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Abstract

Securing communication in IoT devices is very important, but also difficult due to
constraints in connectivity, processing power, memory size and energy usage. Several
lightweight protocols have been developed for this context, among them the EDHOC key
exchange and OSCORE, which provides application-layer protection of the commonly
used CoAP protocol. These protocols are relatively new and few implementations ex-
ist. We implemented an open source library for OSCORE using EDHOC, targeted at
embedded devices and written in Rust. This programming language is known for its
memory safety, a useful guarantee in security-critical environments. The implementa-
tion was demonstrated in a test setup using real hardware, consisting of an embedded
resource server, embedded client and a CoAP proxy in between. With this approach we
have demonstrated the viability for embedded devices of both the proposed protocols, as
well as the Rust programming language, and contributed the first Rust implementations
of EDHOC and OSCORE.
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1
Introduction

1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Motivation

The proliferation of Internet of Things (IoT) devices brings a new set of security challenges
with it. On one hand, a never before seen amount of new devices are connected to the
Internet, which are prime targets for attackers, due to increasingly becoming part of
the fabric of society. On the other hand, these devices are often low-powered and low-
performance, making it harder to use existing solutions to secure them. And since security
is not yet a selling point in most people’s minds, manufacturers have little incentive to
spend resources in this area. Maybe most critically, many of these devices will be used for
much longer than typical consumer electronics, possibly for decades without ever being
updated. Take all of this together, and IoT really could be the asbestos of the future [14].
Many devices are vulnerable by being exposed to the network and using no access control
at all, or default credentials. Using old, unencrypted protocols for communication can
be a vector of attack as well, leaving the traffic open to examination and manipulation.
This is the area we focused on, by implementing a new standard designed to protect a
lightweight application protocol commonly used for constrained devices in IoT networks.

1.2. Goal

The goals of this thesis were to:
1. Learn about lightweight protocols and formats used for IoT, including CoAP and

CBOR.
2. Get familiar with OSCORE, in particular how CoAP messages are protected and

how to establish a shared secret with an authenticated Diffie-Hellman key exchange
in EDHOC.

1



1.2. Goal 2

3. Learn about embedded Rust programming, especially about the implications of
using Rust for memory management and the limitations when running Rust on
bare metal (#![no_std]).

4. Write an I/O-free OSCORE library using the EDHOC key exchange for constrained
environments using Rust.

5. Write unit tests to ensure compliance of OSCORE/EDHOC messages against test
vectors.

6. Write documentation for the API of the library.
7. Demonstrate a protected exchange using a real-world client and resource server

running on constrained devices (STM32).



2
Context

2.1. Constrained Networks and Devices . . . . . . . . . . . . . . . 3

2.2. IoT Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3. IoT Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1. Constrained Networks and Devices

IoT devices are often small, inexpensive and battery-powered, and sometimes use less
powerful connectivity than traditional Wi-Fi. As such, they often operate under several
constraints, at which point they could fall into the category of constrained nodes operating
in constrained networks. These terms are regularly used in the following chapters, so their
definitions as per RFC 7228 [3] are directly quoted here.
Constrained node
“A node where some of the characteristics that are otherwise pretty much taken for granted
for Internet nodes at the time of writing are not attainable, often due to cost constraints
and/or physical constraints on characteristics such as size, weight, and available power
and energy. The tight limits on power, memory, and processing resources lead to hard
upper bounds on state, code space, and processing cycles, making optimization of energy
and network bandwidth usage a dominating consideration in all design requirements. Also,
some layer-2 services such as full connectivity and broadcast/multicast may be lacking.”
Constrained network
“A network where some of the characteristics pretty much taken for granted with link
layers in common use in the Internet at the time of writing are not attainable.”

2.2. IoT Security

IoT security is currently a highly relevant topic and there is no shortage of research on
it. In this section, we provide a short overview of the field and give the reader an idea of
what kinds of attacks are typical.
A recent survey [10] proposed 9 classes of IoT vulnerabilities:

3
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• Deficient physical security : Most IoT devices run in unattended environments and
it can be easy for an attacker to get physical access to them, which—as is commonly
understood in security research—is game over. It is near impossible to make any
guarantees at that point.

• Insufficient energy harvesting : IoT devices usually have limited energy, which allows
attackers to disable them simply by depleting all of it with a large amount of
messages, resulting in Denial-of-Service (DoS).

• Inadequate authentication: Complex authentication mechanisms can often not be
used on devices with limited energy and computational power. Attackers can exploit
insufficient authentication mechanisms, for example to add spoofed malicious nodes.

• Improper encryption: Resource limitations could affect the strength of the employed
cryptosystems, possibly enabling attackers to break them.

• Unnecessary open ports : Many IoT devices leave ports open that run vulnerable
services, which are easily exploited by attackers.

• Insufficient access control : A common problem is that IoT devices and their cloud
management suites do not enforce rules on password complexity or push the user
to change the default credentials.

• Improper patch management capabilities : The full stack of an IoT system should
be updated when necessary, but most manufacturers do not push security patches
or do not even have mechanisms in place to do so. Even if update mechanisms
are available, they are often insufficiently protected and themselves vulnerable to
malicious modifications.

• Weak programming practices : Many firmwares have known vulnerabilities such as
backdoors or root users by default. Buffer overflow exploits are common.

• Insufficient audit mechanisms : There is often a lack of thorough logging procedures,
making it impossible to detect malicious activities on a device.

A similar effort [5] also came up with a list of common security issues. Some of them are
very relevant to our topic, because they are fully or partly solved by the standards we
implemented:

• Authentication and secure communication
• End-to-end security on the transport level
• Session establishment and resumption, where impersonation could be possible
• CoAP security, especially when transported over the Internet

There is no doubt about how valuable IoT devices are to prospective attackers. Being
deployed in almost every aspect of modern life, from industrial facilities, to smart cities,
agriculture and our homes, they offer a large attack surface and can be used for consid-
erable gain when taken over. But they can also be used to attack other systems. The
power of many small devices combined was demonstrated impressively by the Mirai bot-
net, which was used for unprecedented Distributed Denial-of-Service (DDoS) attacks in
2016 [6].
The ubiquity of devices in the IoT also means that attacks can spread very quickly. Ronen
et al. [12] discovered that Philips Hue smartlamps are vulnerable, because their Zigbee
(wireless protocol) transmitters had a flaw allowing an attacker to remotely factory reset
the devices to take them over. The underlying problem is the insecure design of the
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Zigbee Light Link (ZLL) standard. As a result, the devices could be taken over in large
numbers, remotely, by driving a car or flying a drone around. The authors were also able
to retrieve the global AES key Philips used to encrypt and authenticate new firmware.
They proceeded to use both of these to develop a worm, which could spread from device
to device after installing a single infected light bulb.
In the case of these smart lights, the manufacturer at least attempted to protect the
devices. In some applications that is not even a consideration. For example, many utility
companies (electricity, water) install smart meters in homes and use Automatic Meter
Reading (AMR) by driving past in a car to efficiently gather usage information. Rouf
et al. [13] found that some meters broadcast that information every 30 seconds. The
protocol is not secured at all and easily reverse-engineered to read values from homes, or
even spoof them. Besides reducing one’s utility bill, this could be used to infer the daily
routines of residents.
IP cameras are a type of device often exhibiting many different classes of failures. Ling et
al. [9] analyzed an Edimax IP camera. Scanning for devices on the network is relatively
simple, because the Media Access Control (MAC) address range for a manufacturer is
known and the addresses for individual devices can be inferred, since they are often
sequential. Active devices can be found by enumerating possible addresses and sending
requests, which are answered by active cameras. Once a device is known, bruteforcing
the password is an option, because that is not prevented by the camera. Spoofing could
also be used to impersonate the device and get the user to enter their credentials on a
manipulated login prompt. Even worse, the traffic between the controller and the device
is in plain text, so a local attacker could obtain the user password by listening in. Once
credentials have been obtained, they can be used to start a Telnet service, which uses
username admin and password 1234 to provide access to the underlying operating system.
Seralathan et al. [18] worked with another unnamed IP camera and found that data was
also transferred in plain text. Specifically, the traffic between the controller (mobile phone
application) and the cloud service was unencrypted and contained the credentials of all
cameras in the system, thereby exposing the passwords used to access them. Cameras
are initially set up using the app on the phone, by which the user transmits the Wi-Fi
password to the camera, so it can connect itself. This traffic is also not encrypted, allowing
a local attacker to obtain the Wi-Fi password and therefore access to the network.

2.3. IoT Connectivity

The requirements for networks connecting IoT devices are very different from those used
in most other technology in our daily lives. For example, IoT applications use mostly
wireless networks, as the ubiquity of the devices makes wiring infeasible. And since
they typically communicate small amounts of information (e.g. sensor readings) at large
intervals, the required bandwidth is very small. That is fortunate, as high-bandwidth
wireless communication tends to be quite demanding in terms of energy and many of
these devices run off batteries, again to make deployment in large numbers and remote
locations feasible. It is therefore possible to use specialized wireless communication, which
has been designed for low throughput at minimal energy expenditure.
Two important classes of networks for IoT are Low-Rate Wireless Personal Area Networks
(LR-WPAN) and Low Power Wide Area Networks (LPWAN).
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• LR-WPAN are typically used for shorter range communication of less than
100m [11]. This type of physical layer is defined by IEEE 802.15.4 and serves as the
base for several of the most popular standards defining the upper network layers,
such as Zigbee, IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN)
or Thread, which is itself built on 6LoWPAN [23].

• LPWAN cover a wide geographical area [11]. Examples are Long Range (LoRa),
which acts as the physical layer, and Long Range Wide Area Network (LoRaWAN)
for the upper network layers, or Narrowband Internet of Things (NB-IoT) [23].

Due to their unique deployments, IoT networks can have a more decentralized topology
than a typical home network.

Coordinator

Star topology

Coordinator

Mesh topology

Fig. 2.1.: 6LoWPAN topologies

Device 1

Device 2

Device 3

Device 4

Gateway 1

Gateway 2

LoRaWAN network
Application

Server

LoRa TCP/IP TCP/IP

Fig. 2.2.: LoRaWAN topology

It is relatively common in IoT networks that data is routed through intermediary nodes.
Since these intermediaries are not necessarily trusted (and trust should be avoided when-
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ever possible), there is a strong case for end-to-end protection of sensitive information.
While most of these network layers come with some sort of protection, it is neither neces-
sarily end-to-end, nor guaranteed to be there at all in a complex networking stack using
different technologies. Thus, there is a need for application layer protocols that provide
this level of protection, which is exactly what OSCORE does for CoAP. After this short
introduction into IoT, the next chapter will introduce the specific protocols we used and
implemented.
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3.1. CoAP

The Constrained Application Protocol (CoAP) is described in Request for Comments
(RFC) 7252 [19]. It is intended as a web transfer protocol for constrained nodes and net-
works. CoAP can be thought of as an alternative for Hypertext Transfer Protocol (HTTP)
for constrained environments. While the Representational State Transfer (REST) archi-
tecture (most commonly implemented with HTTP) is a great fit for many use cases
in constrained environments, HTTP itself is not. Traditionally, HTTP is very verbose
and therefore not efficient to use where limited computation and network resources are
available. CoAP aims for much greater efficiency, while still providing a useful request/re-
sponse model. It achieves this by using a simple binary format and datagram-oriented
transports like User Datagram Protocol (UDP), as opposed to more expensive connection-
oriented transports such as Transmission Control Protocol (TCP). It can still provide

8
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optional reliability through the use of message IDs. Finally, it is transport-agnostic
and HTTP-mappable, meaning proxies can easily provide access to CoAP resources via
HTTP.

Ver T TKL Code Message ID

Token (if any, TKL bytes) ...

Options (if any) ...

Payload (if any) ...1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

Fig. 3.1.: CoAP Message Format. Adapted from [19].

