
Authentication and Authorization for
Constrained Environments

Master Thesis

Urs Gerber
August 2018

Thesis supervisors:

Prof. Dr. Jacques Pasquier-Rocha
and

Arnaud Durand
Software Engineering Group

Software Engineering Group
Department of Informatics

University of Fribourg (Switzerland)

Acknowledgements

I want to thank my family and friends for their continuous support during the duration
of this project. It is due to them that I was able to participate in this master class.
I also want to express my thanks to Arnaud Durand and Professor Pasquier-Rocha, my
thesis supervisors, who have provided me with the opportunity to work on this project
and always pointed me in the right direction during the course of this project.

i

Abstract

In this work, we present a proof-of-concept implementation for the protocols and enti-
ties encompassed by the Authentication and Authorization for Constrained Environments
(ACE) framework proposed in a working document of the Internet Engineering Task
Force. The ACE framework is designed as an extension to the OAuth 2.0 authoriza-
tion framework, which defines protocols how clients access protected resources on remote
servers on behalf of a resource owner. The ACE framework adapts the protocols and prim-
itives for use in the Internet of Things (IoT) where networking nodes can be very limited
in terms of processing power and memory capacity. We provide a Python implementa-
tion for all ACE entities, i.e. authorization server, resource server and client. In order
to achieve confidential communication between the client and resource server, we imple-
ment an application layer security protocol based on the Diffie-Hellman key exchange.
Additionally, we demonstrate a resource server implementation capable of running on a
constrained device. We increase the level of security for the embedded resource server by
using a secure crypto element to perform asymmetric cryptography computations.

Keywords: Authorization, Authentication, OAuth, Web of Things, IoT

ii

Table of Contents

1 Introduction 2
1.1 Motivation . 2

1.1.1 Internet of Things & Constrained Devices 3
1.2 Goal . 4

2 Theoretical Background 5
2.1 Network Protocols . 5
2.2 Authentication & Authorization . 7
2.3 Cryptography . 7

2.3.1 Encryption . 7
2.3.2 Digital Signatures . 10
2.3.3 Key Exchange . 11

3 Authorization using OAuth 2.0 12
3.1 Overview . 12
3.2 Access Token . 13
3.3 Grant Types . 14

3.3.1 Authorization Code Flow . 15
3.3.2 Client Credentials Flow . 16

4 ACE Framework 18
4.1 Overview . 18

4.1.1 Protocol Flow . 19
4.2 Provisioning . 19
4.3 Transport and Application Layer Protocols 20
4.4 Concise Binary Object Representation (CBOR) 21

4.4.1 CBOR Object Signing and Encryption (COSE) 21
4.4.2 CBOR Web Token (CWT) . 23

4.5 Protocol Flow . 24
4.5.1 Token Request . 24

iii

Table of Contents iv

4.5.2 Proof of Possession . 25
4.5.3 Authorization Server . 25

4.5.3.1 Access Token . 26
4.5.4 Token Response . 26
4.5.5 Client . 27

4.5.5.1 Token Upload . 28
4.5.6 Resource Server . 28

4.5.6.1 Resource Request . 29
4.5.6.2 Introspection . 30

5 Security Profile 31
5.1 Requirements and Considerations . 31
5.2 Object Security for Constrained Restful Environments (OSCORE) 32

5.2.1 Overview . 33
5.2.2 Protocol . 35

5.2.2.1 Security Context . 36
5.2.2.2 OSCORE Message . 39

5.3 Ephemeral Diffie-Hellman over COSE (EDHOC) 39
5.3.1 Diffie-Hellman Key Exchange with Elliptic Curve Cryptography . 40
5.3.2 EDHOC Message Exchange for Key Establishment 41

6 Implementation 45
6.1 Considerations . 45
6.2 ACE Library . 47

6.2.1 Authorization Server . 47
6.2.2 Resource Server . 48
6.2.3 Client . 50

6.3 Embedded Resource Server . 51
6.3.1 Secure Element . 52
6.3.2 Assembly . 52

7 Results 54
7.1 Example Request . 54

7.1.1 Token Request and Response . 54
7.1.2 Resource Access . 57

7.2 Message Size . 58
7.3 Comparing CBOR and JSON . 59
7.4 Timing and Performance Measurements 61

8 Outlook 62
8.1 Possible Implementations and Deployment Example 62

Table of Contents 1

8.2 Future Work . 63

9 Conclusion 65

References 66

List of Figures 68

List of Tables 70

Listings 71

1
Introduction

1.1 Motivation

There are a vast multitude of online services which provide the possibility for end users
to store and access resources such as images, documents or other personal information.
In most cases, users will have to go through a process of registration, where they assign
themselves a unique identifier and passphrase or password. The set of unique identifier
and password is called the credentials of the user for that particular service.

Whenever an end user wants to access a protected resource on a service, it can do so in two
ways. In the simplest case, the user accesses the service’s resource through the website
of the service by supplying its credentials. The service then verifies the credentials and
grants access to the resource. In another scenario, the user accesses the resource through
a separate client, such as an application running on a smartphone. This client may be a
first-party client provided by the owners of web service, or it may be a third party client.

In order for a third-party client to access the protected resource, the user would have to
supply its credentials for the web service to the client, which the client would then forward
to the server hosting the protected resource. While this may not be a problem for first-
party clients, where the user probably trusts the client to keep its credentials secret, that
may not be the case for third-party clients. Sharing credentials with potentially malicious
third-party clients can be problematic due to various reasons. For example, the client
could get unrestricted access to all of the originator’s protected resources. Furthermore,
the client could, willingly or unwillingly, disclose the credentials to unintended parties.

To mitigate these disadvantages, authorization frameworks such as OAuth 2.0 provide
mechanisms and protocols where authorization is granted to clients in a controlled way
and access to resources can be managed granularly.

OAuth and related frameworks orchestrate and define protocols on how third-party ap-
plications access external data on behalf of a resource owner. In simplified terms, the
authorization to gain access to a resource is delegated to a token. The user authenticates
with some service and in turn receives an access token. In the case of OAuth 2.0, however,
it is crucial that this token is not compromised or stolen. If the token is leaked, any party
in possession of the token can impersonate the party the token was originally issued for.
This kind of token is often called a Bearer token, since any party who bears the token

2

1.1. Motivation 3

can use it. The use of Bearer tokens makes the use of properly secured communication
channels compulsory. Due to this, the OAuth 2.0 specification makes the use of HTTPs
mandatory for all implementations.

While HTTPs fulfills the requirements to keep these Bearer tokens secret from potential
adversaries by encrypting the request parameters along with the token itself, it relies
on the existence of a huge Public Key Infrastructure (PKI). The PKI defines roles and
protocols that web servers and clients such as a web browser use to setup secure com-
munication channels. However, access to this PKI can not always be guaranteed, or may
not even be wanted. An example of this are Internet of Things networks.

1.1.1 Internet of Things & Constrained Devices

The Internet of Things (IoT) is a very general term used to describe the network of
everyday interconnected devices. Similar to how the Internet connects terminals such as
personal desktop computers, notebooks, servers or smartphones, the Internet of Things is
the network connecting everyday physical objects equipped with networking functionality
such as home appliances, sensors or even wearables and as such builds the network layer
for the Web of Things.

The Web of Things (WoT) encompasses protocols and mechanisms that describe how IoT
devices expose and access data on other IoT devices. It builds upon the concepts and
protocols used in the World Wide Web and thus, many protocols initially developed for
the Internet can be reused. Given that many IoT devices use sensors whose value can be
shared with other IoT devices, there is a need for a standardized method to access these
values. However, while being similar to traditional devices connected to the Internet,
IoT devices come with inherent constraints that have an impact on how authorization
frameworks such as OAuth 2.0 operate.

Processing Power The processors found in IoT devices are usually very limited in terms
of processing power. This has a big influence into what kind of security can be achieved
while communicating with the device, since the cryptographic computations required to
secure communication can be computationally intensive.

Memory Compared to traditional Internet devices, IoT devices can be very limited
with respect to available memory. Messages exchanged as part of a traditional OAuth
2.0 protocol flow may be too large for the IoT device to process.

Connectivity It is not unusual for IoT devices to be deployed in the field and thus draw
their power from a battery. In order to achieve a long operating time, the messages ex-
changed in the authorization protocol should be kept as concise as possible. Transmitting
long messages results in the transmission hardware to draw more energy from the battery,
especially for wireless connectivity.

Despite being networking capable, nodes in IoT networks may not be connected to the
Internet and in turn may not have access to the public key infrastructure which is required
to securely transport messages between nodes in OAuth 2.0.

1.2. Goal 4

User Interface In traditional OAuth 2.0, whenever there is a need for a resource owner
to authorize a client to access a resource, the user is presented with a rich user interface
guiding the user through the approval process. However, many IoT devices are not
equipped with the means to display such user interface.

All these challenges for authorization in IoT lead to a requirement of a new authorization
and authentication framework that is built with constrained devices in mind.

In [1], Seitz et. al. propose an authorization and authentication framework based on
the protocols and entities of OAuth 2.0, called Authentication and Authorization for
Constrained Environments or ACE. The proposed ACE framework takes into account
the limited resources available to constrained devices by altering some of the building
blocks used in OAuth 2.0. For example, it replaces payload type from the text based
JSON format to the binary CBOR (Concise Binary Object Representation) format, which
reduces message size and in turn requires less power to transmit.

1.2 Goal

With this work, we want to contribute a proof-of-concept implementation of the protocols
covered by the ACE framework written in the Python programming language. While there
exists an early work in progress Java implementation of the ACE framework provided by
the authors of [1], we find value in an easy to use Python implementation, given the
strong presence of OAuth solutions written in the language.

Along with the Python implementation, we present an implementation for constrained
devices written in C. These devices may not be capable of running a full Linux software
stack and in turn may not be able to execute Python or Java code. As of the time of
this writing, we are not aware of any embedded implementation capable of running on a
constrained device.

It is important to note that the ACE framework still only exits as an Internet Engineering
Task Force (IETF) working documentation and as such is subject to changes all the time.
As a consequence, our implementation is based on a series of related RFCs and IETF
drafts and is therefore expected to change as the framework matures.

The ACE framework encompasses a multitude of networking protocols and security mech-
anisms. Throughout this report, we will make references to networking protocols and
cryptography related algorithms and mechanisms that are required to build an imple-
mentation of the entities proposed in the ACE framework. In the following chapter,
we give a brief introduction into the networking protocols and cryptographic primitives
relevant to the understanding of this report.

2
Theoretical Background

In this chapter, we will provide a short overview of basic concepts which we deem helpful
to the understanding of the mechanisms and protocols described in this report.

2.1 Network Protocols

Almost all of todays Internet traffic is based on protocols defined in the Internet Protocol
suite, which is often also referred to as TCP/IP. This suite of protocols describes how
data is transferred from the origin to the intended destination. The protocol stack is
arranged in a layered architecture, as illustrated in Figure 2.1.

Application Layer

Transport Layer

Internet Layer

Link Layer

Fig. 2.1: Layers of the Internet Protocol suite

The layered architecture allows for more modular implementations, where upper layers
can use services provided by the lower layers while introducing new functionality for
the layers above. Both the Link layer and Internet layer are of lower importance for
the understanding of this report. Consequently, we will focus on protocols used in the
Transport and Application layer.

Transport Layer The Transport Layer provides messaging services for the overlying
Application Layer. As such, protocols in this layer are responsible for transporting mes-
sages from one party to another while fulfilling certain requirements. The Transmission

5

2.1. Network Protocols 6

Control Protocol (TCP) is a connection-oriented protocol which provides services for a
reliable data transport. Thus, TCP packets are guaranteed to arrive in the same order
that they were sent in. Additionally, TCP incorporates a retransmission mechanism to
make sure that packets arrive at their intended destination even if a packet is lost during
transit. In contrast, the User Datagram Protocol (UDP) is a connection-less protocol and
does not provide reliable transport of messages. As a result, the overhead generated by
UDP transmissions is much smaller compared to TCP. The difference in service provided
by these protocols results in a diversified use pattern, where application protocols that
require reliable data transport use TCP and applications that require a fast and concise
message exchange use UDP.

Application Layer Application Layer protocols rely on the services provided by the un-
derlying Transport Layer and expand on the mechanisms of the lower layer by introducing
their own semantics and structure required to fulfill the requirements of the implemented
application.

A prominent example of an Application Layer protocol is the Hypertext Transfer Protocol
(HTTP). As specified in [12], HTTP is a text-based protocol which uses TCP to reliably
transmit messages. HTTP is used by most web servers on the Internet to deliver content
to a user’s browser. The text-based nature of HTTP allows the traffic generated by
the protocol to be analyzed very easily. As a consequence, all data related to a HTTP
message, for example a message generated from a web server delivering the content of a
website to a user, can be read by anyone on the same transmission medium. Network
traffic analyzers can easily retrieve the address of the website that is being accessed
as well as sensitive content provided by the user in the case of a file upload or login
procedure. For this reason, the HTTP protocol was extended to use Transport Layer
Security (TLS), specified in [3], which encrypts most of the message fields in an HTTP
message. In addition, this extended version of HTTP called HTTP Secure (HTTPs)
provides means for the communicating parties to mutually authenticate each other, such
that both parties can make sure that they are communicating with the intended party
and not an attacker on the shared medium.

An inherent disadvantage of HTTP is its text-based format. The fact that parameters
in the protocol are formatted and stored as textual strings results in a large message
footprint and long transmission times. In environments where communication nodes are
very constrained in terms of processing power and memory, the messages generated by
the HTTP protocol may even be unprocessable due to their inherent size.

To combat this circumstance, the Constrained Application Protocol (CoAP) was intro-
duced and specified in [13]. In contrast to HTTP, CoAP uses a binary message format
instead of textual strings to format the message parameters. This results in smaller
messages being transferred between communicating parties and complies with the inher-
ent lack of processing power and memory capacity of constrained devices. Additionally,
CoAP messages are sent with UDP as the underlying transport protocol and thus omits
the overhead associated with TCP. Due to the lack of a reliable transport protocol, CoAP
introduces mechanisms on the Application Layer to achieve reliability requirements.

2.2. Authentication & Authorization 7

2.2 Authentication & Authorization

In the context of network communications, authentication describes the process of veri-
fying the identity of a communicating party. To illustrate, we use the process of a user
logging in on a web service. For this scenario, we assume that the user previously regis-
tered to the web service using a public unique identifier, usually an email address or user
name, and a secret passphrase or password. In order to log in on the web service again,
the user authenticates himself by providing that same unique identifier and password
again. Assuming that said user is the only one in possession of the secret password, the
website considers the user authenticated.

In contrast to authentication, authorization is solely concerned with what a communicat-
ing party is allowed to do. There may be multiple scopes or levels of access associated
with a protected resource designed to limit the access of a party to that resource. Both
authentication and authorization are important concepts for the explanations and expo-
sitions in the later parts of this report.

2.3 Cryptography

As mentioned previously, secure communication between parties is of great importance
in today’s Internet traffic. With increasing awareness of the dangers of unsecured mes-
sage exchange, there is a surge in adoption of cryptographically secured communication.
Making sure that no unintended party can read or alter a message in transit usually in-
volves multiple cryptographic concepts. In this section, we will discuss the cryptographic
primitives relevant to our implementation.

As indicated by Paar and Pelzl in [22, p. 263], whenever a party A wants to send a message
x to party B over an unsecured channel, there are usually three requirements that A and
B want to be fulfilled. Firstly, A may not want the message x to be read by other
parties on the same open channel. This requirement is called confidentiality. In network
communication, confidentiality is usually achieved using encryption, the basics of which
we provide in the following paragraph. The second requirement is message integrity. B
wants to make sure that message x has not been altered while in transit over the open
channel. Lastly, party B might want to verify that message x was indeed sent by party
A and not anybody else on the open channel, a requirement called authentication.

2.3.1 Encryption

The goal of obscuring the message x so that it can only be read by the intended parties can
be obtained by encryption. Encryption is the process of transforming an original plaintext
message into an obscured ciphertext which is designed to be unreadable for parties not
involved in the bilateral encryption process. The general scheme for encrypting a plaintext
message is illustrated in Figure 2.2.

2.3. Cryptography 8

k2k1

de
y

x x

Fig. 2.2: Encryption scheme for message x. Figure adapted from [22, p. 150].

A encrypts its plaintext message x to obtain the encrypted ciphertext y using an en-
cryption function e by computing y = ek1(x), where k1 is the encryption key. The now
obscured message y can now be transferred over an insecure channel to the receiving
party B. To decrypt the ciphertext message y, B must apply an appropriate decryption
function d and a correct decryption key k2. Formally, B obtains the original plaintext x
by computing x = dk2(y).

While there are a vast multitude of encryption and decryption function pairs e and d,
all of these functions are either part of symmetric encryption or asymmetric encryption.
Both of these categories imply some constraints on both the encryption and decryption
functions e and d, as well as on the encryption and decryption keys k1 and k2.

Symmetric Encryption In symmetric encryption schemes, the encryption key and de-
cryption key are the same, k1 = k2 = k. This common key k is often also called a secret
key, or shared secret. That means, for a symmetric encryption scheme to work, both the
sending party A, and the receiving party B must be in possession of a same shared key
k. As a consequence, both A and B must somehow come to agreement about what key
k they want to use in their secured communication. This can be achieved by exchanging
this shared secret over a secured channel, or alternatively, the shared secret could be
pre-established out of bounds.

