
MERN stack application for student lab
management

Master Thesis

Vincent Glauser
April 2025

Thesis supervisors:

Prof. Dr. Jacques Pasquier-Rocha
and

Quentin Nater
Software Engineering Group

Software Engineering Group
Department of Informatics

University of Fribourg (Switzerland)

Acknowledgements

I would also like to thank all the people who helped me with this project. Thanks to Prof.
Dr. Jacques Pasquier-Rocha and Quentin Nater, I was able to explore a completely new
kind of work. I would also like to thank my colleagues and my family for their support
throughout this time.

i

Abstract

The modern approach to structuring web services is to use a REST architecture. We are
using a web development MERN stack to implement a management system for a student
lab. Adding the component to share documents via this platform simplifies the correction
of lab work and saves time for organisers and participants.

Keywords: Web Service, REST, MERN

ii

Table of Contents

1. Introduction 2
1.1. Motivation and Goals . 2
1.2. Organization . 2
1.3. Notations and Conventions . 3

2. Theory 4
2.1. URI: Uniform Resource Identifier . 4
2.2. HTTP: Hypertext Transfer Protocol . 4
2.3. API: Application Programming Interface 5
2.4. REST: Representational State Transfer 5
2.5. Client-Server Model . 5
2.6. DBMS: Database Management Systems 6
2.7. Web Development Stacks . 6
2.8. Use Cases . 6
2.9. ERM: Entity Relation Model . 6

3. Project 7
3.1. Project inspiration . 7
3.2. Project idea . 8
3.3. Use Cases . 8
3.4. ERM . 8
3.5. Stack choice . 10
3.6. MERN stack . 11
3.7. Software . 12

4. Developer details 13
4.1. Backend . 13

4.1.1. Database . 15
4.1.2. Server . 16

iii

Table of Contents iv

4.2. Frontend . 17
4.2.1. Client . 18

5. Results 21
5.1. Profile . 21
5.2. Lab . 24
5.3. Document . 27

6. Discussion 29
6.1. Use cases and ERM . 29
6.2. Web Development Stack . 29
6.3. Node . 30
6.4. Folder structure . 30
6.5. Documents storage . 30
6.6. Microsoft Copilot . 31

7. Conclusion 32
7.1. Review . 32
7.2. Outlook . 32
7.3. Final statements . 32

A. Common Acronyms 33

B. License of the Documentation 34

C. Website of the Project 35

References 36

Referenced Web Resources 37

List of Figures

3.1. Use cases of student, assistant and admin with system 8
3.2. ERM in MC-Notation with no attributes 9
3.3. ERM in MC-Notation and attributes with primary key underlined 10

4.1. Structure of backend folder . 13
4.2. Structure of frontend folder . 18

5.1. Register page of user . 22
5.2. User in MongoDB database . 23
5.3. Login page of user . 24
5.4. Admin creates a new lab with an assistant 25
5.5. Admin modify and delete an existing lab 25
5.6. Database table labs . 26
5.7. Database table of students to labs . 27
5.8. Example of report and correction that have been uploaded 28
5.9. Admin sees the accepted labs of the students 28

1

1
Introduction

1.1. Motivation and Goals . 2

1.2. Organization . 2

1.3. Notations and Conventions 3

1.1. Motivation and Goals

Web development stacks are used for the client-server model. The motivation is to add
some functionality to a web service. We will use a RESTful service with a MERN stack.
Before we start with the content, we give an overview for the organisation of the work,
notations and conventions.

1.2. Organization

Chapter 2: Theory
This chapter briefly introduces definitions and terminology. These key concepts have
been used throughout this project. First we define URI and HTTP. Then we introduce
the terms API and REST API. Next, we explain the client-server model with the DBMS
and web development stacks. Finally, we describe use cases.
Chapter 3: Project
The subject is to define the inspiration and idea of this project. The use cases and the
entity relation model are presented and the tasks and functionalities of the different parts
are defined. The choice of the stack is explained and the parts of the stack with the
software used for the project are given.
Chapter 4: Developer details
In this chapter we explain the folder structure, the libraries used in the backend and
the frontend. We take a closer look at the database, server and client and present small
snippets of code to understand the implementation.
Chapter 5: Results

2

1.3. Notations and Conventions 3

This chapter presents the project from a user’s point of view. We show pictures of
the website and explain the workflow. We have also included images of the database
collections for the developer.
Chapter 6: Discussion
In this section, we present, analyse and group the problems we encountered during the
project and their solutions.
Chapter 7: Conclusion
The last chapter concludes the project with a review of the work done. We give an outlook
and final statements for the project.
Appendix
Contains extracts of artefacts or service messages, abbreviations and references used
throughout this work.

1.3. Notations and Conventions

• Formatting conventions:
– Abbreviations and acronyms as follows Application Programming Interface

(API) for the first usage and API for any further usage;
– http://localhost:3000 is used for web addresses;
– Code is formatted as follows:
1 public double division(int _x, int _y) {
2 double result;
3 result = _x / _y;
4 return result;
5 }

• The work is divided into seven chapters that are formatted in sections and subsec-
tions. Every section or subsection is organized into paragraphs, signalling logical
breaks.

• Figure s, Table s and Listings s are numbered inside a chapter. For example, a
reference to Figure j of Chapter i will be noted Figure i.j.