The message format, as shown in Figure 3.1, is fairly straightforward. It starts
with a 4-byte header, containing the CoAP version, message type (e.g. Confirmable,
Acknowledgement), token length, the code (e.g. GET, Changed) and the message ID. After
that follows a variable-length token (0 to 8 bytes), used for mapping requests to re-
sponses. This is followed by any number of options with associated values, like Uri-Path
or Content-Format. If there is an optional payload, it makes up the rest of the message
and is separated from the options by a one-byte payload marker (0xFF).
Like HTTP, CoAP is not encrypted by default, but a binding to Datagram Transport
Layer Security (DTLS) is specified.

3.2. CBOR

The Concise Binary Object Representation (CBOR) is described in RFC 7049 [4]. It
relates to JavaScript Object Notation (JSON) in a similar way as CoAP does to HTTP,
in that it is mostly a more efficient format with the same goal. It is also a binary format
and mappable to JSON in this case. Because the more compact representation results in
smaller message sizes, it is sometimes used instead of JSON in constrained environments.
The encoding specifies that the initial byte of each data item contains information about
the major type (3 most significant bits) and additional information (5 least significant
bits). Examples of major types are unsigned integers, negative integers, byte strings, text
strings, arrays or maps. The additional information can indicate the length of the value
(how many of the following bytes belong to it), or—for small integers—be the value itself.
A diagnostic notation for CBOR is also defined, which is loosely based on JSON. As a
practical example for CBOR data items, consider the following structure used in EDHOC.

1 M_V =
2 [
3 "Signature1",
4 << { 4: h'a3' } >>,
5 h'5550b3dc5984b0209ae74ea26a18918957508e30332b11da681dc2afdd870355',
6 << {
7 1: 1,
8 -1: 6,
9 -2: h'1b661ee5d5ef1672a2d877cd5bc20f4630dc78a114de659c7e504d0f529a6b
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10 d3'
11 } >>
12 ]

List. 3.1: EDHOC Sig_structure

It is an array with four elements, starting with a text string. The second element is a map
using an integer as key and a byte string as value. However, this map is not present as
the direct encoding of a CBOR map. Instead, it is additionally wrapped in a byte string,
indicated by the << ... >> notation. This means that the map is encoded to its normal
CBOR representation (the bytes 0xA10441A3), but prepended by a byte saying that it is a
byte string of length four, meaning that the value of this array entry is then 0x44A10441A3.
This wrapping may seem superfluous, but is the result of how some structures are defined
in COSE, which is used in EDHOC. The other elements in the array use the same types.

1 message_1 =
2 (
3 1,
4 0,
5 h'b1a3e89460e88d3a8d54211dc95f0b903ff205eb71912d6db8f4af980d2db83a',
6 h'c3'
7 )

List. 3.2: EDHOC message

Listing 3.2 demonstrates CBOR sequences [2], an extension to CBOR, which is still a
work in progress. Since CBOR data items are self-delimiting, it is possible to simply con-
catenate any number of them, while still being able to consume them one by one. That is
exactly what a CBOR sequence is, indicated by parentheses ( ... ). By using sequences
over arrays, no additional byte indicating an array of a certain length is necessary, thus
reducing the message length.

3.3. COSE

CBOR Object Signing and Encryption (COSE) is described in RFC 8152 [15]. Like all
standards so far, it too is a more lightweight alternative to an existing solution, in this case
Javascript Object Signing and Encryption (JOSE). Among other things, COSE specifies
how to process encryption and signatures and encode keys using CBOR. It is relevant
here, because it is used by EDHOC for signatures, encryption and key encoding. But since
the EDHOC specification contains all COSE structures required, it is not necessary to be
overly familiar with it. Besides pointing out that the CBOR data item from Listing 3.1
is in fact a COSE Sig_structure, we will not delve deeper into it.

3.4. EDHOC

3.4.1. Overview

Ephemeral Diffie-Hellman Over COSE (EDHOC) is described in [16]. In the words of the
authors, it is “a very compact, and lightweight authenticated Diffie-Hellman key exchange
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with ephemeral keys”. It extends the theoretical SIGMA-I protocol [7] with elements like
transcript hashes and cipher suite negotiation, to turn it into a “full-fledged” protocol. It
reuses COSE for cryptography, CBOR for encoding and CoAP for transport, although
that is merely a recommendation, as EDHOC can use any transport. These are reused in
the hope of reducing the additional code footprint of an implementation. Additionally,
EDHOC is designed to have small message sizes, which can be sent over a small number
of frames in the network, conserving energy. These properties make it an ideal choice for
constrained environments.
Two cipher suites are currently defined. To keep code size small, constrained devices often
only support one. We therefore implemented the mandatory cipher suite, which uses:

• AES-CCM-64-64-128 as the Authenticated Encryption with Associated Data
(AEAD) algorithm

• ECDH-SS + HKDF-256 as the Elliptic Curve Diffie-Hellman (ECDH) and HMAC-
based Extract-and-Expand Key Derivation Function (HKDF) algorithms

• Curve25519 as the ECDH curve
• Ed25519 (which is an Edwards-Curve Digital Signature Algorithm (EdDSA) using

SHA-512 on Curve25519) as the signature algorithm
EDHOC can be authenticated asymmetrically by Raw Public Keys (RPK) or public key
certificates, and symmetrically by Pre-Shared Keys (PSK). We implemented the RPK
case, so that is what we will look at. Here, the only requirement for using EDHOC is that
each party owns a private key, of which the other party can retrieve the accompanying
public key, given its identifier. These need to be established out-of-band. Once an
EDHOC exchange is complete, both parties are in possession of the same master secret
and master salt, from which they can derive shared application keys. The main use case
for EDHOC is establishing an OSCORE security context.
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message_1

TYPE, SUITES_U, X_U, C_U, ? UAD_1

message_2

? C_U, X_V, C_V, AEAD(
    K_2, IV_2;
    ID_CRED_V, Sig(V; ID_CRED_V, CRED_V, TH_2), ? UAD_2;
    TH_2
)

message_3

? C_V, AEAD(
    K_3, IV_3;
    ID_CRED_U, Sig(U; ID_CRED_U, CRED_U, TH_3), ? PAD_3;
    TH_3
)

Party U Party V

Fig. 3.2.: EDHOC overview with asymmetric key authentication. Adapted from [16].

Figure 3.2 shows the three messages that make up a successful EDHOC exchange. Op-
tional values are labeled with question marks.

3.4.2. message_1

Party U sends a message consisting of the following:

• TYPE is an integer giving information about the correlation properties of the under-
lying transport. Some transports—such as CoAP—have features like the CoAP to-
ken, which allow matching two messages (typically request and response) with each
other. This is important when doing simultaneous EDHOC exchanges with multi-
ple peers, to be able to know which received message belongs to which exchange. If
the transport allows for some correlation, the explicit connection identifiers within
the EDHOC messages may be omitted, reducing the message size.

• SUITES_U is an array of supported cipher suites, or just a single value in case there
is only one, to further reduce the message size.

• X_U is the x-coordinate of the ephemeral public key that Party U generated for this
exchange.

• C_U is the connection identifier chosen by Party U for this exchange.
• UAD_1 is optional, unprotected opaque application data.

After receiving it, Party V verifies that it can work with the chosen parameters, respond-
ing with an error message if that is not the case. Otherwise, it constructs message_2.
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3.4.3. message_2

• C_U is Party U’s connection identifier, included only if the transport does not allow
Party U to correlate the message with the first one.

• X_V is the x-coordinate of the ephemeral public key that Party V generated for this
exchange.

• C_V is the connection identifier chosen by Party U for this exchange.
• K_2 is a symmetric encryption key derived from the shared secret established with

the ephemeral Diffie-Hellman exchange (which is now complete for Party V, since
it has received Party U’s public key in the first message), as well as TH_2 (explained
below).

• IV_2 is a nonce also derived from the ECDH shared secret and TH_2.
• ID_CRED_V is the identifier by which Party U can retrieve the public authentication

key of Party V.
• V is the private authentication key of Party V.
• CRED_V is a credential containing the public authentication key of Party V.
• TH_2 is a transcript hash made from message_1 and the data Party V sends in this

message (C_U if present, X_V, C_V).
• UAD_2 is optional, unprotected opaque application data.
• Sig( ... ) is a signature made with Party V’s private authentication key of

ID_CRED_V, TH_2 and CRED_V.
• AEAD( ... ) is AEAD using K_2 and IV_2, with the plaintext consisting of ID_CRED_V,

the previous signature and optionally UAD_2, and the associated data being TH_2.

Party U decrypts and verifies the AEAD ciphertext in message_2. It can do so, because
it possesses all the information used by Party V to create it (ECDH shared secret, TH_2,
etc.). It also verifies the enclosed signature with the public authentication key of Party V.
If any verification step fails, it responds with an error message. Otherwise, it constructs
message_3, which is very similar to message_2.

3.4.4. message_3

• C_V is Party V’s connection identifier, included only if the transport does not allow
Party V to correlate the message with the first one.

• K_3 is a symmetric encryption key derived from the shared secret established with
the ephemeral Diffie-Hellman exchange, as well as TH_3 (explained below).

• IV_3 is a nonce also derived from the ECDH shared secret and TH_3.
• ID_CRED_U is the identifier by which Party V can retrieve the public authentication

key of Party U.
• U is the private authentication key of Party U.
• CRED_U is a credential containing the public authentication key of Party U.
• TH_3 is a transcript hash made from TH_2, the ciphertext from message_2 and the

data Party V sends in this message (C_V if present).
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• PAD_3 is optional, protected opaque application data. It is protected, because at
this point Party U already has all the information needed to derive symmetric
application keys.

• Sig( ... ) is a signature made with Party U’s private authentication key of
ID_CRED_U, TH_3 and CRED_U.

• AEAD( ... ) is AEAD using K_3 and IV_3, with the plaintext consisting of ID_CRED_U,
the previous signature and optionally PAD_3, and the associated data being TH_3.

Party V decrypts and verifies the AEAD ciphertext in message_3. It also verifies the
enclosed signature with the public authentication key of Party U. If any verification step
fails, it responds with an error message.

3.4.5. Completion

The transport may cause a final acknowledgment message to be sent, as is the case when
using CoAP. Because EDHOC is sent in Confirmable CoAP messages, requests are always
answered by an ACK, which can contain a “piggybacked response”. This is the case for
message_2, as shown in Figure 3.3.

Client Server

POST

Header: POST (Code=0.02)
Uri-Path: "/.well-known/edhoc"
Content-Format: application/edhoc
Payload: EDHOC message_1

2.04

Header: 2.04 Changed
Content-Format: application/edhoc
Payload: EDHOC message_2

POST

Header: POST (Code=0.02)
Uri-Path: "/.well-known/edhoc"
Content-Format: application/edhoc
Payload: EDHOC message_3

2.04

Header: 2.04 Changed

Fig. 3.3.: Transferring EDHOC in CoAP. Adapted from [16].

EDHOC does not define a message after message_3, but CoAP will still send an empty
ACK, after which the exchange can be considered finished. Both parties calculate TH_4
from TH_3 and the ciphertext from message_3. This is then used in the EDHOC-Exporter
interface, which takes TH_4 and the ECDH shared secret and can be used to derive appli-
cation keys and other data of any length. For OSCORE, the master secret and master
salt are generated in this manner.
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3.5. OSCORE

3.5.1. Overview

Object Security for Constrained RESTful Environments (OSCORE) is described in RFC
8613 [17]. It does application-layer protection of CoAP, providing end-to-end protection,
but still allowing for proxy operations. This is an important distinction, as DTLS only
does hop-by-hop protection, exposing the information to intermediary nodes, subject to
examination and manipulation. It works directly on CoAP (or HTTP, since CoAP can
be transported in HTTP) messages. This means that the resulting OSCORE messages
are still valid CoAP (or HTTP, but we will focus on CoAP from now on) messages
with the same characteristics, for example with respect to the underlying transports. As
such, OSCORE retains the suitability of CoAP for constrained environments, keeping the
message size and additional code requirements small.

Application

Requests / Responses / Signaling

Messaging Layer / Message Framing

OSCORE

UDP / TCP / ...