One of the most commonly used symmetric encryption algorithms today is the Advanced
Encryption Standard (AES), based on a proposal by Daemen and Rijmen in [11]. AES
is a block cipher with a fixed block size of 128 bits, or 16 bytes and works with key sizes
of 128, 192 and 256 bits, or 16, 24, and 32 bytes. While the inner workings of AES are
indeed very interesting, we omit the implementation details of AES at this point as they
are out of the scope of this report. We provide more information about AES in Section
5.2.1.

As mentioned previously, all symmetric encryption schemes suffer from the fact that both
parties must be in possession of the same shared secret in order for the communication
to be secure. Asymmetric encryption mitigates this disadvantage.

Asymmetric Encryption Asymmetric encryption schemes, often also called public-key
encryption schemes, differ from symmetric encryption in the fact that the encryption
key k1 and decryption key k2 are not the same. Instead, public key cryptography is
built on the principle that only the decryption key of the receiving party must be kept
secret, while the encryption key can be readily disclosed to any party interested in secure
communication with the receiving party.

2.3. Cryptography 9

An example of an asymmetric encryption scheme is illustrated in Figure 2.3.

de
y

x x

A
kB,pub B

(kB,pub, kB,prv)

kB,pub kB,prv

Fig. 2.3: Asymmetric encryption scheme. Figure adapted from [22, p. 152].

Before secure communication starts, the receiving party B creates an associated key pair
consisting of a public and private key, (kB,pub, kB,prv). These keys are mathematically
constructed in a way such that any message encrypted with the public key kB,pub can only
be decrypted by B using its associated private key kB,prv. At the start of the protocol,
party B discloses its public key kB,pub to party A. In contrast to symmetric encryption,
the exchange of the public key is not required to happen over a secure channel, since
messages can only be encrypted using the public key.

Once A has received B’s public key, party A encrypts the message x using the public
key of party B by computing y = ekB,pub

(x) to obtain the ciphertext y. The resulting
ciphertext is sent over the unsecured channel to party B, who then decrypts the ciphertext
y using its private key, formally x = dkB,prv

(y).

As long as B’s private key is kept secret, only B will be able to decrypt messages encrypted
with the associated public key.

Man in the Middle Attacks While this protocol very effectively negates the need for
a shared secret, it is vulnerable to Man in the Middle attacks. This kind of attack occurs
when a malicious party M intercepts the transfer of B’s public key to A over the open
channel [22, p. 342]. Instead of simply forwarding B’s public key to A, the malicious
party M itself generates a public-private key pair and transmits its own public key to
A. Without any additional countermeasures, A receives the public key of M but believes
it to be the public key of party B. A now continues to encrypt the message x intended
to only be read by B and transmits it over the open channel. M again intercepts this
message and can decrypt it using its own private key. To complete the message exchange,
M then encrypts the message using the public key of B, which it intercepted earlier,
and forwards the message to B. If M ’s attack is successful, neither A nor B can know
that their bilateral communication was intercepted and decrypted by a third party. The
problem lies in the fact that A was not able to verify that the received public key was
indeed the one which belongs to B.

One solution to this problem is the introduction of a public key infrastructure (PKI).
The PKI is set up as centralized trust model where entities called Certificate Authorities
(CAs) issue digital certificates for the binding of a communicating party to its public key
[22, p. 344]. In simple terms, the certificate proves that a public key belongs to a certain
party. This certificate, which contains the public key and identification information about

2.3. Cryptography 10

the party it belongs to, can then be transferred in the place of the public key. As long as
A trusts the issuer of the certificate, it can validate the certificate and thus be confident
that it is indeed communicating with the intended party B. Digital certificates build
upon the foundations of digital signatures, which we explain in the following paragraph.

2.3.2 Digital Signatures

While encryption provides message confidentiality, digital signatures provide a mechanism
to protect the integrity and prove the authenticity of a message sent over a communication
medium. Using digital signatures it is possible for the recipient of a message to determine
whether the message has been altered in transit and whether the claimed sender is the
original author of the message [22, p. 260].

In order to achieve these goals, digital signatures employ an asymmetric encryption
scheme. We illustrate the general principle of digital signatures in Figure 2.4.

mm

s = ekB,prv
(h(m))

h′(m) = dkB,pub
(s)

h′(m)
?
= h(m)

}}
h(m)

h(m)

m

sh′(m) = dkB,pub
(s)

Fig. 2.4: Verifying the authenticity and integrity of a message using digital signatures.

We assume that party B wants to send a message m to party A. The content of message
m is not sensitive so it is possible to transmit it openly over the unsecured channel.
However, party A still wants to make sure that m has not been altered in transit and
was indeed sent by party B. To this end, party B does not simply transmit m, but first
computes the digital signature s of message m. It generates a key pair (kB,pub, kB,prv)
and discloses its public key kB,pub to A prior to the message exchange. In this case, we
presume the absence of a man in the middle attack, meaning that A trusts that kB,pub is
the genuine public key of B.

The digital signature s of the message m is computed by first calculating a hash h(m) of
message m. While m can be arbitrarily long, the resulting hash h(m) has a fixed length
depending on the hash function h and is usually only a few bytes long. The intent of
hashing the message first is to reduce the input to the asymmetric encryption algorithm
in the following step.

After the hash is computed, B calculates the signature s of message m by encrypting the
hash using its private key, or formally s = ekB,prv

(h(m)). We should note that this is in
direct contrast to the asymmetric encryption protocol described in previous paragraphs,
where the party communicating with B encrypts its payload with the public key of B.

The computed signature s is then appended to the original message m and transmitted
over the unsecured channel. On the other end, A receives the tuple (m, s) and can now

2.3. Cryptography 11

verify the integrity and authenticity of m using the digital signature s. In a first step, A
also computes a hash h′(m) from the messagem by applying the exact same hash function
h that was used by B when the signature was computed. In a second step, A decrypts
the signature s using B’s public key to obtain the original hash h(m) = dkB,pub

(s). To
verify that message m was not altered since the time it was created by B, A simply has
to compare h(m) and h′(m). If both hashes are, the same, A can be sure that m was not
altered in transit and B was the originator of the message.

2.3.3 Key Exchange

As mentioned previously, asymmetric cryptography tends involve more computationally
intensive operations compared to symmetric cryptography [22, p. 156]. The computa-
tional power required for encrypting a message increases with the length of the message
with the consequence that long messages require more computational effort to be en-
crypted than short messages.

Additionally, keys in asymmetric encryption schemes are required to be much larger in
size than in their symmetric counter parts in order to provide the same order of security
[22, p. 156]. In the context of constrained devices, where computation power is very
limited, and smaller keys lead to shorter messages when keys need to be transferred,
symmetric encryption is often preferred over asymmetric encryption.

Instead of relying on asymmetric cryptography for the encryption process itself, there is
an approach where symmetric keys can be securely established between communication
parties using an asymmetric key exchange protocol. In a key exchange protocol, the goal
is to establish a shared secret between communication parties over an unsecured channel.
The shared secret is a symmetric key which is used by both parties participating in
the encryption scheme to encrypt and decrypt messages using a symmetric encryption
algorithm.

To compute this shared secret, the two parties both generate an asymmetric key pair
consisting of a public and private key. They then exchange their respective generated
public keys to the other party. After having received the public key, both parties compute
a shared secret by combining their respective private key of the generated key pair with
the received public key of the other party. The computation required for this operation
is dependent of the desired cryptosystem. One example of a key exchange protocol is
the Diffie-Hellman key exchange, a version of which we detail in Section 5.3.1. As in any
asymmetric cryptography protocol, the public keys exchanged during the protocol need
to be authenticated in order to mitigate man-in-the-middle attacks.

3
Authorization using OAuth 2.0

The ACE framework relies heavily on the primitives and protocols introduced in the
OAuth 2.0 authorization framework proposed by Hardt et. al in [2]. In this chapter, we
illustrate the concept behind OAuth 2.0 and depict some of the protocols that it proposes.

3.1 Overview

The OAuth 2.0 framework proposes a standardized method for clients to access resources
on remote servers. OAuth distinguishes four roles that participate in the authorization
and resource access process: resource owner, client, authorization server and resource
server.

Resource Owner (RO)
The resource owner is originator of the protected resource being accessed. The
resource owner is the sole entity with the authority to authorize clients to access a
protected resource.

Client (C)
The client is the application trying to access a protected resource on behalf of the
resource owner. A client can only perform successful requests to the protected
resource once the client has been authorized by the resource owner.

Resource Server (RS)
The resource server is the host where the protected resource resides. Whenever a
request to a resource is made, the resource server needs to verify that the requesting
client is authorized to access the resource.

Authorization Server (AS)
The authorization server is the orchestrating entity in the OAuth framework. As
such, it authorizes clients on behalf of the resource owner by issuing access tokens,
which represent a time limited access grant to a protected resource for one particular
client.

How these roles interact with each other is depicted in Figure 3.1.

12

3.2. Access Token 13

Client

Resource
Owner

Resource
Server

Authorization
Server

Authorization Request

Authorization Grant

Token Request

Access Token

Access Token

Protected Resource

Fig. 3.1: OAuth 2.0 General Protocol Flow

The yet unauthorized client initiates the protocol by performing an authorization request
to the resource owner. In order for the resource owner to make an informed decision, this
request includes information about which resources the client whishes to access. At this
point, the resource owner has the opportunity to either authorize or deny access to the
resources requested by the client. If the resource owner authorizes the client, the client
will receive an authorization grant which is a representation of authorization on behalf
of the resource owner.

Once the client has received the authorization grant, it requests an access token from the
authorization server in exchange for the previously obtained authorization grant. The
authorization server will authenticate the client and verify the authorization grant. To
authenticate the client, it must be pre-registered with the authorization server to setup
client credentials. The client credentials consist of a unique public client identifier and a
client secret. If the authorization server has verified that this is a registered client and the
authorization grant is valid, it will return an access token. This access token represents
a time limited authorization to access a particular protected resource. The client then
stores the access token for future reference.

To actually access the protected resource on the resource server, the client performs a
request to the endpoint of the resource and includes the access token it received from the
authorization server in the previous step. After checking the validity of the access token,
the resource server will respond with either the protected resource or it will deny access
to the client in case the access token is no longer valid.

3.2 Access Token

The access token obtained by the client from the authorization server is of central impor-
tance in OAuth 2.0. It serves as means of authorization to access a protected resource
without the need for the resource owner to present its credentials to the client. The access
token can be of any form, provided that the resource server is able to confirm its validity
and grant access to the requested protected resource. As such, the token is called opaque
to the client. The client should not be concerned with what is contained in the access

3.3. Grant Types 14

token, as it only needs to store and present it to the resource server whenever it needs
to access a protected resource. The access token may be self-contained, meaning that it
carries all the authorization information necessary for the resource server to accept it, or
it may only be a referential string that the resource server then uses to look up the autho-
rization associated with that reference either locally or with the help of the authorization
server.

While the OAuth 2.0 specification does not make requirements or suggestions concerning
the form of the access token, many OAuth 2.0 implementations use access tokens adhering
to the JSON Web Token (JWT) standard specified in [20]. In this standard, the access
token is a transparent digitally signed JSON object string which contains the relevant
authorization information for the access token, such as requested scopes or expiry date
and time. We will further explain the structure of the access token in our implementation
in Section 4.4.2. In the OAuth 2.0 protocol flow, the access token is sent along with every
request from the client to a protected resource in the form of an HTTP header.

Security Considerations It is important to note that the access token should always
be kept secret by the client. The access tokens issued by OAuth 2.0 authorization servers
are usually Bearer tokens, meaning that any entity who presents the token is allowed to
access the protected resources covered in the access token.

This implies that at least the access token request from the client to the authorization
server, as well as the request to the protected resource bearing the access token must
be performed over a secure channel. This is the reason why the OAuth 2.0 specification
requires implementations of these endpoints to be secured by HTTPs in which case the
access token is encrypted along with other request headers.

3.3 Grant Types

The OAuth 2.0 specification proposes multiple types of protocol flows, often also referred
to as grant types, designed to cater to the specific capabilities of the client. The general
protocol flow discussed in Section 3.1 is a very abstract flow that needs to be adapted to
the capabilities of the client.

OAuth distinguishes two types of clients, confidential and public clients. Confidential
clients are clients which can keep their client credentials secret, such as applications
running on a remote web server. In contrast to confidential clients, public clients, such
as an application running on a device or in the browser of the resource owner, can not
be trusted to always keep their client credentials secret, since they could be inspected for
their credentials at runtime.

For this report, we restrict our discussions to confidential clients and examine two par-
ticular protocol flows proposed in the OAuth 2.0 specification.

3.3. Grant Types 15

3.3.1 Authorization Code Flow

The authorization code flow is targeted at clients running on a remote web server. It
presumes the presence of a user agent on the resource owner’s side, such as a web browser,
which can be redirected to an address specified by the authorization server. We illustrate
the authorization code flow in Figure 3.2.

User
Agent

Client

Resource
Owner

Resource
Server

Authorization
Server

Authorization Grant

Token Request

Access Token

Access Token

Protected Resource

Authorization Request(1)
(2)

Fig. 3.2: OAuth 2.0 Authorization Code Flow

In this code flow, the resource owner grants authorization to the client via a mediating
authorization server. We assume that the client has been registered with the authorization
server in a previous step, meaning that the authorization server has assigned a unique
client identifier and client secret to the client.

The client navigates the resource owner’s user agent to the authorization endpoint of
the authorization server offered by the service that the client whishes to access. The
client has to provide its public identifier and the intended scopes it wants access to. The
authorization server then prompts the resource owner to authenticate himself by providing
the credentials of the resource owner. It is important to note that the resource owner
only provides its credentials to the authorization server of the service, not the client. The
client never gets a hold on the resource owner’s credentials.

Once the authorization server has authenticated the resource owner, it provides the re-
source owner with the possibility to review the resources the client whishes to access, and
prompts the user to either authorize or decline the client. The authorization server then
redirects the resource owner’s user agent to a callback URL specified by the client in the
initial authorization request, along with the result of the authorization and, in the case
of approved authorization, an authorization code.

We should note that the initial authorization code request and subsequent redirects are
all visible on the resource owner’s browser, where all query and response parameters can
be easily inspected. For example, the authorization server returns the authorization code
as an URL query parameter in the redirect URL, which can be seen by the resource owner
in the address bar of the browser.

Prior to accessing the protected resource, the client requests an access token from the
authorization server by accessing the token endpoint on the authorization server along
with providing the authorization code obtained in the previous step. The client will also
have to supply its client credentials in order to authenticate itself to the authorization

3.3. Grant Types 16

server. The authorization server verifies the authorization code and client credentials and
will generate a time limited access token for the client scoped to the resource it is trying
to access.

Once the client has received the access token, it can query the resource server on the
endpoint of the protected resource. Given that the client supplied a valid access token,
the resource server will respond with the protected resource.

In contrast to the initial authorization code request, the access token request and sub-
sequent resource request do not require a user agent. As a consequence, none of the
information passed between the entities, such as the issued access token, are visible to
the resource owner or the user agent. This increases the security of the protocol as
potentially compromised browsers are not able to steal the access token.

3.3.2 Client Credentials Flow

As stated in the previous section, the authorization code flow is aimed for clients running
on remote servers. It also presumes a resource owner that needs to authorize clients to
access a protected resource on its behalf. In IoT networks, however, intermediate nodes
often need to access resources on other nodes without the interactions of a resource owner.
In these cases, where machine-to-machine communication is predominant, the client and
the resource owner coincide. As a consequence, there is no need for a separate request for
an authorization code. This adapted code flow is called the client credentials flow, which
we have depicted in Figure 3.3

Client

Resource
Server

Authorization
Server

Token Request

Access Token

Access Token

Protected Resource

Fig. 3.3: OAuth 2.0 Client Credentials Flow

In the client credentials flow, a client is only able to access protected resources it owns.
Alternatively, it can also access other protected resources given that there is a prearranged
authorization between the client and authorization server. This makes it necessary for
the client to be registered with the authorization server along with all the resources and
scopes the client is allowed to access.

The client initiates the client credentials flow by posting a request to the token endpoint
of the authorization server. In this request, the client needs to provide its eponymous
client credentials in order for the authorization server to authenticate the client. The
client also provides the scopes it wishes to access. Once the authorization server has
authenticated the client and verified the requested scopes, it issues an access token.

3.3. Grant Types 17

Consequently, the client presents the previously obtained access token to the resource
server which hosts the protected resource. The resource server then verifies the validity
of the access token and responds with the protected resource.

The client credentials flow discussed above builds the foundation of the authorization
protocol flow used in the ACE framework.

4
ACE Framework

As stated in the previous chapter, the ACE framework builds upon the fundamentals
introduced by the OAuth 2.0 framework. In this chapter, we will introduce the changes
the ACE framework proposes to the OAuth 2.0 framework in order for it to be usable on
IoT networks with constrained devices.

4.1 Overview

The ACE framework as proposed by Seitz et. al. in [1] extends the OAuth 2.0 framework
with the goal to expand the authorization flow to constrained devices in IoT networks.
These types of devices are inherently limited in their processing capability or have to
work in a very constrained memory environment. Furthermore, power consumption is
of primary concern for devices deployed in the field relying on a battery for power de-
livery. This makes it necessary for the message exchange to be as concise and compact
as possible. ACE addresses this by requiring the messages to be formatted as defined
by the Concise Binary Object Representation or CBOR, which is a replacement for the
text based Javascript Object Notation (JSON) in OAuth 2.0. We give a brief overview of
CBOR in Section 4.4.