• As far as gender is concerned, I systematically select the masculine form due to
simplicity. Both genders are meant equally.

http://localhost:3000

2
Theory

2.1. URI: Uniform Resource Identifier 4

2.2. HTTP: Hypertext Transfer Protocol 4

2.3. API: Application Programming Interface 5

2.4. REST: Representational State Transfer 5

2.5. Client-Server Model . 5

2.6. DBMS: Database Management Systems 6

2.7. Web Development Stacks . 6

2.8. Use Cases . 6

2.9. ERM: Entity Relation Model 6

2.1. URI: Uniform Resource Identifier

The Uniform Resource Identifier (URI) assigns to each web document a syntax with a
unique address. An example of an URI is http://www.theory.com. All the different web-
based concepts are resources and the URI is the unique identifier to get the address of
these resources. [10]
Uniform Resource Locator (URL) is a specific type of URI that tells us how to get that re-
source. An example of an URL is http://www.theory.com:8080/chapter1/file1?title=School&
subtitle=Work# section1. The general form of an URL is Scheme://Host:Port/Path/
QueryParameters/FragmentIdentifier but only the Scheme://Host is required. [2]

2.2. HTTP: Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is a language used by different computers to
communicate over the Internet. [10]
HTTP takes a document and puts an envelope around it. This packet is sent to the server,
which will receives it and sends back a response document. The envelope structure is strict
but the document content is not. [16]

4

2.3. API: Application Programming Interface 5

The HTTP method indicates the information about what type of request the packet is.
The five most common methods are GET, POST, PUT, PATCH and DELETE. The GET
asks the server for a particular representation of a resource. POST sends data to create a
new resource. The PUT method updates an existing resource. PATCH also updates the
resource but only requires specific changes, whereas PUT updates the resource completely.
The DELETE method deletes the resource from a specific URL. [1]

2.3. API: Application Programming Interface

An application programming interface (API) is an interface for a better communication
between user and a computer program. The API presents data and functions in a simpler
way so that information can be easily exchanged. [10]

2.4. REST: Representational State Transfer

The Representational State Transfer (REST) is an architectural style for designing APIs
for web services. An API that follows the rules of REST is called RESTful. We give some
of the rules for the REST API URIs:

• Use ’/’ for hierarchical relationships
• The last character should not be a ’/’
• Use ’-’ instead of ’_’ to join names
• Use lower case characters
• Do not add file extensions
• Document names are singular
• Collection or store names are plural

There are other rules, such as HTTP methods (GET, POST, etc.), response status codes
(200-204, 301-307, etc.), HTTP headers (type, length, etc.) and many more. [10]

2.5. Client-Server Model

The client-server model is an architecture that provides the communication between
clients, such as a web browser like Firefox, and a server. The client sends requests
and the server processes and responds to the client. We call the client part frontend and
the server part backend.
The advantage of this separation is that we can handle multiple clients simultaneously and
centralise the data management. This architecture also allows us to scale the system, so
we can add clients or servers to handle the workload. Another advantage is data security,
as we can protect sensitive information from different users. The server controls what
data is accessible to incoming requests.
The disadvantages are that the server is now a single point of failure. If the communication
between the client and the server is poor, we will have performance problems. Costs and
resources are increase when a server is used for multiple clients. [7]

2.6. DBMS: Database Management Systems 6

2.6. DBMS: Database Management Systems

To store huge amounts of data in a structured way, we need Database Management
Systems (DBMS). The database is stored at somewhere on the computer and the DBMS
is a software that surrounds it and applies specific rules to the data and describes the
relationships between them. A DBMS can manage more than one database.
There are different types of DBMS, such as relational, hierarchical, network, object-
oriented or NoSQL database systems. Some examples of DBMS are Oracle, MySQL,
SQL Server, SQLite, DB2 or MongoDB. [4]

2.7. Web Development Stacks

A web development stack is a set of different tools for building web applications. Ex-
amples of stacks are MERN, MEAN and MEVN. These acronyms represent the different
technologies: MongoDB (M), Express (E), React (R), Node (N), Angluar (A) and Vue
(V). Another example is LAMP, which stands for Linux (L), Apache (A), MySQL (M)
and PHP (P). These technology stacks work well together and may have different pro-
gramming languages. Each stack has it’s advantages and disadvantages and the different
parts can be swapped. For example, we swapped React with Angular for the MERN
stack and got the MEAN stack. [6]

2.8. Use Cases

The methodology for describing the function of a system is a use case. The requirements
help to identify the interactions of a user with the system. The three important elements
are that there is an actor, a system and a goal. [3]

2.9. ERM: Entity Relation Model

The Entity Relation Model (ERM) is a model used for the logical structure of a database.
We represent the entities by rectangles and ellipses for attributes of the entities. The
diamond describes the relationship and the line connects the entities to the relations. [8]

3
Project

3.1. Project inspiration . 7

3.2. Project idea . 8

3.3. Use Cases . 8

3.4. ERM . 8

3.5. Stack choice . 10

3.6. MERN stack . 11

3.7. Software . 12

3.1. Project inspiration

At the University of Fribourg, all physics majors and minors have to complete the labo-
ratory experiments APLabs in their first year. There are 19 labs in total and the students
have to complete 18 of them. Groups of two students are formed. The students have to
read a document before the corresponding lab at home, work in the lab for less than four
hours. At home they write a report and send it back to the assistant. This report will
be corrected and the students will have to correct the report. When there are no more
errors in the report, the lab is considered completed. After the 18 labs, the APLabs is
finished and the ECTS credits are transferred to the student.
The website aplabs-physics.unifr.ch manages all students and labs. It is possible to reg-
ister and log in to a personal account. First you have to create a group with another
student. Then the possible labs are displayed and the group can register for a specific
lab. It is possible to download the documents for the labs, but it is not possible to upload
files. All reports and corrections must be printed and returned to the Physics Department
building. The website also contains rules, information and an analysis tool to create a
scatter plot.
In the year 2020 & 2021 there were restrictions to be able to attend the labs because of
the COVID-19 pandemic. Online labs were created, but reports and corrections were still
printed.

