

Mood Classification

Classification of Songs Into Moods Using Convolutional Neural Network

Master Thesis

Philippe Bucheli

University of Bern

August 2022

i

“Productivity is never an accident. It is always the result of a commitment to
excellence, intelligent planning, and focused effort.”

- Paul J. Meyer

Abstract

ii

Abstract

The motive of this dissertation was to analyze the performance and features of the most

common mood classifier of songs. Different datasets and moods were tested. Furthermore, the

two different approaches of single and multi-label classification were compared. In the end, the

listening data was taken as an input for the constructed spectrogram-based convolutional neural

network (CNN). Moreover, the four moods happy, sad, calm and energetic were taken.

In addition, a web application was implemented which provides the service of retrieving the

Spotify tracks of a user’s favorite anime (Japanese TV shows) titles in a playlist. This was

achieved by connecting anime TV shows to their songs with the help of the API of

MyAnimeList and Spotify. The frontend was implemented in HTML and JavaScript, while the

backend was written in Python. Hence, the micro web framework Flask was utilized to host it

later with Firebase and Google Cloud Run. Continuous Deployment was also implemented to

simplify the update and deployment process as soon as changes were made on GitHub.

In order to create the Spotify playlists of the favorite anime titles, the Spotify OAuth login was

implemented. This resulting playlist could then be categorized by moods and accessed via a

new playlist saved in the user’s Spotify account.

Another neural network using KerasClassifier was taken as a comparison and evaluation of this

prototype by using the same dataset split into a training and a validation set. However, for one

model the audio features were given as input whereas the other model only received the

frequency in Hertz. Thus, the accuracy of this model using KerasClassifier, namely 72.75 %,

can be compared to some extent to the results of the self-implemented model which has a

slightly higher accuracy of 78.57 %. Hence, a hybrid solution using both systems was used for

the prototype to solve the nuances between few moods.

The second evaluation was done by taking some existing Spotify playlists labeled with a mood

as the input of the model and filtering it by the same mood. Thus, the number of titles added to

the new playlist categorized by this mood indicated the success rate. The mood energetic

provided the best predictive results with a rate of 82.14 %. Generally, it was observed that

anime songs are mostly predicted as energetic.

Keywords: Mood, Spotify, Song, Anime, Convolutional Neural Network, Image Classification,

Multi-Label Classification, Flask, Firebase, Google Cloud Run, Continuous Deployment

Prof. Dr. Jacques Pasquier–Rocha, Software Engineering Group, University of Fribourg,

Supervisor

Preamble

iii

Preamble

Acknowledgements

First of all, I would like to express my gratitude to Prof. Dr. Jacques Pasquier-Rocha, who gave

me the chance to write this master thesis. Next, I would like to thank Kevin De Keyser. He gave

me tips on how to overcome many obstacles and thus guided me to a successful result.

Moreover, he provided crucial advice as an expert of convolutional neural networks, which

made it more efficient.

Table of Contents

iv

Table of Contents

1 Introduction 1

1.1 Problem Statement ... 1

1.2 Research Questions .. 1

1.3 Objectives .. 2

1.4 Outline ... 2

1.5 Technologies Used ... 2

1.6 Time Schedule ... 2

2 Anime Titles and Spotify Songs 3

2.1 Dataset ... 3

2.2 Web Scraping ... 3

3 Mood Prediction 4

3.1 Dataset ... 4

3.1.1 AllMusic ... 4

3.1.2 Spotify and GraceNote ... 5

3.1.3 MTG-Jamendo ... 5

3.1.4 Spotify .. 5

3.2 Moods .. 5

3.3 Image Classification .. 6

3.3.1 Convolutional Neural Networks ... 6

3.3.2 MP3 to Spectrograms ... 9

3.3.3 Construction of the CNN .. 9

3.3.4 Fast AI .. 10

3.3.5 Multi-Label Classification .. 10

3.3.6 Train a Model ... 11

3.3.7 CPU vs. GPU.. 13

3.3.8 Results .. 14

3.3.9 Comparison to KerasClassifier ... 16

4 Prototype 17

4.1 Software Architecture .. 17

4.2 Spotify OAuth .. 18

4.3 MyAnimeList API ... 19

4.4 Anime Songs Playlist ... 20

Table of Contents

v

4.5 Mood Classification ... 20

4.6 Hosting Firebase .. 21

4.7 Continuous Deployment .. 24

4.8 Evaluation .. 25

5 Conclusion 27

References 30

Referenced Web Resources 32

List of Figures

vi

List of Figures

Figure 1 Time Schedule ... 2

Figure 2 Traditional Model of Mood ... 5

Figure 3 Layer 1 ... 7

Figure 4 Layer 2 ... 7

Figure 5 Layer 3 ... 8

Figure 6 Layer 4 ... 8

Figure 7 Spectrogram ... 9

Figure 8 Architecture of CNN .. 9

Figure 9 Order of Functions Called by DataBlock .. 10

Figure 10 Plot of Loss and Learning Rate .. 11

Figure 11 Structure of FP16 ... 11

Figure 12 CUDA Out of Memory Error ... 13

Figure 13 Results of Training and Validation .. 14

Figure 14 Scores of Predictions ... 14

Figure 15 Results for Taking the Middle Part of Songs ... 14

Figure 16 Predictions for Guren no Yumiya TV Size Version .. 15

Figure 17 Accuracy of Model Trained With the Spotify Dataset .. 15

Figure 18 Predictions of Two Chart Songs .. 15

Figure 19 Confusion Matrix ... 16

Figure 20 Spectrograms with their Label and Prediction ... 16

Figure 21 Software Architecture .. 18

Figure 22 Landing Page of the Web Application ... 19

Figure 23 Spotify OAuth Login ... 19

Figure 24 Provided Link of the New Playlist ... 20

Figure 25 Selection of Moods to Filter the Playlist ... 21

Figure 26 The Structure of the Project ... 22

Figure 27 Docker File Part 1 .. 22

Figure 28 Docker File Part 2 .. 23

Figure 29 Build Summary of the Continuous Deployment .. 24

https://d.docs.live.net/48086b37b8e80d38/Sync/Philippe/master/Master%20Thesis_Mood%20Classification_Philippe%20Bucheli.docx#_Toc113787986
https://d.docs.live.net/48086b37b8e80d38/Sync/Philippe/master/Master%20Thesis_Mood%20Classification_Philippe%20Bucheli.docx#_Toc113787987
https://d.docs.live.net/48086b37b8e80d38/Sync/Philippe/master/Master%20Thesis_Mood%20Classification_Philippe%20Bucheli.docx#_Toc113787992

List of Figures

vii

Figure 30 Finished Step Two With the Link to Access the Hosted Web Application 25

Figure 31 Songs Predicted as Sad .. 25

Figure 32 Songs Predicted as Energetic ... 26

Figure 33 Songs Predicted as Calm .. 26

1

 1

Introduction

1.1 Problem Statement 1

1.2 Research Questions 1

1.3 Objectives 2

1.4 Outline 2

1.5 Technologies Used 2

1.6 Time Schedule 2

1.1 Problem Statement

Currently, there is no service available to find the songs of favorite anime titles. Hence, the idea

of a website matching these titles rated on MyAnimeList [1] with the songs on Spotify [2] came

about. By comparing other music streaming platforms, like YouTube or Apple Music, the

requirement of a mood classifier was discovered. There are many ways to classify the mood of

a song. Thus, the most suitable method must be found. Furthermore, the quality of the classifier

depends also on the choice of moods and its dataset.

