: Cookie, Set-Cookie

Dependencies

In order to make everything work you first need to install all the dependencies.
They're all managed by the maven. Go to the root directory and type:

mvn clean install

Compilation and execution

This section will describe how to compile and deploy the application.

Compile with maven

We'll use maven to compile the project. The jar will be generated by default in
the target/ directory.If you want to configure the name of the jar file you need to go to
the pom.xml file and configure the XML tags name and version.

By default the fat jar name is: target/gateway-0.1.jar

To compile and run the tests at the same time:

mvn package

6	Appendix	 	 Zuul	Gateway	Readme	

149

Compile and run for development

Run the following command in order to compile and run the application.

mvn package -T 1C -DskipTests && java -jar target/gateway-0.1.jar

Run as a service with systemd

We can run the gateway as a long-running service with systemd.

First we need to create a file with the following command:

touch /lib/systemd/system/gateway.service
This file contains the following informations:

[Unit]
Description=Gateway demo service
After=network.target # Gateway is executed after the network is ready
StartLimitIntervalSec=0
[Service]
Type=simple
Restart=always
RestartSec=1
User=root # user that executes the gateway
Command to run the application
ExecStart=/usr/bin/env java -jar /path/to/gateway-0.1.jar

[Install]
WantedBy=multi-user.target
And the following command is used to enable the service at startup and run the
enclave:

systemctl enable gateway
systemctl start gateway

Running the application with Docker
It is also possible to run the application with Docker containers.

First of all, you need to update the JCE files by following the instructions are above.

We're going to run Redis in its own Docker container, but Spring can't connect
directly to the container using the loopback address. We need to modify
the application.properties file, update the enclave URL and the Redis conf like the
following:

6	Appendix	 	 Zuul	Gateway	Readme	

150

#Url Enclave
zuul.routes.enclave.url=http://enclave:7000

Redis
spring.redis.host=redis
spring.redis.port=6379
#spring.redis.password= ""
spring.redis.ssl=false
spring.cache.redis.cache-null-values=false

Then we need to recompile our gateway:

mvn package -T 1C -DskipTests

We need to make sure that a Redis container (not persistent) is up and running:

docker run -it -p 6379:6379 --rm --name dockerized-redis redis

We need to make sure that the ./Dockerfile has all the correct values:

FROM java:8

VOLUME /tmp/gateway

EXPOSE 7001

ADD /target/gateway-0.1.jar gateway-0.1.jar

ENTRYPOINT ["java","-jar","gateway-0.1.jar"]

Then we need to build a docker image with the following command:

docker build -t gateway .

Then in the console type the following command to run the gateway in a docker
container with a link to the Redis and enclave containers:

docker run -it --rm --link dockerized-redis:redis --link dockerized-
enclave:enclave -p 7001:7001 --name dockerized-gateway gateway

The gateway should be available at: http://localhost:7001

	
 	

6	Appendix	 	 Email	sender	Readme	

151

6.5 Email	sender	Readme	

Email sender
This server is an action target that is meant to act as an email sender. It exposes a
REST API that is known and callable by the enclave.

Requirements

In order to successfully install, run and build the application, you need to install the
following dependency:

• NodeJS 8.5+

Installation of the app

You need to navigate to the root folder and type:

npm install

Technologies used

The following technologies and dependencies were used to develop the email sender
component:

• VueJS 2
• Express 4
• Swagger 3
• Winston 3
• Nodemailer 4
• HandlebarJS 3

Configuration of the application

There is a single configuratio file that contains all the routes and configuration
properties. Before running the server, it is necessary to configure on which port it will
run in the following file:

./index.js

Run the development server

The nodemon service is called and is listening on all changes on the classpath. It will
rebuild and reload the application after each update of the code.

6	Appendix	 	 Email	sender	Readme	

152

npm run dev

Building the application for production

We can run the email sender as a long-running service with systemd.

First we need to create a file with the following command:

touch /lib/systemd/system/emailsender.service

This file contains the following informations:

[Unit]
Description=Email Sender demo service
After=network.target # Emailsender is executed after the network is ready
StartLimitIntervalSec=0
[Service]
Type=simple
Restart=always
RestartSec=1
User=root # user that executes the Email Sender
Command to run the application
ExecStart=/usr/bin/env node /path/to/index.js

[Install]
WantedBy=multi-user.target
And the following command is used to enable the service at startup and run the
enclave:

systemctl enable emailsender
systemctl start emailsender

Running the application with Docker
It is also possible to run the application with Docker containers.

First we need to make sure that the ./Dockerfile has all the correct values:

FROM node:8

RUN npm install -g nodemon

WORKDIR /frontend

COPY package*.json ./

RUN npm install

COPY . .

EXPOSE 7010

CMD ["npm", "start"]

6	Appendix	 	 Email	sender	Readme	

153

Then we need to build a docker image with the following command:

docker build -t emailsender .

Then in the console type the following command to run the frontend in a docker
image:

docker run -it -p 7010:7010 --rm --name dockerized-emailsender emailsender

The application should be available at: http://localhost:7010

.