The ACE framework introduces the concept of security profiles to comply with the fact
that devices in IoT networks need more flexibilty with respect to the message exchange
mechanisms used in the authorization flows. While OAuth 2.0 solely relies on TLS (via
HTTPs) to secure the communication between OAuth entities, these security profiles
allow communicating nodes to specify their respective security and networking capabili-
ties. The communicating parties will then agree on a security profile that best fits their
capabilities. We provide insight into the implemented security profile in this project in
Chapter 5.

Compared to bearer access tokens in OAuth 2.0, where any entity bearing the token can
request the protected resources covered by that token, the access tokens issued by an
ACE authorization server require the presenting entity to put forth proof of possession
for that particular token. This mechanism makes it impossible for clients to use an access
token issued for another client. We explain the structure and properties of an ACE access
token in Section 4.5.3.1.

18

4.2. Provisioning 19

4.1.1 Protocol Flow

As mentioned in Section 3.3.2, the ACE protocol flow is based on the client credentials
flow as proposed in the OAuth 2.0 specification. Clients in IoT networks often do not
require an authorization grant from a resource owner to access a protected resource, since
the client itself may be the resource owner or the resource server where the resources
are hosted are in direct control of that specific client. The general ACE protocol flow is
depicted in Figure 4.1.

Client

Resource
Server

Authorization
Server

Token Request

Access Token

Access Token

Protected Resource

In
tro

sp
ec

tio
n

In
tro

sp
ec

tio
n

Re
su

lt

Fig. 4.1: ACE general protocol flow

In this scenario, we assume that the client already knows the address of the resource
server which hosts the resource the client wants to access. The client requests an access
token from the authorization server by posting its client credentials to the authorization
endpoint at the authorization server. The authorization server will then authenticate the
client using the presented credentials and return an access token scoped to the scopes
and resources requested by the client.

After receiving the token, the client can use the token to access the protected resource on
the resource server. The client makes a request to the endpoint of the protected resource
and includes the access token it received from the authorization server in the previous
step. The resource server then validates the access token and responds with the protected
resource.

If the access token is not self-contained and thus is just a referential string, the resource
server will introspect the access token with the help of the authorization server.

In the following sections, we present more details about the steps depicted in Figure 4.1.

4.2 Provisioning

The ACE framework requires both the initial token request (and response) as well as the
access to the protected resource to be happening on a secured communication channel.
As opposed to OAuth 2.0, nodes in IoT networks may not be involved in a common key
infrastructure. As a consequence, there is a need for extensive provisioning of credentials

4.3. Transport and Application Layer Protocols 20

for the ACE entities (client, resource server, authorization server) prior to the start of
the protocol flow.

Public Keys All participating ACE entities (client, authorization server and resource
server) need to be configured with a public and private key pair which will be used to
authenticate messages sent by these respective entities. The client and resource server
will need to know the public key of the authorization server, since both the client and
the resource server are required to verify the authenticity of the access token issued by
the authorization server. We have illustrated the provisioned keys in Figure 4.2.

Client Resource Server
IDAS,pub
KPoP,pub
KPoP,prv
IDRS,pub

IDAS,pub
KPoP,pub
KPoP,prv
IDRS,pub

Authorization Server
(IDAS,pub, IDAS,prv)

(IDRS,pub, IDRS,prv)

IDAS,pub
KPoP,pub
KPoP,prv
IDRS,pub

Fig. 4.2: Provisioned keys for the ACE entities

It is important to note that the client and resource server do not need to pre-establish
each other’s public keys for authentication. Given that there may be a vast number of
resource servers in an IoT network, it would be unfeasible to pre-establish trust between
every client and resource server in the network. Mutual authentication between resource
server and client will be performed as part of the establishment of a secure context at the
time of the access to the protected resource.

Credentials and Profiles Furthermore, the authorization server must know the creden-
tials (client identifier and client secret) of the clients along with the resources and scopes
on these resources the client is allowed to access. The authorization server must also
know the security profiles supported by the resource server and client, as the authoriza-
tion server will decide which security profile will be used in the communication between
the resource server and the client.

4.3 Transport and Application Layer Protocols

The OAuth specification requires implementations of the specification to solely target
HTTPs using TLS. Since HTTP 1.0 is a text based protocol, the ACE framework recom-
mends the use of binary application layer protocols such as CoAP which employ smaller
message sizes compared to textual protocols. CoAP usually runs on top of UDP. As a
replacement for TLS, the ACE specification recommends to use DTLS to secure commu-

4.4. Concise Binary Object Representation (CBOR) 21

nication using CoAP messages. DTLS is an adaption of TLS designed to use UDP as its
transport protocol instead of TCP.

However, in our implementation, we chose to use HTTP as the application layer proto-
col since the networking libraries implementing CoAP servers and clients showed poor
support for DTLS secured communication at the time of writing this report.

4.4 Concise Binary Object Representation (CBOR)

The ACE framework requires implementations to change the format of messages from
the text based Javascript Object Notation (JSON) to the Concise Binary Object
Representation proposed by Bormann and Hoffmann in [8]. The benefit of replacing
JSON with CBOR manifests itself in the significantly reduced message size and conse-
quently reduced transmission power. Similar to JSON, CBOR specifies how primitives
such as integers, text strings or key-value maps are encoded as binary objects such that
the obtained binary object is as concise as possible.

For the purpose of this report, we refrain from explaining in detail how arbitrary objects
are encoded as CBOR objects and instead introduce entities required by the ACE frame-
work that use CBOR as the underlying encoding format. These entities include signature
and encryption objects as well as an object that represents an access token. In Figure
4.3 we have illustrated the entities built on top of CBOR.

CBOR

COSE

CWT

Encryption
Objects

Sigature
Objects Key

Fig. 4.3: The CBOR Object Signing and Encryption (COSE) standard is built on top of
CBOR and can be used to encode a CBOR Web Token (CWT)

4.4.1 CBOR Object Signing and Encryption (COSE)

The CBOR Object Signing and Encryption (COSE) standard defined in [7] proposes
standardized CBOR objects that represent cryptographic keys as well as objects that
carry encrypted or digitally signed payload. In the context of the ACE framework, the
primitives provided by COSE are used to transmit encrypted or signed messages between
the ACE entities. In the following paragraphs, we introduce the format of objects relevant
to our implementation of the ACE framework.

4.4. Concise Binary Object Representation (CBOR) 22

Key Object In certain messages being exchanged between ACE entities during the
protocol flow, one entity sends a certain cryptographic key to another entity. The COSE
standard proposes a method of encoding these keys such that both entities agree on the
structure and semantics of the key object. The proposed structure for encoding an elliptic
curve key is illustrated in Listing 4.1.

1 {
2 / kty / 1: Key Type,
3 / kid / 2: Key Identifier,
4 / alg / 3: Algorithm Identifier,
5 / crv / -1: Elliptic Curve Identifier,
6 / x / -2: x-Coordinate of public key,
7 / y / -3: y-Coordinate of public key,
8 / d / -4: Private key parameter
9 }

List. 4.1: COSE Key structure

The COSE key object is encoded as a CBOR map which is a simple array of key-value
pairs. The keys of the map are short integer digits. It is easy to see how using integers
as keys can result in smaller encoded messages compared to textual string keys in JSON.
The kty, kid and alg parameters are general data about the encoded key specifying the
type and identifier for the encoded key, respectively the identifier for the algorithm the
key is being used with. The crv, x, y and d parameters are specific to elliptic curve keys
and relate to the elliptic curve parameters of the encoded key.

Encryption Object Additional to encoding key objects, the COSE standard provides
a binary encoding for an object carrying an encrypted payload. These objects are used
in the ACE protocol flow whenever a message is required to be sent encrypted from
one entity to the other. While COSE supports a wide variety of objects dedicated for
encryption, our implementation only makes use of the Encrypt0 structure. This structure
can be used in cases where the recipient of the encrypted object is implicitly known and
does not need to be included in the object. The COSE Encrypt0 structure is a CBOR
array containing three elements as illustrated in Listing 4.2.

1 [
2 protected_header, // CBOR Map encoded as byte string
3 unprotected_header, // CBOR Map
4 ciphertext // Byte String
5]

List. 4.2: COSE Encrypt0 Object

The protected_header parameter is a CBOR map encoded as a byte string which con-
tains parameters about the ciphertext that need to be integrity protected by the encryp-
tion algorithm. As an example, an entry in this map could represent a key identifier
for the key that was used to encrypt the ciphertext contained in the object, which the
recipient can then use to retrieve the corresponding decryption key. In contrast, the
unprotected_header parameter contains a CBOR map of values that are not required
to be integrity protected but still related to the encrypted payload.

4.4. Concise Binary Object Representation (CBOR) 23

Signature Object In cases where encryption is not necessary, COSE defines a structure
for objects that require a digital signature to be attached to the payload itself. The digital
signature can be used by the recipient to verify that the protected content of the message
has not been tampered with during transit. In our implementation, where we only have
a single recipient for the digitally signed object, we use the COSE Sign1 object whose
structure is depicted in Listing 4.3.

1 [
2 protected_header, // CBOR Map encoded as byte string
3 unprotected_header, // CBOR Map
4 payload, // Byte String
5 signature // Byte String
6]

List. 4.3: COSE Sign1 Object

Similar to the COSE Encrypt0 object, the Sign1 object is a CBOR array with four instead
of three elements. The header parameters use the same semantics as in the case of the
COSE Encrypt0 object. The payload parameter contains the integrity protected appli-
cation data and the signature parameter contains the computed digital signature. The
parameters covered by the digital signature include the protected_header, the payload
and optional externally supplied data. In the context of an ACE protocol flow, this signa-
ture object can be used wherever data need to be integrity protected and authenticated,
as is the case in the access token issued by the authorization server.

4.4.2 CBOR Web Token (CWT)

The ACE framework recommends that implementations use CBOR Web Tokens (CWTs)
as the format for self-contained access tokens. A CWT (which has become an RFC during
the course of this project) as defined in [9] is either an encrypted or digitally signed COSE
object, leveraging the COSE encryption and signature structures. In our implementation,
access tokens are represented by a digitally signed CWT since we only include public keys
in the access token and thus encryption of symmetric keys is not required. A digitally
signed CWT uses the COSE Sign1 structure to form an access token as indicated in
Listing 4.4.

1 [
2 {
3 / alg / 1: Identifier for the Digital Signature Algorithm
4 }, // CBOR Map encoded as byte string, protected_header
5 {
6 / kid / 4: Identifier for key used to sign this CWT
7 }, // CBOR Map, unprotected_header
8 {
9 / iss / 1: Issuer of access token (authorization server),

10 ...
11 / cti / 7: CWT Identifier,
12 }, // CBOR Map encoded as byte string, payload
13 signature // Byte String
14]

List. 4.4: Structure of a CBOR Web Token

4.5. Protocol Flow 24

The protected_header map includes the alg parameter that identifies which digital
signature algorithm was used to compute the digital signature included in the CWT.
The kid parameter in the unprotected_header map contains an identifier for the key
that was used to sign the CWT. Parties interested in verifying the authenticity of the
CWT can use this key identifier to retrieve the correct public key of the issuer to verify the
digital signature contained in the CWT. The payload parameter of the CWT contains the
claim set of the access token which we explain in Section 4.5.3.1. The last element is the
signature parameter containing the computed digital signature of the CWT. Recipients
can use this digital signature to check the authenticity of the access token.

4.5 Protocol Flow

In this section, we will discuss the ACE protocol flow in detail by illustrating a case
where a client wants to access a protected resource on a resource server after requesting
an access token from the authorization server.

4.5.1 Token Request

At the start of the protocol, the client performs a POST request to the /token endpoint
of the authorization server. As required by the ACE framework, this request is sent over
a secured channel and the client and authorization server need to mutually authenticate
each other. In plain OAuth 2.0, this request is protected by TLS and the client would
authenticate the authorization server using a TLS certificate. For constrained devices, the
ACE framework requires the security profile to specify how the client and authorization
server establish secure communication.

For the purposes of this report, and in our implementation, we assume that the commu-
nication between the client and authorization server is protected by a protocol similar to
TLS. As a consequence, the client considers the authorization server authenticated, while
the authorization server verifies the authenticity of the client with the aid of the client’s
credentials.

The request parameters sent to the authorization server by the client are depicted in
Listing 4.5.

1 {
2 "client_id": "ace_client_1",
3 "client_secret: "ace_client_1_secret_123456",
4 "grant_type": "client_credentials",
5 "aud": "tempSensor0",
6 "scope": "read_temperature,post_led",
7 "cnf" : (KPoP,pub formatted as COSE Key)
8 }

List. 4.5: Parameters sent in the token request

It is important to note that the parameters in Listing 4.5 are depicted in standard JSON
format, rather than as an actual CBOR map, for notation and illustration purposes.

4.5. Protocol Flow 25

The client_id and client_secret parameters constitute the client credentials of the
requesting client. This examples illustrates why this request must only be performed
over a secured channel, since the client is sending its client secret, which should be kept
confidential under all circumstances. If the client secret is disclosed, any party presenting
the secret could impersonate the client, given that the client identifier is public.

The grant_type parameter instructs the authorization server to use a specific protocol
flow, which in this case is the client credentials flow. The aud, short for audience, and
scope parameters both refer to the protected resource the client wants to access. In this
example, the client wants to access the read_temperature and post_led scopes on the
resource server known to the authorization server as tempSensor0.

The cnf parameter refers to the proof of possession key the client wants the authorization
server to bind to the access token. The structure of the key in the cnf parameter is
explained in Section 4.4.1.

4.5.2 Proof of Possession

The ACE framework suggests for implementations of the protocol entities to use proof-of-
possession (PoP) tokens instead of Bearer tokens as used in the OAuth 2.0 specification.
While a Bearer token can be presented by any client that gets a hold of the token,
proof-of-possession tokens can only be successfully presented to a resource server if the
presenting client can demonstrate the possession of a certain cryptographic key.

To this end, the client instructs the authorization server to bind a key to the access
token. This key is called the proof-of-possession key, or PoP key, which can either be
symmetric or asymmetric. For the purpose of this report and our implementation, we
omit the details for symmetric PoP keys. In the asymmetric case, the client itself creates
a public-private key pair and includes the public part of the PoP key in the cnf parameter
of the initial token request, as illustrated in Listing 4.5.

The authorization server will then include the supplied PoP key in the access token itself.
In other words, the authorization server binds the PoP key to the access token.

Whenever the client wants to access a resource on a resource server, both parties are
required to establish a security context to create a secure channel for their communication.
The setup of this security context will only be successful if the client can prove to the
resource server that the client in question knows the private key corresponding to the PoP
key that was bound to the token by the authorization server. We discuss the establishment
of a secure context in Chapter 5.

The proof-of-possession mechanism prevents other clients that get a hold of the access
token from accessing resources associated with that token, since these clients do not know
the private part of the PoP key bound to the access token.

4.5.3 Authorization Server

Once the authorization server has received the request as illustrated in Listing 4.5, it
authenticates the client by inspecting the supplied client credentials. Furthermore, the

4.5. Protocol Flow 26

authorization server checks the aud and scope values that the client wants to access.
Given that this particular client was provisioned to access the requested audience and
scopes, the authorization server will issue an access token.

4.5.3.1 Access Token

The structure of an access token is depicted in Listing 4.6.
1 {
2 "iss": "ace.as-server.com",
3 "iat": 1533296406,
4 "exp": 1533303606,
5 "aud": "tempSensor0",
6 "scope": "read_temperature,post_led",
7 "cnf": (KPoP,pub formatted as COSE Key)
8 }

List. 4.6: Claim set of access token

The key-value pairs in an access token are often referred to as claims. The iss claim
denotes the domain of the authorization server which issued the token. The iat and
exp claims state the time at which the token was issued and the time the token expires
respectively. Both times are denoted in seconds since epoch time. The aud and scope
claims refer to the same values that were requested by the client in the token request.
The cnf claim, as explained in Section 4.5.1, represents the proof-of-possession key that
the authorization server has bound to the access token, as instructed by the client.

The final structure of the access token is formed by including the claim set illustrated in
Listing 4.6 as the payload of a CBOR Web Token as illustrated in Section 4.4.2.

4.5.4 Token Response

As explained in Section 4.4.2, when included in the actual response, the access token will
be encoded as a CBOR map. Furthermore, the authorization server cryptographically
signs the claim set in the access token using its private key IDAS,prv. Since both the client
and resource server have pre-established trust via the public key of the authorization
server IDAS,pub, both entities will be able to cryptographically verify that the access
token was indeed issued by a trusted authorization server, and was not altered in transit.
Since the access token does not contain sensitive information that should not be visible
to other parties, it is not required for the access token to be encrypted. Consequently,
the claim set will be wrapped in a COSE Sign1 structure to form a CBOR Web Token or
CWT, which includes both the claim set and the digital signature.

The access token, encoded as a CBOR web token, will then be placed in the token response
as depicted in Listing 4.7.