1.2 Research Questions

The following research questions will be addressed in this master thesis:

• Where and how can the connection of anime titles and their songs be made?

• Which mood classifier method is the most efficient one?

• How can audio data be used for image classification and what needs to be considered?

• Which moods are relevant for a user to classify his or her playlist and how should they

be displayed?

• What is the most cost-effective and robust way to host a static and dynamic website

2

1.3 Objectives

The goal of this project is to create a functional and robust mood classifier of songs by using

an innovative method. This will be achieved by accessing different data of many songs provided

online and analyzing the ways to classify moods of songs. The accuracy of an image

classification using spectrograms of songs will be compared to the classification with the help

of audio features.

Ultimately, the results of the final prototype will also be evaluated by predicting moods of

Spotify playlists labeled with a specific mood. More than 66.66 % of the playlist’s songs should

be predicted as the mood mentioned in the title of the playlist.

1.4 Outline

This master thesis was written in three parts. The first part consists of the preparation where the

data was obtained by using Selenium and saved efficiently in a text file. The second one is

about the choice of the dataset with the moods as labels and how the image classification was

implemented and trained.

The final section belongs to the more practical part containing the different steps completed to

create the prototype. At the end of this section, the way to host this prototype and the conducted

evaluation are described.

1.5 Technologies Used

The frontend was implemented with HTML and JavaScript whereas the backend was written

in Python. Hence, the micro web framework Flask was used to host it later with Firebase and

Google Cloud Run. Continuous Deployment was also set up to improve the update and

deployment process as soon as changes were made on GitHub. The API of MyAnimeList and

Spotify were needed to access the users’ anime titles and store the new created playlists. The

fast AI library was utilized to implement the CNN model, which enhances training of fast and

accurate neural networks using modern best practices.

1.6 Time Schedule

The following work plan in Figure 1 was created and followed during this thesis.

Figure 1 Time Schedule

3

 2

Anime Titles and Spotify Songs

2.1 Dataset 3

2.2 Web Scraping 3

2.1 Dataset

In order to build the connection between the anime titles from MyAnimeList and their songs

from Spotify, the website AnimeMusic [3] was scraped. The new dataset consists of 2’106 lines

with each an anime title, URL to MyAnimeList, song title, artist, URL to the song on Spotify,

URL to the artist page on Spotify and the kind of song (opening, edition or ending). This

information was saved in a text file called “animeSongs.txt” since it will only be processed by

the computer and must not be readable for programmers. The different columns were separated

by two semicolons since anime titles tend to have special characters. The Spotify URL consists

of a keyword, like track or playlist, followed by a colon with the corresponding identifier.

2.2 Web Scraping

The python library Selenium [4] was used to obtain the dataset mentioned above. It is mostly

used for automated tests of web applications but is also a practical tool to scrape websites since

it is simpler to debug with the user interface and runs rapidly. The code below was used to loop

through the table row by row for each anime song and extract the information in the columns.

Lastly, it was saved in a text file. The full code can be found on the GitHub repository [5] in

the prepareDataset folder and saved as the animeSongsScraping.py file.

1 # Open file to append anime songs

2 file = open('animeSongs.txt', 'a', encoding='utf8')

3

4 for t_row in range(1, (rows + 1)):

5

6 for t_column in range(1, (columns + 1)):

7 FinalXPath = before_XPath + str(t_row) + aftertd_XPath +

8 str(t_column) + aftertr_XPath

9 cell_text = driver.find_element_by_xpath(FinalXPath).text

10

11 # Write the Anime Title to the text file

12 if t_column == 3:

13 file.write(";;ANIMENAME;;" + cell_text)

4

 3

Mood Prediction

3.1 Dataset 4

3.1.1 AllMusic ... 4

3.1.2 Spotify and GraceNote ... 5

3.1.3 MTG-Jamendo .. 5

3.1.4 Spotify .. 5

3.2 Moods 5

3.3 Image Classification 6

3.3.1 Convolutional Neural Networks .. 6

3.3.2 MP3 to Spectrograms ... 9

3.3.3 Construction of the CNN.. 9

3.3.4 Fast AI .. 10

3.3.5 Multi-Label Classification .. 10

3.3.6 Train a Model.. 11

3.3.7 CPU vs. GPU ... 13

3.3.8 Results ... 14

3.3.9 Comparison to KerasClassifier .. 16

3.1 Dataset

There are several datasets available to predict the mood of a song. The following datasets are

sorted as they were tried.

3.1.1 AllMusic

In [Kor20] a subset of the Million Song Dataset with 67’000 tracks containing expert

annotations of 188 different moods was taken. It was provided by the music collection called

AllMusic [6]. Unfortunately, only the model with the song ID of the titles on AllMusic was

provided, but not the mood of the titles themselves. When asked, the authors of the paper

confirmed that they were not authorized to provide these labels. The only approach would have

5

been to scrape the moods of all 67’000 tracks on AllMusic. However, finding the moods of

every song was only possible with its title by using the search bar of the website because no ID

was provided in the model. Due to the fact that these titles did not always match and this

approach is forbidden according to AllMusic, another dataset had to be found.

3.1.2 Spotify and GraceNote

In [7] a dataset with over 21’000 songs, 69 potential features and 25 moods was created by

using the APIs of Spotify and GraceNote [8]. This big dataset with recent song titles would

have been very useful, but could only be accessed by reaching out to the author. Unfortunately,

the author did not respond to any request. Hence, the construction of the dataset was tried by

using the provided code. The information of the Spotify playlists was accessed in a simple way.

However, GraceNote does no longer offer a free way to receive the important mood labels of

the songs through their API. Thus, the company was contacted to obtain the dataset, but again

there was no response and another dataset was required.

3.1.3 MTG-Jamendo

In [Tan21] the open dataset for music auto-tagging called MTG-Jamendo [9] is provided by this

paper. It consists of 55’000 full audio tracks distributed in 320kbps MP3 format with 56

mood/theme tags. However, only 18’487 titles were labeled with the mood tags. The song IDs

and corresponding moods are available as .csv file. Due to the huge number of moods and

tracks, this dataset was used as the first approach with a multi-label classification.

3.1.4 Spotify

In [10] another dataset is available with four moods each with 200 tracks including their labels.

The features of instrumentalness, liveness, valence, length, danceability, energy, loudness,

speechiness, acoustics and tempo were used in this paper to classify the tracks. This dataset was

applied after the first approach with the poor result of the MTG-Jamendo approach. Not only

does it provide an accurate prediction for those four moods, but it also enables a good

comparison between the spectrogram- and feature-based neural networks.

3.2 Moods

Finally, only four moods were considered according to

[Nuz21], which highlights the best way of classifying

music by mood. The moods of songs are divided

regarding to psychologist Robert Thayer’s traditional

model of mood. This can be seen in Figure 2, which

divides tracks along the y-axis representing energy and

x-axis for stress, from calm to energetic and happy to

sad. In the MTG-Jamendo dataset there were more

moods available, but less suitable ones for this mood

classifier such as Christmas, documentary, space and Figure 2 Traditional Model of Mood

6

others alike. Furthermore, some moods are identical like soft and calm or powerful and

energetic.

3.3 Image Classification

Unfortunately, there is no pure solution for classifications like in software architecture. First, a

state of the art of the different machine learning methods was searched. Afterwards, the trial

and error approach was used to identify the most suitable solution.

The chosen approach was to use listening data for the mood classification, since these features

outperform content-based features, as mentioned in [Kor20]. The results of matrix factorization

of listening data are more helpful to identify the mood than those regarding its audio content.