CoAP

Fig. 3.4.: Abstract layering of CoAP with OSCORE. Adapted from [17].

As shown in Figure 3.4, OSCORE protects the RESTful interactions—such as the request
method, requested resource and payload—but not the CoAP messaging layer, because
that can change between endpoints and needs to be accessible for proxy operations.

3.5.2. Security Context

First and foremost, OSCORE needs to establish a secure channel between two parties us-
ing symmetric encryption. To do so, it requires shared keys. These can be derived from a
master secret and master salt established out-of-band with EDHOC, just a master secret,
or additionally with something called an ID context. Since we already have EDHOC, we
implemented the case of using both a master secret and master salt which it provides,
and will describe this approach.
To keep track of the cryptographic operations, OSCORE introduces the security context,
which consists of three parts:

• The common context is the same for both. For simplicity, we can consider that it
contains only one relevant piece of information, the common IV. It is derived from
the master secret and master salt and used to compute the AEAD nonce.

• The sender context contains
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– The sender ID, which is used to identify the sender context that generated an
encrypted message, derive AEAD keys, as well as act as an input to the AEAD
nonce.

– The sender key is the symmetric key used to send messages and is derived
from the master secret, master salt and sender ID.

– The sender sequence number is incremented with every sent message and used
as the partial IV to generate unique AEAD nonces.

• The recipient context contains
– The recipient ID, which is used to identify the recipient context with which to

decrypt a received message, derive AEAD keys, as well as act as an input to
the AEAD nonce.

– The recipient key is the symmetric key used to receive messages and is derived
from the master secret, master salt and recipient ID.

– The replay window is only present on a server and is used to make sure no
recently received messages are replayed.

Common Context

Sender Context

Recipient Context

Client

Common Context

Recipient Context

Sender Context

Server

=

=

=

OSCORE request:
    Token = Token1,
    kid = SID, ...

Retrieve context for
    target resource
Protect request with
    Sender Context Retrieve context with

    RID = kid
Verify request with
    Recipient Context
Protect response with
    Sender Context

OSCORE response:
    Token = Token1, ...

Retrieve context with
    Token = Token1
Verify request with
    Recipient Context

Fig. 3.5.: Retrieval and use of the security context. Adapted from [17].

As shown in Figure 3.5, the sender context of one party is almost the same as the recipient
context of the other one, since this is symmetric encryption. After a successful EDHOC
exchange, both parties are able to construct these mirrored security contexts, since they
possess all required information: the master secret, master salt and both their own ID
(sender ID) as well as their peer’s (recipient ID), which could be the connection identifiers
used in the EDHOC exchange or the key IDs from the public authentication keys it uses.
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With that, they could now protect arbitrary request/response communication between
them. Since it is very important to use a unique nonce for every message sent with a key
in symmetric encryption, a new AEAD nonce is generated for every request. It is derived
from the partial IV (the sender sequence number), the sender ID and the common IV.
The partial IV is the only part of this that the other endpoint does not already possess.
Therefore, it needs to be sent together with the message, as does the sender ID, so the
appropriate recipient context can be retrieved to decrypt the message. The associated
data for the AEAD are the OSCORE version and algorithms used, as well as the sender
ID and the partial IV. The former two are present to make sure both sender and receiver
use the same version and algorithms, the latter to protect them against manipulation,
since they are not encrypted.
The receiver can then retrieve the recipient context, reconstruct the associated data from
the recipient ID (= sender ID of the other party) and partial IV it sent along, compute
the AEAD nonce from the partial IV, the recipient ID and the common IV and use these
to both decrypt and verify the encrypted data. Protecting the response is almost the
same as for a request, except for two differences:

• It is possible to reuse the AEAD nonce from the request (since it is used with a
different key, this is not a problem), in which case no partial IV is sent in the
response. If a new nonce is generated, the sender sequence number is incremented
and sent as the partial IV, as is done when sending a new request.

• It is not necessary to send the sender ID, because the receiver can retrieve the
appropriate recipient context from the CoAP token of the enclosing CoAP message,
which is the same one it has originally chosen for the request.

Verification of the response is also very similar to that of a request, except for accommo-
dating the two previously mentioned differences in a response. This is roughly how the
core cryptographic operations in OSCORE work, but this is only one half. Next, we will
look at how this is applied to protect CoAP messages.

3.5.3. CoAP Protection

As we mentioned previously, OSCORE protects as much of the CoAP message as possible,
while still allowing proxy operations. In principle, this means protecting three important
parts of a message:

• The code, because we would not want a malicious proxy to be able to manipulate
a GET into a DELETE, for example.

• Some sensitive options, because again, a proxy manipulating the query or knowing
which resource is requested could be dangerous.

• The payload, which we obviously want to keep confidential as well.
In order to do so, CoAP options are split into two categories, as shown in Table 3.1.
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No. Name E U
1 If-Match x
3 Uri-Host x
4 ETag x
5 If-None-Match x
6 Observe x x
7 Uri-Port x
8 Location-Path x
9 OSCORE x
11 Uri-Path x
12 Content-Format x
14 Max-Age x x
15 Uri-Query x
17 Accept x
20 Location-Query x
23 Block2 x x
27 Block1 x x
28 Size2 x x
35 Proxy-Uri x
39 Proxy-Scheme x
60 Size1 x x
258 No-Response x x

Tab. 3.1.: Protection of CoAP options [17]

Class U options remain untouched in the CoAP message, while Class E options are
moved into the payload, which is protected by the AEAD. A good example of the two
classes are the Uri-Host and Uri-Path options. Uri-Host cannot be protected, since the
destination of a CoAP message must be known. The Uri-Path on the other hand—
specifying which exact resource is requested—can be encrypted and is only decrypted at
the final destination, the resource server.
There are a few CoAP options that receive special treatment in OSCORE, among them
the ones related to proxying. If a normal CoAP message were to be sent over a proxy
proxy.com with the final destination of coap://example.com/resource?q=1, then it would
have the Uri-Host option set to proxy.com, since that is the first destination. It would
contain the full Uniform Resource Identifier (URI) of coap://example.com/resource?q=1
in the Proxy-Uri option, to be used by the proxy to update the message before passing
it along. With OSCORE, the Proxy-Uri option is taken apart and both the Uri-Path
and Uri-Query part of it are removed and put into their respective options, as the proxy
would do in plain CoAP. The difference is that in OSCORE, they are Class E options and
therefore protected and invisible to the proxy. The proxy can only see coap://example.com
in the Proxy-Uri option, which it uses to deliver the message. At the receiving end,
the OSCORE message is turned into a regular CoAP message again by decrypting the
protected Uri-Path and Uri-Query options, restoring them and thus turning it into the
same CoAP message the server would have received if no protection had been applied.
Besides certain CoAP options, the payload and code (equivalent of HTTP method) are
also protected.
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Field E U
Version (UDP) x
Type (UDP) x
Length (TCP) x
Token Length x
Code x
Message ID (UDP) x
Token x
Payload x

Tab. 3.2.: Protection of CoAP header fields [17]

Both are encoded into the new, encrypted payload as well, together with the Class E
options. The CoAP code is replaced by a dummy code—POST for requests and Changed
for responses.
Now we can look at how all of this is encoded into a CoAP message.

Code

Payload (if any) ...1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

Class E options (if any) ...

Fig. 3.6.: Plaintext. Adapted from [17].

The code, Class E options and payload are formatted similarly to a real CoAP mes-
sage, except with a reduced header (code only), as shown in Figure 3.6. This is the
plaintext which—after being encrypted to ciphertext and authenticated with associated
data as described in Section 3.5.2 with the AEAD—will be the payload of the updated
CoAP/OSCORE message.
From Section 3.5.2 we recall that the cryptographic operation of OSCORE requires the
partial IV and sender ID (the key ID of the constructing sender context) to be sent along.
For this, a new CoAP option is introduced, the OSCORE option.

0 1 2 3 4 5 6 7

0 00 nkh Partial IV (if any) ...

s (if any) kid context (if any) kid (if any)

n bytes

s bytes1 byte

Fig. 3.7.: The OSCORE option value. Adapted from [17].

Figure 3.7 shows how they are encoded in the value of that option. For further informa-
tion, refer to Section 6.1 of RFC 8613 [17].
With that, OSCORE has all the necessary features to provide end-to-end protection of
CoAP messages between a client and a server, by transforming the original message to
protect sensitive parts, such as the code, a subset of the options and the payload.
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3.6. Language Choice

Rust is a new multi-paradigm systems programming language, which had its first sta-
ble release in 2015 [21]. Arguably the biggest benefit of Rust is its ability to combine
the traditionally conflicting goals of performance and safety, particularly memory safety.
While some languages use garbage collection to achieve this, it comes at the cost of re-
quiring a rather extensive runtime and has a negative effect on performance. Rust, on
the other hand, has a minimal runtime like those of C and C++, which are so small that
the languages are often said to have “no runtime”.
Rust achieves its memory safety by using the concept of ownership. In a nutshell, this
means that all data is always owned by some variable. This data can be moved to
a different owner like a structure or a variable inside a function, which at this point
becomes the new owner, making the data unavailable to the previous one.
We can illustrate this with a simple example.

1 struct Point {
2 x: u32,
3 y: u32,
4 }
5

6 fn plot(p: Point) {
7 // Do something
8 }
9

10 fn main() {
11 let x = 25;
12 let y = 10;
13

14 let p1 = Point { x, y };
15

16 plot(p1);
17 }

List. 3.3: Example 1

We have a structure Point and a function that takes a Point as an argument. In our
application logic, we define two integer values, use them to construct a Point and pass it
to the function. There is nothing unusual about this.
But if we introduce another variable and assign the value of our point to it, we run into
trouble.

1 fn main() {
2 let x = 25;
3 let y = 10;
4

5 let p1 = Point { x, y };
6 let p2 = p1;
7

8 plot(p1);
9 }

List. 3.4: Example 2

The compiler will prevent us from doing that.
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1 error[E0382]: use of moved value: `p1`
2 --> src/main.rs:20:10
3 |
4 14 | let p1 = Point {
5 | -- move occurs because `p1` has type `Point`, which does not implement
6 | the `Copy` trait
7 ...
8 18 | let p2 = p1;
9 | -- value moved here

10 19 |
11 20 | plot(p1);
12 | ^^ value used here after move

List. 3.5: Move error message

Listing 3.5 is the perfect example for the famously helpful error messages of the Rust
compiler. It tells us exactly what the problem is: let p2 = p1 transfers ownership of the
point to the p2 variable and p1 is invalidated. The point is moved, which is exactly what
the compiler tells us.
To illustrate what it means by “does not implement the Copy trait”, here is another
example.

1 fn main() {
2 let x = 25;
3 let y = 10;
4 let z = x;
5

6 let p1 = Point { x, y };
7 }

List. 3.6: Example 3

Based on what we just learned, this should not compile either. It is the exact same
case, except that this time z is assigned the value of x, but x is used nonetheless in
constructing a point, which should not work, because its value has been moved. But
it does. The reason is that integers are a Copy type, meaning they implement the Copy
marker trait to indicate that they can be trivially copied, without any side effects. So
effectively, the value is simply copied and both variables remain valid and independent.
Point, on the other hand, is an owned type, so it is moved. As an aside, because Point
consists entirely of Copy types (the integers), it could trivially be made Copy as well, which
would let us compile the example from Listing 3.4. But for the sake of our demonstration,
we want it to be an owned type.
Ownership works for function arguments too.

1 fn plot(p: Point) {
2 // Do something
3 }
4

5 fn main() {
6 let x = 25;
7 let y = 10;
8

9 let p1 = Point { x, y };
10

11 plot(p1);



3.6. Language Choice 22

12 plot(p1);
13 }

List. 3.7: Example 4

This will give us the same kind of error as before.
1 error[E0382]: use of moved value: `p1`
2 --> src/main.rs:17:10
3 |
4 14 | let p1 = Point { x, y };
5 | -- move occurs because `p1` has type `Point`, which does not implement
6 the `Copy` trait
7 15 |
8 16 | plot(p1);
9 | -- value moved here

10 17 | plot(p1);
11 | ^^ value used here after move

List. 3.8: Move error message

That is because the plot function takes ownership of its argument, so it cannot be used
afterwards, as p1 is moved into plot. Because there is no reason for plot to take ownership
of the argument, the solution here is to make it accept a reference instead.