1 {
2 "access_token": "..." (omitted for brevity),
3 "token_type": "pop",
4 "profile": "coap_oscore_edhoc",
5 "rs_cnf": (IDRS,pub formatted as COSE Key)

4.5. Protocol Flow 27

6 }

List. 4.7: Token response from authorization server to the client

The token_type parameter in the response object indicates to the client that the access
token included in the response is a proof-of-possession token, rather than a Bearer type
token, as would be the case in OAuth 2.0. In the response object, the authorization
server also includes the profile parameter, which instructs the client to use the specified
security profile when accessing the protected resource on the resource server. In the
example response in Listing 4.7, the security profile chosen by the authorization server is
the coap_oscore_edhoc profile, which is an application layer end-to-end security profile.
We discuss this security profile in Chapter 5.

The last parameter in the token response is the rs_cnf parameter. It includes the public
key of the resource server hosting the protected resource, IDRS,pub. The client will use
this key to authenticate the resource server. It is necessary for the authorization server
to include the resource server’s public key since it is not feasible to pre-configure every
client-resource server combination with each other’s respective public keys.

It is important to note that the client is receiving the above mentioned response over a
confidential and authenticated channel. As a consequence, the client can be certain that
the received key IDRS,pub stated in the rs_cnf parameter is authentic. The authorization
server then sends the response as depicted in Listing 4.7 back to the client, encoded as a
CBOR map.

4.5.5 Client

Upon receiving the authorization server’s response to the token request, the client inspects
the response object and extracts the access token. As mentioned previously, the access
token is a CBOR web token and as such bears the structure of a COSE Sign1 object.
Consequently, the client is able to verify the signature attached to the CWT using the
public key of the authorization server – IDAS,pub – which was pre-installed on the client
in a provisioning step. If the verification succeeds, the client can be certain that this
particular access token was indeed issued and signed by an authorization server trusted
by the client. It should be noted that while the client is able to inspect the claims in
the access token, it is not able to change any of the claims in the access token, as doing
so would be detectable by the resource server due to the access token’s cryptographic
signature.

Furthermore, the client also takes note of the security profile proposed by the autho-
rization server. In our example, the authorization server instructs the client to use
the coap_oscore_edhoc profile, for which the client requires the public key of the re-
source server associated with the protected resource covered by the access token. The
coap_oscore_edhoc profile requires the client and resource server to establish a secure
context which will then be used to create a secure channel between the communicat-
ing parties. To successfully establish such a context, the client is required authenticate
the resource server before accessing the protected resource in order to confirm that the
client is only accessing resource servers trusted by the authorization server. Omitting this

4.5. Protocol Flow 28

step could result in the client accessing tampered information from potentially malicious
resource servers.

4.5.5.1 Token Upload

Before the client performs a request to the protected resource, it needs to upload the
access token to the resource server. This step is required since the access token contains
the proof-of-possession key that was bound to the access token, which will be used by
the resource server to authenticate messages from the client to establish a secure context
between the client and the resource server. We have illustrated the process of accessing
a protected resource on the resource server in Figure 4.4.

Resource Access

Client Resource
Server

Establish Secure Context

Token Upload

Secure Context Secure Context

Fig. 4.4: Access to protected resource

To this end, the client sends the token to the /authz-info endpoint offered by the
resource server, which is required to perform additional processing of the access token.

4.5.6 Resource Server

Once the resource server has received the access token from the client, it verifies the
signature of the access token using the provisioned public key of the authorization server,
IDAS,pub. By doing so, the resource server is able to confirm that the access token was
issued by a trusted authorization server and that it has not been altered by either the
client or any other party on the network.

It is important to note that the /authz-info endpoint of the resource server is not
protected by any security scheme, given that said endpoint allows the client and resource
server to establish a secure channel in the first place.

If the resource server verified the authenticity and integrity of the access token, it inspects
the token’s aud and scope parameters to check whether the requested audience matches
the audience assigned to this resource server and whether the requested scopes are valid
with respect to the requested resource.

The process of uploading access tokens prior to requesting the protected resource is in
direct contrast to how access tokens are used in OAuth 2.0. In OAuth, the access tokens

4.5. Protocol Flow 29

are sent along with every request to a protected resource, usually as an HTTP header.
In the ACE framework, clients interested in accessing protected resource on a resource
server would upload their respective access token only once, assuming that the tokens
are still valid. This further reduces the message size of the requests to the protected
resources.

Resource servers running on constrained devices have to work with a potentially very
limited amount of memory such that it may not be possible for the resource server to
store multiple access tokens due to these memory restrictions. As a consequence, the ACE
framework requires a resource server implementation to store at least one access token
[1, p. 33]. While our Python resource server implementation can store multiple access
tokens, the embedded resource server implementation is only able to store a single access
token. Even though the platform our embedded resource server is running on would al-
low for multiple tokens to be stored, storing a single token is closer to the behavior of an
implementation running on an even more constrained device. As a result of only being
able to store a single token, the resource server is unable to maintain concurrent com-
munication sessions with multiple clients. The clients would need to access the resource
on the constrained resource server in succession, uploading their respective access token
prior to the resource request.

4.5.6.1 Resource Request

After the access token has been uploaded to the resource server by the client, both parties
have established the cryptographic keys necessary to establish a mutually authenticated
and secure channel necessary for accessing the protected resource. We have illustrated
the state of knowledge about the client’s and resource server’s keys in Figure 4.5.

Client Resource Server
IDAS,pub
KPoP,pub
KPoP,prv
IDRS,pub

IDAS,pub
KPoP,pub
KPoP,prv
IDRS,pub
IDAS,pub
KPoP,pub
KPoP,prv
IDRS,pub

IDAS,pub
KPoP,pub
KPoP,prv
IDRS,pub

IDAS,pub
KPoP,pub
KPoP,prv
IDRS,pub

IDAS,pub
KPoP,pub
KPoP,prv
IDRS,pub

Fig. 4.5: Keys established after token upload. The green keys have been established
as part of the protocol flow up to the point where the access token has been
uploaded to the resource server. The blue keys have been provisioned prior to
the protocol flow.

After uploading the token to the resource server, the client is able to authenticate messages
from the resource server using the resource server’s public key – IDRS,pub – which the client
has received from the authorization server as part of the response for the initial access
token request. The client can confirm the authenticity of IDRS,pub since it has received said
key over a secure channel with a trusted authorization server. Furthermore, the resource
server is able to authenticate messages from the client using the proof-of-possession key
generated by the client, KPoP,pub.

The fact that both parties can authenticate each others messages allows them to establish
a secure context. In the implemented security profile, this secure context is composed of a

4.5. Protocol Flow 30

symmetric key and initialization vector which will then be used to symmetrically encrypt
the request and response to the protected resource. The client and resource server will
only be able to agree on a key if the client can demonstrate the possession of the private
proof-of-possession, KPoP,prv, during the establishment of the secure context. We discuss
the establishment of this secure context in the following chapter.

Once the client and resource server have established a secure context, communication
between the client and resource server is confidential. Thus, the client performs the
actual request to the protected resource at the appropriate URI. The client will encrypt
the parameters of the request using the security context obtained in the previous step.

Upon reception of the request to the protected resource, the resource server use its security
context to decrypt the request parameters and retrieve the token that was previously
uploaded by the client. The resource server then checks whether the client is allowed to
access the resource at the requested URI by inspecting the scope parameter in the access
token. If the client is approved to access the resource, the resource server returns the
resource encrypted using the established security context, which the client will be able to
decrypt using its security context.

4.5.6.2 Introspection

The access token depicted in Section 4.5.3.1 are self-contained, meaning that the access
token’s payload contains all the authorization information associated with that access
token. The benefit of self-contained tokens is that the resource server can inspect all the
authorization claims contained in the access token without the help of any third party.

In some cases, however, the resource server is a highly constrained device incapable of
inspecting access tokens. For such devices, the ACE framework proposes an alternative
protocol flow where the access token issued by the authorization server is a simple string
or number referencing the authorization information stored on the authorization server.
With the authorization claims stored on the authorization server, whenever a client up-
loads a referential token to the resource server, the resource server will introspect the
access token with the help of the authorization server. This introspection flow is also
depicted in Figure 4.1. Before sending a response back to the client, the resource server
sends the referential token to the introspect endpoint of the authorization server. The
authorization server retrieves the authorization claims associated with the provided ref-
erence and checks whether the claims are valid for the requesting resource server. If the
token is valid and active, the authorization server responds with a successful message and
also includes the proof-of-possession key that the resource server will use to authenticate
the client during the establishment of a secure context.

In our implementation, we only have limited support for referential tokens. While we
have an implementation for the introspect endpoint at the authorization server, there
is currently no possibility to have the authorization server issue referential tokens.

5
Security Profile

In this chapter, we take a detailed look at the security profile we implemented to secure
the communication between the client and resource server while accessing a protected
resource.

5.1 Requirements and Considerations

As stated in Chapter 3, the OAuth 2.0 specification requires certain interactions between
the client, authorization server and resource to be secured by HTTPs. HTTPs is an
application layer protocol which uses the transport layer security (TLS) protocol to en-
crypt messages exchanged between entities. In simple terms, the TLS protocol employs
an asymmetric key exchange scheme, where the client and server agree on a symmetric
key to be used for encryption. The public keys exchanged during the protocol are au-
thenticated using digital certificates issued by certificate authorities as part of a public
key infrastructure (PKI).

While this rigid approach to security works well in an environment where all commu-
nicating nodes are always connected to the Internet, and thus the PKI, and all nodes
are computationally capable enough to support the cryptographic operations required
in TLS, constrained nodes in IoT networks require more flexiblity with respect to the
available processing power and their supported transport protocols.

The ACE framework addresses this need for flexibility and introduces the concept of
profiles that can be implemented by the ACE entities according to their networking
and processing capabilities. While the use of HTTPs is no longer mandatory, the ACE
framework still requires these profiles to state how they protect communication between
ACE entities. The following interactions all are required to be encrypted and integrity
protected:

• The token request and response between client and authorization server

• The request and response to the protected resource between client and resource
server

Additionally, all these interactions are required to be mutually authenticated. Mutual
authentication for the token request is achieved, as stated in Section 4.5.1, by the client

31

5.2. Object Security for Constrained Restful Environments (OSCORE) 32

presenting its client credentials to the authorization server, while the client authenticates
the authorization server using the provisioned public key of the authorization server. Sim-
ilarly, during the request to the protected resource, the client authenticates the resource
server using the resource server’s public key that the client received from the authoriza-
tion server. The resource server authenticates the client as part of the proof-of-possession
scheme, using the PoP key bound to the access token the client uploaded to the re-
source server. Due to this reason, an ACE profile is required to incorporate support for
a proof-of-possession scheme.

At the time of writing this report, there are drafts for two profiles intended for use in an
ACE authorization flow.

DTLS
The Datagram Transport Layer Security (DTLS) profile proposed by Gerdes et.
al. in [17] uses the CoAP protocol secured by datagram transport layer security
(DTLS). DTLS is an adaption of TLS designed to use UDP as its transport protocol
instead of TCP. While very similar to HTTPs in OAuth2.0, the use of CoAP as
the application layer protocol and DTLS as secure transport protocol reduces the
message overhead and size significantly.

OSCORE
Proposed by Seitz et. al. in [16], the Object Security for Constrained RESTful
Environments (OSCORE) profile is an application layer security protocol that pro-
vides end-to-end security between the communicating parties. As an application
layer protocol, OSCORE is agnostic to the underlying transport protocol. While
the specification in [16] is targeted to CoAP, OSCORE can be used with HTTP as
well.

For this project, we chose to implement a security profile that builds upon the foundations
of the OSCORE profile.

5.2 Object Security for Constrained Restful
Environments (OSCORE)

OSCORE, as proposed in the IETF draft, was designed to address the shortcomings of
DTLS in network deployment environments with proxy nodes. As the draft suggests in
[16, p.4], these proxies are intended to increase efficiency and scalability, but require the
security offered by DTLS to be suspended for the proxy operation. This poses a potential
security risk as a compromised proxy node can inspect or even change messages sent to
the proxy.

OSCORE offers full end-to-end security while still allowing proxy operations. For the
CoAP protocol, it encrypts message payload as well as all options (which are the equiva-
lent of HTTP headers) which are not relevant for proxy processing. While the OSCORE
specification was written with CoAP as the underlying application layer protocol, in our
project, we use OSCORE with HTTP instead of CoAP. We are not aware of any IETF
drafts or specification that cover the use of OSCORE with HTTP. Thus, we opted to

5.2. Object Security for Constrained Restful Environments (OSCORE) 33

adapt the core mechanisms introduced in OSCORE and implement a custom application
layer security scheme suitable for HTTP.

5.2.1 Overview

The OSCORE protocol allows two communicating endpoints to establish a confidential
channel where the messages exchanged between the endpoints are encrypted using a
symmetric encryption scheme. As discussed in Section 2.3, symmetric encryption requires
the two communicating parties to agree on a set of cryptographic parameters in order for
the encryption scheme to be carried out successfully. While the OSCORE specification
itself does not specify how the two parties establish the common keying material, it does
suggest that constrained implementations use Ephemeral Diffie-Hellman Over COSE, or
EDHOC. EDHOC is an asymmetric key exchange protocol that uses the COSE message
format to derive cryptographic keys which can then be used to symmetrically encrypt
OSCORE messages. In Figure 5.1, we illustrate how EDHOC is used to derive a set of
parameters which are then used in the OSCORE protocol to actually encrypt the message
exchange between a client and a server.

Client

▪ Master Secret
▪ Master Salt
▪ Sender ID
▪ Recipient ID

Server

▪ Master Secret
▪ Master Salt
▪ Recipient ID
▪ Sender ID

EDHOC

OSCORE

Fig. 5.1: Establishment of an OSCORE security context using EDHOC

In our implementation, we use EDHOC to establish a master secret, master salt and a
respective sender ID and recipient ID for both the client and server. The master secret
and master salt are shared by both parties, where as the sender ID and recipient ID
are mutually mirrored for the client and server. These parameters will be used in the
OSCORE protocol to derive content encryption and decryption keys which are then used
to encrypt the message traffic between the client and server.

In the following section, we will further discuss how OSCORE secures traffic between a
client and a server. We give a detailed account of how we use EDHOC to establish the
cryptographic parameters required by OSCORE in Section 5.3.2

In order to understand the mechanisms and parameters used in OSCORE, we deem it
helpful to first introduce two cryptographic algorithms we used in our implementation.

5.2. Object Security for Constrained Restful Environments (OSCORE) 34

Advanced Encryption Standard The Advanced Encryption Standard or AES is a sym-
metric block cipher used to encrypt a plaintext byte string with the goal to completely
transform said plaintext into an obscure ciphertext. The operations carried out by AES
can be written as

C = AES(P,K, IV) (Encryption) (5.1)
P = AES(C,K, IV) (Decryption) (5.2)

where C is the ciphertext, P is the plaintext and K and IV are the encryption key and
initialization vector (IV) respectively.

As a block cipher, AES is applied to the plaintext by separating the plaintext into equal
sized blocks of 128 bits or 16 bytes. To encrypt a plaintext of arbitrary length, AES
is coupled with a mode of operation which specifies how the cipher is applied to each
block of the plaintext [22, p.124-135]. In our implementation, we use the Counter with
CBC-MAC (CCM) mode of operation which provides us with authenticated encryption (AE).
In addition to confidentiality, authenticated encryption also provides authenticity and
integrity for the encrypted ciphertext. Thus, the receiver of the encrypted ciphertext
C can verify that it has not been tampered with during transit on the communication
channel and that C was sent by a party in possession of the encryption key K.

The CCM mode of operation, as a version of the general counter mode of operation,
encrypts each block by applying the AES cipher on a combination of a random nonce
and a successively increased counter value. The random nonce is set to the initialization
vector (IV) value passed to the AES function. For each block, the counter is increased to
the next value and combined with the initialization vector. This combined value is then
used to encrypt each plaintext block to produce the final ciphertext.

Since the CCM mode of operation turns the application of AES into a stream cipher
[4, p. 233, Remark 7.25], AES in CCM mode is vulnerable to attacks where the same
key stream is used more than once to encrypt different plaintexts. The key stream is
determined by the encryption key K and the initialization vector IV . If an attacker
gets access to ciphertexts which were encrypted with the same key-IV pair (K, IV) and
thus the same key stream, the attacker will be able to correlate the plaintexts without
having to compute the encryption key [5, p. 255, Section 11.2.1]. As a consequence,
using the CCM mode of operation with a constant encryption key K, every message to
be encrypted must be encrypted with a different initialization vector. For this reason,
initialization vectors are often also called a nonce. It is important to note that in contrast
to the encryption key K, the initialization vector is not secret and can be transported in
the clear.

Key Derivation Function A key derivation function or KDF is a cryptographic opera-
tion which allows keys to be derived from other keys. Key derivation functions are often
used to derive strong cryptographic keys from short passwords or weak keys in order to
increase the time spent by attackers in simple brute-force attacks.

5.2. Object Security for Constrained Restful Environments (OSCORE) 35

In OSCORE, a key derivation function called HKDF, or HMAC based KDF is used to derive
encryption and decryption keys from a master secret. A key derivation using HKDF can
be formalized as

Ko = HKDF(Ki, L, S, info)

where Ki is the input keying material, Ko is the derived key, S is a random byte string
called salt and info is application specific byte string. The salt parameter is similar in
function to the IV parameter in AES in that it is used to strengthen the output keying
material. However, while an initialization vector must only be used once, the salt param-
eter used in HKDF can be reused multiple times. The info parameter is an additional
source of entropy for the output keying material and is usually a byte representation of
application specific data related to the derived key.