Moreover, a content-based model, for instance analyzing the lyrics of a song, could not have

been taken into account, since the focus of this thesis was to classify Japanese anime songs.

Thus, it would be difficult to accomplish a successful transfer learning from English to

Japanese.

On the other hand, the paper suggests using spectrogram-based convolutional neural network

(CNN), which achieves state-of-the-art results. Thus, the same approach was applied with the

same dataset, but another CNN was created.

According to [GAV19] the image classification problem is well known in computer vision. It

consists of finding visual structures of an image given as input by analyzing the numerical

properties of different features of an image and organizing them into categories. In the past, the

classification approaches like fuzzy-sets, artificial neural networks and expert systems have

been mostly used for image classification. However, all of them have some problems and

compared to the CNN their accuracy is lower. The CNN has recently achieved impressive

classification performance on the ImageNet benchmark [Kri12].

3.3.1 Convolutional Neural Networks

In [Zei14] a novel visualization technique is introduced to get a clear understanding of why the

large convolutional network models perform so well, which was not known before. This

technique offers insights into the function of intermediate feature layers and the operation of

the classifier. It also visualizes the weight learned in each layer of a model. The following

explanations were gathered from [11].

The first layer of parameters has many features and may look like the image in the upper left

corner of Figure 3 drawn as a picture with 9 images. One of them has the ability to recognize

diagonal lines from the top left to bottom right as can be seen in Figure 3 in the image in the

upper left corner. The other image on the right could have diagonal lines from bottom left to

top right and the one below could have a gradient that flows from top orange to bottom blue.

Each of these nine images are called features or filters. In actual images like in the lower image

of Figure 3, specific parts of photos that match that filter were found. For instance, for this filter

on the top left, there are nine actual patches from real photos that match this filter as they are

all diagonal lines. Thus, the first layer is very simple, but useful for other computer vision tasks

as well.

7

Layer two takes the features of layer one and combines them. Hence, it cannot just find edges

but also corners, semi-, full-circles or repeating curving patterns as it can be seen on the left

side of Figure 2. On the right side, there are parts of photos that this layer 2, for example the

circular filter, has activated on. Objects with circles were found in the block of the second row

from above and second column from the left. Another example is the block with the orange

gradient on the left side in Figure 4 in the second row and first column, which seems to be good

at finding sunsets according to the right side in Figure 4 in the second row and first column.

Figure 4 Layer 2

Layer three can combine all kinds of features in layer two which can already find text.

Furthermore, repeating geometric patterns can also be found like in the first block on the right

side of Figure 5. It is not just matching specific pixel pattern, but a semantic concept finding

repeating circles, hexagons, or squares. Thus, it is really computing and not just matching a

template.

Figure 3 Layer 1

8

Figure 5 Layer 3

Layer four combines all the filters from layer three as represented in Figure 6, which can now

find for instance the face of dogs. For each layer, more sophisticated features are obtained,

which explains why deep neural networks can be very powerful. That is the reason why transfer

learning works very well, as you can take advantage of all these pre-learned features to find

objects that are combinations of these existing features. Moreover, transfer learning can be

performed much faster and with much less data than traditional approaches.

Figure 6 Layer 4

9

3.3.2 MP3 to Spectrograms

Importantly, these techniques for computer visions are not only useful for recognizing images

since there are many areas which can be turned into pictures. For instance, sounds can be

displayed pictorially by representing their frequency over time as in Figure 7, which also

provides state-of-the-art results at sound detection. The code mp3ToSpectrogram.py on Github

[5] was used for the transformation of mp3 data into spectrograms which is an adapted version

of [12]. First, the mp3 file will be read using the function audioSegment from the pydub [13]

library, 30 seconds extracted and converted to a wav file. Afterwards, the data can be read from

this wav file which is an array of length (2500,2). Thus, the left channel was taken since it

corresponds to the frequency in Hertz. Finally, the data was plotted using the specgram function

of the library matplotlib [14].

Figure 7 Spectrogram

3.3.3 Construction of the CNN

The following standard approach was used for the construction of the CNN. There is an

architecture like Figure 8 which contains parameters and data as inputs. The architecture and

the parameters are the model. With the inputs, they calculate the predictions, which are then

compared to the labels with the loss function to update the parameters many times and improve

them until the loss becomes very low.

Figure 8 Architecture of CNN

10

3.3.4 Fast AI

The fast AI [15] library was used to create the CNN model, which simplifies training fast and

accurate neural networks using modern best practices. The flexible way to work with any data

format is using their DataBlock API, which is represented in Figure 9. First of all, the

independent and dependent variables will be given as input. In this case, the images of the song

titles are the independent input data and the moods the dependent categories alias labels.

Figure 9 Order of Functions Called by DataBlock

The get_items function provides the path to the list of images. The .csv file from the MTG-

Jamendo dataset was used to indicate the location of the downloaded images. Normally, the

data will be labeled by the parent folder of the image. Since there are more than one mood for

each track, the corresponding moods were taken from the column “moods” next to the column

“file path” of the .csv file. Afterwards, the split of the data into validation and training set must

be given. Here it will be randomly split and 30 % assigned to the validation set. The seed of 42

is to ensure that every time the model is run, the validation set will be the same. The final

parameter item transformation would resize the image, which does not make sense for the

similar plotted spectrograms. At the end, a data loader will be created, which takes 64 images

and put them into a batch to pass them all to the model at once. This procedure allows to speed

up the computation.

3.3.5 Multi-Label Classification

As mentioned before, the MTG Jamendo dataset contains for each track multiple moods. Thus,

multi-label classification was applied according to [16]. One difference is the way the labels

are obtained from the dataset. First, lambda functions were utilized, but an error occurred during

the saving process of the model using pickle called “PicklingError: Can't pickle <function

<lambda> “. Hence, the ColReader functions solved the problem by reading the space separated

moods of the .csv dataset.

11

The main difference is the evaluation criteria and loss function. The most common way to

evaluate traditional classification, such as multi-class problems, is using accuracy according to

[Sor10]. Other standard evaluation metrics exist including recall, F-measure, and ROC area that

are applied to single label multi-class classification problems. However, in multi-label

classification the predictions contain a set of labels which result in fully correct, partially correct

(with different levels of correctness) or fully incorrect predictions. Thus, the evaluation of a

multi-label classifier is more challenging than one of a single label classifier and these existing

evaluation metrics do not capture such notion originally.

The loss function according to [16] was implemented with the use of the package

accuracy_multi for multi-classification. Furthermore, the loss function called

BCEWithLogitsLossFlat was utilized since the results of the model are distributed on a scale

with a threshold instead of providing one exact prediction. This provides the possibility to

retrieve many mood predictions for a song based on sigmoidal activation in the loss function.

3.3.6 Train a Model

First of all, the learning rate must be found using the learn.lr_find() function, which provides a

graph of loss as a function of the training steps. Then, one can identify a learning rate by

observing the graph and finding the section where the loss is decreasing the fastest. Thus, the

learning rate that was used at that training step will be taken. For example, in Figure 10, the

proposed learning rate is around 0.00005, which should be the best suited learning rate for the

underlying data.

Figure 10 Plot of Loss and Learning Rate

In order to reduce memory usage, the function learn.to_fp16() ensures to use 16-bits floats for

the arrays representing the inputs, activations and weights instead of the single precision with

32-bit floats of the standard computation in neural nets. According to [17] the FP16 is structured

like in Figure 11. Firstly, there is the sign bit providing +1 or -1. Secondly, 5 bits are available

to code an exponent between -14 and 15 and the fraction part contains the remaining 10 bits.

