
Intelligent Human-Presence
Assessment

An IoT Application using RESTful-APIs and
Machine Learning

B A C H E L O R T H E S I S

YI ZHANG
August 2018

Thesis supervisors:
Prof. Dr. Jacques PASQUIER–ROCHA

Software Engineering Group

Pascal Gremaud

Software Engineering Group
Department of Informatics

University of Fribourg
(Switzerland)

ii

“IoT and machine learning can lead to better business insights and faster
decisions.”

- Ashley Gorakhpurwalla, president, Dell EMC

Abstract

iii

Abstract

Nowadays the Internet of Thing (IoT) has entered people’s real life, thanks to the advent of
multiple new technologies. More and more smart devices and sensors are connected to the
Internet for collecting, transmitting, analyzing and monitoring data for different purpose.

Web services enable seamless connectivity between millions of different devices and web
servers. Nowadays RESTful-APIs are among the most popular interfaces due to their intuitive
form and compactness.

Thanks to machine learning, the IoT can provide even more intelligent and more useful
information. This project provides the detailed implementation, with an explanation, of a
presence-detection system, which consists of a Thingy 52/gateway, a Restful web-service based
on Python/Flask and machine learning.

Keywords: IoT, web service, RESTful, Machine Learning, Python, Flask, SVM

Preamble

iv

Preamble

Foreword

This thesis is made as a completion of the bachelor education in Informatics Science at the
University Fribourg, Switzerland. The research described herein was conducted under the
supervision of Prof. Dr. Jacques Pasquier-Rocha in the department of Informatics Science,
University Fribourg, between October 2017 and August 2018.

Acknowledgments

I would like to thank my supervisor Professor Dr. Jacques Pasquier-Rocha for the provision of
facilities during the project research. I am extremely grateful for my coaching by Mr. Pascal
Gremaud, for his knowledge and support.

I would like to thank Arnaud Durand, which developed the “Thingy:52 gateway”, implemented
with NodeJS.

I would also like to thank Nordic Semiconductor for the hardware and development document
support.

Finally, I take this opportunity to express my gratitude to my family for their love, unfailing
encouragement, and support.

Notations

{ } Set delimiters

∈ Element of

𝑥𝑥 → 𝑦𝑦 Mapping from x to y

ℝ𝑛𝑛 n-dimensional vector space

‖𝑥𝑥‖ Norm of x

 Material equivalence

Table of Contents

v

Table of Contents

1 Introduction 1
1.1 Goal of the Project ... 1
1.2 Architecture of the Project ... 1

1.2.1 Components .. 2
1.2.2 Required Hardware .. 2

1.3 How to Implement the Project ... 3
2 Implementation of the Web Service 4

2.1 Preparation and Prerequisites .. 4
2.1.1 About Python .. 4
2.1.2 Introduction to Web Services and RESTful-APIs .. 5
2.1.3 Introduction to Flask and Flask-RESTPlus .. 8

2.2 Studying the APIs from Thingy-Gateway ... 9
2.3 Web Server with Flask and Data Persistence .. 17

2.3.1 Overview of the Project Structure .. 17
2.3.2 Main Application and Settings ... 19
2.3.3 Database Schema for Sensors and Presence. ... 22
2.3.4 Objects’ Modelling for Data of Sensors and Presence. 23

2.4 Endpoint and Field Object ... 25
2.4.1 Resource Object and Endpoint ... 28
2.4.2 Field Objects and Swagger-UI ... 31

3 Measurement and Data Analysis 34
3.1 Modelling Measurement .. 34
3.2 Calibration before Collecting Data .. 34
3.3 Optimization of Measurement ... 35

3.3.1 Proper Conditions for Measurement .. 35
3.3.2 Measurement before optimization .. 35
3.3.3 Measurement after optimization ... 36

3.4 Data Analysis, Visualization, and Pre-processing ... 37
3.4.1 Formatting Data with Tagged Presences in DataFrame 37
3.4.2 Data Visualization and Data Pre-processing .. 40

3.5 Final Data after Pre-processing ... 41
4 Presence Recognition with Machine Learning 43

4.1 Machine Learning with Python ... 43
4.1.1 Classification upon Learning Tasks ... 43
4.1.2 Learning Techniques and Algorithms. ... 44
4.1.3 Scikit-learn, a Toolkit for Machine Learning in Python 45

4.2 Theory and Algorithms of SVM .. 45
4.2.1 Overview .. 45
4.2.2 Maximal Margin Algorithm ... 46
4.2.3 Slack Variables and Penalty for Misclassification ... 47

4.3 Applying the SVM on Pre-proceeded Data ... 49
4.3.1 Splitting the Pre-proceeded Data for Training and Testing 49

Table of Contents

vi

4.3.2 Training the Data .. 50
4.3.3 Validating the Hyperplane with the Test-set .. 50
4.3.4 Adjusting the C-parameter and Re-training the Data. 50
4.3.5 Validating the Hyperplane after Optimization ... 51

4.4 Results of Validation ... 51
4.4.1 Introduction to the Confusion Matrix ... 51
4.4.2 Validation before Grid Search .. 52
4.4.3 Optimized Parameters and Validation after Grid Search 53
4.4.4 Results Visualization and Evaluation ... 53

5 Conclusion and Future Work 55
5.1 Process Review .. 55
5.2 Conclusion ... 55
5.3 Improvement and Application ... 56

5.3.1 Improvement .. 56
5.3.2 Application ... 56

6 Terms of Use 59
6.1 Author .. 59
6.2 License ... 59

References 60
Referenced Web Resources 61

List of Figures

vii

List of Figures

Figure 1.1 Architecture of the project .. 2
Figure 1.2 Appearance of the Thingy:52 .. 3
Figure 2.1 Java-RMI environment ... 6
Figure 2.2 Architecture of a SOAP-WSDL web service ... 7
Figure 2.3 Example of RESTful-API request-response context via cURL command line in a
terminal (macOS) ... 15
Figure 2.4 File architecture for RESTful web service upon Flask and flask-restplus 18
Figure 2.5 UML-diagram of the database schema ... 23
Figure 2.6 Files for database models under the models folder .. 25
Figure 2.7 Files structure for resources(endpoints) and fields under the api folder 26
Figure 2.8 Screenshot of an API-doc supported by Swagger UI ... 32
Figure 2.9 Screenshot of the web service launch ... 33
Figure 2.10 Screenshot of the homepage of automated APIs-docs .. 33
Figure 3.1 Data plotting for temperature and eCO2 upon time series (segmented by the
presence, before pre-processing) .. 36
Figure 3.2 New continuous data plotting (segmented by session, after pre-processing) 36
Figure 3.3 Plots for data from optimized environments and after calibration 37
Figure 3.4 Screenshot of the presence table with filled data. .. 39
Figure 3.5 The 1st Plotting for 2 different sessions, left – session 1, right – session 2 42
Figure 3.6 The 2nd Plotting (scattering) for 2 different sessions, left – session 1, right –
session 2 ... 42
Figure 4.1 Supervised learning vs. unsupervised learning .. 44
Figure 4.2 Categorized hierarchy in machine learning ... 44
Figure 4.3 A simple SVM classification with support vectors and hyperplane 46
Figure 4.4 SVM classification with maximal margin solution ... 47
Figure 4.5 Different classification due to the modification of C-parameter 48
Figure 4.6 Before- vs. after-optimization, different classification and hyperplanes due to
different C-parameters ... 54
Figure 5.1 Screenshots of API Docs with newly added Detection-APIs 57
Figure 5.2 Updated architecture of monitoring system (newly added Detection-APIs and
Scheduled-Event) .. 57
Figure 5.3 Updated architecture of notification system (newly added Email-Notification) 58
Figure 5.4 Examples of email notifications in mailtrap web client .. 58