5.2.2 Protocol

The OSCORE protocol provides confidential communication between two endpoints. It
employs a symmetric encryption scheme where the encryption and decryption keys to-
gether with other required cryptographic parameters are derived from a security context.
We have depicted the composition of the security context in Figure 5.2.

Security Context

Common Context

▪ Master Secret
▪ Master Salt
▪ → Common IV

Sender Context

▪ Sender ID (SID)
▪ → Sender Key
▪ Sender Sequence Number

Recipient Context

▪ Recipient ID (RID)
▪ → Recipient Key

Fig. 5.2: Composition of an OSCORE security context

The security context is comprised of a common context, which is shared by both OSCORE
endpoints. This common context is used by the respective communication parties to
derive a sender context and recipient context, which will then be used to encrypt and
decrypt messages exchanged in the OSCORE protocol using a symmetric encryption
algorithm.

It is important to note that both OSCORE endpoints, henceforth called client and server,
have both a sender and recipient context. In order for symmetric encryption to succeed,
the recipient context of the server has to match the sender context of the client, and vice
versa.

In OSCORE, the client and server both encrypt their messages using their respective
sender context. To decrypt the received messages, the receiving party must derive an
appropriate recipient context matching the sender context used by the other party to
encrypt the message. To this end, we assume that both the client and server have been

5.2. Object Security for Constrained Restful Environments (OSCORE) 36

assigned their respective sender ID (SID) parameter which is part of the endpoint’s
sender context.

We have depicted the protocol in Figure 5.3.

Client Server

Common Context

Sender Context
SID

Recipient Context
RID = kidOSCORE Request

OSCORE ResponseRecipient Context
RID

Sender Context
SID

kid = SID

Fig. 5.3: OSCORE Message exchange protocol

The client encrypts its raw request with its sender context and sends the resulting en-
crypted OSCORE request to the server. Attached to the encrypted message, the sender
also includes its sender ID SID. Upon reception of the OSCORE request, the server ex-
tracts the SID parameter from the request. At the server’s side, the client’s SID becomes
the server’s recipient ID RID. The server retrieves the security context which corresponds
to the extracted RID and derives a recipient context which can then be used to decrypt
the incoming request from the client.

In order to send a response, the server encrypts its raw response body using a sender
context derived from its sender ID SID for the given client and transmits the resulting
OSCORE response to the client. To conclude the protocol, the client uses its recipient
context for the server and decrypts the OSCORE response.

The security contexts mentioned in the above mentioned protocol are composed of a
certain set of cryptographic parameters required to encrypt or decrypt an OSCORE
message, which we explain in the following section.

5.2.2.1 Security Context

Common Context The common context consists of a set of parameters shared by the
sender and recipient of an OSCORE message. In our implementation, this common
context consists of the following parameters:

• master secret (henceforth referred to as KMS)

• master salt (henceforth referred to as SMS)

• common initialization vector (common IV, henceforth referred to as IVcommon)

5.2. Object Security for Constrained Restful Environments (OSCORE) 37

The master secret KMS and master salt SMS are used to derive parameters for both the
sender and recipient context. Additionally, the master secret and master salt are used to
derive a common initialization vector (IV) which is also part of the common context.

As mentioned in Section 5.2.1, OSCORE does not specify how the master secret and
master salt are established between the two parties. In our implementation, the common
context is derived as part of the EDHOC key exchange protocol utilizing a proof-of-
possession scheme facilitated by the access token. We give more details on the imple-
mented key exchange protocol in Section 5.3.2.

We should note that the OSCORE profile specification lists many more parameters that
are part of the common context, such as the specific encryption algorithm to use or the
type of function used to derive keys. However, in our implementation, these parameters
are implicitly part of the common context, since all parties use the same encryption
algorithm and key derivation function for OSCORE related operations.

Sender Context The sender context consists of the following parameters:

• sender ID

• sender key

• sender sequence number

The sender ID or SID parameter identifies the sender in an OSCORE protocol. This
parameter can provisioned by a mediating party such as an authorization server, or al-
ternatively, the sender ID is established as part of the key exchange protocol executed
to create the common context.

The sender key is a symmetric encryption key the sender uses to encrypt all its OSCORE
messages. It is derived from the common context and sender ID parameter by using a
key derivation function.

KS = HKDF(KMS, L, SMS, info)

where KS is the derived sender key, KMS is the master secret of the common context,
L is the desired length of KS, SMS is the master salt and info is an the byte string of
an encoded CBOR array containing parameters specific to the derived key [15, p. 11].
To derive a 16 byte sender key, we would have info = [SID, 10, "Key", 16] with the
number 10 denoting the identifier of the encryption algorithm.

As previously discussed, using the same encryption key multiple times for different mes-
sages can result in the plaintext being retrieved from the ciphertext. To counter this
attack vector, the sender generates a new initialization vector for each encrypted OS-
CORE message sent to the recipient. To generate this initialization vector, the sender
keeps track of a sender sequence number which is increased by the sender with every
OSCORE message sent to the recipient. The sender sequence number combined with the
master salt from the common context and the sender ID of the sender context to generate
a unique nonce that will be used as an initialization vector for every encrypted OSCORE
message. Assuming a sender sequence number of n, the initialization vector would be

5.2. Object Security for Constrained Restful Environments (OSCORE) 38

IVn = (len(id) ‖ id ‖n)⊕ IVcommon

where id is the sender ID, len(id) is the byte length of the sender ID and IVcommon is
the common IV from the common context [15, p. 24]. The ‖ symbol denotes byte string
concatenation, and the ⊕ operator denotes a byte-wise xor operation. For brevity, we
have omitted the necessary padding operations on some of the parameters.

Once the sender key KS and IVn have been computed, the sending party can encrypt its
OSCORE message.

Recipient Context In order for the receiving party to decrypt the message, it first has
to retrieve a recipient context associated with the sending party. The recipient context
is used by an OSCORE endpoint to decrypt an OSCORE message. It comprises the
following parameters:

• recipient ID

• recipient key

The recipient ID or RID identifies the recipient in the OSCORE protocol. Similar to
the sender ID parameter of the sender context, this parameter is established using the
EDHOC key exchange mechanism executed prior to the OSCORE protocol. The recipient
key is the symmetric key derived from security context used to decrypt an OSCORE
message. It can be derived from parameters of the other contexts as follows:

KR = HKDF(KMS, L, SMS, info)

where KR is the derived recipient key and info = [RID, 10, "Key", 16] encoded as
a CBOR array [15, p. 11]. It is evident that the sender’s encryption key KS and the
recipient’s decryption key KR are the same as long as the SID of the sender’s sender
context matches the SID of the recipient’s recipient context.

To decrypt the OSCORE message, the recipient also has to derive the initialization vector
used by the sender in the encryption process. To that end, the recipient also computes

IVn = (len(id) ‖ id ‖n)⊕ IVcommon

where n is the sender sequence number and id is the recipient ID[15, p. 24]. The sender
sequence number is not part of the recipient context, so the sender has to include said
number as an unencrypted parameter in the request.

Once the recipient has derived the decryption key KR and the initialization vector IVn,
it is able to decrypt the OSCORE message sent by the sending endpoint.

5.3. Ephemeral Diffie-Hellman over COSE (EDHOC) 39

5.2.2.2 OSCORE Message

OSCORE uses the cryptography primitives provided by the COSE standard. As such,
the encrypted OSCORE message uses the COSE Encrypt0 structure as a wrapper for
the encrypted data, which is a CBOR encoded array containing three elements:

1 [
2 b’’ // zero length map,
3 {
4 kid: sender ID,
5 piv: sender sequence number
6 },
7 ciphertext
8]

List. 5.1: OSCORE message encoded as CBOR array

As indicated in the previous section, the encrypted OSCORE message must include the
sender’s sender ID and sender sequence number in order for the recipient to be able to
retrieve an appropriate security context capable of decrypting the encrypted payload. It
is important to note that both of these parameters are sent as values in the unprotected
header field of the COSE Encrypt0 structure, meaning that these parameters are not
encrypted and therefore can be read without knowing the decryption key. If these pa-
rameters were encrypted, the recipient would not be able to retrieve a matching security
context.

While the kid and piv parameters are sent unencrypted, we still need to make sure that
these values are not tampered with by an attacker. For this reason OSCORE relies on
the symmetric encryption algorithm to provide integrity as well as confidentiality. This
is achieved by using an authenticated encryption cipher which offers the possibility to
supply additionally authenticated data (AAD) to the encryption algorithm. These au-
thenticated data will be used to produce a message authentication tag that is appended
to the encrypted ciphertext. The authentication tag can then be used by the decrypting
party to detect whether the ciphertext itself or the additionally authenticated data trans-
mitted along with the ciphertext have been changed by an attacker on the communication
medium.

When OSCORE is used with CoAP as defined in [15], the plaintext to be encrypted
covers almost all of the CoAP options, which are similar to HTTP headers. Thus, even
the URL of the request or the request method are integrity protected or even encrypted.
In our implementation, where we use HTTP instead of CoAP, we have decided to encrypt
solely the payload included in a request or response. In contrast to OSCORE with CoAP,
this results in the URL path, HTTP method code and other potentially sensitive header
values to be sent in plain text. Attackers on the same medium may be able to read and
alter these values.

5.3 Ephemeral Diffie-Hellman over COSE (EDHOC)

The OSCORE profile specification does not specify how endpoints establish the required
parameters of their respective security context. In small networks, where the number

5.3. Ephemeral Diffie-Hellman over COSE (EDHOC) 40

of client-server combinations is limited, it may be feasible to pre-establish these security
contexts. However, in networks where many clients can connect to a large number of
servers, it is preferable to establish security contexts dynamically.

For this reason, the OSCORE specification suggests that implementations for constrained
devices use an asymmetric key exchange protocol based on the Diffie-Hellman key ex-
change protocol. The Diffie-Hellman protocol allows two communicating parties to agree
on a symmetric key, or shared secret, only by exchanging the public part of asymmetric
keys.

Ephemeral Diffie-Hellman over COSE (EDHOC), as proposed by Selander et. al. in
[14], is a protocol designed for constrained devices and implements a Diffie-Hellman key
exchange where the messages exchanged between the parties are encoded as COSE ob-
jects. EDHOC employs an elliptic curve Diffie-Hellman (ECDH) key exchange scheme,
meaning that the keys exchanged during the protocol are points on an elliptic curve. In
the following section, we state how two communication parties can derive a shared secret
using elliptic curve cryptography.

5.3.1 Diffie-Hellman Key Exchange with Elliptic Curve
Cryptography

As a form of asymmetric cryptography, elliptic curve cryptography is based on the math-
ematical properties of a finite group of elements spanned by points on an elliptic curve
along with an additive operation. Points P on an elliptic curve satisfy the curve equation
y = x3+ax+ b, where x and y are the coordinates of point P and a and b are parameters
defining the shape of the elliptic curve . Along with other properties, points on an elliptic
curve can be added to each other such that the resulting point is again a point on the
elliptic curve [22, p. 242]. Additionally, a scalar multiplicative operation is defined where
a point P on a curve is repeatedly added to itself, formally

n times︷ ︸︸ ︷
P + P + P + · · ·+ P = nP

The security of the elliptic curve cryptosystem is built on the observation that for a
chosen value of n with Q = nP , where Q and P are points on an elliptic curve, it is
computationally very expensive to retrieve n if Q and P are known and n is very large
[22, p. 247].

The abovementioned properties of points on an elliptic curve allow us to implement a
Diffie-Hellman key exchange using elliptic curve points.

Suppose two parties A and B want to establish a shared secret s using elliptic curve
cryptography. To this end both parties first have to agree on a set of parameters such
that both parties use the same elliptic curve. This involves agreeing on a generator G,
which is a point on the elliptic curve which can be used to generate any point on the
curve. In practice, there is a large amount of standardized pre-defined curve parameters
which implementations can choose from.

5.3. Ephemeral Diffie-Hellman over COSE (EDHOC) 41

Once A and B agree on the curve parameters to use, both parties compute a key-pair
(Q, d), where d is the private key, Q is the public key and Q = dG. Each party chooses
a large respective d parameter randomly, such that party A ends up with the key pair
(QA, dA) and B with (QB, dB). Both parties are required to keep their randomly chosen
value of dA or dB secret.

To compute a shared secret s, A transports its public key QA to B, whereas B sends its
public key QB to A. A computes the shared secret by computing sA = dAQB and B by
computing sB = dBQA. Due to the associative property of scalar multiplication, we have
sA = dAQB = dAdBG = dBdAG = dBQA = sB. The x-coordinate of sA or sB respectively
is then used as the shared secret s of parties A and B [22, p. 251].

The security of the above mentioned protocol can be further enhanced by generating a
new asymmetric key pair for every session instead of using a single static key pair. The
use of such ephemeral key pairs for every session assures that even if an attacker is able
to obtain a secret key from one session, all other sessions will not be compromised. This
property is known as perfect forward secrecy (PFS).

As stated above, computing d from Q and G with Q = dG is computationally unfeasible.
As a consequence, it is highly unlikely that any other party will be able to retrieve the
private keys dA and dB used by A and B respectively. Furthermore, retrieving the shared
secret sA,B = dAdBG from the exchanged public keys QA = dAG and QB = dBG is
assumed to be as computationally expensive as the problem stated above [22, p. 251].

As in any asymmetric key exchange protocol, the public keys of A and B are required to
be authentic in order to mitigate man in the middle attacks. To this end, the EDHOC
specification extends the key exchange protocol explained above with public key authen-
tication which ties into the proof-of-possession mechanism facilitated by the ACE access
token. We explain this protocol in the following section.

5.3.2 EDHOC Message Exchange for Key Establishment

We explained in Section 5.2.1 and Figure 5.1 how EDHOC is used to derive a security
context for both a client and a server in order for the two parties to be able to communicate
with each other over a channel secured by symmetric encryption. In this section, we
explain how EDHOC ties into the proof-of-possession scheme setup between an ACE
client and resource server and how it establishes a master secret and master salt for the
OSCORE security context which will then be used to secure the resource access from the
client to the resource server.

Prior to making a request to a protected resource, the client has requested an access
token for that protected resource at the resource server. In doing so, the authorization
server issuing that token has bound a proof-of-possession key KPoP,pub to the access token.
The client is the only entity in possession of the private key KPoP,pub associated with the
proof-of-possession key.

After uploading the access token to the resource server, the resource server knows the
proof-of-possession key KPoP,pub as well. Furthermore, the client knows the resource
server’s static public key IDRS,pub which it has received from a trusted authorization
server as part of the response the access token request. The idea of the EDHOC protocol

5.3. Ephemeral Diffie-Hellman over COSE (EDHOC) 42

is to use these two keys, KPoP,pub and IDRS,pub, to authenticate the ephemeral public keys
exchanged as part of the Diffie-Hellman protocol. As a consequence, the key exchange
protocol will only succeed as long as the client can be authenticated by proving that it
is in possession of the private key associated with the proof-of-possession key KPoP,pub

bound to the access token.

In Figure 5.4, we depict the protocol flow between an ACE client and resource server,
after the client has uploaded its access token to the resource server. The EDHOC protocol
involves the exchange of three messages.

Message 1

Message 2

Message 3

Client Resource Server

KPoP,prv

KPoP,pubIDRS,pub KPoP,pub

(QC, dC)
(QRS, dRS)

(QC, dC)

KPMS = (dRS QC)x

KPMS = (dC QRS)x

K2 = HKDF(KPMS, msg1)

K3 = HKDF(KPMS, msg2∥msg1)

K3 = HKDF(KPMS, msg2∥msg1)

K2 = HKDF(KPMS, msg1) {[
kid(KPoP,pub)

]
KPoP,prv

}

K3

QRS,

{[
kid(IDRS,pub)

]
IDRS,prv

}

K2

Fig. 5.4: EDHOC protocol flow, {}K denotes encryption with key K, []K denotes digital
signature with keyK. For brevity, we have omitted the additional authenticated
data and session parameters. Figure adapted from [14, p. 8]

As described in Section 5.3.1, the EDHOC protocol commences with the client generating
an ephemeral key pair (QC , dC) by computing QC = dCG where G is the generator of the
curve agreed upon by both endpoints of the protocol [14, p. 10]. It then sends the public
part QC to the resource server over a still unprotected channel. After the resource server
has received the client’s ephemeral public key QC , it also generates a key pair (QRS, dRS)
by computing QRS = dRSG, where G is the same generator point used by the client.

At this point, the resource server is able to compute a pre-master secret (PMS) KPMS by
computing KPMS = (dRSQC)x. From the pre-master secret, the resource server derives
an encryption key K2 using K2 = HKDF(KPMS,msg1). In this context, msg1 represents a
byte string derived from the contents of the first received EDHOC message and is passed
as the info parameter of the HKDF key derivation algorithm [14, p. 7]. To form EDHOC
message 2, the resource server computes a digital signature for the key identifier of its
static public key IDRS,pub. Since the client may have multiple public keys for different
resource servers, the client may use this identifier to retrieve the correct public key which
it then uses to cryptographically verify EDHOC message 2. The digital signature also
encompasses the resource server’s computed ephemeral public key QRS by including it as
additional authenticated data in the signature generation process. This digital signature

5.3. Ephemeral Diffie-Hellman over COSE (EDHOC) 43

is then symmetrically encrypted with K2 and sent to the client along with the resource
server’s ephemeral public key QRS.