Figure 11 Structure of FP16

12

There is a smaller range of possible values (approximately 2e-14 to 2e15) compared to 2e-126

to 2e127 for FP32, but also a smaller offset. For instance, between 1 and 2, the FP16 format

only represents the number 1, 1+2e-10, 1+2*2e-10… which means that 1 + 0.0001 = 1 in half-

precision. Thus, there exist three problems with this half-precision that can occur and negatively

affect the training process.

1. The gradients can underflow. They can simply be changed to 0 due to the fact that they

are too low in FP16.

2. Every weight of the network computes w = w - lr * w.grad in order to optimize. The

w.grad is often many orders of magnitude below w, which causes the problem to occur.

Moreover, the learning rate equals a small number. Thus, the case of w = 1 and lr*w.grad

is 0.0001 (or lower) is very common, but the update has no impact in those cases. Hence,

the weight update is imprecise.

3. The activations or losses may overflow since it is easier to reach nan (or infinity) in

FP16 precision. Thus, the training might rather diverge.

The solution is mixed precision training by doing some of the operations in FP16 precision,

others in FP32, which solves the problem of imprecise weight updates. For the other two

problems, the forward pass and gradient computation are done with half-precision to go fast,

but the update is with single precision to improve accuracy. It is acceptable if w and grad are

both half floats. However, the operation w = w - lr*grad must be computed in FP32. This

ensures that 1 + 0.0001 will be 1.0001. Thus, a copy of the weights must be kept and saved as

a master model. Finally, the training process below will be used.

1. The output with the FP16 model will be computed after the loss

2. The gradients will be backpropagated in half-precision

3. The gradients will be copied in FP32 precision

4. The update on the master model will be completed in FP32 precision

5. Lastly, the master model will be copied in the FP16 model

As a next step, the model was trained by using the function learn.fit_one_cycle(5, slice(lr)) and

according to the steps from fast AI [18]. The first parameter indicates the number of epochs,

which is one complete pass through the input data. The second parameter is used to enable

different learning rates for each parameter group. This technique is called discriminative layer

training and is widely applied in computer vision. The goal is to train the model as long as the

validation loss decreases and the accuracy increases. The loss takes a prediction of a song and

compares it to the actual value, more specifically the label, to compute the performance. Thus,

it works with data not used for training, called a validation set. On the other hand, the training

loss checks how well the model fits the data from the training set. By decreasing validation loss,

overfitting is prevented, where a model is trained to remember specific features of the data

instead of generalizing well to data that was not used in the training process such as the

validation set.

It is also important to unfreeze the layers to make them trainable according to [Zei14]. Hence,

all the weights from frozen layers of the model can now get updated from their pre-trained state

according to the loss function. As mentioned before, the first layers let the model learn low-

level features like shapes, curves and other patterns. While the later layers are mainly for

capturing high-level features on current dataset for example animals. These are fully connected

layers which identify features like the shape of a lion or bird in its entirety. These layers possess

13

composite or aggregated information from previous layers according to the current data. The

information maintained by these layers is improved during the training process of the model

and the optimization of the loss according to the target labels.

Afterwards, the model will be trained again with the same function learn.fit_one_cycle(2,

max_lr=slice(1e-6,1e-4)), but using discriminative learning rates with the parameter max_lr.

This parameter holds a low learning rate for initial layers since they require less tuning and

gradually increases the learning rate for later layers, which require higher tuning. Again

lr_find() must be used before fit_one_cycle() to receive the best suited learning rate for the

underlying data.

The weights of all layers will then be saved as stage-1 using learn.save('stage-1'). However, the

architecture is not saved. Thus, the same architecture must be defined again to use these weights

another time, which is clearly not necessary if the training process in a Jupyter Notebook.

3.3.7 CPU vs. GPU

Since there are around 18’000 music titles as input, one epoch took around three hours. Thus,

a GPU machine was rented from the website Paperspace [19] to make the model faster and

simpler. Furthermore, the CUDA out of memory error in Figure 12 was solved using a GPU

because more memory was now available. One epoch was later executed in only six minutes.

Figure 12 CUDA Out of Memory Error

In order to use the already programmed algorithm in Paperspace, a ssh key had to be generated

to link the GitHub account by using the code below.

1 cd ~/.ssh

2 ssh-keygen -o -t rsa -C name@mail.ch

3 cat id_rsa.pub

mailto:name@mail.ch

14

3.3.8 Results

First of all, the dataset MGT-Jamendo was taken as input with around 18’000 titles and 56

moods. Then the optimal learning rate was found to train the model. Due to the high number of

titles, the time for one epoch was around three hours, but it was worth regarding the accuracy

of 0.9704 in epoch 4 as shown in Figure 13. It shows the training process of the data in epochs

where each image from the training set is trained, and the total loss computed. In the same

epoch, the trained model is validated using the validation dataset resulting for example in the

accuracy of 0.969765 in the epoch zero.

Figure 13 Results of Training and Validation

However, this model was then tested with other songs than in the dataset which resulted in bad

predictions. All the scores of the moods were below 0.01. Hence, no mood was predicted as it

can be seen in Figure 14, which shows the prediction of every mood in an array saved in an

TensorBase object.

Figure 14 Scores of Predictions

The assumption was that the first 30 seconds of each song are always similar according to their

sound. Therefore, taking the middle part could improve the results and needs to be considered

when using audio data for image classification. The accuracy of the predictions increased

slowly to 0.9705 as in Figure 15 but the predicted labels were still empty due to the low scores.

Figure 15 Results for Taking the Middle Part of Songs

The next step was to try to build the model with less data. The accuracy dropped to around 0.55

but the prediction scores were much higher. For instance, for the anime song “Guren no Yumiya

TV Size Version” the moods dark (in red with a prediction of 0.9819) and slow (in blue with a

15

prediction of 0.9692) were predicted as in Figure 16. The output is an array of only the moods

with a higher prediction than 0.5, one array containing true or false if the mood was predicted,

and the last one showing the prediction values for every mood. However, they correspond to

the opposite of the actual moods of this song. Thus, other titles in a playlist of the charts were

examined, but this again resulted in completely wrong and always the same predictions.

Figure 16 Predictions for Guren no Yumiya TV Size Version

Fewer moods were taken for the creation of the model as another trial and error approach since

the less useful moods like Christmas or Documentary could influence the model negatively.

However, no significant improvement was achieved. Finally, another dataset created from

Spotify, mentioned in Section 3.1.4, was utilized with less data and only four moods as labels.

The accuracy of 0.785714, calculated with one minus the error rate represented in Figure 17,

was much lower than the previous one. Moreover, the prediction scores were again low, but the

predicted labels were more accurate.

Figure 17 Accuracy of Model Trained With the Spotify Dataset

For instance, in Figure 18, a new song called “Whatcha Say” by Jason Derulo was taken off the

charts and correctly predicted with the mood sad.

Figure 18 Predictions of Two Chart Songs

During the model tuning process, it was determined that the mood energetic and happy or calm

and sad often were mixed up according to the confusion matrix in Figure 19 where the diagonal

line represents the correct predicted moods.

16

Figure 19 Confusion Matrix

After looking closer to the spectrograms in Figure 20, their resemblance can be recognized. For

instance, the density of energetic is clearly higher than the one of happy. While the density of

the mood sad is also higher than calm. However, there are still nuances which were removed

by continuing training the model.