List of Tables

viii

List of Tables

Table 2.1 Web resource manipulation based on combinations of HTTP-methods and different
resource type .. 8
Table 2.2 API endpoints used by the Thingy-gateway ... 11
Table 2.3 List of JSON parameters of POST and PUT methods that are requested from the
Thingy-gateway .. 16
Table 2.4 List of JSON parameters of GET methods that are requested from the Thingy-
gateway ... 17
Table 2.5 Database schema for devices ... 22
Table 2.6 Database schema for temperature ... 22
Table 2.7 Database schema for presences ... 23
Table 2.8 Endpoints URI and correspondent Http-methods for presence resource 32
Table 4.1 A general 2x2 confusion matrix ... 52
Table 4.2 Confusion matrix before optimization .. 52
Table 4.3 First validation results before optimization ... 52
Table 4.4 Confusion matrix after optimization .. 53
Table 4.5 Second validation results after optimization .. 53

List of Source Code

ix

List of Source Code

Code 2.1 Snippets in index.js, the entry-point of the thingy-gateway application 10
Code 2.2 Snippets for binding event-listeners in event.js .. 12
Code 2.3 Snippets for some pre-defined notifications in /thingy52/lib/thingy.js 13
Code 2.4 Snippets for POST requests by thingy-gateway in index.js 14
Code 2.5 JSON-Object returned by sendTemperature(temperature) 14
Code 2.6 Snippets for temperature notifications in /thingy52/lib/thingy.js 14
Code 2.7 An example of the returned JSON-Object ... 14
Code 2.8 An example of a POST request by cURL command line instruction and its response
 .. 15
Code 2.9 /thingy-restful-api/app-restplus.py ... 20
Code 2.10 /thingy-restful-api/logging.conf .. 21
Code 2.11 /thingy-restful-api/db.py ... 21
Code 2.12 /thingy-restful-api/settings.py ... 22
Code 2.13 DeviceModel class in device.py .. 25
Code 2.14 Settings for flask_restplus in /api/restplus.py .. 27
Code 2.15 /thingy-restful-api/sensors.py ... 29
Code 2.16 /thingy-restful-api/temperature.py .. 30
Code 2.17 Snippets of field models for the temperature resource in
api/fields_models/__init__.py .. 31
Code 3.1 Snippets for data generating in /commons/data-analyse.py 38
Code 3.2 Customized session variables in /settings.py, line 2 – session 1, line 3 – session 2 . 39
Code 3.3 Snippets for segmented data generating by sessions in /commons/data-analyse.py 39
Code 3.4 Snippets for data_pre_processing(ds) in /commons/data-analyse.py 41
Code 3.5 Snippets for modified sessions_by_device() in /commons/data-analyse.py 41
Code 4.1 Snippets for splitting training- and test-dataset in /commons/training.py 49
Code 4.2 Snippets for training data by SVM in /commons/training.py 50
Code 4.3 First validation before optimization in /commons/training.py 50
Code 4.4 Optimizing by grid search and re-training the model with best parameters in
/commons/training.py ... 50
Code 4.5 Second validation after optimization with a better C-parameter in
/commons/training.py ... 51
Code 4.6 Best parameters found after grid search .. 53

1 Introduction Goal of the Project

1

 1 Introduction

1.1 Goal of the Project ... 1
1.2 Architecture of the Project ... 1

1.2.1 Components .. 2
1.2.2 Required Hardware .. 2

1.3 How to Implement the Project ... 3

1.1 Goal of the Project

The goal of this project is to implement a “smart presence detector” based on the Thingy:52
device. The idea is to use the different available sensors for collecting the necessary
environmental data, which can be then persisted in a database so that a machine learning model
can assess human presence in a given indoor location.

With this presence-recognition system, a prediction pattern can be generated after using a
learning phase. After that, the system can recognize human presence prediction based on real-
tine data collection. Based on these predictions, a notification can be sent when the presence
status changed. Thanks to a web-service, a notification can be sent in various channels without
difficulty. This can be then applied as a smart monitoring/security application or service (i.e.
anti-theft). Furthermore, such a notification can be sent directly to local security departments
or to the police, or even to an intelligent security system for triggering an alert or any expected
reaction.

1.2 Architecture of the Project

This project is designed as a typical Internet of Thing (IoT) application based on the Thingy:52
and its gateway, which can communicate a web server through a RESTful-API. All the collected
data is stored in a database and can be queried easily. The general architecture can be
represented in Figure 1.1.

1 Introduction Architecture of the Project

2

Figure 1.1 Architecture of the project (taken from [1], accessed on November 30, 2017)

The sensor data will be first sent to a gateway via its specific Bluetooth-protocol (i.e.
RFCOMM), then forwarded by the gateway to the server via HTTP-requests (web service). The
Thingy:52 communicates to web service via a proxy (Thingy-Gateway). Since the goal of the
project, which is mainly to implement the web service and the machine learning module, more
details about the firmware of the Thingy:52 will not be discussed in this thesis.

1.2.1 Components

This project consists of 4 parts.

- Smart device(s) as the sensor.

- A gateway of smart devices, which communicates between the web service and the smart
devices.

- A web service with data persistence, which retrieves all raw data and state of presence
via RESTful APIs.

- A data training application/module supported by machine learning, namely Support
Vector Machine (SVM).

1.2.2 Required Hardware

This project is developed based on the following hardware:

- Thingy:52 as a smart device

- A Bluetooth USB-adapter for connecting with the Thingy:52

- A Mac book pro running MacOS 10.12.6

- A wireless router for a network connection from other clients

Nordic Thingy:52 is a compact, power-optimized, multi-sensor development kit. It is an easy-
to-use development platform, designed to help build IoT prototypes and projects, without the
need to build hardware or to write firmware.

1 Introduction How to Implement the Project

3

Figure 1.2 Appearance of the Thingy:52

1.3 How to Implement the Project

This project consists of a gateway, which has been developed and can be applied out-of-box
directly, and a web-server, which is implemented by Python 3.5+ on MacOS 10.12.6.

For simplifying the network settings, a virtual machine container needs to be installed. A
virtual machine is deployed (VirtualBox VM) to emulate a gateway, which runs an Ubuntu
with pre-configured settings. Although the gateway has been implemented and prepared to
perform, it is still necessary to study the gateway code, because the thingy-gateway is an
important component of the project as a client which holds the APIs’ constraints to follow.

The web-service part of this project is implemented in 5 steps:

1. Implementing the web service based on the RESTful-API and a database, which can
serve the gateway for data collection and persistence in a database.

2. Collecting the raw environmental data, states, and sessions of presence for generating
a primitive data frame based on time series.

3. Finding a suitable binary classification in accordance with the state of presence by
different data graphs.

4. Applying SVM with the training data to obtain a solution, which is called
hyperplane.

5. Checking the validation of the hyperplane by testing data and optimizing the training
model.

From chapters 2 to 4, the implementation of the project will be explained step by step.

2 Implementation of the Web Service Preparation and Prerequisites

4

2 Implementation of the Web Service

2.1 Preparation and Prerequisites .. 4
2.1.1 About Python .. 4
2.1.2 Introduction to Web Services and RESTful-APIs .. 5
2.1.3 Introduction to Flask and Flask-RESTPlus .. 8

2.2 Studying the APIs from Thingy-Gateway ... 9
2.3 Web Server with Flask and Data Persistence .. 17

2.3.1 Overview of the Project Structure .. 17
2.3.2 Main Application and Settings ... 19
2.3.3 Database Schema for Sensors and Presence. ... 22
2.3.4 Objects’ Modelling for Data of Sensors and Presence. 23

2.4 Endpoint and Field Object ... 25
2.4.1 Resource Object and Endpoint ... 28
2.4.2 Field Objects and Swagger-UI ... 31

2.1 Preparation and Prerequisites

This chapter covers the sketch-up of a web service with RESTful-API.