7

3.2. Project idea 8

3.2. Project idea

This project is about creating a client-server model. The idea was to extend the func-
tionality of the website to include the ability to upload and download student reports and
assistant corrections in the form of PDF files. The project was to start with nothing and
build more and more functionality, but the focus was on file management for the users.
First, we had to create a schema to identify several components before writing the code.
Use cases and ERMs were created to define the project.

3.3. Use Cases

The student, the assistant and the administrator are the users. The system manages the
profile (registration, login and password), the lab (create, register, withdraw, view, mod-
ify, delete, credits), the report (add, download and delete) and the mark (add, download,
delete, accept, view). The use cases 3.1 show how users interact with the system. The
aim is to separate the tasks and access of different users.

Fig. 3.1.: Use cases of student, assistant and admin with system

3.4. ERM

The entities are User (Student, Assistant, Admin), Document (Report, Correction) and
Laboratory. The relations between the entities are IS-A, HandsIn, CorrectTo, Submit,

3.4. ERM 9

WorksAt, Manages, Organises and HasA. Each line contains a 1 or mc for the MC-
Notation that describes how many of each entity are related. The meaning of 1 is that
only one entity is related, m means multiple and c means 0 or 1 entities are related. So,
for example, one reads Laboratory-(1)-HasA-(mc)-Document the as follows: A laboratory
has 0 or 1 or multiple documents. But the document has only one related lab and is not
shared by multiple labs.

Fig. 3.2.: ERM in MC-Notation with no attributes

3.5. Stack choice 10

Fig. 3.3.: ERM in MC-Notation and attributes with primary key underlined

3.5. Stack choice

Now that the use cases are defined, the next step is to choose the stack for the project.
First of all, it’s important to note that all stacks could theoretically be chosen for any
project. Each stack has different advantages and disadvantages. Here are four of the
most popular full stacks, along with their pros and cons.

1. MEAN
+ One programming language (JavaScript)
+ Operating system independent
+ Scalable and flexible
- Fast pace of updates results in incompatibility
- MongoDB can lose data if overloaded

2. MERN
+ One programming language (JavaScript)
+ React gives a excellent experience for the user
+ Big support from community
- React is a library and not a full framework
- No direct backend server calls
- Not good for large-scale applications

3.6. MERN stack 11

3. MEVN
+ One programming language (JavaScript)
+ Rapid development and effectiveness
+ Platform independent
- Not large support and few active programmers
- Lack of plugins
- MongoDB is not suited for Multi-Object Transactions

4. LAMP
+ Classic, old, reliable, flexible
+ Stability, simplicity
+ Robust for large-scale applications
- Apache is not highest performing webserver
- MySQL gets less popular than NoSQL databases
- Gets less attention as JavaScript stacks

I had never used a full stack before, so the simplicity of having one programming language
was a reason not to choose the LAMP stack and other stacks that used multiple languages.
The differences between MEAN, MERN and MEVN did not seem very great. Many
websites mentioned the stacks in following order: MERN, MEAN, MEVN. The MERN
stack was chosen, because of the large community support and the number of citations on
several sites. There were more sources and examples for the MERN stack. For example a
search on the Google engine with MERN Stack, MEAN Stack and MEVN Stack returns
4’120’000, 1’250’000 and 193’000 results respectively. [11]
The MERN Stack Crash Course Tutorial from Net Ninja on Youtube can be used to start
as a beginner, code at the same time and build more elements later. [12]

3.6. MERN stack

The MERN stack consists of the following parts:
MongoDB
A NoSQL database that uses Javascript Object Notation (JSON) to manage the content.
All the information about the users or documents is stored here.
Express
This is the web application framework for the server part. It uses the middleware and
controller design of modern web applications.
React
React is the frontend library and manages the user interface. Hooks are used to view and
change the state of components.
Node
Node is a runtime environment with has an event-driven architecture.

3.7. Software 12

3.7. Software

To handle all the different tools we used the following software:
Bee-up 1.6 Modelling Tool
A modelling tool for different modelling languages, such as use cases and ERM.
Git
Software for storing and sharing programming files and version control.
MongoDBCompass
A Graphical User Interface (GUI) for MongoDB. MongoDBCompass is the database
manager.
Mozilla Firefox
A free web browser. Firefox is the project’s client.
Postman
A tool for testing and improving the API. Postman checks the endpoints of the applica-
tion.
Visual Studio Code
An Integrated Development Environment (IDE) for working with the scripts.

4
Developer details

4.1. Backend . 13

4.1.1. Database . 15

4.1.2. Server . 16

4.2. Frontend . 17

4.2.1. Client . 18

4.1. Backend

The following image shows the structure of the backend folder. The different names and
subfolders help to understand the logic of the developer details.

Fig. 4.1.: Structure of backend folder

13

4.1. Backend 14

The backend uses Node Package Manager (npm) where additional libraries are introduced:
bcrypt
A library to hash passwords. We can generate a random and unique string called salt.
We append the salt of length ten to the password and hash it to gain security.