Figure 20 Spectrograms with their Label and Prediction

The reason for the better predictions could be that the new dataset contains fewer but more

distinctive labels. Moreover, the dataset MTG-Jamendo also includes acoustic titles, which are

seldom present in anime or other songs.

3.3.9 Comparison to KerasClassifier

In [10] a neural network with an input of ten features, one layer with eight nodes, and four

outputs with the output layer was constructed. The KerasClassifier was utilized with an

activation function corresponding to a Rectified Linear Unit (Relu), the loss function was a

logistic function and Adam Gradient Descent algorithm was taken as the optimizer. The same

dataset was used to train and validate the data. However, audio features were taken as input of

the model instead of the frequency in Hertz. Thus, the accuracy of this model using

KerasClassifier, namely 72.75 %, can be compared to some extent to the results from above

with a slightly higher accuracy of 78.57 %. Therefore, a hybrid solution using both systems will

be needed for the prototype to solve the mentioned nuances between two moods in 3.3.8.

17

 4

Prototype

4.1 Software Architecture 17

4.2 Spotify OAuth 18

4.3 MyAnimeList API 19

4.4 Anime Songs Playlist 20

4.5 Mood Classification 20

4.6 Hosting Firebase 21

4.7 Continuous Deployment 24

4.8 Evaluation 25

4.1 Software Architecture

At the beginning, the software architecture was designed like in Figure 21. The user can log in

to their MyAnimeList account via OAuth on the website implemented in Flutter. Then the

anime titles will be sent as a JSON object to the backend where the user needs to login to Spotify

also via OAuth. Afterwards, the user can get all the songs of their list of favorite anime by

pressing on a button. Then a Spotify link will be provided to access the playlist directly on their

Spotify account. If the user wants to classify this playlist by mood, one can be chosen and a

new playlist containing only songs regarding the desired mood will be returned. Everything

will be hosted on Firebase since it is free and compatible with Flutter.

However, at the end, the frontend was also implemented in Flask since there is no need for a

complex user interface. Plain HTML and JavaScript can be directly implemented in Flask,

which is convenient to render the result of the model. Thus, anime titles are accessed directly

in Flask via the MyAnimeList API. Before permission is granted to add a Spotify playlist. The

reason why the Spotify authentication occurs first is to also let users without a MyAnimeList

account classify their titles by moods in the future. The code of the implemented prototype can

be found on the GitHub repository [5].

18

Figure 21 Software Architecture

4.2 Spotify OAuth

As mentioned before, the user will first press the login button to sign in via Spotify OAuth like

in Figure 22. The spotipy [20] library provides the function SpotifyOAuth to let the user log in

with their account by using the Authorization Code Flow. This flow was used since it is optimal

for long-running applications in which the user grants permission only once. As soon as the

user is logged in according to Figure 23, the system offers an access token that can be refreshed.

For the Authorization Code Flow a redirect URI must be added to the application in the Spotify

developer dashboard.

19

Figure 22 Landing Page of the Web Application

Figure 23 Spotify OAuth Login

4.3 MyAnimeList API

As a next step, the user enters their username on MyAnimeList to get songs of their favorite

anime. The API of MyAnimeList [21] provides the ability to get the list of anime watched by a

user. Then the IDs of every title will be saved as a list to compare it with the text file

20

animeSongs.txt, which was created in 2.1, containing the same IDs linked to the Spotify IDs of

the corresponding anime songs.

The first intended approach to let the user sign in via OAuth to their MyAnimeList account was

discarded since no modification of their list of anime watched is needed. Thus, no additional

authentication is necessary. The only disadvantage of this approach lies in the fact that no

private anime list can be accessed, but by default they are public. Furthermore, the goal of this

website is to share the watched and rated anime titles which requires to have a public profile.

4.4 Anime Songs Playlist

When the user submits their MyAnimeList username, the IDs of the matching anime songs will

be saved in a list. After the creation of a new Spotify playlist in the user’s account, all these

titles of the list will be added to this playlist. Importantly, the program must sleep for a few

milliseconds to wait for the creation of the list. Otherwise, the titles cannot be added due to the

fact that the playlist ID does not exist yet. The link of the new playlist will be shown like in

Figure 24. By clicking on it, the user will be redirected to their new playlist on Spotify where

the titles can be listened to immediately.

Figure 24 Provided Link of the New Playlist

4.5 Mood Classification

After the user has received their new playlist containing all the anime songs of their list of

favorite anime titles, they can classify it by a mood by clicking on the button “Filter this playlist

by a mood”. The circumplex model of affect from [Pos05] was taken as an inspiration for the

representation of the mood selection because it is more consistent with many recent findings

from behavioral, cognitive neuroscience, neuroimaging, and developmental studies of affect.

In addition, [Pos05] indicates that basic emotion theories no longer adequately explain the large

number of empirical observations from studies in affective neuroscience. The model shows that

all affective states result from two fundamental neurophysiological systems where one is related

to valence (x-axis) and the other to arousal (y-axis). Thus, each emotion is a linear combination

of these two dimensions. Since a hybrid solution was taken, two moods can be proposed for

one song. Thus, the moods were displayed as in Figure 25 instead of strictly classifying every

song in one of the four moods. For instance, if the image classifier proposes the mood happy

for a song and the KerasClassifier suggests calm, then both moods will be saved for this title.

Now if the user desires to listen to a happy and calm song, only titles containing these moods

will be provided.

As soon as the user clicks on the mood, they want to use to filter the new playlist, the tracks

will be saved as a list using the spotipy function playlist_tracks with the playlist ID as a

parameter. In order to avoid classifying the same title multiple times, a dictionary called

dictTrackMood, containing all classified titles with the Spotify ID as key and moods as value,

was created. Thus, all titles of the current playlist will be searched in this dictionary. If the mood

21

of one song is already available, the track ID will be saved to a new list listSpotifyTrackID for

all titles matching the wished mood.

Otherwise, the song must be classified. First, the song details will be downloaded using the

track function of spotipy. To avoid an expired token, the token will be refreshed after 30 tracks.

Then the preview will be downloaded with the help of the preview URL received before with

the song details.

If the download is successful, it is saved in the corresponding list downloaded_successfully.

The mp3 data will then be converted to a spectrogram and given as input to the predict function

from the fast AI library. Before, the model and parameters were loaded. The predicted mood

will then be saved to the dictionary with the prediction of the KerasClassifier using the features

of the song. Seldom, a song of Spotify does not provide a preview URL. In this case, the song

will be saved to the dictionary dictTrackMood with only one mood. If the predicted mood is

like the one desired by the user, the track ID will be saved in the list called listSpotifyTrackID.

Finally, these titles will be added to the Spotify playlist and provided to the user as a link.

Figure 25 Selection of Moods to Filter the Playlist

4.6 Hosting Firebase

Firebase [22] will be used to host the Flask server because it is free for this scale of work and

offers a content delivery network (CDN). It is generally the most cost-effective and robust way

of hosting, as data is only read and synchronized if necessary. In addition, it is easy to scale. In

the past, Firebase did only allow static websites. Today, cloud functions of Google Cloud Run

allow hosting of dynamic pages by running containers serverless. Thus, if they can fit into a

stateless Docker container, it can be combined with Firebase Hosting. The tutorial of [23] and

[24] were followed for the following steps.

First of all, the project structured as in Figure 26 was created where the division of the server

and static part is essential because Firebase will only serve the static part while Google Cloud

Run is responsible for the dynamic one.