Before everything starts, it is very important to choose a good toolkit and to configure a correct
environment/framework, with which one can simplify the coding and clarify the thinking
dramatically. As it is said in the first chapter, this project is aimed at the web service
communication and application of machine learning. For such combination, Python shall be a
suitable choice.

2.1.1 About Python

Python is an interpreted high-level programming language for general-purpose, developed by
Guido van Rossum. Python 2 is pre-installed in MacOS. However, this project is implemented
with Python 3, which can be installed via Homebrew easily. After installing the Python 3, it is
strongly recommended to use virtualenv, a Python extension lib which can create specified
working-environments separately for different projects, in order to avoid unexpected conflicts
caused by incompatible libraries.

Although any kind of text editor can be used to code in python, a programming specified editor
with syntax-analyzer and auto-completion can relatively improve efficiency. PyCharm from
JetBrains is a well-known Integrated Development Environment (IDE) much more capable of
than just an editor and it is used in this project.

It is assumed that the reader of this thesis has the knowledge about Python 3. In addition,
knowledge of JavaScript/NodeJS and Object-Oriented Programming (OOP) would be also

2 Implementation of the Web Service Preparation and Prerequisites

5

very helpful for understanding this thesis. For any question about Python 3, the documentation
can be found on the web1.

2.1.2 Introduction to Web Services and RESTful-APIs

According to the definition by W3C, a web service is a software system designed to support
interoperable machine-to-machine interaction over networks.

In short terms, a web service is a common language for machines in the network. In order to
connect the gateway and server, an agreed contract between the gateway (client) and server
must be defined. The server acts as a service provider, which can receive and answer the
authenticated requests from a gateway (client). For instance, in this project, the server can
accept a request for data-submission from the thingy-gateway. Then the data can be stored in
the database, aka. data-persistence. Meanwhile, another client via a web browser or native
mobile apps can submit the human presence by web service too.

The web service concept has been developed for over a decade. A well-known primitive
implementation of web service is called Remote Procedure Call (RPC). For an experienced
Java programmer, it is known as Java Remote Method Invocation (Java-RMI). RPC enables the
client/server communication within Java virtual machine (JVM) and/or other platforms, as long
as they have implemented an RMI-interface. However, this is difficult to apply to internet
related applications, due to its strong platform-dependency. It is impossible to force all
platforms to use RMI-interfaces. Furthermore, one RMI-interface may not be 100% compatible
with another. Meanwhile, there were also some other concurrent RPC-solutions to Java RMI,
i.e. COBRA, DCOM etc., which have fragmented the standard.

1 Python 3 documentation https://docs.python.org/3/ (accessed on 20 August 2018)

https://docs.python.org/3/

2 Implementation of the Web Service Preparation and Prerequisites

6

Figure 2.1 Java-RMI environment (adapted from [2], accessed on April 05, 2018)

In order to unify the norms and standards for data-transferring between different web platforms,
the web service concept was therefore proposed and implemented with the Simple Object
Access Protocol (SOAP) and the Web Service Description Language (WSDL) in the year 2000.
One of the biggest differences between web service and RPC is the coupling degree to the
platform. Web services concentrated on how to find and bind the service, instead of the detailed
business logic. It has a very loose coupling to the platform. Commonly, it contains the following
elements:

• A WSDL-conformed service endpoint, which describes APIs

• A SOAP message object over an application protocol

• A Service broker written in Universal Description, Discovery and Integration (UDDI)
language

RMI Registry Locate remote
object from

registry

Remote Method
Invocation RMI

Client

Bind remote object
to registry

Remote
Object

RMI
Server

2 Implementation of the Web Service Preparation and Prerequisites

7

SOAP is a messaging protocol specification for exchanging structured information in the
implementation of web services in networks. It uses XML information Set for its message
format and it relies on application layer protocols (i.e. Http, Https, Smtp and etc.).

Figure 2.2 Architecture of a SOAP-WSDL web service (taken from [3], accessed on April 05, 2018)

This web service framework developed by SOAP and WSDL had a great success and it became
a symbol for web services since last 15 years. However, SOAP is really heavy to read and it is
difficult to decide the development style of WSDL, especially for a middle scale project. The
architecture-designer always needs to evaluate the cost of risk and make a hard choice between
“contract-first” (aka. Top-down) or “contract-last” (aka. Bottom-up). In 2004, the W3C
extended the definition of web service, because a new concept, REpresentation State Transfer
(REST), finally came into view.

The REST-compliant web service, in another word, the RESTful-API is designed and proposed
to represent web resources by using a uniform set of “stateless” operations, which differ from
other arbitrary web services, in which the service may expose an arbitrary set of operations.

In the RESTful world, SOAP and WSDL are not needed anymore. RESTful is NOT a strictly
written standard (vs. SOAP) but a style. So, it can be only defined by the following constraints
instead of the protocols:

• Client-server architecture, in which the communication always starts with the request
of the client and ends with the response from the server. (request-response pattern)

• Statelessness, which means that only clients take care of session state. Multiple servers
can be accessed in parallel, which enables scalability and improves the performance.

• Cacheability, which can improve performance by caching a resource with expiration
during the communication-chain.

• Layered system, any resource should be a set of attributes, which are separated from the
primitive object model.

• Code on demand (optional)

• Uniform interface

o Resource identification in requests, meaning an individual resource is identified
in a request. For example, using URI in web-based REST systems.

o Resource manipulation through representations. It defines the core thinking of
REST. It enables the client to perform Create /Retrieve /Update /Delete (CRUD)
operations on resources.

2 Implementation of the Web Service Preparation and Prerequisites

8

o Self-descriptive messages, which require less documentation and consequently
improve efficiency.

o Hypermedia as the engine of application state, which can inform clients of other
possible operations without prior knowledge.

A web-based RESTful-API, such as the one implemented in this project, usually uses XML or
JSON as its message object. With 5 Http-request-methods (stateless operations), or so-called
Http-verbs, web resources in the network can be handled simply and intuitively. A resource is
wrapped in a form of collection, or just an element.

Http-
Verbs

Resource Collection, such as
http://api.thingy.com/presences/

Resource Element, such as
http://api.thingy.com/presences/1

GET List the URIs and possibly other
details of the collection’s members

Retrieve a representation of the addressed
member of the collection, expressed in an
appropriate Internet media type (i.e. MIME).

PUT Replace the entire collection with
another collection.

Replace the addressed member of the
collection, or if it does not exist, create it.

PATCH (not generally used) Update the addressed member of the
collection.

POST Create a new entry in the collection.
The new entry’s URI is assigned
automatically and is usually returned
by the operation.

(not generally used)

DELETE Delete the entire collection Delete the addressed member of the
collection.

Table 2.1 Web resource manipulation based on combinations of HTTP-methods and different resource type

To compare SOAP with REST, it can be found, that:

• SOAP is a stateful, session-based, message-based web service, which is designed as a
set of complex actions. The expected data are exposed to be accessible by SOAP-
message, only when it is requested.

• RESTful is a stateless, sessionless, resource-based web service, which is designed as an
accessor (setter/getter) to the web resources and performs simple CRUD operations on
it. All data are exposed to the network as web resources permanently.