1 const salt=await bcrypt.genSalt(10)
2 const hash=await bcrypt.hash(password,salt)

dotenv
A module that loads the .env file in the current folder and stores the contents in pro-
cess.env. We can get the PORT value with process.env.PORT.
express
The Node.js module framework. The application is started with express() and features
added with use() for the location of uploaded documents, multiple router requests and
router redirections:

1 const app=express();
2 app.use(’/uploads’, express.static(’uploads’));
3 app.use((req,res,next)=>{next()})
4 app.use(’/api/labs’,labRoutes)

jsonwebtoken
A JSON Web Tokens (JWT) library. This token is exchanged between two parties to
identify the user. We can create with sign() and compare with verify() the tokens:

1 jwt.sign({_id: _id}, process.env.SECRET, {expiresIn: ’3d’})
2 const {_id}=jwt.verify(token, process.env.SECRET)

mongoose
Mongoose is a modelling tool for MongoDB that validates and casts types. It is also
possible to add a timestamp to an object to keep track of the creation and last update
time. The database is connected with the function:

1 mongoose.connect(process.env.MONGO_URI)

multer
A middleware to handle the uploading of files. We define the storage location to the
folder uploads and the upload to the storage:

1 const storage = multer.diskStorage({
2 destination: (req, file, cb) => {
3 cb(null, ’uploads/’);
4 },
5 filename: (req, file, cb) => {
6 cb(null, ‘${Date.now()}-${file.originalname}‘);
7 }
8 });
9

10 const upload = multer({ storage: storage }).single(’file’);

validator
A module for checking strings of a certain structure. The functions isEmail() and is-
StrongPassword() are used: [13]

4.1. Backend 15

1 if(!validator.isEmail(email)){
2 throw new Error(’Email is not valid’)
3 }
4 if(!validator.isStrongPassword(password)){
5 throw new Error(’Password is not strong enough’)
6 }

4.1.1. Database

MongoDB is a NoSQL database. This means that the data is not stored in tables but
is stored in JSON format for an object. The attributes of objects can change over time.
Multiple objects are grouped together in a collection. Different collections are stored
together in a database. In MongoDBCompass, different databases can be managed when
connecting to the mongodb://localhost:27017. To access a specific database called MERN
we use the mongodb://localhost:27017/MERN.
The folder models contains all the mongoose schemas. For example in the file userModel.js
we define a user. All users have a unique email and the students need additional attributes
major, minor and courseName. The finishedDate is the only attribute that is not needed,
because it is not clear when a student will finish all the labs. The isActive field determines
whether the students or assistants are still working on labs or not.

1 const userSchema=new mongoose.Schema({
2 firstName:{
3 type: String,
4 required: true
5 },
6 lastName:{
7 type: String,
8 required: true
9 },

10 email:{
11 type: String,
12 required: true,
13 unique: true
14 },
15 role:{
16 type: String,
17 required: true,
18 enum: [’student’,’assistant’,’admin’]
19 },
20 password:{
21 type: String,
22 required: true
23 },
24 isActive:{
25 type: Boolean,
26 required: true
27 },
28 major: {
29 type: String,
30 required: function() { return this.role === ’student’; }
31 },
32 minor: {
33 type: String,

4.1. Backend 16

34 required: function() { return this.role === ’student’; }
35 },
36 courseName: {
37 type: String,
38 required: function() { return this.role === ’student’; }
39 },
40 finishedDate: {
41 type: Date,
42 required: false
43 }
44 })

4.1.2. Server

The terminal command npm start in the backend folder will run node server.js. The file
server.js initiates the application, defines the upload folder, determines multiple router
requests, defines the routers, connects to the port 27017 for the MERN database and
listens to the port 4000 for the server.
When a request is intercepted by the server, it is first sent to the routes, then to the
middleware and then handled by the controllers. If there is an error it will throw the
error back, otherwise it will send back the answer of the controller functions.
Let’s say the server is listening to a POST request with the URL /api/file/upload. Because
of the code in the server app.use(’/api/file’,fileRoutes) it will redirect the request to
the file fileRoutes.js in the folder routes. The token is verified by the middleware with
const _id=jwt.verify(token, process.env.SECRET) . Assuming the token was valid and
we continue the handling of the request. The line router.post(’/upload’, handleUpload);
sends it on to the file fileController.js in the controllers folder. The handleUpload function
is checking the user and file. It creates a report or correction for the student or assistant
respectively. The document is created and stored in the document sequence if there is
already one, else it will create the sequence. It then sends back the result back to the
server.
For all other URLs we have a similar procedure. For example, for registration and login
we do not need to authenticate the user with a token, because we create a new token.
We present the implemented structure of the server:

1 // load .env file
2 require(’dotenv’).config();
3

4 // libraries and routes
5 const express=require(’express’);
6 const mongoose=require(’mongoose’);
7 const labRoutes=require(’./routes/labRoutes’);
8 const userRoutes=require(’./routes/userRoutes’);
9 const studentToLabRoutes=require(’./routes/studentToLabRoutes’);

10 const fileRoutes=require(’./routes/fileRoutes’);
11

12 // application
13 const app=express();
14

15 // look if there is a body in json
16 app.use(express.json())
17

4.2. Frontend 17

18 // serve static files from the uploads directory
19 app.use(’/uploads’, express.static(’uploads’));
20

21 // manage different routes
22 app.use((req,res,next)=>{next()})
23

24 //routes
25 app.use(’/api/labs’,labRoutes)
26 app.use(’/api/user’,userRoutes)
27 app.use(’/api/studentToLab’,studentToLabRoutes)
28 app.use(’/api/file’,fileRoutes)
29

30 // connect to db
31 mongoose.connect(process.env.MONGO_URI)
32 .then(()=>{app.listen(process.env.PORT,()=>{
33 console.log(‘Connected to DB and listening on port ${process.env.PORT}‘)
34 })})
35 .catch((error)=> console.log(error))

4.2. Frontend

The frontend also uses npm with some libraries:
cra-template
The official template for the react application. It is not used explicitly.
date-fns
A package for time manipulation.

1 import formatDistanceToNow from ’date-fns/formatDistanceToNow’;
2

3 <p>Creation Date: {formatDistanceToNow(
4 new Date(studentLab.createdAt), { addSuffix: true })}</p>

react
A JavaScript library for user interfaces.