22

Figure 26 The Structure of the Project

As a next step, a Docker file is created in the folder server, which acts like a recipe for the server

environment. The first entry corresponds to the base image of the container. In this case, it is

alpine 3.6 to install gcloud and change the limited runtime of gcloud of 600 to 3600 seconds as

it can be seen in Figure 27. The reason why the runtime had to be updated was the long duration

of the package installations.

The second base image of the container set is python 3.7 like in Figure 28. The packages will

be installed with the commands RUN pip install. Then the server’s source files will be copied

into a folder within the container named app and the working directory set to this app folder.

Subsequently, an environment variable for the port will be set for 5000 and gunicorn bound to

this port.

Figure 27 Docker File Part 1

23

Figure 28 Docker File Part 2

Then a project must be created on Firebase to execute the container with Cloud Run. For this,

the container must be stored in Google Cloud’s Container Registry (GCR). It will be sent to

Cloud Build where it will be built and uploaded to GCR. This approach is much simpler than

uploading the local container, which requires Docker, and is less suited to the continuous

deployment discussed in the next chapter. The following commands will be used to initialize,

build, and deploy the container inside the server directory.

4 gcloud init

5 gcloud builds submit --tag gcr.io/<project-id>/flask-fire

6 gcloud beta run deploy --image gcr.io/<project-id>/flask-fire

The Firebase Hosting needs to be set up by installing Firebase CLI via npm. Then the following

commands can be run to create a package.json file and install the Firebase tools.

7 npm init -y

8 npm install -D firebase-tools

Within the new created folder called node modules, the next command starts the set-up of the

Firebase Hosting within the project. After the completion of the set-up, there are two files in

the root called .firebaserc and firebase.json in the root of the project.

9 ./node_modules/.bin/firebase init hosting

Firebase.json helps to connect to Cloud Run for every incoming request matching the provided

URL in this file, which is defined as everything. Thus, it will invoke Cloud Run, which returns

the container. To deploy it, the command below will be used.

10 firebase deploy

24

4.7 Continuous Deployment

The continuous deployment was added to automatically deploy the container set up above every

time the code is updated and pushed to Github. [25], [26] and [27] were taken as guide to set

up the continuous deployment. Continuous integration was not used since the application was

implemented by only one person. Thus, it is not needed since the developer has made a habit

of running tests before committing and the code functionality of the code is not complex enough

to require automated tests.

First of all, a unique firebase ci token is required to deploy the web app automatically. Since

this token cannot be stored safely inside the code, the Google Cloud Secret Manager will be

used to provide the token on the runtime of Cloud Build trigger. The token will be accessed

with the following code.

11 firebase login:ci

A secret was then created in the Google Cloud Console with the provided unique Firebase token

as the secret value. The same Docker file as in Chapter 4.6 was taken to build the Docker image

only once and push it to Google Cloud Run. Later, this Docker image was always used to start

a container and run the necessary commands.

A yaml file was created acting as a build configuration file and defining the fields that are

necessary for Cloud Build to perform the instructions of the continuous deployment. This

configuration file starts with a timeout field to ensure that the building time can be longer as

the maximum of Google Cloud Run of 600 seconds. The file is structured in three steps. For

each step, Cloud Build spin up and later spin down the Docker container once the task

completed. Every step contains a unique identifier and a name to specify cloud-builders or

Docker container images. Furthermore, the args field receives a list of arguments and passes

them to the builder referenced by the name field. The field entrypoint specifies an entry point.

Per default bash is installed. As it can be seen in Figure 29, the first step consists of building

the container image. The next one is pushing it to the container registry to store the built image

there. Finally, it will be deployed on Google Cloud Run.

Then a trigger must be added by linking Github with the Google Cloud project using Cloud

Build. The Google Cloud platform must provide the authorization to access the Github account

in order to select the desired repository. The file cloudbuild.yaml will be given as the location

for the configuration file.

Figure 29 Build Summary of the Continuous Deployment

25

As soon as the last step is finished, the container image is deployed and a link [28] for the web

application is provided as it can be seen in Figure 30.

Figure 30 Finished Step Two With the Link to Access the Hosted Web Application

4.8 Evaluation

The final application was evaluated by taking anime songs from a human made playlist on

Spotify categorized by a mood, for instance “Anime sad vibes song” [29]. Then this playlist’s

ID was given as input in the backend, which categorized 14 of 24 titles as sad. Thus, 58.33 %

of the songs were predicted correctly. However, not all titles can actually be categorized as sad

after listening to them. Thus, another Spotify playlist with more songs was tested called “Sad

Anime Soundtracks” [30] which resulted in 47 of 187 songs as shown in Figure 31. This result

is worse with a success rate of 25.13 %, which can be explained by the fact that the more songs

are added, the less carefully they are selected.

Figure 31 Songs Predicted as Sad

The same procedure was repeated for the other moods. For the playlist “Happy anime songs”

[31] 13 of 30 songs were categorized as happy which is a success rate of 43.34 %. For the next

playlist “Anime openings that make me happy” [32] a much lower rate of 22.73 % was achieved

with 10 of 44 anime songs predicted properly.

For the energetic playlist called “Energetic Anime Songs” [33] 19 of 26 songs were predicted

correctly leading to a success rate of 73.07 %. Another playlist called “Energetic AF Anime

Songs” [34] had a success rate of 82.14 % where 23 of 28 titles were predicted as energetic as

it can be seen in Figure 32. Generally, it was observed that anime songs are mostly predicted

as energetic.

26

Figure 32 Songs Predicted as Energetic

The mood calm was tested with the playlist “Calm Anime songs” [35] where 9 of 25 songs

were predicted as calm leading to a success rate of 36 %. Another playlist called “Calm Anime

Mix” [36] provided 25 of 50 songs giving a solid rate of 50 % as shown in Figure 33.

Figure 33 Songs Predicted as Calm

To sum up, the energetic mood was predicted the most accurate, followed by sad, calm and then

happy.

27

 5

Conclusion

The first chapter described how the connection between the anime titles and their songs from

Spotify was built. Furthermore, the process of the web scraping was defined.

The second section dealt with the mood prediction. Four different datasets were prepared, but

only two were fully accessible. The first dataset did not provide moods and the second one did

not provide song features. While the third dataset included multi-labels, the fourth consisted of

four single-labeled moods. As a next step, the moods were chosen according to their usefulness.

For the mood classification, the image classification using convolutional neural networks was

considered as the best approach after reading several papers. Thus, the way the CNN works was

described and then applied by converting songs into spectrograms. For the construction of the

CNN, the library fast AI was taken which improves the training process and results in accurate

neural networks. Their DataBlock API allows working with any dataset. As mentioned before,

the two different approaches for single- and multi-labeled classification were discussed and

tested. Furthermore, the main differences between their implementation were pointed out.

Not only the construction of the model was explained, but also the training process. First, the

learning rate had to be found by observing the graph of loss against training steps and finding

the part where the loss is decreasing the fastest. In addition, the function learn.to_fp16() was

applied to use 16-bits floats for the arrays representing the inputs, activations, and weights

instead of the single precision with 32-bit floats of the standard computation in neural nets to

reduce memory usage. As a next step, the model was trained regarding the learning rate. This

process was repeated many times until the best possible accuracy was reached. Since the

datasets consisted of many song titles and the epochs lasted for hours, the usage of a GPU was

required. Moreover, the CUDA out of memory error was one more reason to rent a GPU

machine on Paperspace.

The prediction scores of the model trained with multi-labeled data and tested with a different

test dataset was not higher than 0.01. Therefore, the assumption that the first 30 seconds of a

song always sound similar for every song was tested by taking the middle part which improved

28

the results slightly. However, the predictions were still not accurate and their score too low.