In this project, all data shall be exposed as web resources via URLs and their manipulations are
CRUD operations. Therefore, a RESTful architecture is very suitable for this project.

2.1.3 Introduction to Flask and Flask-RESTPlus

As we all know, a web service is a kind of web application, which must conform to a standard
web service protocol for web servers, such as Common Gateway Interface (CGI) to execute
programs like console applications running on a server that generates web pages or resources
dynamically. In the Python world, Python Web Server Gateway Interface (WSGI) is specified
in the PEP-333 and has been adopted as a standard of Python web application development. By
using WSGI, it is independent to develop the web service from the choice of web servers.

http://api.thingy.com/presences/
http://api.thingy.com/presences/1

2 Implementation of the Web Service Studying the APIs from Thingy-Gateway

9

Developers can concentrate on their work without consideration of choosing CGI, FastCGI or
mod_python.

For reason of reusing snippets and abstracting the modules, a micro web framework, Flask, was
developed and released under BSD license by Armin Ronacher 2010, which is based on WSGI
or more precisely on Wergzeug, a python WSGI utility library.

Flask is light-weighted to develop, easy to debug and flexible to extend. It supports most web
servers. In this project, the flask-restful and flask-restplus add-ons can be used. With
both libraries, the restful-APIs can be generated easily in a layered system. Due to the
integration of swagger-UI, a utility to generate a standard API-documentation and to render a
test interface automatically, the flask-restplus add-on is chosen for this project.

2.2 Studying the APIs from Thingy-Gateway

In order to enable the request-response-pattern between the web server and the thingy-gateway,
it is necessary to define the contents of requests from the client (Thingy-Gateway). The source
code of the Thingy-Gateway can be obtained from its repository on GitHub2.

Because the implementation of the thingy-gateway is off-topic to this project and the source
code is well described, we will not discuss all of it here.

In the file index.js, the code related to the APIs is listed in Code 2.1.

2Nordic Thingy:52 Node.js gateway https://github.com/DurandA/thingy-gateway (accessed on 20. August 23,
2018)

https://github.com/DurandA/thingy-gateway

2 Implementation of the Web Service Studying the APIs from Thingy-Gateway

10

1 function sendSensorData(data) {
2 var jsonDate = (new Date()).toJSON();
3 var jsonData = {
4 timestamp: jsonDate,
5 sensors: data
6 };
7 return rest.postJson(base_uri + '/' + this.id + '/sensors

/', jsonData);
8 }
9 module.sendTemperature = function(temperature) {
10 return sendSensorData.call(this, {
11 temperature: temperature
12 });
13 };
14 module.sendPressure = function(pressure) {
15 return sendSensorData.call(this, {
16 pressure: pressure
17 });
18 };
19 module.sendHumidity = function(humidity) {
20 return sendSensorData.call(this, {
21 humidity: humidity
22 });
23 };
24 module.sendColor = function(color) {
25 return sendSensorData.call(this, {
26 color: color
27 });
28 };
29 module.sendGas = function(gas) {
30 return sendSensorData.call(this, {
31 gas: gas
32 });
33 };
34 module.setButton = function(state) {
35 return rest.putJson(base_uri + '/' + this.id + '/sensors/

button', {
36 state: state
37 });
38 };
39 module.getSettings = function() {
40 return rest.get(base_uri + '/' + this.id + '/setup');
41 };
42 module.getLed = function() {
43 return rest.get(base_uri + '/' + this.id + '/actuators/led

');
44 };
45 module.getLedSource = function(onmessage, onerror) {
46 var source = new EventSource(base_uri + '/' + this.id +

 '/actuators/led');
47 source.onmessage = onmessage;
48 if (onerror) source.onerror = onerror;
49 }

Code 2.1 Snippets in index.js, the entry-point of the thingy-gateway application

The snippets are fairly easy to understand. The keyword this is referencing the thingy device,
which has successfully been connected to the thingy-gateway and parsed by the notification in
the context since the gateway can be connected with multiple Thingy:52 (smart devices) at the

2 Implementation of the Web Service Studying the APIs from Thingy-Gateway

11

same time. It is intuitive to find that there is a total of 2 GET methods, 4 POST methods and 1
PUT method, which can be implemented by overriding 3 correspondent methods:

rest.get() / rest.postJson() / rest.putJson()

These 3 methods are built-in methods in Restler3, an Http client library for NodeJS.

In Table 2.2, all necessary endpoints are listed with URI, parameters, and HTTP-verbs, which
are constrained to the API-requests made by the Thingy-gateway.

Methods URI HTTP-
methods/verbs

Parameters

module.sendTemperature base_url/dev_id/sensors/ POST temperature
module.sendPressure base_url/dev_id/sensors/ POST pressure
module.sendHumidity base_url/dev_id/sensors/ POST humidity
module.sendColor base_url/dev_id/sensors/ POST colour
module.sendGas base_url/dev_id/sensors/ POST gas
module.setButton base_url/dev_id/sensors/button PUT state
module.getSettings base_url/dev_id/setup GET /
module.getLed base_url/dev_id/actuators/led GET /

Table 2.2 API endpoints used by the Thingy-gateway

In the file events.js, all outgoing messages are bound to thingy notifications as events/event-
listeners. Code 2.2 lists the event-binding functions.

3 Official website of Restler: https://github.com/danwrong/restler accessed on 03. November 2017

https://github.com/danwrong/restler

2 Implementation of the Web Service Studying the APIs from Thingy-Gateway

12

1 thingy.connectAndSetUp(function(error) {
2 console.log('Connected! ' + error ? error : '');
3 thingy.on('temperatureNotif', client.sendTemperature.bind(th

ingy) /*onTemperatureData*/);
4 thingy.on('pressureNotif', client.sendPressure.bind(thingy)

 /*onPressureData*/);
5 thingy.on('humidityNotif', client.sendHumidity.bind(thingy)

 /*onHumidityData*/);
6 thingy.on('gasNotif', client.sendGas.bind(thingy) /*onGasDat

a*/);
7 thingy.on('colorNotif', client.sendColor.bind(thingy) /*onCo

lorData*/);
8 thingy.on('buttonNotif', client.setButton.bind(thingy) /*onB

uttonChange*/);
9 client.getSettings.call(thingy).on('complete', setup.bind(

thingy));
10 if (enableEventSource) {
11 client.getLedSource.call(thingy, function(e) {
12 thingy.led_breathe(JSON.parse(e.data));
13 });
14 } else {
15 setInterval(() => client.getLed.call(thingy).on('compl

ete', thingy.led_breathe.bind(thingy)), 1000);
16 }
17 /*rest codes*/
18 });

Code 2.2 Snippets for binding event-listeners in event.js

The specification of parameters are defined in the message constructor, as Code 2.3 shows.
They are located in /thingy52/lib/thingy.js.