1 import {createContext, useReducer} from ’react’;
2

3 export const StudentLabsContext = createContext();
4 const [state, dispatch]=useReducer(studentLabsReducer, {studentLabs:null})

react-dom
This module handles the Document Object Model (DOM) and works together with react.

1 import ReactDOM from ’react-dom/client’;
2

3 const root = ReactDOM.createRoot(document.getElementById(’root’));

react-router-dom
React-router handles the react routers for requests.

1 import {Link} from ’react-router-dom’;
2

3 <Link to="/">
4 <h1>Lab Overview</h1>

4.2. Frontend 18

5 </Link>
6 <Link to="/reports">
7 <h1>Reports</h1>
8 </Link>

react-scripts
React-scripts is a package that provides scripts and configurations for starting, building,
testing and ejecting the application. [14]

1 "scripts": {
2 "start": "react-scripts start",
3 "build": "react-scripts build",
4 "test": "react-scripts test",
5 "eject": "react-scripts eject"
6 }

4.2.1. Client

We first present the structure of the folder for an overview and the different file names.

Fig. 4.2.: Structure of frontend folder

In the frontend folder, the command npm start will launch index.html. The root object
from the react-dom package is shown in a division (<div>) in the body part (<body>):

1 <!DOCTYPE html>
2 <html lang="en">
3 <head>
4 // existing code
5 </head>
6 <body>
7 <noscript>You need to enable JavaScript to run this app.</noscript>
8 <div id="root"></div>

4.2. Frontend 19

9 </body>
10 </html>

The standard browser opens automatically and all the objects in root are shown. The
port 3000 is used for the client.
First, we need to introduce the React hook features useState, useEffect, createContext,
useContext and useReducer.
useState
The useState hook takes two arguments, the variable that defines the current state and
the function that changes the state of the variable. It is used to display objects when the
state is correct.

1 const [name, setName] = useState(’Lab 1’);
2 setName(’’);

useEffect
The UseEffect hook is a function that handles the states in the background. Usually we
fetch data from an API endpoint. It is not used to display objects directly, only to update
the information. [15]

1 useEffect(() => {
2 fetchEmail(studentLab.fk_adminId, setAdminEmail, user.token);
3 fetchEmail(studentLab.fk_assistantId, setAssistantEmail, user.token);
4 }, [studentLab.fk_adminId, studentLab.fk_assistantId, user.token]);

createContext
A function that creates the context that holds the state.

1 export const StudentLabsContext = createContext();
2 <StudentLabsContext.Provider value={{...state, dispatch}}>
3 {children}
4 </StudentLabsContext.Provider>

useContext
The useContext function is used to automatically send data down the component tree,
making the information available to all elements.

1 const context=useContext(StudentLabsContext);

useReducer
This function manages the state logic of react. It takes two parameters, a reducer function
and the initial state. The reducer function takes the state and a action and returns a new
state.

1 export const studentLabsReducer = (state, action) =>{
2 switch(action.type){
3 case ’SET_STUDENT_LABS’: return{studentLabs: action.payload}
4 // existing code
5 }
6 }
7 const [state, dispatch]=useReducer(studentLabsReducer, {studentLabs:null})

When a user interacts with the browser, the web page sends a request to the server and
refreshes the page with the new data.

4.2. Frontend 20

Let’s say that the user clicks on the Upload button of the StudentLabDetails. The button
will call the handleUpload function with the corresponding ID of the studentLab. The
user is prompted to select a file from their computer. We append the file and send a
POST request with the URL /api/file/upload. The body contains the file and the header
contains the user’s token. From the previous chapter we know the steps on the server
that will place the file in the appropriate folder.
The other buttons and text fields are treated in a similar way. We will now present the
code for the home page, which will show the labs to the user, once they have successfully
logged in:

1 import {useEffect} from ’react’;
2 import {useAuthContext} from ’../hooks/useAuthContext’;
3 import {useLabsContext} from ’../hooks/useLabsContext’;
4

5 import LabDetails from ’../components/LabDetails’;
6 import LabForm from ’../components/LabForm’;
7

8 const Home=()=>{
9 const {user}=useAuthContext();

10 const {labs, dispatch: labDispatch}=useLabsContext();
11

12 useEffect(() => {
13 const fetchLabs=async()=>{
14 let url ="";
15 if (user.role === ’student’) {url = ’/api/labs/student/active’;}
16 if (user.role === ’assistant’) {url = ’/api/labs/assistant/active’;}
17 if (user.role === ’admin’) {url = ’/api/labs’;}
18

19 const response = await fetch(url, {
20 headers: {’Authorization’: ‘Bearer ${user.token}‘}
21 });
22 const json=await response.json();
23

24 if (response.ok){labDispatch({type: ’SET_LABS’, payload: json})}
25 }
26 if (user) {fetchLabs();}
27 }, [labDispatch, user]);
28

29 return(
30 <div className="home">
31 <div>
32 {user.role === ’admin’ &&
33 <div>
34 <p>Lab Form</p>
35 <LabForm/>
36 </div>
37 }
38 <div className="labs">
39 {labs && labs.map((lab) => (<LabDetails key={lab._id} lab={lab}/>))}
40 </div>
41 </div>
42 </div>
43)
44 }
45

46 export default Home;

5
Results

5.1. Profile . 21

5.2. Lab . 24

5.3. Document . 27

5.1. Profile

All users, i.e. students, assistants and administrators, must register and log in to be able
to modify any labs and documents. We give an example for the students who want to reg-
ister on the lab management page. If the role of the user is student, then the fields major,
minor and course name must also be filled in. An admin or assistant doesn’t need these
field and only fills in the first name, last name, email, role and their password. For the
convenience of the developer we fill out all fields with the following attributes: John, Doe,
john.doe@student.com, student, abcABC123!, Physics, Mathematics, UE-SPH.0XXXX. If
we want to generate many different users, we simply append a number to the email, e.g.
john.doe@student1.com, john.doe@student2.com, etc. Another option is to use the role as
a part of the email address. For example john.doe@admin.com, john.doe@assistant1.com,
etc. This helps the developer to avoid filling out the form every time a small change is
made.