1 fn plot(p: &Point) {
2 // Do something
3 }
4

5 fn main() {
6 let x = 25;
7 let y = 10;
8

9 let p1 = Point { x, y };
10

11 plot(&p1);
12 plot(&p1);
13 }

List. 3.9: Example 5

In this implementation, plot takes a reference to a Point, thereby borrowing it. The
borrow checker can verify that this happens in a safe way, namely that at no time there
is more than one mutable reference to the data.
To demonstrate this, we change the example slightly.

1 fn main() {
2 let x = 25;
3 let y = 10;
4

5 let mut p1 = Point { x, y };
6

7 let ref1 = &p1;
8 let ref2 = &p1;
9

10 plot(ref1);
11 plot(ref2);
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12 }

List. 3.10: Example 6

Semantically, this is almost the same as before. In preparation for the next example,
we declare p1 as mutable (by default, variables are immutable in Rust), which means we
could modify it, if we wanted. We do not do that, instead we simply create two immutable
references to it, which is safe and therefore allowed. But if we try to create a mutable
reference in addition, the compiler once again complains.

1 fn main() {
2 let x = 25;
3 let y = 10;
4

5 let mut p1 = Point { x, y };
6

7 let ref1 = &p1;
8 let ref2 = &p1;
9 let ref3 = &mut p1;

10

11 plot(ref1);
12 plot(ref2);
13 }

List. 3.11: Example 7

1 error[E0502]: cannot borrow `p1` as mutable because it is also borrowed as immutable
2 --> src/main.rs:18:16
3 |
4 16 | let ref1 = &p1;
5 | --- immutable borrow occurs here
6 17 | let ref2 = &p1;
7 18 | let ref3 = &mut p1;
8 | ^^^^^^^ mutable borrow occurs here
9 19 |

10 20 | plot(ref1);
11 | ---- immutable borrow later used here

List. 3.12: Mutable borrow error

We cannot safely have mutable and immutable references at the same time, so the compiler
prevents us from shooting ourselves in the foot.
The compiler does a great many things more, explaining all of which is out of scope for
this thesis. Interested readers are better served looking into the excellent Rust book1 to
learn more. But to mention a few more highlights, the compiler also does not allow having
uninitialized data, like trying to use an integer that was only declared and not defined, or
having an uninitialized array. As with borrowing, all this verification happens at compile
time, so there is no impact on performance. Finally, when the owner of some data goes
out of scope, it is dropped automatically. Thanks to this concept of Resource Acquisition
Is Initialization (RAII), the programmer does not have to free memory, even though there
is no garbage collection involved. Furthermore, it may have occurred to the astute reader

1https://doc.rust-lang.org/book/

https://doc.rust-lang.org/book/
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that ownership also lends itself well to preventing data races in multi-threaded environ-
ments. Indeed, Rust makes it exceptionally easy to write correct concurrent applications,
which is usually a hard problem.
To wrap up, here are some of the other important features of Rust:

• It is extensively built around zero-cost abstractions that make it easier to use, but
are optimized out at compile time and do not affect performance.

• It does generics with traits and favors composition over inheritance.
• It has powerful pattern matching.
• It has good interoperability with C, making it fairly easy to both create libraries to

be used from C code and use existing C libraries in Rust.
Having pointed out many of Rust’s advantages, we should also mention the downsides.
While there are of course some, it seems to have come closer to being ideal than almost all
programming languages before it. Many seem to agree, as Rust has been chosen the most
loved programming language in the 2019 edition of the Stack Overflow Developer Survey
for the fourth year in a row [20]. Probably the most obvious tradeoff of the language is
related to its biggest strength—that it can be completely memory safe without sacrificing
performance. While that is true, nothing is ever really free. In the case of Rust, the cost
is the steeper learning curve that comes with ownership. Beginners often struggle against
the compiler complaining (in admittedly very helpful error messages) about things that
are possible in other languages, but forbidden in Rust, because they are not verifiably
correct and rely on the programmer to “get it right”. But the fact that Rust is a bit
harder to learn is offset by great resources, a friendly community and the many useful
features it offers in return. It is also worth pointing out that Rust is in many ways still
a simpler language than C++, which has become quite large over the years.
With this basic knowledge of the properties of the language, we are now equipped to ask
the question of where it makes most sense to use Rust. With memory safety being the
most prominent feature of the language, applications where getting this wrong and having
dangling pointers or missing bounds checks can lead to severe security issues are the most
obvious place to start. After all, about 70% of security vulnerabilities across all Microsoft
products that are assigned a Common Vulnerabilities and Exposures (CVE) number, are
memory safety issues, which would not have occurred in Rust code [8]. Examples where
Rust has improved security are a PGP key server2 or a parser for MP4 metadata used
in Firefox3. Another component of Firefox that has been replaced with Rust code is the
CSS engine4. In this case, the main goal was not security, but performance improvements
through parallelization, which was made much easier by Rust’s concurrency model. In
theory, being a systems programming language, Rust can be used for virtually anything.
It is as powerful as C and can be used to write kernels and full operating systems, but from
a design point of view, it is more closely related to C++ with its higher level abstractions.
Thanks to that design and its crate (library) ecosystem, it is even possible to write code
that is almost as simple as Python at times.
Having established that we can write fast and safe code with Rust, we really do not
need any more reasons to also want to use Rust for programming embedded devices,

2https://keys.openpgp.org/
3https://github.com/mozilla/mp4parse-rust
4https://hacks.mozilla.org/2017/08/inside-a-super-fast-css-engine-quantum-css-aka-sty
lo/

https://keys.openpgp.org/
https://github.com/mozilla/mp4parse-rust
https://hacks.mozilla.org/2017/08/inside-a-super-fast-css-engine-quantum-css-aka-stylo/
https://hacks.mozilla.org/2017/08/inside-a-super-fast-css-engine-quantum-css-aka-stylo/
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particularly when they do something related to security, such as OSCORE. In fact, Rust’s
static guarantees are especially useful when working with hardware. It allows the compiler
to verify that there is only one reference to a particular piece of hardware at all times,
that hardware can only be used once it’s been properly initialized, or that operations
can only be performed on correctly configured peripherals. To support embedded devices
and other specialized contexts, Rust provides a subset of its functionality specifically
for bare metal environments. Usually, a program is run in an environment with an
operating system, which allows for interaction with file systems, threads, networking and
similar functionality. Like most programming languages, Rust’s standard library provides
abstractions for these. On bare metal though, there are no such things. That is why Rust
has libcore, a platform-agnostic subset of the standard library. This is where #![no_std]
comes in. It is an attribute used to indicate to the compiler that a program or library
should not load the standard library. It is also used as a term to convey that some code
does not require the standard library and is therefore suitable for embedded development.
For example, we frequently mention “#![no_std] libraries”, such as the one we built. Due
to this capability and the efforts of the community—especially Jorge Aparicio5—Rust is
starting to become a viable option for programming embedded devices. There is already
great tooling and a vibrant ecosystem of device crates that support a specific device or
device family. Hardware Abstraction Layer (HAL) implementations which implement
traits from the embedded-hal6 crate can then be built on these device crates. This allows
for generic drivers to be written, that can work with any device for which there is such a
HAL implementation. Finally, there are also board support crates, which give abstracted
access to functionality of a specific board. The Cortex-M family of processor cores is
already well supported, as is the STM32 family of integrated circuits using them and the
STM32 Discovery boards that we used in our experimental setup.

5https://github.com/japaric
6https://docs.rs/embedded-hal

https://github.com/japaric
https://docs.rs/embedded-hal
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4.1. EDHOC

4.1.1. Approach

The implementation work started with EDHOC, because it is relatively self-contained and
can therefore be implemented separately, without knowing too much about the larger
ecosystem of related RFCs. The general approach was to go step by step along the
EDHOC exchange, starting with the encoding of the first message, then the decoding
and verification thereof, moving on to generating the second message and so on. This
first part of the implementation produced many utility functions, each concerned with
one task. For instance, some of them are responsible for computing various transcript
hashes or generating one of the required COSE structures. Other functions use these to
provide their own functionality, such as the one building the second message. When the
library was implemented, the EDHOC draft was at version 13 and did not yet contain
any test vectors, which made the process a bit more difficult. Instead, we used the given
examples and created our own test vectors to be able to unit test virtually every function
that was created. This increased the odds of success when they would all be used together
for the first time in a full test run. Each time a step like verifying the second message
was completed, the as of yet incomplete test run was extended with this functionality, so
that when the last one was finished, we already had a test script for a full EDHOC run.

26
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4.1.2. AES-CCM

One problem we ran into was the lack of an AES-CCM implementation. There is a pure
Rust Advanced Encryption Standard (AES) crate1, but no implementation of Counter
with CBC-MAC (CCM) mode, which makes it an AEAD and is part of the mandatory
cipher suite in EDHOC and the default algorithm in OSCORE. Because we could not
implement either of them in a compliant way without CCM mode, we had to build our
own.
We started from Intel’s TinyCrypt library2. It provides some cryptographic primitives,
optimized for small code size, not performance. This results in very neat and concise
code—for example, the CCM implementation is only 160 lines of C code. We ran that
through a Rust transpiler, which gave us ugly, but (after a few modifications) running
code that we could successfully verify against the test vectors. That allowed us to replace
it function by function with a proper, handwritten port of TinyCrypt’s CCM imple-
mentation and at each step run it against the test vectors to make sure no errors were
introduced. In the end, we had a fully compliant AES-CCM implementation for bare
metal targets3.
There appears to be some interest from the community in using this library. Thanks to the
contribution of a third party, it now implements the Aead trait4, which is a trait exposed
by the de facto collection of cryptographic algorithms written in Rust. Its intention is to
give a common interface to as many AEAD implementations as possible, enabling their
use as drop-in replacements for each other, greatly increasing interoperability.

4.1.3. Draft Contributions

While working on EDHOC, we spotted several issues in the draft, from inconsistent
naming and typos to wrong CBOR encoding in some examples. There were also a few
questions about certain aspects, so we decided to create a pull request with our editorial
fixes on the working group’s draft repository, and use the opportunity for clarification.
Our fixes were appreciated, questions answered, and since work was ongoing to create a
script to generate test vectors, we were given a preliminary version to verify. This was
very helpful, since we were able to discover mistakes in our implementation as well as
the test vectors themselves. At the time of writing, the draft is at version 14—with test
vectors—our code is still compliant, and the test vectors have been independently verified
against our implementation. Being able to contribute in a small way to the evolution of
the draft was a nice and unexpected experience and benefited our implementation efforts
greatly.

4.1.4. API Design

Once all the implemented primitives were shown to behave correctly and combined into a
complete EDHOC run, we wrapped them up in a straightforward Application Program-
ming Interface (API). Since EDHOC is split distinctly into two roles—Party U and Party

1https://crates.io/crates/aes
2https://github.com/intel/tinycrypt
3https://crates.io/crates/aes-ccm
4https://docs.rs/aead/0.2.0/aead/trait.Aead.html

https://crates.io/crates/aes
https://github.com/intel/tinycrypt
https://crates.io/crates/aes-ccm
https://docs.rs/aead/0.2.0/aead/trait.Aead.html
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V—with different operations, it makes sense to have two types, one for each. Because
this is effectively a protocol implementation, operations happen in a strict order. For
example, Party V can only generate the second message after having received the first
one. This is a good opportunity to implement a variation of the session types pattern,
which is especially easy in Rust, due to its move semantics. We will demonstrate this on
part of the API implementation.