2 Implementation of the Web Service Studying the APIs from Thingy-Gateway

13

1 Thingy.prototype.onTempNotif = function(data) {
2 var integer = data.readInt8(0);
3 var decimal = data.readUInt8(1);
4 var temperature = integer + (decimal / 100);
5 this.emit('temperatureNotif', temperature);
6 };
7 Thingy.prototype.onPressNotif = function(data) {
8 var integer = data.readInt32LE(0);
9 var decimal = data.readUInt8(4);
10 var pressure = integer + (decimal / 100);
11 this.emit('pressureNotif', pressure);
12 };
13 Thingy.prototype.onHumidNotif = function(data) {
14 var humid = data.readUInt8(0);
15 this.emit('humidityNotif', humid);
16 };
17 Thingy.prototype.onGasNotif = function(data) {
18 var gas = {
19 eco2: data.readUInt16LE(0),
20 tvoc: data.readUInt16LE(2)
21 }
22 this.emit('gasNotif', gas);
23 };
24 Thingy.prototype.onColorNotif = function(data) {
25 var color = {
26 red: data.readUInt16LE(0),
27 green: data.readUInt16LE(2),
28 blue: data.readUInt16LE(4),
29 clear: data.readUInt16LE(6)
30 }
31 this.emit('colorNotif', color);
32 };
33 Thingy.prototype.onBtnNotif = function(data) {
34 if (data.readUInt8(0)) {
35 this.emit('buttonNotif', 'Pressed');
36 } else {
37 this.emit('buttonNotif', 'Released');
38 }
39 };

Code 2.3 Snippets for some pre-defined notifications in /thingy52/lib/thingy.js

Thus, the specification of JSON parameters listed in Table 2.2 can be obtained after
investigating Code 2.3. Table 2.4 lists an example of the JSON parameter for temperature object.

In the file index.js, the method sendTemperature(temperature) is constructed by another
method sendSensorData(data), which parses the temperature into data and returns the
expected JSON-Object, as Code 2.4 shows.

2 Implementation of the Web Service Studying the APIs from Thingy-Gateway

14

1 function sendSensorData(data) {
2 var jsonDate = (new Date()).toJSON();
3 var jsonData = {
4 timestamp: jsonDate,
5 sensors: data
6 };
7 return rest.postJson(base_uri + '/' + this.id + '/sensors

/', jsonData);
8 }
9 module.sendTemperature = function(temperature) {
10 return sendSensorData.call(this, {
11 temperature: temperature
12 });
13 };

Code 2.4 Snippets for POST requests by thingy-gateway in index.js

Thus, the returned JSON-Object can be seen as Code 2.5.

1 {
2 "timestamp": "jsonDate",
3 "sensors": {
4 "temperature": temperature
5 }
6 }

Code 2.5 JSON-Object returned by sendTemperature(temperature)

The parameter temperature is returned as a float number with 2 decimals according to the
snippets in /thingy52/lib/thingy.js,as Code 2.6 shows.

1 Thingy.prototype.onTempNotif = function(data) {
2 var integer = data.readInt8(0);
3 var decimal = data.readUInt8(1);
4 var temperature = integer + (decimal / 100);
5 this.emit('temperatureNotif', temperature);
6 };

Code 2.6 Snippets for temperature notifications in /thingy52/lib/thingy.js

By completing the investigation, an example of the JSON parameter for POST temperature
information is shown in Code 2.7

1 {
2 "timestamp": "2018-04-10T08:33:01.313Z",
3 "sensors": {
4 "temperature": 24.00
5 }
6 }

Code 2.7 An example of the returned JSON-Object

Using the given {base_url} and an arbitrary {dev_id} (e.g. POST
http://api.thing.zone/fe0f3ceda3d6/sensors/), it is not difficult to validate the
specification of requests after studying. A simple but powerful toolkit to do this is cURL.

2 Implementation of the Web Service Studying the APIs from Thingy-Gateway

15

cURL can be used out-of-box for validating the request in the terminal for macOS users. After
opening a terminal, a cURL command line can be typed as it showed in Code 2.8.

1 $ curl -H "Content-Type: application/json" -X POST -d
'{"timestamp":"2018-04-
10T08:33:01.313Z","sensors":{"temperature":"24.99"}}'
http://api.thing.zone/fe0f3ceda3d6/sensors/

Code 2.8 An example of a POST request by cURL command line instruction and its response

When a positive response returned as the example shows, it means that the specification of the
request is correct and that the request has been accepted.

Figure 2.3 Example of RESTful-API request-response context via cURL command line in a terminal (macOS)

The POST- or PUT-requests are listed in Table 2.3. The variable jsonDate refers to the String-
type date, as a wildcard in JSON specifications, i.e. 2017-11-17T23:12:02.795Z

Methods HTTP verbs + URI JSON specification in
example

module.sendTemperature POST {base_url}/{dev_id}/sensors/ {
 "timestamp": "jsonDate",
 "sensors": {
 "temperature": 24.00
 }
 }

module.sendPressure POST {base_url}/{dev_id}/sensors/ {
 "timestamp": "jsonDate",
 "sensors": {
 "pressure": 958.24
 }

2 Implementation of the Web Service Studying the APIs from Thingy-Gateway

16

}
module.sendHumidity POST {base_url}/{dev_id}/sensors/ {

 "timestamp": "jsonDate",
 "sensors": {
 "humidity": 3600
 }
}

module.sendColor POST {base_url}/{dev_id}/sensors/ {
 "timestamp": "jsonDate",
 "sensors": {
 "color": {
 "blue": 106,
 "red": 52,
 "green": 66,
 "clear": 62
 }
 }
}

module.sendGas POST {base_url}/{dev_id}/sensors/ {
 "timestamp": "jsonDate",
 "sensors": {
 "gas": {
 "tvoc": -99.99,
 "eco2": 99.99
 }
 }
}

module.setButton PUT
{base_url}/{dev_id}/sensors/button

{
 "state": "Pressed"
}
or
{
 "state": "Released"
}

Table 2.3 List of JSON parameters of POST and PUT methods that are requested from the Thingy-gateway

Since the Thingy-gateway is not a normal web client which usually requires a response for
further procedure, there is no specified definition of the response, and no need to handle the
occurred errors in the response. However, a response can and will be implemented later for
respecting the RESTful constraints (request-response-pattern).

In addition to save data via POST requests, data can be fetched by the client via GET requests
for most endpoints. Table 2.4 lists 2 the GET methods.

2 Implementation of the Web Service Web Server with Flask and Data Persistence

17

Through a test server online (base_url: http://api.thing.zone), the responses of these 2
GET methods can be obtained. Later on, they will be constructed statically in the web service
as well.

GET Requests with URI Response
GET {base_url}/{dev_id}/setup/ {

 "humidity": {"interval": 1000},
 "temperature": {"interval": 1000},
 "pressure": {"interval": 1000},
 "color": {"interval": 1000},
 "gas": {"mode": 1}
}

GET
{base_url}/{dev_id}/actuators/led

{
 "delay": 1000,
 "color": 1,
 "intensity": 20
}

Table 2.4 List of JSON parameters of GET methods that are requested from the Thingy-gateway

These responses contain the settings of the frequency of the data-updating as well as the
configuration of LED breathing when connected. For more details about Thingy:52 NodeJS
Library, please refer to the repository on GitHub4.

At this point, all specifications for the obligated APIs between the web service and the thingy-
gateway for requests and/or responses have been described. The next section covers building
web server with RESTful APIs.

2.3 Web Server with Flask and Data Persistence

In the previous Sections 2.1 and 2.2, the Flask micro-framework has been briefly introduced
and the specifications of the APIs, which are constrained by the Thingy-gateway, have been
discussed and validated.

2.3.1 Overview of the Project Structure

The project is created under the root path /thingy-restful-api. The root folder contains the
files and folders as Figure 2.4 shows.

4 Nordic Thingy: 52 NodeJS Library https://github.com/NordicPlayground/Nordic-Thingy52-Nodejs accessed on
07 December 2017

http://api.thing.zone/
https://github.com/NordicPlayground/Nordic-Thingy52-Nodejs

2 Implementation of the Web Service Web Server with Flask and Data Persistence

18

Figure 2.4 File architecture for RESTful web service upon Flask and flask-restplus

The structure is designed based on a layered-system-pattern. For example, the api folder can
be replaced by another, if another RESTful-library is chosen, i.e. flask-restful.