21

5.1. Profile 22

Fig. 5.1.: Register page of user

The MongoDBCompass software allows the developer to check that the users have been
created correctly. The MERN database contains the collection users with all the different
users. You can see that the student has more fields than the other two roles. MongoDB
automatically assigns the fields _id for the unique identity of an object and __v for the
version, which starts with the value 0 and is incremented by 1 each time the object is
updated. Another detail is that all the hashed passwords are different, even if the user’s
password was always abcABC123!. This is due to the salt we add after the user password
to increase security.

5.1. Profile 23

Fig. 5.2.: User in MongoDB database

After registration, the admin must activate the students and assistants. Users can now log
in to their account. They will need their first name, last name, email, role and password.

5.2. Lab 24

Fig. 5.3.: Login page of user

5.2. Lab

The admin can create laboratories with the fields lab name, description, location, starting
date, finished date, is active and the selected assistant. The fields containing a date must
be in the specific format DD.MM.YYYY or can be selected by clicking on the calendar
icon to the right of the field. The assistant can not be entered manually but needs to be
an activated assistant. The drop down menu shows all possible assistants. If the lab is
not activated, then it will not be visible for students or assistant. The admin can activate
the lab later or deactivate it if they see an error. The admin can also delete labs by
clicking on the trash can icon.

5.2. Lab 25

Fig. 5.4.: Admin creates a new lab with an assistant

Fig. 5.5.: Admin modify and delete an existing lab

The labs are stored in the database with the identity of the admin and assistant as foreign
key fk_adminId and fk_assistantId. The lab has only one admin and one assistant. The
timestamp attribute has been used for the labs so that the createdAt and updatedAt fields
are automatically added by the database. This is useful for sorting the labs by creation
date or last update date.

5.2. Lab 26

Fig. 5.6.: Database table labs

Multiple students can have multiple labs and we need to create a new table to assign
each student to each lab. We call this table StudentToLabs to associate the students with
labs. To do this we need the identity of the lab and the student. This table only links
the two objects for the mc-mc relation that was defined for the ERM.

5.3. Document 27

Fig. 5.7.: Database table of students to labs

5.3. Document

All documents are stored in a sequence of documents. They can be a report from a student
or a correction of the assistant. The document sequence is ordered by the creation date
of the file. Reports are displayed with an orange color and the corrections in blue. The
assistant and student can see all the documents and can download them or upload new
files. The file type is not restricted, but will be in most cases a PDF-file. With the date-
fns package, dates are not displayed in the format of year, month, day, hour, minute,
second, but as a relative time distance. For example 2 minutes ago or less than a minute
ago.

5.3. Document 28

Fig. 5.8.: Example of report and correction that have been uploaded

The assistant is able to approve and finish the lab once the report has no more errors.
When this button is clicked, then the student and assistant will no longer see the lab and
the admin sees that this lab has been finished. When all the labs have been completed
the admin can give the credits for the course.

Fig. 5.9.: Admin sees the accepted labs of the students

6
Discussion

6.1. Use cases and ERM . 29

6.2. Web Development Stack . 29

6.3. Node . 30

6.4. Folder structure . 30

6.5. Documents storage . 30

6.6. Microsoft Copilot . 31

6.1. Use cases and ERM

The first step of this project was to create the use cases and the ERM. In this part I saw
that most of the hierarchies were clear, such as Does the student and the assistant see all
documents or not? and Can an assistant have several labs?. On the other hand, questions
like Is there only one admin or several? and Can an assistant also be an admin? were
not clear at the beginning.
I limited the options as much as possible and only changed them if they caused problems
for the future of the project. This is why I rejected having multiple admins in the be-
ginning, because that is how APLabs is structured at the moment. But having different
admins gives the possibility to create and manage multiple labs in parallel. So we gener-
alised to multiple admins. For the second example it was clear that the assistant and the
admin should be separated. The tasks of assistants and admins are different and should
not be mixed. This is the reason, why we split the users into the three categories.
Even with these problems, they could be resolved quickly and were corrected by the
assistant and professor to be able to move on the next steps.

6.2. Web Development Stack

Once the structure was in place, the next step was to choose a web development stack.
The recommendations were not clear because I didn’t know the different stacks and their

29

6.3. Node 30

advantages. The difficulty was to choose the stack to avoid future incompatibilities, but
also to know that any stack could theoretically be used for any project.
The solution was to try different stacks such as MEAN, MEVN and MERN. I followed
tutorials that worked up to a certain point. Mismatching versions of packages made
progress difficult, for example the MEVN stack with Vue2.0 and Vue3.0. The frontend
error messages were hard to spot and took a lot of time to understand. Small syntax
errors led to error messages. Other tutorials didn’t structure the files into appropriate
folders, which slowed down further work with this code.
After finding the Net Ninja tutorial, I used the MERN stack to continue the project. The
folder structure and the existing code helped to expand it to the current implementations.

6.3. Node

For all the three stacks we used Node.js. The similar names like Node, Node.js, nvm,
npm, nodemon, node_modules etc. were confusing when trying to start the frontend and
backend with the terminal commands. After a few examples the confusion became less
and less with time.