As soon as the client has received EDHOC message 2, it needs to derive the decryption key
K2 in order to decrypt the received message. To that end, it first computes the pre-master
secret by extracting QRS from the received message and computing KPMS = (dCQRS)x.
The client also computes K2 in the same manner as the resource server by deriving it
from the pre-master secret. Once the client has computed K2, it can decrypt the received
message to obtain the digital signature [kid(IDRS,pub)]IDRS,prv

. The client extracts the key
identifier for the resource server’s static public key and retrieves the associated public key
IDRS,pub. Since the client has received this public key prior to the start of the EDHOC
protocol, it can verify the signature and thus authenticate the received ephemeral public
key QRS. From this point on, the server has confirmed that it is communicating with the
resource server in charge of the resource covered by the access token.

As a last step, the client must authenticate itself to the resource server. To this end,
the client derives another encryption key K3 from the pre-master secret. It generates a
digital signature of the key identifier of the proof-of-possession key KPoP,pub. This key
identifier was chosen by the client when it generated the proof-of-possession key and is
included in the access token uploaded to the resource server. Since the resource server
may store multiple access tokens, the resource server will use the key identifier to extract
the correct proof-of-possession key for that particular client. The client then encrypts the
obtained digital signature using K3 to form

{
[kid(KPoP,pub)]KPoP,prv

}
K3

, which then sent
to the resource server as part of the last EDHOC message.

Once the resource server has received EDHOC message 3, it also derives the decryption
key K3 from the pre-master secret in the same manner as the client. It then decrypts the
received message to obtain the digital signature [kid(KPoP,pub)]KPoP,prv

. The resource server
extracts the key identifier from the message and retrieves the access token containing a
proof-of-possession key matching the supplied key identifier. The resource server then
extracts the proof-of-possession key KPoP,pub from the access token and uses this key to
verify the signature of the received third message. If the verification is successful, the
client has demonstrated that it is in possession of the private key associated with the
proof-of-possession key bound to the access token and is considered authenticated to the
resource server.

It is important to note that the EDHOC protocol is terminated as soon as either party
detects that any parameters exchanged over the communication channel has been altered
by an attacker. Any alterations to the exchanged messages during the EDHOC protocol
will result in either party not being able to derive the same encryption or decryption key,
upon which the protocol fails and is terminated[14, p. 24].

OSCORE Security Context Parameters After a successful run of the EDHOC proto-
col described in the section above, the client and resource server end up with a pre-master
secret KPMS and an identifier for both the client and the resource server. To build a com-
plete OSCORE security context as described in Section 5.2.2, the client and resource
server both derive a master secret KMS and master salt SMS from the pre-master secret.
At this point, both the client and resource server have established an OSCORE secu-

5.3. Ephemeral Diffie-Hellman over COSE (EDHOC) 44

rity context capable of encrypting and decrypting messages exchanged while accessing a
protected resource on the resource server.

6
Implementation

In this chapter we give an insight into our implementations of the various protocols and
entities defined in the ACE framework.

6.1 Considerations

As of the time of writing this report, the only implementation of a complete protocol
flow as proposed in the ACE framework is a work-in-progress implementation maintained
by some of the authors of the ACE framework1. Their work covers implementations for
the authorization server and resource server and are written in the JAVA programming
language. Being based in the JAVA ecosystem, the authors can rely on the existence
of a large number of libraries available to them, such as libraries for CBOR, COSE and
CoAP. However, JAVA programs are executed inside of the JAVA runtime environment
which is a virtual machine designed to make the execution of programs independent of
the underlying hardware and operating system.

While executing JAVA programs is effortless for reasonably powerful devices such as
smartphones, constrained nodes found in IoT networks are often far less powerful and
may not even be able to run the JAVA virtual machine. For that reason we have set one
of the goals of this project to implement a resource server on a code basis that is able to
run on very constrained devices.

In order to decide on the feasibility of an implementation for constrained devices, we have
concluded that it is helpful to first write an implementation of all ACE entities (autho-
rization server, resource server, client) in the Python programming language. Given that
there already are a lot of OAuth 2.0 implementations written in Python, and considering
that the ACE framework itself is an extension of OAuth 2.0, we think that a Python im-
plementation could provide a valuable alternative to the JAVA solution proposed by the
ACE authors. The Python implementation also provided us with a lot experience which
we could then profit from when developing the embedded implementation. The source
code and a small setup guide for the Python implementation can be found on GitHub2.

1https://bitbucket.org/lseitz/ace-java
2https://github.com/HappyEmu/ace

45

6.1. Considerations 46

Artifacts As part of this project, we developed a set of three Python libraries all of
which implement a certain set of protocols and entities required to cover a run of the
ACE protocol flow. The libraries and their relations are depicted in Figure 6.1.

ACE Library

Authorization
Server Client Resource

Server

EDHOC
OSCORE COSE

Fig. 6.1: Implemented libraries along with their dependencies on each other.

ACE Library
The ACE library consists of implementations for all three ACE entities, i.e. autho-
rization server, resource server and client.

COSE Library
The COSE library models objects from the COSE standard. This includes CBOR
encoded encryption objects and digital signature objects as well as COSE formatted
keys. This library is used by the ACE library as well as the EDHOC library where
appropriate.

OSCORE / EDHOC Library
The OSCORE / EDHOC library provide classes that implement the EDHOC key
exchange and the subsequent OSCORE message exchange. This library uses COSE
objects provided by the COSE library and is consumed by the ACE library in order
to secure the messages exchanged between the client and resource server.

In Figure 6.2, we have depicted the internal structure of our implemented modules along
with their dependencies on each other.

Third-Party Dependencies As is common with all software, our implementation uses
some third-party libraries that have helped us achieve our goal. All cryptographic algo-
rithms used throughout the ACE framework, such as AES encryption, elliptic key pair
generation, key derivation functions and digital signature algorithms are supplied by the
cryptography Python package, which is a collection of cryptographic primitives imple-
mented in Python. More specifically, cryptography delegates to OpenSSL, which is the
de facto standard for cryptographic computations. Additionally we use the cbor2 li-
brary which provides us with the possibility to encode arbitrary Python objects as binary
CBOR byte strings. Lastly, we use the aiohttp library which offers means and classes
to write an asynchronous HTTP server.

In the following sections, we provide insight into the respective libraries developed for
this project.

6.2. ACE Library 47

OSCORE Context

EDHOC Messages

Message1
Message2
Message3

EDHOC Protocol

Client
Server

Objects
Sign1

Encrypt0

CWT

Key

Authorization Server ClientResource Server

OSCORE / EDHOC LibraryCOSE Library

ACE Library

Fig. 6.2: Internal structure and implemented modules of the Python libraries.

6.2 ACE Library

Our Python implementation of the ACE framework includes classes for all three ACE
entities, authorization server, resource server and client. In the following sections, we
document how consumers of our libraries can setup a full ACE protocol flow by demon-
strating the public programming interface (API).

6.2.1 Authorization Server

Consumers of our library can create a new ACE authorization server as illustrated in
Listing 6.1.

1 # Provision private key of authorization server
2 as_identity = SigningKey.from_der(
3 bytes.fromhex("3077[...]3355")
4)
5

6 server = AuthorizationServer(identity=as_identity)
7

8 # Pre-register resource servers
9 server.register_resource_server(

10 audience="tempSensor0",
11 scopes=[’read_temperature’, ’post_led’],
12 public_key=VerifyingKey.from_der(
13 bytes.fromhex("3059[...]6d7a")
14)
15)
16

17 # Pre-register clients
18 server.register_client(

6.2. ACE Library 48

19 client_id="ace_client_1",
20 client_secret=b"ace_client_1_secret_123456",
21 grants=[
22 Grant(
23 audience="tempSensor0",
24 scopes=["read_temperature", "post_led"]
25)
26]
27)
28

29 server.start(port=8080)

List. 6.1: Authorization server

The first step is to create a new instance of the AuthorizationServer class, which takes
as an input parameter the private key the authorization should use to sign the access
token it issues.

The next step involves provisioning all the resource servers that this authorization server
controls. This can be done by calling the register_resource_server(...) method on
the authorization server instance along with the audience and scopes this resource server
provides. Additionally, the consumer has to provide the static public key of the registered
resource server. The authorization server needs to know this key in order to provide a
connecting client with the resource server’s public key that it should use to authenticate
messages from the resource server.

Furthermore, consumers need to register all clients that are allowed to access protected re-
sources on the registered resource servers. This is done by invoking the register_client(...)
method with the client’s credentials and the grants that this client is allowed to access.
The authorization server will check all incoming token requests against the registered
clients to verify that only registered clients are allowed to request an access token.

As a last step, the now configured authorization server instance can be started by calling
the start method and providing the port number the server should be bound to. From
this point on, the authorization server is ready to respond to incoming token requests
from registered clients.

6.2.2 Resource Server

Consumers can implement their own resource servers by extending the provided ResourceServer
class. An example resource server with two protected scopes is illustrated in Listing 6.2.

1 class TemperatureSensor(ResourceServer):
2

3 def on_start(self, router):
4 super().on_start(router)
5

6 router.add_get(
7 ’/temperature’,
8 self.wrap(scope="read_temperature", handler=self.get_temperature)
9)

10 router.add_post(
11 ’/led’,

6.2. ACE Library 49

12 self.wrap(scope="post_led", handler=self.post_led)
13)
14

15 # POST /led
16 def post_led(self, request, payload, token, oscore_context):
17 data = loads(oscore_context.decrypt(payload))
18

19 print(f"Setting LED value to: {data[b’led_value’]}")
20

21 response = oscore_context.encrypt(dumps(b’OK’))
22 return web.Response(status=201, body=response)
23

24 # GET /temperature
25 def get_temperature(self, request, payload, token, oscore_context):
26 temperature = random.randint(8, 42)
27 response = oscore_context.encrypt(dumps({’temperature’: f"{temperature}C"}))
28

29 return web.Response(status=200, body=response)

List. 6.2: Defining Resources on Resource Server

The binding from the resource’s URL endpoint to the handler is defined in the on_start
method, where consumers state how URLs are mapped to the scope and handler of a
protected resource. The handlers will automatically be invoked with the appropriate
OSCORE security context which can be used by the handlers to decrypt the payload and
encrypt responses.

The defined resource server can then be started as shown in Listing 6.3
1 rs_identity = SigningKey.from_der(
2 bytes.fromhex("3077[...]6d7a")
3)
4

5 as_public_key = VerifyingKey.from_der(
6 bytes.fromhex("3059[...]3355")
7)
8

9 server = TemperatureServer(
10 audience="tempSensor0",
11 identity=rs_identity,
12 as_url=’http://localhost:8080’,
13 as_public_key=as_public_key
14)
15

16 server.start(port=8081)

List. 6.3: Executing Resource Server

To start the resource server, consumers have to create an instance of their resource server
implementation. The constructor of the ResourceServer class requires that consumers
pass the audience the resource server should identify itself with. In order to perform
introspection requests, consumers also have to pass the URL of the authorization server,
as well as its public key which will be used by the resource server to authenticate signatures
and access tokens issued by the authorization server. Furthermore, consumers are required
to provide a static private key whose corresponding public key the other parties use to
authenticate messages from the resource server.

6.2. ACE Library 50

As a last step, we can instruct the resource server start listening by calling the start
method and passing the port number the underlying HTTP server should bind to.

6.2.3 Client

The Client class can be used to access protected resources on resource servers. It models
all interactions with the authorization server as well as the final request to the resource
server. Listing 6.4 shows an example where the authorization server and resource server
started in the previous sections are queried.

1 AS_URL = ’http://localhost:8080’
2 RS_URL = ’http://localhost:8081’
3

4 client = Client(
5 client_id=’ace_client_1’,
6 client_secret=b’ace_client_1_secret_123456’
7)
8

9 # Request access token
10 session = client.request_access_token(
11 as_url=AS_URL,
12 audience="tempSensor0",
13 scopes=["read_temperature", "post_led"]
14)
15

16 # Upload token to RS
17 client.upload_access_token(session, RS_URL, ’/authz-info’)
18

19 # Access temperature resource
20 response = client.access_resource(session, RS_URL + ’/temperature’)
21 print(f"Response: {response}")
22

23 # Update LED resource on RS
24 data = { b’led_value’: 1 }
25 response = client.post_resource(session, RS_URL + ’/led’, dumps(data))
26 print(f"Response: {response}")

List. 6.4: Accessing Resources on Resource Server

Consumers of the ACE library can create a client by instantiating an instance of the
Client class by providing the client credentials that should be used for the created client.
The client will only be able to request access tokens from the authorization server if its
credentials were previously provisioned when creating the authorization server object.

A new session is created as soon as the client requests an access token from the au-
thorization server by calling the request_access_token(...) method on the Client
instance. To said method, the consumer is required to pass the audience the client wants
to access later as well as all scopes that should be covered by the returned access token.
Additionally, the authorization server’s URL needs to be supplied so the client can make
the correct request. If the token request succeeds, the method returns a session object,
which encapsulates all the state that is associated with the returned access token.

As a next step, consumers can actually perform a request to a protected resource by either
calling the access_resource(...) or post_resource(...) method. The former will

6.3. Embedded Resource Server 51

issue a GET request while the latter will POST some data to the resource server. The session
object referring to the obtained access token is used so these requests are performed in
the correct context. The returned response will contain the decrypted response from the
resource server for the accessed protected resource.

Example usage of the COSE and EDHOC libraries can be found in the software docu-
mentation.

6.3 Embedded Resource Server

In addition to the Python libraries mentioned in the sections above, we also provide a
resource server implementation capable of running on a constrained embedded device.
Our embedded resource server implementation is written in the C programming language
and is built against the Mongoose OS IoT development platform3. Similar to the Python
implementation, the source code along with a brief setup guide for the embedded resource
server implementation can be found on GitHub4.

Mongoose OS is composed of a set of tools aimed to facilitate fast development of firmware
for IoT devices. As such, it builds upon the foundations of the Mongoose networking
library5 which provides means to build embedded web servers. We use the network-
ing functionality provided by the Mongoose networking library, which is integrated into
Mongoose OS, to implement our ACE resource server solution. To facilitate encoding
CBOR objects, we have ported the tinycbor library provided by Intel to be compatible
with Mongoose OS. Mongoose OS provides an integrated version of the mbedtls crypto
library written by ARM which provides algorithms and data structures related to cryp-
tographic operations such as encryption and digital signatures. Similar to the Python
implementation, we have developed our own implementations of the COSE and CWT
objects. Additionally, the embedded resource server also supports the establishment of
an OSCORE security context using the EDHOC key exchange protocol.

We run the embedded resource server implementation on a Widora AIR ESP32 devel-
opment board which features an ESP32 system-on-a-chip microcontroller running at 140
megahertz. The ESP32 microprocessor has integrated Bluetooth and Wi-Fi support and
features 520 kilobytes of on-chip random access memory (RAM). With these specifica-
tions, this device would not qualify as a constrained node as defined in [6] since it exceeds
the capabilities of Class 2 constrained nodes. However, as mentioned by the authors of
[6], the classification should only be viewed as rough guidelines.

While the mbedtls library is capable of handling a wide variety of cryptographic opera-
tions using the processing capabilities of the ESP32 microcontroller, we aim to increase
the throughput of the resource server implementation by offloading some of the cryptog-
raphy related computations to a dedicated security chip.

3https://mongoose-os.com
4https://github.com/HappyEmu/ace-rs-mgos
5https://cesanta.com/docs/overview/intro.html

6.3. Embedded Resource Server 52

6.3.1 Secure Element

One challenge for authentication and authorization for devices in IoT networks is the fact
that the network nodes may be physically accessible to malevolent parties. This poses a
serious security risk since attackers may be able to retrieve the private key of asymmetric
key pairs by inspecting the application running on the embedded device with appropriate
tools. In our project, we counter this threat by using a secure element that is capable
of performing cryptographic operations in isolation of the application and is designed to
withstand tampering attempts. By using this secure element in asymmetric cryptographic
operations, the private key never leaves the secure element and is not exposed to working
memory of the application.

In our implementation, we use a ATECC508A crypto element built by Microchip. The
ATECC508A supports elliptic curve cryptography with the P-256 curve and has the ca-
pability to perform computations related to Elliptic Curve Diffie-Hellman (ECDH) which
we cover in Section 5.3.1. Additionally, the crypto element provides means to digitally
sign as well as verify signatures using the Elliptic Curve Digital Signature Algorithm
(ECDSA). We use the secure element to compute the ECDH key exchange mechanism
which is part of the EDHOC key exchange protocol. Furthermore, the embedded resource
server delegates the verification of the access token’s digital signature, as well as all COSE
signature objects that are used during the EDHOC protocol flow, to the secure element.
The application communicates with the ATECC508A crypto element over a two wire
serial I2C protocol.