Under the root folder, the /resource folder holds all the API-layer implementation based on
flask-restful, and /app.py is the main entry-point/ application file, which is not shown in Figure
2.4 for ease of reading, since they are discontinued and deprecated by changing the library to
flask-restplus. However, they all can be found in the source code of this project and run simply
with flask-restful. Considering the featured support for swagger-UI from the flask-restplus
library, the whole API layer needs to be rewritten. Thanks to the layered-system-pattern, it is
much easier than it sounds. Even though it is called “rewrite”, all other modules/components
are kept as before, such as the /models folder for object modeling, database.py, which is in
charge of data persistence, etc. Actually, apps.py and apps-restplus.py can even run at the
same time, as long as these two web server instances are not bound to a same port on an identical
network-interface.

2 Implementation of the Web Service Web Server with Flask and Data Persistence

19

In the following sections, the implementation of the RESTful web service is explained in details,
from one module to another.

2.3.2 Main Application and Settings

Main Application File of Web Service
The file app-restplus.py is the main entry point of flask-restplus. It is only the application
file of the web service, not the whole project. Besides this application, there are another 2
independent ones in the /common folder, one is in charge of data analysis (see Chapter 3) and
the other of machine learning procedure (see Chapter 4).

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 # created on 7:05 PM 09.11.17, Yi Zhang
4
5 ' main apps of thingy-restful-api '
6
7 __author__ = 'Yi Zhang'
8
9 from flask import Flask,Blueprint
10 import logging.config
11 from api.restplus import api
12 from db import db
13
14 import settings
15 from api.endpoints import temperature
16 from api.endpoints import gas
17 from api.endpoints import color
18 from api.endpoints import button
19 from api.endpoints import humidity
20 from api.endpoints import pressure
21 from api.endpoints import sensors
22 from api.endpoints import setup
23 from api.endpoints import led
24 from api.endpoints import presence
25
26 app = Flask(__name__)
27 logging.config.fileConfig('logging.conf')
28 log = logging.getLogger(__name__)
29
30
31 def configure_app(flask_app):
32 flask_app.config['SERVER_NAME'] = settings.FLASK_SERVER_NAM

E
33 flask_app.config['SQLALCHEMY_DATABASE_URI'] = settings.SQLALC

HEMY_DATABASE_URI
34 flask_app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = settings.

SQLALCHEMY_TRACK_MODIFICATIONS
35 flask_app.config['SWAGGER_UI_DOC_EXPANSION'] = settings.RESTP

LUS_SWAGGER_UI_DOC_EXPANSION
36 flask_app.config['RESTPLUS_VALIDATE'] = settings.RESTPLUS_VA

LIDATE
37 flask_app.config['RESTPLUS_MASK_SWAGGER'] = settings.RESTPLUS

_MASK_SWAGGER
38 flask_app.config['ERROR_404_HELP'] = settings.RESTPLUS_ERROR

_404_HELP

2 Implementation of the Web Service Web Server with Flask and Data Persistence

20

39
40 def initialize_app(flask_app):
41 configure_app(flask_app)
42 # add swagger UI blueprint
43 #blueprint = Blueprint('api',__name__)
44 #flask_app.register_blueprint(blueprint)
45
46 api.init_app(flask_app)
47 db.init_app(flask_app)
48
49 def main():
50 initialize_app(app)
51 # init db if needed
52 @app.before_first_request
53 def create_tables():
54 db.create_all()
55 log.info('>>>>> Starting development server at http://{}/ <<<<<'.f

ormat(app.config['SERVER_NAME']))
56
57 app.run(host=settings.FLASK_SERVER_HOST_NAME,port=setting

s.FLASK_SERVER_PORT, debug=settings.FLASK_DEBUG)
58
59 if __name__ == "__main__":
60 print('start')
61 main()

Code 2.9 /thingy-restful-api/app-restplus.py

The purpose of Code 2.9 is to create the web server, which can listen to the given port and
address for the responses to the received requests. In line 26, the flask_app is initialized and
constructed. Then it is configured in method configure_app(flask_app). Afterward, two
flask extensions – flask-restplus and flask-sqlalchemy are set to the constructed flask_app.

Flask uses decorators to approach the function injection, such as simplifying the event-driven
control. The method decorated by @app.before_first_request will be called before the first
request to this instance of the application. By calling create_tables(), which results in calling
db.create_all(), the database file will be created, if it does not exist. Otherwise, nothing
would be touched.

Settings
In Code 2.9, it is shown, that

• Code 2.10 shows file logging-conf, which contains the settings for logging, of which
the level, handler, and formatter can be configured directly. In addition, multiple loggers
can be configured in this file, too. This configuration file may be found in most flask
apps and is not project-specific.

2 Implementation of the Web Service Web Server with Flask and Data Persistence

21

1 [loggers]
2 keys=root,rest_api_demo
3
4 [handlers]
5 keys=console
6
7 [formatters]
8 keys=simple
9
10 [logger_root]
11 level=DEBUG
12 handlers=console
13
14 [logger_rest_api_demo]
15 level=DEBUG
16 handlers=console
17 qualname=rest_api_demo
18 propagate=0
19
20 [handler_console]
21 class=StreamHandler
22 level=DEBUG
23 formatter=simple
24 args=(sys.stdout,)
25
26 [formatter_simple]
27 format=%(asctime)s - %(name)s - %(levelname)s - %(message)s

Code 2.10 /thingy-restful-api/logging.conf

• In file db.py (Code 2.11), the database utility interface is set. Commonly, the flask-
sqlalchemy, is imported here. It is an extension for Flask, which adds support for
SQLAlchemy library. SQLAlchemy enables the Object Relational Mapper (ORM), in
which the objects model and database schema can be developed in a cleanly decoupled
way from the beginning.

1 from flask_sqlalchemy import SQLAlchemy
2 db = SQLAlchemy()

Code 2.11 /thingy-restful-api/db.py

• The file setting.py (Code 2.12) is in charge of all environment parameters for Flask,
flask-restplus and all other customer specified global parameters. Since all parameters
are self-descriptive, few comments are necessary.

1 # Flask settings
2 FLASK_SERVER_HOST_NAME = '192.168.1.236'
3 FLASK_SERVER_PORT = 7777
4 FLASK_SERVER_NAME =

''.join([FLASK_SERVER_HOST_NAME,':',str(FLASK_SERVER_PORT)])
5 # Do not use debug mode in production
6 FLASK_DEBUG = True
7
8 # Flask-Restplus settings
9 RESTPLUS_SWAGGER_UI_DOC_EXPANSION = 'list'
10 RESTPLUS_VALIDATE = True
11 RESTPLUS_MASK_SWAGGER = False

2 Implementation of the Web Service Web Server with Flask and Data Persistence

22

12 RESTPLUS_ERROR_404_HELP = False
13
14 # SQLAlchemy settings
15 SQLALCHEMY_DATABASE_URI = 'sqlite:///./database/data.db'
16 SQLALCHEMY_TRACK_MODIFICATIONS = False
17
18 # GLOBAL ENV DEFAULT
19 # presence: -1: init state/unknown, 0: left, 1: entered
20 THINGY_PRESENCE = -1

Code 2.12 /thingy-restful-api/settings.py

2.3.3 Database Schema for Sensors and Presence.

Database Schema for Sensors
Since the gateway can be connected with multiple devices, each having its own measured data,
it is rational to create a one-to-many relationship between the device and measured data, which
includes gas, pressures, temperatures, humidity, the button’s state and LED-colors.

The schema of the device table can be then described in Table 2.5.