Hence, a smaller dataset with single-labeled songs was taken into consideration. The results of

the multi-labeled model with the validation set were better than the ones of the single-labeled

model. However, the latter one achieved much better results with a different test dataset. At the

end, this result was compared to another already implemented neural network using

KerasClassifier with audio features. The same training and validation set was used to compare

these models. The accuracy of the image classifier was 78.57 %, thus, slightly better than the

KerasClassifier’s 72.75 %. Hence, a hybrid solution using both systems was implemented for

the prototype.

In the last section, the prototype was constructed and described step by step. The first step

describes how the Spotify OAuth was implemented to receive the authorization to create new

playlists of the favorite anime titles. Afterwards, the MyAnimeList API was accessed to receive

the list of anime titles. Here it was also foreseen to use the OAuth of MyAnimeList, but no

modifications of these lists were necessary, and the API was preferred to avoid a second time-

consuming authentication of the user. The new playlist of the songs of the favorite anime titles

can be accessed in the user’s Spotify account over a provided link. Thereafter, this playlist can

be classified by combinations of four moods represented like the circumplex model of affect.

The implementation using the hybrid solution mentioned before was explained in this section.

Firebase was chosen to host the web application. Since it allows hosting only static sites, Google

Cloud Run was also utilized to run the dynamic part. A Docker file was created to build and

deploy the container. Continuous deployment was also implemented to enable deployment

automatically as soon as the code gets updated on GitHub using a yaml file for the instructions.

Finally, the prototype was evaluated by taking anime songs from a human made playlist on

Spotify categorized by a mood, for instance “Energetic Anime Songs”. Then this playlist’s ID

was given as input in the backend, which categorized 19 of 26 titles as energetic leading to a

success rate of 73.07 %. In general, it was recognized that anime songs were mostly predicted

as energetic. In summary, the energetic mood was predicted the most accurate, followed by sad,

calm and lastly happy.

The future work would involve first re-evaluating this prototype with test users in order to

gather a broader evaluation. In addition, this model was not fully tested with other songs but

anime titles. Thus, if the success rates of other tracks are much higher, transfer learning to anime

songs can be applied by generating a self-made dataset of anime titles labeled with the

combinations of the four moods. The service of classifying all playlists of a Spotify user can be

done in the future by accessing all playlists and displaying them as selection. Then, the user can

choose which one to filter by mood. Moreover, the functionality of a comparison of the anime

29

or Spotify profiles of two users can be added to the web application. In addition, the same titles

can then be provided as a new list to share.

30

References

[Kor20]

Filip Korzeniowski, Oriol Nieto, Matthew McCallum, Minz Won, Sergio Oramas, Erik

Schmidt. Mood Classification Using Listening Data. Paperswithcode, 2020. [Retrieved

July 01, 2022, from https://paperswithcode.com/paper/mood-

classification-using-listening-data].

[Tan21]

Hao Tan. Semi-supervised music emotion recognition using noisy student training and

harmonic pitch class profiles. Paperswithcode, 2021. [Retrieved July 10, 2022, from
https://paperswithcode.com/paper/semi-supervised-music-

emotion-recognition].

[Nuz21]

Michael Nuzzolo. Music Mood Classification. Tufts, 2021. [Retrieved July 25, 2022,

from
https://sites.tufts.edu/eeseniordesignhandbook/2015/music-

mood-classification/].

[Gav19]

Pralhad Gavali, J. Saira Banu. Chapter 6 - Deep Convolutional Neural Network for

Image Classification on CUDA Platform, Deep Learning and Parallel Computing

Environment for Bioengineering Systems, Academic Press, 2019, ISBN

9780128167182. [Retrieved July 26, 2022, from
https://www.sciencedirect.com/science/article/pii/B97801281

67182000130].

[Kri12]

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with

deep convolutional neural networks." Advances in neural information processing

systems. 2012. [Retrieved July 28, 2022, from
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d

6b76c8436e924a68c45b-Paper.pdf].

[Zei14]

Zeiler, M.D., Fergus, R. Visualizing and Understanding Convolutional Networks,

Springer, 2014, ISBN 978-3-319-10589-5. [Retrieved July 27, 2022, from
https://link.springer.com/chapter/10.1007/978-3-319-10590-

1_53].

https://paperswithcode.com/paper/mood-classification-using-listening-data
https://paperswithcode.com/paper/mood-classification-using-listening-data
https://paperswithcode.com/paper/semi-supervised-music-emotion-recognition
https://paperswithcode.com/paper/semi-supervised-music-emotion-recognition
https://sites.tufts.edu/eeseniordesignhandbook/2015/music-mood-classification/
https://sites.tufts.edu/eeseniordesignhandbook/2015/music-mood-classification/
https://www.sciencedirect.com/science/article/pii/B9780128167182000130
https://www.sciencedirect.com/science/article/pii/B9780128167182000130
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://link.springer.com/chapter/10.1007/978-3-319-10590-1_53
https://link.springer.com/chapter/10.1007/978-3-319-10590-1_53

31

[Sor10]

Sorower, Mohammad S. "A literature survey on algorithms for multi-label learning."

Oregon State University, Corvallis 18. 2010. [Retrieved July 29, 2022, from
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.3

64.5612&rep=rep1&type=pdf].

[Pos05]

Posner J, Russell JA, Peterson BS. "The circumplex model of affect: an integrative

approach to affective neuroscience, cognitive development, and psychopathology." Dev

Psychopathol. 2005. [Retrieved July 30, 2022, from

https://pubmed.ncbi.nlm.nih.gov/16262989/].

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.364.5612&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.364.5612&rep=rep1&type=pdf
https://pubmed.ncbi.nlm.nih.gov/16262989/

32

Referenced Web Resources

[1] MyAnimeList. https://myanimelist.net/ (accessed on June 07, 2022).

[2] Spotify. https://open.spotify.com/ (accessed on June 07, 2022).

[3] AnimeMusic. https://open.spotify.com/ (accessed on June 07, 2022).

[4] Selenium. https://open.spotify.com/ (accessed on June 07, 2022).

[5] Github Repository of this Project called APImooddex.

https://open.spotify.com/ (accessed on June 07, 2022).

[6] AllMusic. https://www.allmusic.com/ (accessed on June 08, 2022).

[7] GitHub: Audio Music Mood Classification.
https://neokt.github.io/projects/audio-music-mood-

classification/ (accessed on June 08, 2022).

[8] Gracenote. https://www.gracenote.com/web-api (accessed on June 08,

2022).

[9] MTG dataset. https://github.com/MTG/mtg-jamendo-dataset (accessed

on June 08, 2022).

[10] Predicting the Music Mood of a Song with Deep Learning.
https://towardsdatascience.com/predicting-the-music-mood-

of-a-song-with-deep-learning-c3ac2b45229e (accessed on July 01,

2022).

[11] Fast AI: Deep Learning for Coders.

https://course20.fast.ai/videos/?lesson=2 (accessed on July 03,

2022).

[12] Stackoverflow: Another very simple way of plotting spectrogram of mp3 file.
https://stackoverflow.com/questions/15311853/plot-

spectogram-from-mp3 (accessed on July 10, 2022).

[13] Pypi Pydub Library. https://pypi.org/project/pydub/ (accessed on July

10, 2022).

[14] Matplotlib. https://matplotlib.org/ (accessed on July 10, 2022).

[15] Fast ai. https://docs.fast.ai/ (accessed on July 11, 2022).

[16] Walk with Fast AI: Lesson 3 - Multi-Label Classification.

https://walkwithfastai.com/Multi_Label (accessed on July 13, 2022).