1 /// The structure providing all operations for Party V.
2 pub struct PartyV<S: PartyVState>(S);
3

4 // Necessary stuff for session types
5 pub trait PartyVState {}
6 impl PartyVState for Msg1Receiver {}
7 impl PartyVState for Msg2Sender {}
8 impl PartyVState for Msg3Receiver {}
9 impl PartyVState for Msg3Verifier {}

List. 4.1: struct, trait and impl declarations

In this first excerpt, a structure PartyV is defined, which is a tuple struct wrapping a
single value S, which is generic with the sole requirement that it must implement the
trait PartyVState. Traits in Rust are like interfaces and typically declare methods that
must be implemented, but they can also be empty as in this case and function as marker
traits. This trait is then “implemented” for several structures, which are defined later on.
Since the trait does not declare any functions, these implementation blocks are empty.
Thus, these structures are marked as eligible for inclusion in the PartyV structure. As the
name implies, they are going to serve as the protocol state.

1 /// Contains the state to receive the first message.
2 pub struct Msg1Receiver {
3 c_v: Vec<u8>,
4 secret: StaticSecret,
5 x_v: PublicKey,
6 auth: [u8; 64],
7 kid: Vec<u8>,
8 }
9

10 impl PartyV<Msg1Receiver> {
11 /// Creates a new `PartyV` ready to receive the first message.
12 pub fn new(
13 c_v: Vec<u8>,
14 ecdh_secret: [u8; 32],
15 auth_private: &[u8; 32],
16 auth_public: &[u8; 32],
17 kid: Vec<u8>,
18 ) -> PartyV<Msg1Receiver> {
19 ...
20

21 PartyV(Msg1Receiver {
22 c_v,
23 secret,
24 x_v,
25 auth,
26 kid,
27 })
28 }
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29

30 /// Processes the first message.
31 pub fn handle_message_1(
32 self,
33 msg_1: Vec<u8>,
34 ) -> Result<PartyV<Msg2Sender>, OwnError> {
35 ...
36 }
37 }

List. 4.2: State and implementation for first message

In Listing 4.2 we see the definition of one of these state structures, which contains all
the initialization data required before starting the protocol run. This is followed by an
implementation block for PartyV instances that have this initialization data as the state.
It contains an associated function that does not make use of this type parameter and
is a sort of “constructor”, returning a PartyV structure that wraps an instance of our
Msg1Receiver state structure.
The block also has an implementation of the method handle_message_1, which takes the
bytes of the first message as an argument. It does some processing on this and returns
either an error or an instance of PartyV wrapping a new state structure, the one required
for sending the second message.

1 /// Contains the state to build the second message.
2 pub struct Msg2Sender {
3 c_v: Vec<u8>,
4 shared_secret: SharedSecret,
5 x_v: PublicKey,
6 auth: [u8; 64],
7 kid: Vec<u8>,
8 msg_1_seq: Vec<u8>,
9 msg_1: Message1,

10 }
11

12 impl PartyV<Msg2Sender> {
13 /// Returns the bytes of the second message.
14 pub fn generate_message_2(
15 self,
16 ) -> Result<(Vec<u8>, PartyV<Msg3Receiver>), OwnError> {
17 ...
18 }
19 }

List. 4.3: State and implementation for second message

Listing 4.3 contains the definition of this state structure, as well as the implemen-
tation block for the PartyV instance that wraps the structure and is returned from
PartyV::handle_message_1. We can see that this implementation only applies to
PartyV<Msg2Sender>, effectively any instance of PartyV which has the necessary state
to send the second message. Trying to use this method before having handled the first
message will result in a compiler error. Additionally, if one were to use an editor with
autocompletion, this would be the the only available method it would propose, so the
user does not even necessarily have to understand EDHOC or the API in any detail to
use it, since they are guided by only being able to do the right thing.
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We can also see that the method implicitly takes self as an argument, which means it
takes ownership of its structure as opposed to merely taking a reference, which would be
&self or &mut self for a mutable one. This is very important, because after the method
has been called, the variable holding the instance (the previous owner) is no longer valid,
since ownership has been moved. The previous instance has therefore been consumed and
a new instance for the next step is returned. Rust’s move semantics together with this
pattern do not let the user apply the same operation twice when it does not make sense.
With these two mechanisms we can prevent misuse of our API at compile time, which is
very beneficial to both safety and usability.

4.2. OSCORE

4.2.1. Approach

This implementation was done in a slightly more top-down way than EDHOC, because the
API design for OSCORE was more obvious. Since the security context is the foundation
of everything in OSCORE, its data structure and derivation were the first building blocks.
The functionality concerned with protection and unprotection of messages followed, and
just as for EDHOC, lots of independently testable utility functions provide the core
functionality for the API abstraction.
It made a big difference that OSCORE—unlike EDHOC—was already a finished RFC
(proposed standard since July 2019 [17]) when we started. Not only did this give us some
certainty that the specification would not change below our feet, the biggest advantage
was that it already came with a good set of test vectors, allowing us to be confident of
implementing things the right way from the beginning.

4.2.2. CoAP Integration

There was one aspect that made the OSCORE implementation slightly more challenging
than EDHOC—the strong coupling with CoAP as a result of it protecting CoAP messages.
As a consequence, this means that an OSCORE implementation needs a way to encode
and decode CoAP messages.
One interesting approach to solve this, without having to add CoAP functionality to the
library itself, would be to rely on the user to provide a CoAP implementation of their
choice through some fixed interface (a set of traits in Rust). In practice, they would have
to write a small binding to expose CoAP functionality, such as iterating over the options
of a message or accessing the code and payload. The example5 of this approach that made
us consider it was written by somebody working on a C implementation of OSCORE. A
big advantage of doing it as proposed, besides not having to concern ourselves with the
specifics of CoAP, is that the binary size of projects using it could be reduced. After all,
it is very likely that an application using an OSCORE implementation already contains a
CoAP library, so reusing it instead of adding another one would reduce code duplication.
This is a convincing argument, but while investigating, we noticed something in the
OSCORE specification that makes it less enticing. Section 5.3 of [17] specifies that the

5https://gitlab.com/chrysn/coap-message

https://gitlab.com/chrysn/coap-message
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plaintext (which will be the payload of the OSCORE message when encrypted) containing
the protected code, options and payload, will be formatted like a CoAP message, except
for only having a subset of the header. So in practice, an OSCORE implementation
needs to be able to construct a CoAP message from scratch and modify it slightly to
remove the unnecessary header parts. In essence, the user would therefore have to expose
an almost complete set of CoAP functionality, which would be very tedious. But if we
look at Figure 3.6 where we can see how the plaintext is formatted, it does not look
too complicated. Maybe this CoAP subset could even be implemented directly in our
library. Unfortunately, the devil is in the details, the “Class E options” specifically. The
CoAP options format is very efficient in order to be as compact as possible. Section
3.1 of [19] explains this in detail. For example, the option numbers are not explicitly
included, instead all options are included in ascending order and a delta encoding is
used. The result of this is that it is very compact, but easily the most complex part
of CoAP encoding. If one were to implement this, they might as well do a full CoAP
implementation, which is then just in arm’s reach anyway.
Given this situation, we figured the best way forward would be to bite the bullet and
rely on a CoAP library directly to handle all of this. While that comes at the cost of
increased binary size, it makes everything easier for us and most importantly the user
of our library, as they do not have to do anything. The next problem then is finding a
suitable library. At the time, we were aware of two almost feasible candidates. JNeT6

is an experimental #![no_std] library for many network protocols, among them CoAP.
While very competently built, the library is experimental, unsupported and not the most
ergonomic to work with. The other was coap7, arguably the CoAP library for Rust. While
otherwise pretty much perfect, it simply did too much for our purposes. It implements
a full CoAP server using UDP and sockets, thus relying on the standard library, so very
much not usable in #![no_std]. Since neither of them supported the newly introduced
OSCORE option that we needed, we would have had to fork them anyway. That is why
we opted for taking the parts that do CoAP encoding and decoding from the coap crate,
modifying them so they work in #![no_std] and put them in a separate crate8. It strikes
a good balance between working in #![no_std] and still being pleasant to use, by relying
on some heap allocation. More about the tradeoffs of that in Section 4.3.
Being able to conveniently work directly with CoAP messages and our continuous ver-
ification of individual components against the test vectors, we did not have any other
notable issues and everything ended up coming together nicely. We were able to finish
the library implementation of EDHOC and OSCORE on schedule, almost exactly eight
weeks after the first commit.

4.3. Notes on Heap Allocation

While heap allocation is usually a given in most programming, on bare metal that is not
necessarily the case. Because such a #![no_std] environment as we call it in Rust is the
lowest common denominator of what hardware usually gives us, by default there is no
heap allocator that manages and provides this memory for us. This means that types that

6https://github.com/japaric/jnet
7https://crates.io/crates/coap
8https://crates.io/crates/coap-lite

https://github.com/japaric/jnet
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https://crates.io/crates/coap-lite
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require heap allocation, such as Vec or String cannot be used in #![no_std] by default.
Even on systems where heap allocation is possible, it is generally not taken advantage of
in embedded programming, because it adds a bit of unpredictability, particularly the need
to handle failed allocations in out of memory situations and the fact that memory could
become fragmented over time. For systems where heap allocation is possible, Rust allows
us to use it with the alloc crate. It provides a set of traits and types, which can be used
to implement a heap allocator (we will just call it an allocator for brevity) for a specific
system, use such an allocator as a global allocator in a binary, as well as declare in a
library that it requires a global allocator to be available, which allows it to use types that
do heap allocation even in #![no_std]. While it would have been possible to implement
everything in EDHOC and OSCORE just with stack-allocated fixed-size buffers, it would
have been less ergonomic and taken more time, especially since some useful features of
libraries we use (e.g. CBOR encoding) require allocation themselves. Since an allocator is
available for the Cortex-M platform, which we targeted for the demo, and the alloc crate
was conveniently stabilized in Rust 1.36.0 just before we started [22], we decided to accept
the tradeoffs of using the heap for some operations that can benefit from it. This has
enabled us to be more productive and in our testing we have not observed any adverse
effects, such as memory fragmentation. A continuous exchange of OSCORE messages
over two hours did not show any issues. This is most likely due to the fact that only a
small select portion of the overall memory usage is on the heap and that practically all
of the values allocated on the heap while processing a message are deallocated straight
after. While it is possible to leak memory even in Rust in very special circumstances
(using reference counted types for example), our implementation does not use any of the
features that allow this to happen and is therefore completely free of memory leaks.
The timely stabilization of alloc was quite fortunate, because unstable features require
a nightly compiler. Rust makes it very easy to manage and use stable, beta and nightly
toolchains side by side, so that is not usually a problem for binaries like the demo we
built. But making a library that requires a nightly compiler is inadvisable, because it
tends to be infectious, forcing all libraries and binaries that use it as a dependency to do
the same. The only difficulty we faced was that a small crate9, which is responsible for an
aspect of CBOR serialization and uses allocation for a subset of its functionality, was not
updated to take advantage of the stabilization. It still required the unstable allocation
feature, which would have made our library do the same. Because this was the only crate
holding us back, we pushed a small pull request to fix it and now our library compiles
with stable Rust, a benefit that was certainly worth the little time we spent on getting
this fixed.

9https://github.com/serde-rs/bytes

https://github.com/serde-rs/bytes
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5.1. Overview

The main body of work is of course the combined EDHOC and OSCORE library1, and
to a lesser extent also the two standalone libraries for AES-CCM2 and CoAP3. In order
to be certain that it is suitable for actual use, we also built a demonstration setup4 for
it, which is presented in the following section.

5.2. Experiment

To demonstrate our library working on real hardware, we decided to implement a resource
server on a STM32F303VCT6 with a client on a STM32F407VGT6U, which are Class 2
constrained nodes [3]. These devices are well-supported and it is very easy to get started
programming for them using a quickstart template5.