6.3.2 Assembly

For the embedded resource server, we emulate both a protected resource and an actuator
associated with the resource server. Clients should be able to access the protected resource
from the resource server, as well as update the value of the actuator by means of an ACE
protocol flow. To this end, we have built an assembly where we connect a DHT22 digital
humidity and temperature sensor and an LED to the input and output ports of the
Widora AIR board. The DHT22 is responsible for providing the protected temperature
and humidity resource, where the LED represents a protected actuator value that can
be enabled or disabled. We illustrate a schematic of the assembly in Figure 6.3 and an
image of the actual assembly setup is shown in Figure 6.4

6.3. Embedded Resource Server 53

Widora AIR ESP32

DHT22
Humidity &

Temperature
Sensor LED

ATECC508A
Secure
Element

Fig. 6.3: Schematic view of the assembly of the embedded resource server

Widora AIR

ATECC508A

DHT22

LED

Fig. 6.4: Photograph of the assembled embedded resource server

7
Results

In this chapter, we present the results we obtained from our implementations. We depict
the actual data that is exchanged during an ACE protocol flow while recording and
reporting on the sizes of the messages being exchanged. We compare the obtained message
sizes with messages exchanged in a traditional OAuth 2.0 protocol flow and provide some
basic performance measurements to quantify the speedup gained from using a dedicated
crypto element performing asymmetric cryptography computations.

7.1 Example Request

In this section, we illustrate and decode the actual binary data that are exchanged between
ACE entities during an ACE protocol flow.

7.1.1 Token Request and Response

The client starts by sending a Token Request to the authorization server. The resulting
HTTP request is illustrated in Listing 7.1. It is important to note that for the purpose
of illustration, transport layer security for the communication between the client and
authorization server has been disabled.

1 POST /token HTTP/1.1\r\n
2 Host: localhost:8080\r\n
3 Content-Length: 183\r\n
4 \r\n
5 [
6 a61202086c6163655f636c69656e745f3109581a6163655f636c69656e745f31
7 5f7365637265745f3132333435360c7819726561645f74656d70657261747572
8 652c706f73745f6c6564036b74656d7053656e736f72301819a101585aa50102
9 200121582020d6611e7097d1f0a8c1b8a5cd7f7fd60d089454130df26e613eb2

10 0c08f51e182258208f9a74ef40f470c39c3fd2f892551f171626b43074c28778
11 25e00eed81d4c4ed024d6163655f636c69656e745f3130
12]

List. 7.1: HTTP Request for Token Request

54

7.1. Example Request 55

In this example, the client makes a POST request to an authorization server listening
on the URL localhost:8080. The listing also shows how the client encodes the request
parameters as a CBOR map resulting in a payload size of 183 bytes. The decoded payload
is illustrated in the following listing.

1 {
2 / grant_type / 18: 2, // 2 = "client_credentials"
3 / client_id / 8: "ace_client_1",
4 / client_secret / 9: h’6163655F636C69656E745F315F736563
5 7265745F313233343536’,
6 / scopes / 12: "read_temperature,post_led",
7 / audience / 3: "tempSensor0",
8 / cnf / 25: {
9 / COSE_Key / 1: h’A50102200121582020D6611E7097D1F0

10 A8C1B8A5CD7F7FD60D089454130DF26E
11 613EB20C08F51E182258208F9A74EF40
12 F470C39C3FD2F892551F171626B43074
13 C2877825E00EED81D4C4ED024D616365
14 5F636C69656E745F3130’
15 }
16 }

List. 7.2: Token Request parameters

Listing 7.2 shows the decoded parameters that the client is sending to the authorization
server as part of the initial Token Request. In the example, the client instructs the
authorization server to use the client credentials flow and includes its client credentials
client_id and client_secret. Additionally, we can see how the client wants to access
the read_temperature and post_led scopes on the resource server that identifies itself
with the audience tempSensor0. Lastly, we can also observe the proof-of-possession key
that the client wants the authorization server to bind to the issued access token. This
PoP key is encoded in the cnf parameter of the Token Request parameters. The decoded
version of this key is shown in Listing 7.3.

1 {
2 / kty / 1: 2, // 2 = "Elliptic Curve"
3 / crv / -1: 1, // 1 = "P-256 Curve"
4 / X / -2: h’20D6611E7097D1F0A8C1B8A5CD7F7FD6
5 0D089454130DF26E613EB20C08F51E18’,
6 / Y / -3: h’8F9A74EF40F470C39C3FD2F892551F17
7 1626B43074C2877825E00EED81D4C4ED’,
8 / kid / 2: h’6163655F636C69656E745F3130’
9 }

List. 7.3: Proof-of-Possesion key generated by the client

The PoP key generated by the client is the public part of an elliptic curve key pair as
described in Section 5.3.1. As such, the kty (key type) parameter is set to a CBOR value
that identifies the key as an elliptic curve key. The crv parameter is used to declare
which elliptic curve this public key is an element of. Throughout our implementation, we
use the widely supported P-256 curve proposed by the National Institute of Standards
and Technology (NIST) in [18]. As an elliptic curve public key, the PoP key is a point
on the indicated elliptic curve and thus features both an x and y coordinate, which are
also encoded in the COSE key structure of Listing 7.3. Lastly, the client has assigned

7.1. Example Request 56

a key identifier such that other entities such as the resource server can retrieve the key
associated with the given key identifier. This key identifier is visible as the kid parameter.

As soon as the authorization server has authenticated the client and verified the Token
Request, it issues an access token valid for the requested scopes and returns a response
as defined in Section 4.5.4 whose decoded content is illustrated in Listing 7.4.

1 {
2 / access_token / 19: h’D28443A1012654A104516163652E6173
3 2D7365727665722E636F6D58AFA70171
4 6163652E61732D7365727665722E636F
5 6D061A5B643F16041A5B645B36076431
6 3731300C7819726561645F74656D7065
7 7261747572652C706F73745F6C656403
8 6B74656D7053656E736F72301819A101
9 585AA50102200121582020D6611E7097

10 D1F0A8C1B8A5CD7F7FD60D089454130D
11 F26E613EB20C08F51E182258208F9A74
12 EF40F470C39C3FD2F892551F171626B4
13 3074C2877825E00EED81D4C4ED024D61
14 63655F636C69656E745F313058405581
15 81900163B37FDA76BF598AB51B43B84A
16 DD8692AC1F10A8211E5F6A3A113B4200
17 A13C6FCEB327861A2C096AEFDABB74A0
18 CA533A89CBC4EB982E7B04DB79B4’,
19 / token_type / 20: "pop",
20 / profile / 26: "coap_oscore_edhoc",
21 / rs_cnf / 31: h’A5010220012158206CC41512D92FB03C
22 B3B35BED5B494643A8A8A55503E87A90
23 282C78D6C58A7E3C22582088A21C0287
24 E7E8D76B0052B1F1A2DCEBFEA57714C1
25 210D42F17B335ADCB76D7A024A72735F
26 7075625F6B6579’
27 }

List. 7.4: Token Response parameters

The authorization server instructs the client to use the coap_oscore_edhoc security
profile towards the resource server and indicates that the returned access token is a
proof-of-possession token. The authorization server also returns the resource server’s
public key that the client must use to authenticate messages from the resource server.
Most importantly, the response to the Token Request also includes the issued access
token. As mentioned in Section 4.4.2, the access token is a CBOR Web Token (CWT).
Listing 7.5 shows the decoded CWT.

1 [
2 h’A10126’, // protected header
3 h’A104516163652E61732D7365727665722E636F6D’, // unprotected header
4 h’A701716163652E61732D736572766572 // payload
5 2E636F6D061A5B643F16041A5B645B36
6 0764313731300C7819726561645F7465
7 6D70657261747572652C706F73745F6C
8 6564036B74656D7053656E736F723018
9 19A101585AA50102200121582020D661

10 1E7097D1F0A8C1B8A5CD7F7FD60D0894
11 54130DF26E613EB20C08F51E18225820

7.1. Example Request 57

12 8F9A74EF40F470C39C3FD2F892551F17
13 1626B43074C2877825E00EED81D4C4ED
14 024D6163655F636C69656E745F3130’,
15 h’558181900163B37FDA76BF598AB51B43 // signature
16 B84ADD8692AC1F10A8211E5F6A3A113B
17 4200A13C6FCEB327861A2C096AEFDABB
18 74A0CA533A89CBC4EB982E7B04DB79B4’
19]

List. 7.5: Decoded contents of the CWT access token

The decoded CWT shows the four elements of the underlying COSE Sign1 structure. We
can observe the digital signature computed by the authorization server using its static
private key. This signature can be used by both the client and resource server to verify
that this access token was indeed created by a trusted authorization server, whose public
key they have been pre-configured with. The payload – the third element of the CWT
– carries the authorization claims that the authorization server has bound to the access
token. We illustrate the decoded payload in the following listing.

1 {
2 / iss / 1: "ace.as-server.com",
3 / aud / 3: "tempSensor0",
4 / exp / 4: 1533303606,
5 / iat / 6: 1533296406,
6 / cti / 7: "1710",
7 / scopes / 12: "read_temperature,post_led",
8 / cnf / 25: {
9 / COSE_Key / 1: h’A50102200121582020D6611E7097D1F0

10 A8C1B8A5CD7F7FD60D089454130DF26E
11 613EB20C08F51E182258208F9A74EF40
12 F470C39C3FD2F892551F171626B43074
13 C2877825E00EED81D4C4ED024D616365
14 5F636C69656E745F3130’
15 }
16 }

List. 7.6: Authorization claims included in the access token

In Listing 7.6 we can see the authorization claims that are included in the access token
issued by our authorization server. The access token is valid for accessing protected
resources from the resource server that is associated with the audience tempSensor0 and
is authorizing the client to perform actions covered by the scopes read_temperature and
post_led. We should point out that the encoded proof-of-possession key that was bound
to the access token in the cnf parameter of the access token is the exact same CBOR
byte string that was supplied by the client as indicated in Listing 7.2.

7.1.2 Resource Access

In this section, we inspect the OSCORE messages that are exchanged after the access
token has been uploaded to the resource server and the OSCORE security context has
been established after completing the EDHOC key exchange protocol. The client was
assigned a sender ID of AC60 and a recipient ID of 42C7. The respective IDs are mirrored

7.2. Message Size 58

for the resource server. Since this is the first access to a protected resource, both the
client’s and the resource server’s sender sequence number of their respective sender context
is initialized to zero. In Listing 7.7 we have illustrated the payload sent by the client to
the resource server.

1 [
2 h’’, // protected header
3 { // unprotected header
4 / piv / 6: h’00’,
5 / kid / 4: h’AC60’
6 },
7 h’2EA1E85C29EB473F’ // ciphertext
8]

List. 7.7: OSCORE Request to the protected temperature resource

As discussed in Section 5.2.2.2, an OSCORE message is a COSE Encrypt0 structure. The
unprotected_header map contains the OSCORE sender ID and the sender sequence
number. Since this request is a GET request, the ciphertext does not contain any data and
thus only consists of the authentication tag produced by the authenticated encryption
algorithm.

The OSCORE response to the above request is depicted in Listing 7.8.
1 [
2 h’’, // protected header
3 { // unprotected header
4 / piv / 6: h’00’,
5 / kid / 4: h’42C7’
6 },
7 h’BB310AD937E37D9A8FEAA4B6510D32D9 // ciphertext
8 FB581E64851563A778’
9]

List. 7.8: OSCORE Response to the protected temperature resource

We can see how the kid parameter in the unprotected_header map is set to the resource
server’s sender ID and the resource server’s sender sequence number encoded in the piv
parameter is also set to zero. The decrypted payload in the ciphertext contains the
protected resource { "temperature": "23C" }.

7.2 Message Size

As mentioned in Section 4.3, we use HTTP over TCP to transmit messages between ACE
entities. Since the ACE framework recommends implementations to use the CoAP proto-
col over UDP to further reduce the size of messages being transmitted over the medium,
we have recorded the traffic generated by our implementation using the Wireshark 1 pro-
tocol analyzer with the intent to assess the overhead associated with the HTTP protocol
with respect to the transported CBOR payload. To that end, we measured the size of

1https://www.wireshark.org

7.3. Comparing CBOR and JSON 59

the messages exchanged during the ACE protocol flow. The results are summarized in
Table 7.1.

Message Payload HTTP Packet Overhead Percentage [%]
Token Request 183 355 172 48.5
Token Response 385 536 151 28.2
Token Upload 270 447 177 39.6
EDHOC Msg 1 91 274 183 66.8
EDHOC Msg 2 229 385 156 40.5
EDHOC Msg 3 129 313 184 58.8
Temperature Access 20 196 176 89.8
Response 38 188 150 79.8
Update LED value 32 201 169 84.1
Response 23 178 155 87.1
Total 1400 3073 1673 54.4

Tab. 7.1: Recorded message sizes in Bytes for the message payload and whole HTTP
packet

For every message exchanged during the course of the ACE protocol flow, we have mea-
sured the size of the CBOR payload as well as the size of the HTTP packet that is used
to deliver the CBOR payload. Our results show that around half of the bytes exchanged
between ACE entities can be attributed to HTTP. Most of this overhead is caused by the
text-based HTTP headers, which means there is a lot of opportunity to further reduce
the message size by using CoAP, a binary application layer protocol.

Furthermore, our results also show that the messages exchanged during the protocol flow
are generally very concise, which we attribute to the use of the CBOR encoding format.
To investigate the impact of CBOR, we compare some messages encoded as CBOR with
a similar JSON formatted message in the following section.

7.3 Comparing CBOR and JSON

To assess the impact of using CBOR on the size of the ACE messages, we analyze the
length of the encoded byte string produced by using CBOR as well as using JSON for
the messages exchanged as part of the initial Token Request from the client to the au-
thorization server as well as the access token itself.

Token Request From Listing 7.1 as well as Table 7.1 we can gather that the CBOR
encoded payload for the Token Request from the client to the authorization server results
in a payload length of 183 bytes. From these 183 bytes, 90 bytes can be attributed to
the encoded COSE key structure in Listing 7.3. A JSON equivalent request body is
illustrated in Listing 7.9, where the proof-of-possession key is encoded as defined in the
JSON Web Key (JWK) standard in [19].

1 {

7.3. Comparing CBOR and JSON 60

2 "client_id": "ace_client_1",
3 "client_secret: "ace_client_1_secret_123456",
4 "grant_type": "client_credentials",
5 "aud": "tempSensor0",
6 "scopes": "read_temperature,post_led",
7 "cnf" : {
8 jwk: {
9 "kty": "EC",

10 "crv": "P-256",
11 "kid": "my_key",
12 "x": "1oSTcY2vQbPpLR0iPs2S6tZ0plwQSuAUfp8towGAOt8",
13 "y": "V_ZUtQPvV6HP6wPbAqaQjdhRmuVxL3ucA6pWEgaYUMk",
14 "alg": "ES256"
15 }
16 }
17 }

List. 7.9: Token Request parameters encoded as JSON

This JSON encoded version of the request parameters requires 419 bytes to be encoded.
With only 183 bytes, the CBOR encoded parameters are 56.3% smaller.

Access Token Since the access token needs to be stored by the resource server, the size
of the access token is of great importance for devices which are limited with respect to
memory capacity. The use of small access tokens results in the resource server being able
to store more access tokens without the client having to re-upload the access token. As
suggested by the ACE framework, the tokens issued by our authorization server imple-
mentation use a CBORWeb Token to encode the authorization claims, which is illustrated
in Listing 7.5. In conventional OAuth 2.0 using the JSON format, many implementations
chose to use JSON Web Tokens whose format is defined in [20]. We illustrate a JWT
that contains the same authorization claims as the CWT used in our implementation in
Listing 7.10.

1 {
2 "alg": "ES256",
3 "typ": "JWT"
4 }
5 {
6 "iss": "ace.as-server.com",
7 "iat": 1533296406,
8 "exp": 1533303606,
9 "cti": "1710",

10 "aud": "tempSensor0",
11 "scopes": "read_temperature,post_led",
12 "cnf": {
13 "jwk": {
14 "kty": "EC",
15 "crv": "P-256",
16 "kid": "my_key",
17 "x": "1oSTcY2vQbPpLR0iPs2S6tZ0plwQSuAUfp8towGAOt8",
18 "y": "V_ZUtQPvV6HP6wPbAqaQjdhRmuVxL3ucA6pWEgaYUMk",
19 "alg": "ES256"
20 }
21 }

7.4. Timing and Performance Measurements 61

22 }

List. 7.10: JSON Web Token with equivalent claim set compared to a CWT

Signed with an elliptic curve key using the NIST P-256 curve, encoding this signed JWT
produces a byte string of 542 bytes. In contrast, the CWT listed in Listing 7.5 only
requires 270 bytes, resulting in a reduction of 50.2%. This result suggests that resource
servers can store twice as many access tokens if the access tokens are encoded using
CBOR instead of JSON.

7.4 Timing and Performance Measurements

To get an estimate for the performance that we can expect from our embedded resource
server implementation, we have measured the time it takes to process some messages
exchanged during the ACE protocol flow. We have summarized the obtained timing
measurements in Table 7.2.

Context Duration [ms] Action Duration [ms]
Token Upload 240 Verify CWT Signature 233

EHOC MSG 1 547

Generate ECDH Key 128
Compute Shared Secret 74
Sign MSG 2 183
Encrypt MSG 2 1

EDHOC MSG 3 342 Decrypt MSG 3 3
Verify MSG 3 Signature 172

Setup OSCORE Context 205 — —

Tab. 7.2: Measured duration in milliseconds (ms) of certain actions performed by the
embedded resource server.

We should note that the durations measured for the actions performed in a specific context
do not necessarily sum up to the duration measured for the whole context. The actions
only cover cryptographic computations whereas the durations for the whole context also
includes time spent encoding and decoding CBOR objects or memory management.