[17] Fast AI: Mixed precision training.

https://docs.fast.ai/callback.fp16.html (accessed on July 15, 2022).

https://myanimelist.net/
https://open.spotify.com/
https://open.spotify.com/
https://open.spotify.com/
https://open.spotify.com/
https://www.allmusic.com/
https://neokt.github.io/projects/audio-music-mood-classification/a
https://neokt.github.io/projects/audio-music-mood-classification/a
https://www.gracenote.com/web-api
https://github.com/MTG/mtg-jamendo-dataset
https://towardsdatascience.com/predicting-the-music-mood-of-a-song-with-deep-learning-c3ac2b45229e
https://towardsdatascience.com/predicting-the-music-mood-of-a-song-with-deep-learning-c3ac2b45229e
https://course20.fast.ai/videos/?lesson=2
https://stackoverflow.com/questions/15311853/plot-spectogram-from-mp3
https://stackoverflow.com/questions/15311853/plot-spectogram-from-mp3
https://pypi.org/project/pydub/
https://matplotlib.org/
https://docs.fast.ai/
https://walkwithfastai.com/Multi_Label
https://docs.fast.ai/callback.fp16.html

33

[18] Forum Fast ai. https://forums.fast.ai/t/why-do-we-need-to-

unfreeze-the-learner-everytime-before-retarining-even-if-

learn-fit-one-cycle-works-fine-without-learn-

unfreeze/41614/5 (accessed on July 15, 2022).

[19] Paperspace. https://www.paperspace.com/ (accessed on July 16, 2022).

[20] Spotipy. https://spotipy.readthedocs.io/en/master/ (accessed on

July 16, 2022).

[21] MyAnimeList API.
https://myanimelist.net/apiconfig/references/api/v2#operati

on/users_user_id_animelist_get (accessed on July 26, 2022).

[22] Firebase. https://firebase.google.com/ (accessed on July 28, 2022).

[23] Hosting Flask servers on Firebase from scratch.
https://medium.com/firebase-developers/hosting-flask-

servers-on-firebase-from-scratch-c97cfb204579 (accessed on July

28, 2022).

[24] Deploy Python on Firebase Hosting with Cloud Run - Firecasts.
https://www.youtube.com/watch?v=t5EfITuFD9w&ab_channel=Fire

base (accessed on July 28, 2022).

[25] Firebase CI/CD Using Google Cloud Build.
https://www.youtube.com/watch?v=MijHRE5h6Gg&ab_channel=Codi

ngCatDev (accessed on July 30, 2022).

[26] Firebase Continuous Integration and Deployment (CI/CD) with Google Cloud Build.
https://faun.pub/firebase-continous-integration-and-

deployment-ci-cd-with-google-cloud-build-78ada9333cb9

(accessed on July 31, 2022).

[27] Deploying to Cloud Run using Cloud Build.
https://cloud.google.com/build/docs/deploying-

builds/deploy-cloud-run (accessed on July 31, 2022).

[28] The link of the implemented web app. https://flask-fire-djp3f6rl3q-

uc.a.run.app/ (accessed on July 31, 2022).

[29] Spotify Playlist “Anime sad vibes song”.
https://open.spotify.com/playlist/6bxDvjDWiuWw8wapvZXawp

(accessed on August 01, 2022).

[30] Spotify Playlist “Sad Anime Soundtracks”.
https://open.spotify.com/playlist/75lQcEWNNoaTbRunjchEot

(accessed on August 01, 2022).

[31] Spotify Playlist “Happy anime songs”.
https://open.spotify.com/playlist/0iMDhYAmc2nlIgk7kNVKAF

(accessed on August 01, 2022).

[32] Spotify Playlist “Anime openings that make me happy”.
https://open.spotify.com/playlist/4p6HdSdmjrDOlRZh20YNey

(accessed on August 01, 2022).

https://forums.fast.ai/t/why-do-we-need-to-unfreeze-the-learner-everytime-before-retarining-even-if-learn-fit-one-cycle-works-fine-without-learn-unfreeze/41614/5
https://forums.fast.ai/t/why-do-we-need-to-unfreeze-the-learner-everytime-before-retarining-even-if-learn-fit-one-cycle-works-fine-without-learn-unfreeze/41614/5
https://forums.fast.ai/t/why-do-we-need-to-unfreeze-the-learner-everytime-before-retarining-even-if-learn-fit-one-cycle-works-fine-without-learn-unfreeze/41614/5
https://forums.fast.ai/t/why-do-we-need-to-unfreeze-the-learner-everytime-before-retarining-even-if-learn-fit-one-cycle-works-fine-without-learn-unfreeze/41614/5
https://www.paperspace.com/
https://spotipy.readthedocs.io/en/master/
https://myanimelist.net/apiconfig/references/api/v2#operation/users_user_id_animelist_get
https://myanimelist.net/apiconfig/references/api/v2#operation/users_user_id_animelist_get
https://firebase.google.com/
https://medium.com/firebase-developers/hosting-flask-servers-on-firebase-from-scratch-c97cfb204579
https://medium.com/firebase-developers/hosting-flask-servers-on-firebase-from-scratch-c97cfb204579
https://www.youtube.com/watch?v=t5EfITuFD9w&ab_channel=Firebase
https://www.youtube.com/watch?v=t5EfITuFD9w&ab_channel=Firebase
https://www.youtube.com/watch?v=MijHRE5h6Gg&ab_channel=CodingCatDev
https://www.youtube.com/watch?v=MijHRE5h6Gg&ab_channel=CodingCatDev
https://faun.pub/firebase-continous-integration-and-deployment-ci-cd-with-google-cloud-build-78ada9333cb9
https://faun.pub/firebase-continous-integration-and-deployment-ci-cd-with-google-cloud-build-78ada9333cb9
https://cloud.google.com/build/docs/deploying-builds/deploy-cloud-run
https://cloud.google.com/build/docs/deploying-builds/deploy-cloud-run
https://flask-fire-djp3f6rl3q-uc.a.run.app/
https://flask-fire-djp3f6rl3q-uc.a.run.app/
https://open.spotify.com/playlist/6bxDvjDWiuWw8wapvZXawp
https://open.spotify.com/playlist/75lQcEWNNoaTbRunjchEot
https://open.spotify.com/playlist/0iMDhYAmc2nlIgk7kNVKAF
https://open.spotify.com/playlist/4p6HdSdmjrDOlRZh20YNey

34

[33] Spotify Playlist “Energetic Anime Songs”.
https://open.spotify.com/playlist/2ProTVhOAtFFhTLVTUF6tu

(accessed on August 01, 2022).

[34] Spotify Playlist “Energetic AF Anime Songs”.
https://open.spotify.com/playlist/20qKzLiRmzTn5qXepMWtOh

(accessed on August 01, 2022).

[35] Spotify Playlist “Calm Anime songs“.
https://open.spotify.com/playlist/5pJtsiZrHw7BFlHm59s25y

(accessed on August 01, 2022).

[36] Spotify Playlist “Calm Anime Mix“.
https://open.spotify.com/playlist/37i9dQZF1EIfHzelwC0geS

(accessed on August 01, 2022).

https://open.spotify.com/playlist/2ProTVhOAtFFhTLVTUF6tu
https://open.spotify.com/playlist/20qKzLiRmzTn5qXepMWtOh
https://open.spotify.com/playlist/5pJtsiZrHw7BFlHm59s25y
https://open.spotify.com/playlist/37i9dQZF1EIfHzelwC0geS