1https://github.com/martindisch/oscore
2https://github.com/martindisch/aes-ccm
3https://github.com/martindisch/coap-lite
4https://github.com/martindisch/oscore-demo
5https://github.com/rust-embedded/cortex-m-quickstart
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It was not all smooth sailing though. We encountered the same jarringly “weird” issues
people tend to get hung up on when stepping down from metaphorical software heaven
into hardware hell. Some examples to give the reader a taste:

• A STM32VLDISCOVERY board did not seem to connect via Universal Serial
Bus (USB). It presents itself to the host as a composite USB device with the
programmer interface, as well as a USB mass storage device with some informa-
tional documents. The firmware implementation of that mass storage device was
buggy, causing repeated resets, thus making the device unavailable. Forcing the
host to ignore the mass storage device fixed the problem.

• The Instrumentation Trace Macrocell (ITM) is a core peripheral available on some
microcontrollers that allows for faster and more efficient logging than serial inter-
faces. There is an interesting in-depth article6 about this topic in the context of
Rust embedded programming. For some reason, there were issues with it on the
F3, forcing us to resort to simply logging over Universal Synchronous/Asynchronous
Receiver/Transmitter (USART), which was more than sufficient for the demo.

• When trying to use the F4 in standalone mode—that is without a host computer
and simply powered over USB from a regular power supply—it did not do anything
at all. This time, it was also a bug in the ST-Link firmware, which made the on-
device debugger hold the user program in reset, unless it was connected to a host
computer7. A firmware update fixed this.

But the biggest problem we had was that of Ethernet connectivity. Initially, we decided to
work with the Waveshare ENC28J60 Ethernet board8, because there already was a Rust
driver for working with the ENC28J60 controller9. We were able to do some experiments
with it and it seemed to mostly work. However, as our demo progressed, we noticed that
it was still strangely unreliable. There were several separate issues, which we have to go
into in order.
First of all, there were cases where packets received in a previous run were received
again after restarting the program. This suggests that the internal reception buffer of the
Ethernet controller was not reset properly. The datasheet10 mentions that for a successful
reset, the reset pin has to be held low for at least 400 ns, otherwise the change in signal
will be filtered out. And indeed, the driver did not ensure this was the case, but simply
set the pin to low and high again with the next instruction. Maybe the developer tested
the driver on a microcontroller that runs at sufficiently low frequency such that 400 ns
passed between the two invocations. We were able to verify that introducing a delay
did solve the problem, but in the end decided to use a Serial Peripheral Interface (SPI)
command for resetting, because that worked just as well and did not require an extra
wire.
Much more serious were the seemingly random panics (unrecoverable errors, resulting in
a crash) of the driver. We traced these back to unhandled error conditions. Modifying the
driver to make sure these errors did not cause a panic but returned a proper error instead,
allowed our application to handle them by retrying the operation. Still, the underlying
problems of the strange errors remained. The ENC28J60 writes 64 respectively 32 bit

6https://blog.japaric.io/itm/
7https://os.mbed.com/questions/68969/STM32F429I-DISC1-can-not-be-powered-by-u/
8https://www.waveshare.com/enc28j60-ethernet-board.htm
9https://crates.io/crates/enc28j60

10https://www.waveshare.com/w/upload/7/7f/ENC28J60.pdf
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status vectors after transmitting and receiving, which the driver reads. These can indicate
a number of error conditions, such as packets that are longer than Ethernet frames are
allowed to be. But the values we received in these status vectors did not make much sense.
Often it indicated packets of an enormous length that we were sure were not actually sent,
other times the status vector was completely empty (just zeros) or displayed an unlikely
combination of flags that were nonsensical, as if we were reading a random area of memory.
Besides a hardware issue, our best guesses are that either there is a deeper problem in the
driver implementation, or more likely that there are subtle differences between our board
that hosts the Ethernet controller and that of the driver author, which somehow change
how the ENC28J60 controller operates. That should not be the case, but it is imaginable.
We tried to make it work with our modified driver, by catching errors and retrying on
failure. That worked well enough for errors during sending, but resetting the device on an
error while receiving caused message loss, which was unacceptable. We therefore decided
to look into the WIZnet WIZ850io11, for which there is also a Rust driver12. While the
API of this driver is not documented as well and more cumbersome, the W5500 Ethernet
controller used on this board offers more features than the ENC28J60 and is therefore
more pleasant to use. It has proven completely reliable and we have not had any problems
with it since.
The next step was verifying that our implementation worked as expected. We started
by creating the resource server on the F3 and testing it with a desktop client. After
porting the client to the F4 and seeing it work in conjunction with the server, the basic
requirements were fulfilled. But because it was straightforward and a good demonstration
of how OSCORE allows for proxying, we decided to throw a proxy in the mix. We
implemented a very naive CoAP proxy in 60 lines of Rust code that ran on a Raspberry
Pi and simply forwarded CoAP packets to the requested destination.

11https://www.wiznet.io/product-item/wiz850io/
12https://crates.io/crates/w5500
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F3 (server)

F4 (client)

Raspberry Pi (proxy)

Ethernet switch

Fig. 5.1.: Demo setup

This completed our demo. The CoAP server provides two dummy resources: /hello al-
ways returns a “hello world” type message and /echo responds with the payload of the
request. While it was quickly put together for the demo and is far from a reference imple-
mentation of a reusable CoAP server, it correctly implements the subset of functionality
it needs and can be used with any CoAP client. The same goes for the proxy, which
can also be used with an arbitrary CoAP client to route requests and responses to and
from the server. The computer is only connected to the switch for a Secure Shell (SSH)
connection to the proxy to show its output. As soon as it is connected to power, the
client initiates the EDHOC exchange with the server, after which it will start an endless
loop of making CoAP requests protected with OSCORE to the server, one to the /hello
resource, then one to the /echo resource and so on. The requests to /echo include a
counter to easily keep track of how many messages have already been exchanged.
There is also a short video13 of an earlier test of the demo. In this instance, the left
terminal on the computer shows the messages that pass through the proxy and the right
one the debug output from the client, which is received via serial connection.
The demo also allows us to investigate the cost of using our library a bit better, by looking
at several metrics we have collected on the embedded resource server. The benefit of
looking at not just the library itself, but a binary using it, is that we can use the great
tools we have available for the target platform to do so. The disadvantage is, of course,
that the results will be distorted somewhat by the additional cost of the application

13https://photos.app.goo.gl/8TWcciupGW8YoXt48
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code, libraries it uses such as the HAL implementation or the driver for the Ethernet
module, or the minimal runtime that is included in the binary for things like formatting
panic messages. Still, the result shows us accurately what a typical embedded application
using our library would look like, since that is exactly what our resource server is. In the
following sections where we go into several different metrics, it will be made clear whether
the presented information pertains to just the library itself, or the embedded resource
server using it.

5.3. Code Analysis

While the library contains both EDHOC and OSCORE, they are not coupled in any way,
but exist as completely independent modules within them. Each can easily be used on its
own. Due to the very careful approach of testing every unit of code as early as possible,
the overall test coverage is at over 95%.

1 $ cargo tarpaulin
2 [INFO tarpaulin] Running Tarpaulin
3 [INFO tarpaulin] Building project
4 [INFO tarpaulin] Launching test
5 [INFO tarpaulin] running /home/martin/Projects/oscore/target/
6 debug/deps/oscore-cecde91908de6476
7

8 running 51 tests
9 ...................................................

10 test result: ok. 51 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
11

12 [INFO tarpaulin] Coverage Results:
13 || Tested/Total Lines:
14 || src/cbor/mod.rs: 60/60
15 || src/edhoc/api.rs: 327/340
16 || src/edhoc/cose.rs: 95/100
17 || src/edhoc/util.rs: 271/280
18 || src/lib.rs: 6/6
19 || src/oscore/context.rs: 263/282
20 || src/oscore/util.rs: 306/320
21 ||
22 95.68% coverage, 1328/1388 lines covered

List. 5.1: Test run

The number of lines shown in the tool does not accurately reflect the actual number of
lines in the source files, but what it sees as discrete lines, which can in fact span multiple
lines.
A more classical analysis of the source files reveals that we have in fact about 3200 lines
of code in the whole project. Almost exactly a third of these are unit tests and a few
more are example code, which explains the substantial difference.
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Language Files Lines Blank Comment Code
Rust 16 4465 422 834 3209
Toml 1 38 3 2 33
Markdown 1 41 10 0 31
Total 18 4544 435 836 3273

Tab. 5.1.: File stats of the complete repository

Removing tests and examples, we end up with a more accurate picture which reveals that
about 25% of non-blank lines are comments and documentation.

Language Files Lines Blank Comment Code
Rust 14 3078 270 752 2056
Total 14 3078 270 752 2056

Tab. 5.2.: File stats for source without tests

It was very important to us that we properly document everything for ourselves, as well
as others, and we have been rewarded for this policy more than once when revisiting code
we had written a number of weeks earlier. The generated documentation for the library
is published on GitHub14.

5.4. Binary Size

Looking at the different segments of the embedded resource server binary can show us
how much flash size it will occupy.

1 $ cargo size --bin server --release -- -A
2 server :
3 section size addr
4 .vector_table 404 0x8000000
5 .text 110514 0x8000194
6 .rodata 51940 0x801b150
7 .data 0 0x20000000
8 .bss 20 0x20000000
9 .uninit 0 0x20000014

10 .debug_str 511082 0x0
11 .debug_loc 368359 0x0
12 .debug_abbrev 3637 0x0
13 .debug_info 553733 0x0
14 .debug_ranges 116048 0x0
15 .debug_macinfo 2 0x0
16 .debug_pubnames 173957 0x0
17 .debug_pubtypes 174006 0x0
18 .ARM.attributes 56 0x0
19 .debug_frame 18808 0x0
20 .debug_line 168838 0x0
21 .debug_aranges 296 0x0
22 .comment 175 0x0

14https://martindisch.github.io/oscore/oscore/

https://martindisch.github.io/oscore/oscore/
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23 Total 2251875

List. 5.2: Segments of server binary

Since only the .vector_table, .text and .rodata segments will occupy space in the flash
memory (as indicated by the addresses), the flash size of this binary is 162858 bytes.
We were a bit surprised at the size, which could have been smaller. There is a tool15

to investigate which parts of the code take up the most space, but unfortunately it only
supports ELF (Linux, BSD), Mach-O (macOS) and PE (Windows) binaries. However, we
quickly suspected the CBOR implementation as the culprit, because it uses a very popular
generic serialization/deserialization framework for Rust. It makes heavy use of static dis-
patch (instead of dynamic dispatch) through a technique called monomorphization, which
is usually great, because it makes generics zero-cost and allows for some optimizations.
The disadvantage is that it can significantly increase binary size. For more on this inter-
esting topic, read about monomorphization16 and trait objects17 in Rust. Since we could
not use a tool to inspect our binary, we resorted to making CBOR serialization/deserial-
ization calls in our code do nothing, effectively removing them. The resource server with
this version weighed only 98818 bytes, a reduction of almost 40%. This confirmed our
suspicion, replacing the CBOR handling with something more lightweight would therefore
be the first step in improving the binary size.

5.5. Memory Usage

The call-stack tool18 can be used to determine memory usage, by statically analyzing
the generated LLVM Intermediate Representation (IR) of an application. We applied
this to the embedded resource server. It creates the full call stack as a DOT file (graph
representation format), which shows all possible execution paths, as well as the inferred
local stack usage of every function. By adding up that and the local stack usage of every
function it calls, as well as the callees of those and so on, it can also determine the full
stack usage caused by calling the function. Of course that is no longer possible if there
are cycles in the call graph (e.g. from recursion), as it cannot know how many levels deep
such a cycle will go at runtime. It will then simply display the minimum stack usage.
Since that is not typically the case, we can safely assume the values to be the accurate
cost accrued by using a function. There is also another caveat—inlining. Because the
tool works on the IR, many optimizations have already been made, which is useful, since
it more accurately reflects the runtime behavior. But it also means that some functions
may have been inlined into others, “disappearing” in the process and adding their cost to
the local usage of the parent function, which makes it hard to discover the true source of
some memory usage. In the application, this can be prevented by annotating functions
with #[inline(never)] to tell the compiler not to inline them, but of course that has no
effect on the libraries we use. Since we are optimizing our binary for size and not speed,
inlining is kept to a minimum anyway and the call graph we get is fairly accurate.