We can see how most of the time is spent to setup the shared secret within the context
of the EDHOC key exchange protocol. This is expected since this part of the message
exchange requires a lot of asymmetric cryptography computations to be performed. Even
with the hardware acceleration provided by the secure element, these operations can take
around 200 milliseconds to complete.

In contrast, encrypting and decrypting messages using AES is very fast. We measured
around one millisecond for encryption and three milliseconds for decryption. While we
expected symmetric encryption as provided by AES to be fast, these measured durations
are exceedingly short. This can be explained by the fact that the ESP32 microproces-
sor our embedded implementation is running on has special cryptographic hardware to
accelerate AES encryption and decryption.

8
Outlook

In this chapter we present some usage examples that show how our implemented solution
could be used in a production environment as well as some opportunities for future work.

8.1 Possible Implementations and Deployment
Example

As of the time of writing this report, our implementation of the entities encompassed by
the ACE framework primarily exists as a collection of software libraries. We currently do
not offer an end-to-end solution that can be deployed by an end user in a simple manner.

In order to provide such a solution, we would have to implement a comprehensive pro-
visioning software to replace the large amount of manual provisioning required by the
current implementation. This provisioning software would provide means to register re-
source servers through an easy to use user interface and would configure the resource
server with the required cryptographic properties. As such, the provisioning tool would
pre-establish trust between the configured resource server and authorization server by ex-
changing their respective public keys. Such a software could be realized with the libraries
developed in the context of this project.

Given the existence of a comprehensive provisioning software, we can imagine our im-
plementation being used wherever there is a need for granular and controlled means of
authorization for resources residing on constrained devices. In the following paragraph,
we explore a usage example for the case of home automation.

Home Automation Home automation involves the installation of sensors and actuators
throughout the living area. The sensors measure temperature, humidity, air quality or
other values related to air quality or security in different parts of the living space. These
sensors are attached to networking capable devices which inspect the values measured
by the attached sensors and expose an endpoint for clients to access these values. Thus,
these devices act as ACE resource servers. Similar to sensors, resource servers could
expose endpoints to control actuators. For example, there could be actuators to control
the lighting in different rooms or to raise and lower the window blinds.

62

8.2. Future Work 63

All these sensor values and actuators are made accessible through multiple clients. One
client could be a web server hosting a web page where all the sensor and actuator values
can be visualized and changed. Other clients could be running on a user’s smartphone
or tablet. Only registered clients are authorized to access the resources associated with
the sensors and actuators in the network. The security offered by the ACE profile would
prevent unauthorized access to these protected resources even if an attacker is physically
connected to the same network.

8.2 Future Work

On the basis of the work established as part of this project, there is a lot of opportunity
to extend and improve on our findings.

Discovery In our implementation, the client implicitly knows how to access a protected
resource on a certain resource server. In a real deployment scenario, the client would
need a way to discover the protected resources available in the network. Additionally,
the client also would need to discover the authorization server in charge of issuing an
access token for a particular protected resource. Shelby et. al. propose the use of a
Resource Directory in [21]. This resource directory can be queried by clients to retrieve
the available resources along with their descriptions.

Grant Types As the ACE framework continues to be enhanced, more grant types may
be integrated into the authorization flow. Our current implementation only supports the
Client Credentials grant type, which would need to be adapted for the new ACE grant
types.

Reference Tokens Self-contained access tokens have the advantage of not requiring any
interaction with the authorization server when the resource server inspects the authoriza-
tion claims contained in the access token. However, if the resource server is extremely
limited in terms of memory capacity up to a point where it is no longer feasible to store
a self-contained access token, a referential token could pose a solution. While our im-
plementation of the authorization server is prepared to introspect reference tokens, it is
currently impossible to issue reference tokens. This functionality would need to be added
if referential tokens are required by the deployment scenario.

Application Layer Protocol As discussed in Section 4.3, we use HTTP as an appli-
cation layer protocol even though the ACE framework recommends the use of the Con-
strained Application Protocol (CoAP). We have shown in our results in Section 7.2 that
HTTP is responsible for about half of the bytes transmitted over the network. Given
that CoAP usually uses UDP as its transport layer protocol, we expect that using CoAP
instead of HTTP would help to further reduce the traffic generated by the ACE protocol
flow and in turn result in longer deployment times for devices which draw their power
from a battery. As soon as networking libraries offer comprehensive support for the mech-
anisms required by CoAP, we could adapt our implementation to use CoAP instead of

8.2. Future Work 64

HTTP. Since our implemented security profile (EDHOC) is implemented on the applica-
tion layer, we expect switching the protocol from HTTP to CoAP to be straightforward.

DTLS Profile As of writing this report, our implementation offers a single security
profile to be used between the client and resource server, i.e. OSCORE via EDHOC.
Adding support for the DTLS security profile as proposed in [17] could enhance the
flexibility of our implementation.

EDHOC In the currently implemented version of the EDHOC key exchange protocol,
we omit certain parameters to be sent in the EDHOC messages since all ACE entities
already share these parameters implicitly, such as which elliptic curve to use or the type
of encryption algorithm used. To implement the protocol to specification, our implemen-
tation needs to be extended with these parameters.

OSCORE In our implemented adaption of the OSCORE security profile for HTTP, we
only encrypt the HTTP payload instead of the whole request including sensitive header
parameters. As an improvement, the OSCORE context could also be used to encrypt
additional request parameters such as HTTP headers.

Embedded Client In the scope of this project, we have developed a resource server
implementation that is capable of running on a constrained embedded device. However,
the authorization server and client are still only available as Python implementations.
As a possible future work, our implementation could be enhanced with an embedded
implementation for the client as well. This implementation could leverage some of the
work done as part of the embedded resource server implementation.

9
Conclusion

In this project, we have implemented the entities and protocols proposed in a working
document drafted by members of the Internet Engineering Task Force (IETF). The draft
proposes a framework for controlled authorization and authentication for devices with
limited processing and memory capabilities by extending the OAuth 2.0 standard. We
have developed software that implements the three proposed entities, i.e. the autho-
rization server, resource server and client and have demonstrated how the implemented
entities communicate with each other in order to achieve an authorized access to a pro-
tected resource. In order to achieve secure communication between the client and resource
server, we have implemented an application layer security protocol which encrypts the
messages being exchanged between the client and resource server. Additionally, we have
demonstrated a resource server implementation capable of running on constrained devices
and enhanced the security capabilities by integrating a secure element with the embedded
resource server. This secure element is used to increase the performance of asymmetric
cryptography computations. Our results show that by using the binary message encoding
format CBOR, we can achieve very concise messages exchanged between entities. We also
document how HTTP is responsible for a large part of the generated message size leaving
a lot of room for further improvements by using a binary application layer protocol such
as CoAP.

65

References

[1] Ludwig Seitz, Goeran Selander, Erik Wahlstroem, Samuel Erdtman, and Hannes
Tschofenig. Authentication and authorization for constrained environments (ace)
using the oauth 2.0 framework (ace-oauth). Internet-Draft draft-ietf-ace-oauth-
authz-12, IETF Secretariat, May 2018. http://www.ietf.org/internet-drafts/
draft-ietf-ace-oauth-authz-12.txt. 4, 18, 29

[2] D. Hardt. The oauth 2.0 authorization framework. RFC 6749, RFC Editor, October
2012. http://www.rfc-editor.org/rfc/rfc6749.txt. 12

[3] T. Dierks and E. Rescorla. The transport layer security (tls) protocol version 1.2.
RFC 5246, RFC Editor, August 2008. http://www.rfc-editor.org/rfc/rfc5246.
txt. 6

[4] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of
Applied Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 1996. 34

[5] Hanqing Wu and Liz Zhao. Web Security: A WhiteHat Perspective. Auerbach
Publications, Boston, MA, USA, 2015. 34

[6] C. Bormann, M. Ersue, and A. Keranen. Terminology for constrained-node networks.
RFC 7228, RFC Editor, May 2014. http://www.rfc-editor.org/rfc/rfc7228.
txt. 51

[7] J. Schaad. Cbor object signing and encryption (cose). RFC 8152, RFC Editor, July
2017. 21

[8] C. Bormann and P. Hoffman. Concise binary object representation (cbor). RFC
7049, RFC Editor, October 2013. 21

[9] M. Jones, E. Wahlstroem, S. Erdtman, and H. Tschofenig. Cbor web token (cwt).
RFC 8392, RFC Editor, May 2018. 23

[10] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans. Inf. Theor.,
22(6):644–654, September 2006.

[11] Joan Daemen and Vincent Rijmen. The block cipher rijndael. In Proceedings of the
The International Conference on Smart Card Research and Applications, CARDIS
’98, pages 277–284, Berlin, Heidelberg, 2000. Springer-Verlag. 8

[12] R. Fielding et al. Hypertext Transfer Protocol - HTTP/1.1. 1999. RFC 2616. 6

66

http://www.ietf.org/internet-drafts/draft-ietf-ace-oauth-authz-12.txt
http://www.ietf.org/internet-drafts/draft-ietf-ace-oauth-authz-12.txt
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.rfc-editor.org/rfc/rfc5246.txt
http://www.rfc-editor.org/rfc/rfc5246.txt
http://www.rfc-editor.org/rfc/rfc7228.txt
http://www.rfc-editor.org/rfc/rfc7228.txt

REFERENCES 67

[13] Z. Shelby, K. Hartke, and C. Bormann. The constrained application protocol (coap).
RFC 7252, RFC Editor, June 2014. http://www.rfc-editor.org/rfc/rfc7252.
txt. 6

[14] Goeran Selander, John Mattsson, and Francesca Palombini. Ephemeral
diffie-hellman over cose (edhoc). Internet-Draft draft-selander-ace-cose-ecdhe-
08, IETF Secretariat, March 2018. http://www.ietf.org/internet-drafts/
draft-selander-ace-cose-ecdhe-08.txt. 40, 42, 43, 68

[15] Goeran Selander, John Mattsson, Francesca Palombini, and Ludwig Seitz. Ob-
ject security for constrained restful environments (oscore). Internet-Draft draft-
ietf-core-object-security-12, IETF Secretariat, March 2018. http://www.ietf.org/
internet-drafts/draft-ietf-core-object-security-12.txt. 37, 38, 39

[16] Ludwig Seitz, Francesca Palombini, Martin Gunnarsson, and Goeran Se-
lander. Oscore profile of the authentication and authorization for con-
strained environments framework. Internet-Draft draft-ietf-ace-oscore-profile-
02, IETF Secretariat, June 2018. http://www.ietf.org/internet-drafts/
draft-ietf-ace-oscore-profile-02.txt. 32

[17] Stefanie Gerdes, Olaf Bergmann, Carsten Bormann, Goeran Selander, and Lud-
wig Seitz. Datagram transport layer security (dtls) profile for authentication
and authorization for constrained environments (ace). Internet-Draft draft-ietf-
ace-dtls-authorize-03, IETF Secretariat, March 2018. http://www.ietf.org/
internet-drafts/draft-ietf-ace-dtls-authorize-03.txt. 32, 64

[18] National Institute of Standards and Technology. FIPS 186-4: Digital Signature
Standard (DSS). July 2013. 55

[19] M. Jones. Json web key (jwk). RFC 7517, RFC Editor, May 2015. 59

[20] M. Jones, J. Bradley, and N. Sakimura. Json web token (jwt). RFC 7519, RFC
Editor, May 2015. http://www.rfc-editor.org/rfc/rfc7519.txt. 14, 60

[21] Zach Shelby, Michael Koster, Carsten Bormann, Peter Van der Stok, and Christian
Amsuess. Core resource directory. Internet-Draft draft-ietf-core-resource-directory-
13, IETF Secretariat, March 2018. http://www.ietf.org/internet-drafts/
draft-ietf-core-resource-directory-13.txt. 63

[22] Christof Paar and Jan Pelzl. Understanding Cryptography: A Textbook for Students
and Practitioners. Springer Publishing Company, Incorporated, 1st edition, 2009. 7,
8, 9, 10, 11, 34, 40, 41, 68

http://www.rfc-editor.org/rfc/rfc7252.txt
http://www.rfc-editor.org/rfc/rfc7252.txt
http://www.ietf.org/internet-drafts/draft-selander-ace-cose-ecdhe-08.txt
http://www.ietf.org/internet-drafts/draft-selander-ace-cose-ecdhe-08.txt
http://www.ietf.org/internet-drafts/draft-ietf-core-object-security-12.txt
http://www.ietf.org/internet-drafts/draft-ietf-core-object-security-12.txt
http://www.ietf.org/internet-drafts/draft-ietf-ace-oscore-profile-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-ace-oscore-profile-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-ace-dtls-authorize-03.txt
http://www.ietf.org/internet-drafts/draft-ietf-ace-dtls-authorize-03.txt
http://www.rfc-editor.org/rfc/rfc7519.txt
http://www.ietf.org/internet-drafts/draft-ietf-core-resource-directory-13.txt
http://www.ietf.org/internet-drafts/draft-ietf-core-resource-directory-13.txt

List of Figures

2.1 Layers of the Internet Protocol suite . 5

2.2 Encryption scheme for message x. Figure adapted from [22, p. 150]. . . . 8

2.3 Asymmetric encryption scheme. Figure adapted from [22, p. 152]. 9

2.4 Verifying the authenticity and integrity of a message using digital signatures. 10

3.1 OAuth 2.0 General Protocol Flow . 13

3.2 OAuth 2.0 Authorization Code Flow . 15

3.3 OAuth 2.0 Client Credentials Flow . 16

4.1 ACE general protocol flow . 19

4.2 Provisioned keys for the ACE entities . 20

4.3 The CBOR Object Signing and Encryption (COSE) standard is built on
top of CBOR and can be used to encode a CBOR Web Token (CWT) . . 21

4.4 Access to protected resource . 28

4.5 Keys established after token upload. The green keys have been established
as part of the protocol flow up to the point where the access token has
been uploaded to the resource server. The blue keys have been provisioned
prior to the protocol flow. 29

5.1 Establishment of an OSCORE security context using EDHOC 33

5.2 Composition of an OSCORE security context 35

5.3 OSCORE Message exchange protocol . 36

5.4 EDHOC protocol flow, {}K denotes encryption with key K, []K denotes
digital signature with key K. For brevity, we have omitted the additional
authenticated data and session parameters. Figure adapted from [14, p. 8] 42

6.1 Implemented libraries along with their dependencies on each other. . . . 46

68

LIST OF FIGURES 69

6.2 Internal structure and implemented modules of the Python libraries. . . . 47

6.3 Schematic view of the assembly of the embedded resource server 53

6.4 Photograph of the assembled embedded resource server 53

List of Tables

7.1 Recorded message sizes in Bytes for the message payload and whole HTTP
packet . 59

7.2 Measured duration in milliseconds (ms) of certain actions performed by
the embedded resource server. 61

70

Listings

4.1 COSE Key structure . 22
4.2 COSE Encrypt0 Object . 22
4.3 COSE Sign1 Object . 23
4.4 Structure of a CBOR Web Token . 23
4.5 Parameters sent in the token request . 24
4.6 Claim set of access token . 26
4.7 Token response from authorization server to the client 26

5.1 OSCORE message encoded as CBOR array 39

6.1 Authorization server . 47
6.2 Defining Resources on Resource Server 48
6.3 Executing Resource Server . 49
6.4 Accessing Resources on Resource Server 50

7.1 HTTP Request for Token Request . 54
7.2 Token Request parameters . 55
7.3 Proof-of-Possesion key generated by the client 55
7.4 Token Response parameters . 56
7.5 Decoded contents of the CWT access token 56
7.6 Authorization claims included in the access token 57
7.7 OSCORE Request to the protected temperature resource 58
7.8 OSCORE Response to the protected temperature resource 58
7.9 Token Request parameters encoded as JSON 59
7.10 JSON Web Token with equivalent claim set compared to a CWT 60

71

	Introduction
	Motivation
	Internet of Things & Constrained Devices

	Goal

	Theoretical Background
	Network Protocols
	Authentication & Authorization
	Cryptography
	Encryption
	Digital Signatures
	Key Exchange

	Authorization using OAuth 2.0
	Overview
	Access Token
	Grant Types
	Authorization Code Flow
	Client Credentials Flow

	ACE Framework
	Overview
	Protocol Flow

	Provisioning
	Transport and Application Layer Protocols
	Concise Binary Object Representation (CBOR)
	CBOR Object Signing and Encryption (COSE)
	CBOR Web Token (CWT)

	Protocol Flow
	Token Request
	Proof of Possession
	Authorization Server
	Access Token

	Token Response
	Client
	Token Upload

	Resource Server
	Resource Request
	Introspection

	Security Profile
	Requirements and Considerations
	Object Security for Constrained Restful Environments (OSCORE)
	Overview
	Protocol
	Security Context
	OSCORE Message

	Ephemeral Diffie-Hellman over COSE (EDHOC)
	Diffie-Hellman Key Exchange with Elliptic Curve Cryptography
	EDHOC Message Exchange for Key Establishment

	Implementation
	Considerations
	ACE Library
	Authorization Server
	Resource Server
	Client

	Embedded Resource Server
	Secure Element
	Assembly

	Results
	Example Request
	Token Request and Response
	Resource Access

	Message Size
	Comparing CBOR and JSON
	Timing and Performance Measurements

	Outlook
	Possible Implementations and Deployment Example
	Future Work

	Conclusion
	References
	List of Figures
	List of Tables
	Listings