6.4. Folder structure

The folder structure of the tutorials was not the same, which made it complex to combine
two ideas from two tutorials. The content and structure were so different that I was unable
to merge the tools. Some tutorials only focused on one topic, such as the registering and
logging of users, saving documents or showing the labs. The URLs or variable names were
hard-coded and not generalised to different files. Another question about structure was
whether it was better to use one or more .gitignore, package.json and package-lock.json.
In this project I mainly used the folder structure of Net Ninja. The files were split into
different groups and this made it easier to write new code. I decided to create a .gitignore,
package.json and package-lock.json for each of the frontend and backend folders.

6.5. Documents storage

After implementing user registration and login, the question of where to store documents
arose. Up to this point, all user and lab information was stored in MongoDB. It is possible
to store large documents (>16 MB) in MongoDB using GridFS. The large file is split into
smaller pieces. [9]
I implemented this part, but after a discussion with the assistant I changed the way the
documents are stored. I store the files in the uploads folder of the backend folder. The
database stores the URL to access the files on the server. This reduces the load on the
database and the server can respond directly to the client.

6.6. Microsoft Copilot 31

6.6. Microsoft Copilot

The Visual Studio Code can be connected with the GitHub account. The Microsoft
Copilot can be used to chat and correct the code. This tool helped at the beginning of
the project. For completely empty files or empty folders it can help to kick start the first
lines of code. After several files and folders this tool became difficult to use. Some parts
of the code were just copied without changing the content. Some variable names were not
used from other files. Small examples worked very well. When the project had multiple
files, I had to specifically write all the steps that needed to be implemented. Much of the
code produced contained small bugs and hindered the progress.
The solution was to tell Copilot to scan all the files and write only the code that had
changed, without rewriting the whole file. Sometimes it helped to create a new discussion
to clear the memory. All the old variable names and functions didn’t reappear in the code.
It also helped to ask Copilot which file I needed to change some lines in. I also tried online
AI tools, but the results were similar to Copilot.
The benefit for starting a project is clear, but for generalisation and efficient coding
practices it is not a great tool. This could be an artefact of the fact that most of the code
online is smaller projects and examples that don’t contain a lot of complexity, and the
AI was trained on this kind of data.

7
Conclusion

7.1. Review

This work started with use cases and ERM. We implemented the feature to upload new
files to a MERN stack. Users can register and login to the RESTful web service. The
students and assistants share their documents, so they don’t have to print all the files.
This facilitates proofreading and saves time for both parties.

7.2. Outlook

The project could be extended to include additional features. For example, you could
implement a button for changing the password and confirming the credits. You could
also create a page with all the documents for the labs that need to be read. There is also
a plotting page on the current site which could be modified to allow not only linear but
also logarithmic scatter plots. Another feature would be to swap the x and y axes and
add other functionality.

7.3. Final statements

This master thesis shows how to build a RESTful web Service using a stack. Iteratively
the service grows larger and contains more parts, so that the initial idea resembles to the
final product.

32

A
Common Acronyms

API Application Programming Interface
DB Database
DBMS Database Management System
DOM Document Object Model
ERM Entity Relationship Model
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
IDE Integrated Development Environment
JSON JavaScript Object Notation
JWT JSON Web Tokens
LAMP Linux, Apache, MySQL, PHP
MEAN MongoDB, Express, Angular, Node
MERN MongoDB, Express, React, Node
MEVN MongoDB, Express, Vue, Node
MC Modified Chen
npm Node Package Manager
PDF Portable Document Format
PHP Hypertext Preprocessor
REST Representational State Transfer
SQL Structured Query Language
URI Unified Resource Identifier
URL Uniform Resource Locator

33

B
License of the Documentation

Copyright (c) 2025 Vincent Glauser.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts.
The GNU Free Documentation Licence can be read from [5].

34

C
Website of the Project

Clone the Github repository and follow the instructions in the README file:
https://github.com/VincentGlauser/Info30

35

https://github.com/VincentGlauser/Info30

References

[1] 9cv9 HR and Career Blog | Top Rated by Readers. What
are get, post, put, patch, delete? a walkthrough with
javascript’s fetch api. https://medium.com/@9cv9official/
what-are-get-post-put-patch-delete-a-walkthrough-with-javascripts-fetch-api-17be31755d28,
2019. Accessed: 14.03.2025. 5

[2] Abhirup Acharya. Uri vs urn vs url : Key distinc-
tions explained. https://medium.com/@abhirup.acharya009/
uri-vs-urn-vs-url-key-distinctions-explained-dec8e02ebd18, 2023. Ac-
cessed: 14.03.2025. 4

[3] Kate Brush. What is a use case? https://www.techtarget.com/
searchsoftwarequality/definition/use-case, 2022. Accessed: 21.03.2025. 6

[4] Omar Elgabry. Database — introduction (part 1). https://medium.com/
omarelgabrys-blog/database-introduction-part-1-4844fada1fb0, 2016. Ac-
cessed: 14.03.2025. 6

[5] Inc. Free Software Foundation. Free documentation licence (gnu fdl). http://www.
gnu.org/licenses/fdl.txt, 2008. Accessed: 14.04.2025. 34

[6] Christi Gorbett. Best web development stacks to use in 2025. https://www.
nobledesktop.com/classes-near-me/blog/best-web-development-stacks,
2025. Accessed: 21.03.2025. 6

[7] Harsh Gupta. Client-server architecture explained with examples, dia-
grams, and real-world applications. https://medium.com/nerd-for-tech/
client-server-architecture-explained-with-examples-diagrams-and-real-world-applications-407e9e04e2d1,
2021. Accessed: 14.03.2025. 5

[8] Kartik. Introduction of er model. https://www.geeksforgeeks.org/
introduction-of-er-model/, 2025. Accessed: 21.03.2025. 6