Field Type Comment
id Integer primary key, auto-increment
device_name Varchar name of device, for example

‘eb108ef0e0c3’
created Datetime created time by the server
updated Datetime updated time by the server

Table 2.5 Database schema for devices

According to the one-to-many relationship between the device and measured temperature, the
schema of temperature can be sketched as in Table 2.6.

Field Type Comment
id integer primary key, auto-increment
device_id integer Foreign key to id in table

device
temperature float measured temperature
timestamp varchar timestamp from the gateway in

form of a string
created datetime created time from the server
updated datetime updated time from the server

Table 2.6 Database schema for temperature

Given the specification of APIs, which are listed in Table 2.3, all other schemas for the rest data
can be designed in the same way.

2 Implementation of the Web Service Web Server with Flask and Data Persistence

23

Database Schema for Presences
In addition, it is necessary to persist presence-information while synchronizing the measured
data from the gateway. Thus, a supervised training set can be split from these presence-tagged
entities, and so for the test set in a purpose of validation, too.

The state of presence is defined by a period from the time “entered” to the one “left”. Hence,
the schema of presence can be designed as the Table 2.7 listed.

Field Type Comment
id integer primary key, auto-increment
entered_on varchar entered time from the gateway

in form of a string
left_on varchar left time from the gateway in

form of a string
created varchar created time from the server
updated datetime updated time from the server

Table 2.7 Database schema for presences

Finally, Figure 2.5 shows the UML-diagram for the completed database schema of this project.

Figure 2.5 UML-diagram of the database schema

2.3.4 Objects’ Modelling for Data of Sensors and Presence.

Generally, it could take a lot of time to repeat a series of SQL sentences only for creating tables
or/and constraints in a database. Later on, the developer has to spend more time on the hybrid-
style syntax for the SQL-operations intensively and carefully, to avoid some small bugs, which
may but cause some fatal security issues, such as a vulnerability in SQL-injection-attack.
Furthermore, it could be slightly different from one SQL-dialect to another, because of the
different database services. A couple of small faults can lead a sleepless night for painful
debugging. Fortunately, SQLAlchemy offers a set of powerful toolkits, which provides the data-
mapper-patterns, to enable object modeling at the beginning.

2 Implementation of the Web Service Web Server with Flask and Data Persistence

24

In Table 2.5 and 2.6, the database schema of device and temperature has been defined and
specified. Thanks to the ORM, they can be defined as a familiar usual class to all OOP-
programmers and are ready to be instantiated.

File device.py (Code 2.13), constructs the DeviceModel.

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 # created on 11:20 AM 04.11.17, by Yi Zhang
4
5 ' device model of thingy-restful-api '
6
7 __author__ = 'Yi Zhang'
8
9 from db import db
10 from datetime import datetime
11 from sqlalchemy import desc,asc
12 from models.temperature import TemperatureModel
13 from models.gas import GasModel
14 from models.humidity import HumidityModel
15 from models.pressure import PressureModel
16 from models.color import ColorModel
17 from models.button import ButtonModel
18
19 class DeviceModel(db.Model):
20
21 # Table name
22 __tablename__ = 'devices'
23
24 # Definition of fields
25 id = db.Column(db.Integer, primary_key=True)
26 device_name = db.Column(db.String, nullable=False)
27 created = db.Column(db.DateTime, nullable=False, default=d

atetime.utcnow)
28 updated = db.Column(db.DateTime, onupdate=datetime.utcnow

, default=datetime.utcnow)
29
30 # one-to-many relationship
31 temperatureList = db.relationship(TemperatureModel,lazy='

dynamic')
32 gasList = db.relationship(GasModel, lazy='dynamic')
33 buttonList = db.relationship(ButtonModel, lazy='dynamic')
34 pressureList = db.relationship(PressureModel, lazy='dynami

c')
35 humidityList = db.relationship(HumidityModel, lazy='dynami

c')
36 colorList = db.relationship(ColorModel, lazy='dynamic')
37
38 def __init__(self,device_name,_id=None):
39 self.device_name = device_name
40 self.id = _id
41
42 def __repr__(self):
43 return "<Device('%s')>" % (self.json())
44
45 def json(self):
46 return {'id':self.id,'device_name':self.device_name}
47
48 @classmethod
49 def find_by_name(cls,device_name)->'DeviceModel':

2 Implementation of the Web Service Endpoint and Field Object

25

50 return cls.query.filter_by(device_name=device_name).fi
rst()

51
52 @classmethod
53 def find_by_id(cls,_id)->'DeviceModel':
54 return cls.query.filter_by(id=_id).first()
55
56 @classmethod
57 def find_all_devices(cls)->list('DeviceModel'):
58 return cls.query.order_by(desc('created')).all()
59
60 def save_to_db(self):
61 db.session.add(self)
62 db.session.commit()

Code 2.13 DeviceModel class in device.py

In line 22, the table name for the model is determined. From line 24 to line 28, the fields are
declared as specified in the schema. The essential codes in line 31 realized the declaration of
the one-to-many relationship between models of devices and of temperature. Since it is a one-
to-many relationship, the related multiple temperatures, are wrapped as a collection of objects,
such as a list. The self-descriptive decorator @classmethod claims the static class method for
retrieving expected device or collection of devices, which functions as same as the SELECT-
queries do, but much more simple and elegant. The save_to_db() method, similar to the
INSERT-query, but is wrapped in a more robust transaction context, which ends-up by either a
successful return or a handleable exception via db.session.commit(). Thus, all necessary
properties and methods for device model are completely defined.

Nevertheless, the model class is implemented within about 40 lines and there exists no obscure
hybrid-syntax such as “SELECT-query” or “INSERT-query” in the snippet.

Similar to the device model, all other models are implemented in the same way under the folder
/models.

Figure 2.6 Files for database models under the models folder

Thus, all models have been generated. In the next step, web resources will be implemented as
accessible endpoints. Furthermore, auto-documented and interactive graphics interface upon
field model will also be introduced, which is supported by Swagger-UI.

2.4 Endpoint and Field Object

Thanks to the extension flask_restplus, it is simple and swift to generate the endpoints of
expected web resources with the different Http-verbs (GET / POST /PUT /PATCH /DELETE)
for various operations, i.e. CRUD-operation (create /retrieve /update /delete).

2 Implementation of the Web Service Endpoint and Field Object

26

As introduced in the previous section, the RESTful API should be implemented in a layered
system according to the RESTful-constraints. Rather than the native flask framework, the flask-
restplus extension has extended more features, such as

• Response marshaling

• Request parsing

• Error handling

• Field masks

• Swagger-UI documentation.

All these new features brought by flask-restplus will be introduced and explained in the
following case study. It is always a good start point from the brief structure of resources and
fields, based on flask-restplus.

From the view of the hierarchy of project, all related files and folders are located under the
folder API:

Figure 2.7 Files structure for resources(endpoints) and fields under the api folder

One file named restplus.py is located directly under the folder api.

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 # created on 7:22 PM 09.11.17, by Yi Zhang
4
5 ' Flask-restplus settings '
6
7 __author__ = 'Yi Zhang'
8
9 import logging
10 import traceback
11 import settings
12
13 from flask_restplus import Api
14 from sqlalchemy.orm.exc import NoResultFound
15
16 log = logging.getLogger(__name__)
17
18 api = Api(version='1.0', title='Thingy restful API',
19 description='A simple Thingy restful API powered by Flask-

RESTplus')
20

2 Implementation of the Web Service Endpoint and Field Object

27

21
22 @api.errorhandler
23 def default_error_handler(e):
24 message = 'An unhandled exception occurred.'
25 log.exception(message)
26
27 if not settings.FLASK_DEBUG:
28 return {'message': message}, 500
29
30
31 @api.errorhandler(NoResultFound)
32 def database_not_found_error_handler(e):
33 log.warning(traceback.format_exc())
34 return {'message': 'A database result was required but none was found.'}

, 404

Code 2.14 Settings for flask_restplus in /api/restplus.py

Code 2.14 contains general settings for this extension, the logger, the initializing of the Api
object and the error handling.