15https://crates.io/crates/cargo-bloat
16https://doc.rust-lang.org/stable/book/ch10-01-syntax.html#performance-of-code-using-g
enerics

17https://doc.rust-lang.org/stable/book/ch17-02-trait-objects.html#trait-objects-perfo
rm-dynamic-dispatch

18https://crates.io/crates/cargo-call-stack

https://crates.io/crates/cargo-bloat
https://doc.rust-lang.org/stable/book/ch10-01-syntax.html#performance-of-code-using-generics
https://doc.rust-lang.org/stable/book/ch10-01-syntax.html#performance-of-code-using-generics
https://doc.rust-lang.org/stable/book/ch17-02-trait-objects.html#trait-objects-perform-dynamic-dispatch
https://doc.rust-lang.org/stable/book/ch17-02-trait-objects.html#trait-objects-perform-dynamic-dispatch
https://crates.io/crates/cargo-call-stack
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There are several viewers for DOT files and a very simple way is to convert it to a Scalable
Vector Graphics (SVG) file. However, this is not really practical due to the size of the
call graph of the resource server. Most viewers crash trying to render the SVG. And for
good reason, since the call graph is 2.2 meters wide and 0.75 meters high at default font
size.

Fig. 5.2.: Call graph excerpt

Most of the complexity comes from implementation details of the language, its core library
or other libraries, and is not particularly relevant to us, so as one might be able to guess
from Figure 5.2, it is difficult to analyze it meaningfully. To do so anyway, we wrote a
small tool to parse the DOT file, present us with a list of function calls for a specific
function ordered by their accumulated stack usage, and allow us to conveniently traverse
the relevant parts of the call graph like that.

1 22848 3000 main
2

3 0: 19848 3888 server::oscore::OscoreHandler::handle
4 1: 392 32 alloc::slice::<impl [T]>::to_vec::h75fcf83c4bab5683
5 2: 272 0 alloc::raw_vec::RawVec<T,A>::dealloc_buffer::h0f3f40e8a0a5cb9a
6 3: 256 0 core::result::Result<T,E>::expect::hf0f151e14425c943
7 ...

List. 5.3: main function

This is part of the output it gives us for the top-level main function. It tells us that
the function uses 3000 bytes locally and with all the functions it calls, it comes in at
about 22 KiB at its peak, which leaves more than enough room in the 40 KiB Random-
Access Memory (RAM) of the F3 for the small amount of heap it needs. Below that we
can see the top functions it calls, with their total and local stack usage. Of course the
OscoreHandler takes up most of the RAM, since everything passes through it first, before
being delegated to the CoAP and EDHOC handling.
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1 19848 3888 server::oscore::OscoreHandler::handle
2

3 0: 15960 192 server::coap::CoapHandler::handle
4 1: 8448 6904 <aes_ccm::ccm::AesCcm<TagSize> as aead::NewAead>::new
5 2: 2380 328 oscore::oscore::util::hkdf
6 3: 688 184 coap_lite::packet::Packet::from_bytes
7 4: 664 64 coap_lite::packet::Packet::add_option
8 ...

List. 5.4: OscoreHandler::handle function

Taking a look at the OscoreHandler, we see that its call to the CoapHandler is the most
expensive, as expected. Surprisingly, the AEAD it uses for encryption—AES-CCM—is a
close second. This can be explained, since AES implementations are known to allocate
large tables for speedups.

1 8448 6904 <aes_ccm::ccm::AesCcm<TagSize> as aead::NewAead>::new
2

3 0: 1544 1320 aes_soft::bitslice::bit_slice_fill_4x4_with_u32x4
4 1: 224 192 <generic_array::GenericArray<T,N> as generic_array::sequence::
5 GenericSequence<T>>::generate::h08f91fac028cb4f7
6 2: 200 48 core::panicking::panic_bounds_check
7 ...

List. 5.5: AES functionality

Investigating AES-CCM a bit more closely, we can see the issue of inlining in action.
AES-CCM is provided by a library, so without modifying it to litter #[inline(never)]
everywhere, functions will be inlined where it makes sense. This seems to have been the
case here, as the CcmMode::new function uses 6904 bytes locally of a total usage of 8448
bytes. Since we wrote the library ourselves, we happen to know that this constructor does
not do much besides initializing the underlying AES implementation, so most of the stack
usage should be attributed to that, not our constructor. But the corresponding function
call is ominously missing, indicating that it has been inlined and its stack usage added
to that of the constructor function. After all, the most demanding function call we get in
the list is a (relatively) small one from the AES implementation to build some matrices.
Most likely, the initialization has been inlined since it was only called once, in which case
inlining does not result in a larger code size, whereas the bit_slice_fill_4x4_with_u32x4
function is called more frequently, so inlining would be against our optimization goal
(small size).
For now, we go back up one level and down into the CoapHandler to continue the investi-
gation.

1 15960 192 server::coap::CoapHandler::handle
2

3 0: 15768 7320 server::edhoc::EdhocHandler::handle
4 1: 784 88 server::coap::generate_response
5 2: 776 80 server::coap::generate_link_format
6 ...

List. 5.6: CoapHandler::handle function

Once more, we are referred to the next component, the EdhocHandler in this instance.
We can also see that the actual handling of the CoAP messages is relatively inexpensive,
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although we do not get the full picture here, since this is one of the few places where a
bit of heap allocation happens that is hidden in static analysis.

1 15768 7320 server::edhoc::EdhocHandler::handle
2

3 0: 8448 6904 <aes_ccm::ccm::AesCcm<TagSize> as aead::NewAead>::new
4 1: 2468 416 oscore::edhoc::util::edhoc_key_derivation
5 2: 2016 592 server::edhoc::EdhocHandler::initialize
6 3: 1484 176 curve25519_dalek::edwards::EdwardsPoint::compress
7 ...

List. 5.7: EdhocHandler::handle function

Inside the EdhocHandler, we have come to an end with nothing new to discover. We find
out that most of the memory is again used by AES, followed by other cryptographic oper-
ations like key derivation or preparing Curve25519, used for both ECDH and signatures.
In conclusion, the most straightforward way to reduce the memory requirements would
be to use a cryptographic element in hardware, which would of course have to support all
the ciphers we need. Considering that AES is the main offender, having one that does just
that might be enough to considerably reduce memory pressure. Some microcontrollers
come with AES support built in, which would be even better. Another approach would
be using a different software implementation, akin to TinyCrypt, which is optimized for
size at the cost of speed.

5.6. Benchmarks

Two kinds of benchmarks were used in this project. The purpose of the first type was
to get a sense of the relative cost of operations (how they compare to each other) and
to support development. These benchmarks are part of the the library project and were
built with Criterion.rs19, a statistics-driven microbenchmarking suite for Rust, which
integrates nicely with the Cargo build system.

1 $ cargo bench
2 edhoc_detailed/party_u_build
3 time: [32.403 us 32.405 us 32.408 us]
4 Found 4 outliers among 100 measurements (4.00%)
5 2 (2.00%) high mild
6 2 (2.00%) high severe
7 edhoc_detailed/msg1_generate
8 time: [410.51 ns 414.38 ns 418.29 ns]
9 Found 16 outliers among 100 measurements (16.00%)

10 2 (2.00%) low severe
11 3 (3.00%) low mild
12 7 (7.00%) high mild
13 4 (4.00%) high severe
14 ...

List. 5.8: Benchmark usage

These results are very accurate, reproducible, and correctly show the relative amounts of
time spent in different parts of the overall execution. Implementing benchmarks in this

19https://github.com/bheisler/criterion.rs

https://github.com/bheisler/criterion.rs
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manner is extremely beneficial for development, as it enables comparing the performance
of changes with that of the previous version.

1 edhoc_detailed/msg1_generate
2 time: [485.83 ns 503.35 ns 522.53 ns]
3 change: [+12.251% +15.298% +18.419%] (p = 0.00 < 0.05)
4 Performance has regressed.

List. 5.9: Performance regression example

While this information is very useful, it does not convey a sense of how the code performs
in the real world on embedded devices. To find out, we ran a second type of benchmark
on the F3. The cycle counter from the Debug Watch and Trace (DWT) module found
on Cortex-M processors was used to measure the number of CPU cycles for operations.
In the following two sections we will discuss the results for EDHOC and OSCORE. For
each, the desktop benchmarks are presented first to discuss how they compare to each
other, afterwards the cycle counts and corresponding execution times at different clock
speeds on embedded devices are shown. The full benchmark results with more information
about the environments they were produced in are available in Appendix A.

5.6.1. EDHOC

Table 5.3 lists all functions of the public API in the order they are executed in an exchange,
as well as the most important operations they entail.

Party Function Details Time [µs]

U
new Struct initialization with authentication and

ephemeral key
32.405

generate_message_1 - 0.414

V

new Struct initialization with authentication and
ephemeral key

32.438

handle_message_1 Shared secret derivation 98.699
generate_message_2 Hash, signature, key derivation, AEAD en-

cryption
63.062

U

extract_peer_kid Shared secret derivation, hash, key deriva-
tion, AEAD decryption

126.030

verify_message_2 Signature verification 108.530
generate_message_3 Hash, signature, key derivation, AEAD en-

cryption, OSCORE context derivation
70.626

V
extract_peer_kid Hash, key derivation, AEAD decryption 27.345
verify_message_3 Signature verification, OSCORE context

derivation
116.720

Tab. 5.3.: EDHOC benchmarks (desktop)

As expected, cryptographic operations seem to account for most of the execution time.
For example, generating the first message (which does not involve any of those at all) is
finished virtually instantly.
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Summing up these values results in a total execution time of 338.005µs for Party U
and 338.264µs for Party V. This is easily verified by a second set of benchmarks, which
measure all the operations of each party combined. Indeed, their results are 339.89µs for
Party U and 339.85 µs for Party V, the small difference being a testament to the accuracy
of the benchmarks.
On the embedded side, we measure CPU cycles. By default, the F3 and F4 use their
internal RC oscillators as clock sources, which run at 8MHz and 16MHz respectively.
Using an external clock source and a Phase Locked Loop (PLL) to multiply this clock
speed, they can go as fast as 72MHz and 168MHz. Table 5.4 shows the CPU cycles and
corresponding execution times at different frequencies.

Party Function CPU cycles 8MHz [ms] 72MHz [ms] 168MHz [ms]

U new 1128152 141.0 15.7 6.7
generate_message_1 9309 1.2 0.1 0.1

V
new 1128145 141.0 15.7 6.7
handle_message_1 3198029 399.8 44.4 19
generate_message_2 1920170 240.0 26.7 11.4

U
extract_peer_kid 3818507 477.3 53 22.7
verify_message_2 3306214 413.3 45.9 19.7
generate_message_3 2163710 270.5 30.1 12.9

V extract_peer_kid 626818 78.4 8.7 3.7
verify_message_3 3552819 444.1 49.3 21.1

Tab. 5.4.: EDHOC benchmarks (embedded)

Relative to each other, these results are remarkably similar to the desktop benchmarks.
Summing up the CPU cycles gives a total of 10425892 for Party U and 10425981 for
Party V. This can be verified too, as benchmarks over all operations of each party give
10428827 for Party U and 10428274 for Party V. Overall, every party spends about 1.304 s
at 8MHz, 145ms at 72MHz, or 62ms at 168MHz.

5.6.2. OSCORE

For OSCORE, there are fewer benchmarking opportunities, as the API is very simple.
There is initialization, protecting either a request or a response and unprotecting a request
or a response. Which of those it is has little effect on the speed of the operation.

Operation Time [µs]
Context construction 9.0540
Request protection 11.023
Request unprotection 11.053

Tab. 5.5.: OSCORE benchmarks (desktop)

OSCORE operations are much less demanding than EDHOC, since they do significantly
less cryptography. No ECDH, EdDSA, and HKDF (except in context construction). Only
AEAD, which is quite fast.
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The embedded benchmarks tell a similar story, although here we see a slight divergence
between the desktop and embedded versions. In the former, context construction is
slightly faster than protection and unprotection, while in the latter they are all roughly
the same.