[9] Kushagra Kesav. Storing data (images / audio / video) 16 mb in
mongodb or gridfs? https://www.mongodb.com/community/forums/t/
storing-data-images-audio-video-16-mb-in-mongodb-or-gridfs/215074,
2023. Accessed: 28.03.2025. 30

[10] M. Masse. REST API Design Rulebook: Designing Consistent RESTful Web Service
Interfaces. O’Reilly Media, 2012. 4, 5

[11] Rahul Mathur. Mean vs mern vs mevn vs lamp stack
for development. https://www.arkasoftwares.com/blog/

36

 https://medium.com/@9cv9official/what-are-get-post-put-patch-delete-a-walkthrough-with-javascripts-fetch-api-17be31755d28
 https://medium.com/@9cv9official/what-are-get-post-put-patch-delete-a-walkthrough-with-javascripts-fetch-api-17be31755d28
 https://medium.com/@abhirup.acharya009/ uri-vs-urn-vs-url-key-distinctions-explained-dec8e02ebd18
 https://medium.com/@abhirup.acharya009/ uri-vs-urn-vs-url-key-distinctions-explained-dec8e02ebd18
 https://www.techtarget.com/searchsoftwarequality/definition/use-case
 https://www.techtarget.com/searchsoftwarequality/definition/use-case
 https://medium.com/omarelgabrys-blog/database-introduction-part-1-4844fada1fb0
 https://medium.com/omarelgabrys-blog/database-introduction-part-1-4844fada1fb0
 http://www.gnu.org/licenses/fdl.txt
 http://www.gnu.org/licenses/fdl.txt
 https://www.nobledesktop.com/classes-near-me/blog/best-web-development-stacks
 https://www.nobledesktop.com/classes-near-me/blog/best-web-development-stacks
 https://medium.com/nerd-for-tech/client-server-architecture-explained-with -examples-diagrams-and-real-world-applications-407e9e04e2d1
 https://medium.com/nerd-for-tech/client-server-architecture-explained-with -examples-diagrams-and-real-world-applications-407e9e04e2d1
 https://www.geeksforgeeks.org/introduction-of-er-model/
 https://www.geeksforgeeks.org/introduction-of-er-model/
 https://www.mongodb.com/community/forums/t/storing-data-images-audio-video-16-mb-in-mongodb-or-gridfs/215074
 https://www.mongodb.com/community/forums/t/storing-data-images-audio-video-16-mb-in-mongodb-or-gridfs/215074
 https://www.arkasoftwares.com/blog/mean-vs-mern-vs-mevn-vs-lamp-stack-for-development/
 https://www.arkasoftwares.com/blog/mean-vs-mern-vs-mevn-vs-lamp-stack-for-development/

mean-vs-mern-vs-mevn-vs-lamp-stack-for-development/, 2024. Accessed:
21.03.2025. 11

[12] Net Ninja. Mern stack tutorial 1 - what is the mern stack? https://www.youtube.
com/watch?v=98BzS5Oz5E4&list=PL4cUxeGkcC9iJ_KkrkBZWZRHVwnzLIoUE, 2022.
Accessed: 21.03.2025. 11

[13] Inc. npm. Bcrypt, dotenv, express, jsonwebtoken, mongoose, multer, validator.
https://www.npmjs.com/, 2025. Accessed: 15.04.2025. 14

[14] Inc. npm. cra-template, date-fns, react, react-dom, react-router-dom, react-scripts.
https://www.npmjs.com/, 2025. Accessed: 15.04.2025. 18

[15] Okoro Emmanuel Nzube. React hooks – how to use the usestate &
useeffect hooks in your project. https://www.freecodecamp.org/news/
how-to-use-the-usestate-and-useeffect-hooks-in-your-project/, 2024. Ac-
cessed: 15.04.2025. 19

[16] L. Richardson and S. Ruby. RESTful Web Services. O’Reilly Media, 2007. 4

 https://www.arkasoftwares.com/blog/mean-vs-mern-vs-mevn-vs-lamp-stack-for-development/
 https://www.arkasoftwares.com/blog/mean-vs-mern-vs-mevn-vs-lamp-stack-for-development/
 https://www.youtube.com/watch?v=98BzS5Oz5E4&list=PL4cUxeGkcC9iJ_KkrkBZWZRHVwnzLIoUE
 https://www.youtube.com/watch?v=98BzS5Oz5E4&list=PL4cUxeGkcC9iJ_KkrkBZWZRHVwnzLIoUE
 https://www.npmjs.com/
 https://www.npmjs.com/
 https://www.freecodecamp.org/news/how-to-use-the-usestate-and-useeffect-hooks-in-your-project/
 https://www.freecodecamp.org/news/how-to-use-the-usestate-and-useeffect-hooks-in-your-project/

	Introduction
	Motivation and Goals
	Organization
	Notations and Conventions

	Theory
	URI: Uniform Resource Identifier
	HTTP: Hypertext Transfer Protocol
	API: Application Programming Interface
	REST: Representational State Transfer
	Client-Server Model
	DBMS: Database Management Systems
	Web Development Stacks
	Use Cases
	ERM: Entity Relation Model

	Project
	Project inspiration
	Project idea
	Use Cases
	ERM
	Stack choice
	MERN stack
	Software

	Developer details
	Backend
	Database
	Server

	Frontend
	Client

	Results
	Profile
	Lab
	Document

	Discussion
	Use cases and ERM
	Web Development Stack
	Node
	Folder structure
	Documents storage
	Microsoft Copilot

	Conclusion
	Review
	Outlook
	Final statements

	Common Acronyms
	License of the Documentation
	Website of the Project
	References
	Referenced Web Resources