Operation CPU cycles 8MHz [ms] 72MHz [ms] 168MHz [ms]
Context construction 294072 36.8 4.1 1.8
Request protection 295206 36.9 4.1 1.8
Request unprotection 297662 37.2 4.1 1.8

Tab. 5.6.: OSCORE benchmarks (embedded)

5.7. Limitations

As we mentioned in Section 3.4.1, we implemented one of three authentication mechanisms
for EDHOC. We also omitted some aspects that were irrelevant for our application, such
as the optional application data that can be transported in EDHOC messages and the
negotiation of a cipher suite, since we only implemented the mandatory one.
For OSCORE, we implemented one of three mechanisms for deriving the security context,
as mentioned in Section 3.5.2. We did not implement some of the optional features, such
as handling of the special options for Observe or block-wise transfer.
All of these were omissions due to time constraints. It would have been feasible to do
a full implementation of either EDHOC or OSCORE, but we were quite challenged by
Learning Rust, embedded programming, understanding the two main and several related
RFCs, implementing the main libraries and the additional ones, as well as standing up
the demo. Despite that, we took great care to ensure that everything we did implement
complies with the test vectors and is correct, so that it can serve as the base for a full
implementation.
The main limitation of the demo is that the F3 does not have a True Random Number
Generator (TRNG). Without this, it is not possible to generate randomness that is
cryptographically secure, and therefore not possible to create the required ephemeral
keys for the ECDH exchange. The F4 does have one, but only one party being able
to generate secure ephemeral keys does not really make the exchange as a whole more
secure. It is important to state though that this is only a limitation of the demo and not
of the library. The library is I/O-free and does not deal in generating randomness. That
is the task of the user, who can do it with whatever method is most appropriate for their
hardware. All the library needs from the user then are 32 truly random bytes, which are
used in the ECDH exchange. We therefore decided to simply use the “ephemeral” keys
from the test vectors in the demo, which does not detract from the demo as a test case
for the library, since generating randomness is not part of its responsibility in the first
place.



6
Future Work

Given enough time, there are several interesting opportunities to improve or extend the
implementation:

• OSCORE is designed to work well in constrained networks, due to its small mes-
sage size [17]. The EDHOC draft specifically mentions its suitability for “network
technologies such as Cellular IoT, 6TiSCH, LoRaWAN” [16]. It would therefore be
interesting to demonstrate our implementations using these wireless technologies.

• Implement additional mechanisms and optional features for EDHOC and OSCORE
to move towards full implementations.

• Update the EDHOC implementation with new symbol names (some were changed
in the latest draft, such as X_U to G_X) to make the code more easily readable next to
the current draft and apply some improvements based on the experience we gained.

• Add support for more than just the mandatory cipher suites.
• Stack-allocate everything, so instead of little there is no use of the heap at all.
• Use a different software implementation of AES. The current one is good, but it is

built for speed and therefore does some optimizations at the cost of higher memory
usage. For our purposes, something like TinyCrypt that is optimized for size (binary
and memory) would be more suitable.

• Use a purpose-built CBOR implementation. While the crate we use now is very
well made, it is a bit tricky to use in our situation where we could do with a simpler
solution. It does not support CBOR sequences yet, which results in more code being
written by the consumer, as well as bigger risk of introducing bugs. Additionally,
as we found out in Section 5.4, it takes up a lot of space in the binary.

• Contribute to the W5500 driver for a more convenient API and better documenta-
tion.

46



7
Conclusion

In this project we have implemented standards for securing communication between con-
strained devices from two RFCs as an open source library and demonstrated it working
on real hardware with a resource server, proxy and client. As a byproduct, two smaller
libraries for CoAP handling and AES-CCM were also created.
While the main appeal of the project initially was that it would allow us to learn and
apply Rust, which we had wanted to do for a while, we came to really appreciate EDHOC
and OSCORE as the neat solutions to real problems that they are. Being able to work
with the authors of EDHOC to a small extent was an unexpected highlight of the project,
as was porting TinyCrypt’s CCM mode implementation, which was a first for us and a
really nice experience. Over the months we have spent working on this, there have been
more of these moments than we could possibly list here. From these small successes, to
seeing the first EDHOC exchange complete, or two embedded devices communicate with
each other with OSCORE for the first time.
It was a project full of firsts for us—learning Rust, delving into embedded development,
implementing an RFC from scratch or porting a cryptographic algorithm. At the begin-
ning, we were not sure we would be able to do all of this in the time we had. But it
worked out and from this experience we can only recommend taking a leap of faith every
now and then as an opportunity to grow.
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A
Benchmarks

The desktop benchmarks were run on a system running Arch Linux with kernel 5.3.13 on
an Intel i7-6700K (8) @ 4.200GHz CPU, with the Rust compiler rustc 1.39.0 (4560ea788
2019-11-04). For EDHOC, the data from the test vector for asymmetric authentication
was used. For OSCORE, it was test vector 1 for context construction and test vector 4
for protection/unprotection.

1 edhoc_detailed/party_u_build
2 time: [32.403 us 32.405 us 32.408 us]
3 Found 4 outliers among 100 measurements (4.00%)
4 2 (2.00%) high mild
5 2 (2.00%) high severe
6 edhoc_detailed/msg1_generate
7 time: [410.51 ns 414.38 ns 418.29 ns]
8 Found 16 outliers among 100 measurements (16.00%)
9 2 (2.00%) low severe

10 3 (3.00%) low mild
11 7 (7.00%) high mild
12 4 (4.00%) high severe
13 edhoc_detailed/party_v_build
14 time: [32.426 us 32.438 us 32.457 us]
15 Found 5 outliers among 100 measurements (5.00%)
16 2 (2.00%) high mild
17 3 (3.00%) high severe
18 edhoc_detailed/msg1_handle
19 time: [98.690 us 98.699 us 98.709 us]
20 Found 11 outliers among 100 measurements (11.00%)
21 1 (1.00%) low mild
22 5 (5.00%) high mild
23 5 (5.00%) high severe
24 edhoc_detailed/msg2_generate
25 time: [63.039 us 63.062 us 63.085 us]
26 Found 2 outliers among 100 measurements (2.00%)
27 2 (2.00%) high mild
28 edhoc_detailed/msg2_extract
29 time: [126.02 us 126.03 us 126.05 us]
30 Found 4 outliers among 100 measurements (4.00%)
31 1 (1.00%) low mild
32 1 (1.00%) high mild
33 2 (2.00%) high severe
34 edhoc_detailed/msg2_verify
35 time: [108.52 us 108.53 us 108.55 us]
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36 Found 5 outliers among 100 measurements (5.00%)
37 2 (2.00%) high mild
38 3 (3.00%) high severe
39 edhoc_detailed/msg3_generate
40 time: [70.609 us 70.626 us 70.644 us]
41 Found 8 outliers among 100 measurements (8.00%)
42 6 (6.00%) high mild
43 2 (2.00%) high severe
44 edhoc_detailed/msg3_extract
45 time: [27.320 us 27.345 us 27.374 us]
46 Found 6 outliers among 100 measurements (6.00%)
47 2 (2.00%) high mild
48 4 (4.00%) high severe
49 edhoc_detailed/msg3_verify
50 time: [116.68 us 116.72 us 116.80 us]
51 Found 7 outliers among 100 measurements (7.00%)
52 1 (1.00%) high mild
53 6 (6.00%) high severe
54

55 edhoc_full/party_u time: [339.89 us 339.96 us 340.06 us]
56 Found 10 outliers among 100 measurements (10.00%)
57 4 (4.00%) low mild
58 2 (2.00%) high mild
59 4 (4.00%) high severe
60 edhoc_full/party_v time: [339.85 us 339.92 us 340.00 us]
61 Found 10 outliers among 100 measurements (10.00%)
62 4 (4.00%) high mild
63 6 (6.00%) high severe
64

65 oscore/context_derivation
66 time: [9.0526 us 9.0540 us 9.0555 us]
67 Found 11 outliers among 100 measurements (11.00%)
68 5 (5.00%) low severe
69 1 (1.00%) high mild
70 5 (5.00%) high severe
71 oscore/protection_request
72 time: [11.019 us 11.023 us 11.029 us]
73 Found 13 outliers among 100 measurements (13.00%)
74 2 (2.00%) low severe
75 7 (7.00%) low mild
76 2 (2.00%) high mild
77 2 (2.00%) high severe
78 oscore/unprotection_request
79 time: [11.039 us 11.053 us 11.076 us]
80 Found 1 outliers among 100 measurements (1.00%)
81 1 (1.00%) high severe

List. A.1: Desktop benchmark output
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The embedded benchmarks were run on an STM32F303VCT6 at the default clock of
8MHz (although that is irrelevant, since it measures CPU cycles, not execution time).
The cycle counter from the DWT module was used to count CPU cycles. The contents
of the functions are the same as in the desktop benchmarks.

1 Basic initialization done
2 edhoc_detailed::party_u_build took 1128152 CPU cycles
3 edhoc_detailed::msg1_generate took 9309 CPU cycles
4 edhoc_detailed::party_v_build took 1128145 CPU cycles
5 edhoc_detailed::msg1_handle took 3198029 CPU cycles
6 edhoc_detailed::msg2_generate took 1920170 CPU cycles
7 edhoc_detailed::msg2_extract took 3818507 CPU cycles
8 edhoc_detailed::msg2_verify took 3306214 CPU cycles
9 edhoc_detailed::msg3_generate took 2163710 CPU cycles

10 edhoc_detailed::msg3_extract took 626818 CPU cycles
11 edhoc_detailed::msg3_verify took 3552819 CPU cycles
12 edhoc_full::party_u took 10428827 CPU cycles
13 edhoc_full::party_v took 10428274 CPU cycles
14 oscore::context_derivation took 294072 CPU cycles
15 oscore::protection_request took 295206 CPU cycles
16 oscore::unprotection_request took 297662 CPU cycles
17 Benchmarks finished

List. A.2: Embedded benchmark output



B
Common Acronyms

6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks
6TiSCH IPv6 over the TSCH mode of IEEE 802.15.4e
AEAD Authenticated Encryption with Associated Data
AES Advanced Encryption Standard
API Application Programming Interface
AMR Automatic Meter Reading
CBOR Concise Binary Object Representation
CCM Counter with CBC-MAC
COSE CBOR Object Signing and Encryption
CoAP Constrained Application Protocol
CPU Central Processing Unit
CVE Common Vulnerabilities and Exposures
DDoS Distributed Denial-of-Service
DWT Debug Watch and Trace
DoS Denial-of-Service
DTLS Datagram Transport Layer Security
ECDH Elliptic Curve Diffie-Hellman
EdDSA Edwards-Curve Digital Signature Algorithm
EDHOC Ephemeral Diffie-Hellman Over COSE
HAL Hardware Abstraction Layer
HKDF HMAC-based Extract-and-Expand Key Derivation Function
HTTP Hypertext Transfer Protocol
IoT Internet of Things
IR Intermediate Representation
ITM Instrumentation Trace Macrocell
JOSE Javascript Object Signing and Encryption
JSON JavaScript Object Notation
LoRa Long Range
LoRaWAN Long Range Wide Area Network
LPWAN Low Power Wide Area Networks
LR-WPAN Low-Rate Wireless Personal Area Networks
MAC Media Access Control
NB-IoT Narrowband Internet of Things
OSCORE Object Security for Constrained RESTful Environments
PLL Phase Locked Loop
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PSK Pre-Shared Keys
RAII Resource Acquisition Is Initialization
RAM Random-Access Memory
RC Resistor–Capacitor
REST Representational State Transfer
RFC Request for Comments
RPK Raw Public Keys
SPI Serial Peripheral Interface
SSH Secure Shell
SVG Scalable Vector Graphics
TCP Transmission Control Protocol
TRNG True Random Number Generator
UDP User Datagram Protocol
USART Universal Synchronous/Asynchronous Receiver/Transmitter
USB Universal Serial Bus
URI Uniform Resource Identifier
ZLL Zigbee Light Link
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