All the endpoints, through which the web resource can be accessed, are located under the
subfolder api/endpoints/. They are all defined as different resource objects, which are
usually named upon their endpoints and returned type. It is very important to differentiate these
resources objects from the data models, which are defined and specified by the database schema.
When a resource model has the same name as a database model, they are but totally different
in definition, even though they work mostly together very closely. The data model contains all
information about the properties and relationships of it to other database models, which are
determined by the database schemas. The resource object contains the information about the
resource routing, request parsing, response marshaling and etc.

In the Layered System
The data model defines WHAT (exactly the objects) the server has and the resource object
defines HOW (the way and the form) represent/expose them as web resources.

The word “represent” reminds us of a familiar concept in a web application — View. By
investigating the source code of resource-object in flask-restplus, it will be directly found, that
the class Resource is a subclass inherited from flask.views.MethodView, which can
instantiate a View, after handling a request based on the different HTTP-methods
(GET/POST/PUT/…).

Before the response is sent, the response is marshaled by the fields model. Fields models act as
a response filter and formatter to return the proper response. Furthermore, it is very useful to
decorate the resource endpoint with @api.expect(some_expected_fields) to enable the
automation of the swagger documentation. All Fields objects are declared in file __init__.py
in the subfolder api/fields_models/.

The field models are not defined and named in different files like other models, such as data
models or resource models. Because all these fields models are just dictionaries. They can be
defined as a nesting class, which usually needs to be referenced again within another nesting
class. Thus, it will be more convenient to put them together in one file, instead of using multiple
small files with many of import sentences.

By going through the sensor resource, temperature resource, and related fields objects, it is
easy to learn about the web RESTful APIs with flask-restplus.

2 Implementation of the Web Service Endpoint and Field Object

28

2.4.1 Resource Object and Endpoint

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 # created on 7:47 PM 11.11.17, by Yi Zhang
4
5 ' sensor resource of thingy-restful-api '
6
7 __author__ = 'Yi Zhang'
8
9 from flask import request
10 from flask_restplus import Resource,reqparse
11 from models.temperature import TemperatureModel
12 from models.gas import GasModel
13 from models.device import DeviceModel
14 from models.humidity import HumidityModel
15 from models.pressure import PressureModel
16 from models.color import ColorModel
17 from api.restplus import api
18 import api.fields_models as fm
19
20
21 @api.route('/<device_name>/sensors/',endpoint='sensors')
22 class Sensors(Resource):
23
24 def temperature(self,temperature,rec_timestamp,device):
25 _temperature = TemperatureModel(temperature=float(temp

erature, timestamp=rec_timestamp)
26 _temperature.save_to_db(device)
27 _temperature = TemperatureModel.find_last_one_by_devi

ce_id(device.id)
28 return _temperature.json(),201
29
30 def humidity(self,humidity,rec_timestamp,device):
31 _humidity = HumidityModel(humidity=int(humidity,

timestamp=rec_timestamp)
32 _humidity.save_to_db(device)
33 _humidity = HumidityModel.find_last_one_by_device_id(

device.id)
34 return _humidity.json(),201
35
36 def pressure(self,pressure,rec_timestamp,device):
37 _pressure = PressureModel(pressure=float(pressure), ti

mestamp=rec_timestamp)
38 _pressure.save_to_db(device)
39 _pressure = PressureModel.find_last_one_by_device_id(

device.id)
40 return _pressure.json(),201
41
42 def gas(self,data,rec_timestamp,device):
43 _gas = GasModel(tvoc=data['tvoc',

eco2=data['eco2'],timestamp=rec_timestamp)
44 _gas.save_to_db(device)
45 _gas = GasModel.find_last_one_by_device_id(device.id)

46 return _gas.json(),201
47
48
49 def color(self,data,rec_timestamp,device):

2 Implementation of the Web Service Endpoint and Field Object

29

50 _color = ColorModel(blue=data['blue'],
red=data['red'],green=data['green'],clear=data['clear'],timestam
p=rec_timestamp)

51 _color.save_to_db(device)
52 _color = ColorModel.find_last_one_by_device_id(device

.id)
53 return _color.json(), 201
54
55
56 # parser validation rules
57 parser = reqparse.RequestParser()
58 parser.add_argument('timestamp',
59 type=str,
60 required=True,
61 help="This field cannot be blank!")
62 parser.add_argument('sensors',
63 type=str,
64 required=True,
65 help="This field cannot be blank!")
66
67 @api.expect(fm.temperature_sensors_post)
68 @api.expect(fm.humidity_sensors_post)
69 @api.expect(fm.pressure_sensors_post)
70 @api.expect(fm.gas_sensors_post)
71 @api.expect(fm.color_sensors_post)
72 def post(self,device_name):
73 sensors_options = {
74 'temperature': self.temperature,
75 'humidity': self.humidity,
76 'gas': self.gas,
77 'color': self.color,
78 'pressure': self.pressure
79 }
80 jsonData = request.get_json()
81 rec_timestamp = jsonData['timestamp'] # str
82 rec_sensor = [key for key in jsonData['sensors'].keys()

][0] # dict
83 rec_sensor_data = jsonData['sensors'][rec_sensor]
84 device = DeviceModel.find_by_name(device_name)
85 if not device:
86 device = DeviceModel(device_name)
87 device.save_to_db()
88 device = DeviceModel.find_by_name(device_name)
89 try:
90 return sensors_options[rec_sensor](rec_sensor_data

,rec_timestamp=rec_timestamp,device=device)
91 except KeyError:
92 return {'message':'invalid sensor name'},400

Code 2.15 /thingy-restful-api/sensors.py

In the file api/endpoints/sensors.py the sensor resource is defined as a unified endpoint
dependent on different payloads. By parsing and validating the payload, the sensor resource
returns the expected JSON-Object or throws an error message.

In line 21 of Code 2.15, the endpoint of sensors is defined. Lines 24 to 53 show the definition
of the database persistence and call-back of response for different sensor types (i.e.
temperatures/humidity/pressures/ and etc.). Lines 57 to 65 demonstrate located validation rules
for the request’s payload. The next four lines after line 67 describe the expected request payload,
which will be shown in the swagger automated documentation. The post method defines the

2 Implementation of the Web Service Endpoint and Field Object

30

logic in the POST-request. There is no switch/case syntax in python, instead some tricks will
be used as an equivalent code block similar to switch/case by a combination of try/except
blocks and function dictionaries, shown in lines 73 to 92. The main idea here is to the return
the expected sensor data based on the parsed-in sensor type, which can be fetched by the
serialized payload in JSON via request.get_json().

Code 2.16 simply implements temperature resource with a GET-method.

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 # created on 11:45 PM 10.11.17, by Yi Zhang
4
5 ' temperature resource of thingy-restful-api '
6
7 __author__ = 'Yi Zhang'
8
9 import logging
10
11 from flask import request
12 from flask_restplus import Resource
13 from models.temperature import TemperatureModel
14 from models.device import DeviceModel
15 from api.restplus import api
16 import api.fields_models as fm
17
18 @api.route('/<device_name>/sensors/temperature',endpoint='temperature

')
19 @api.param('device_name', 'device no.') # the description of para

in Swagger-UI
20 class Temperature(Resource):
21
22 @api.marshal_list_with(fm.temperature_get)
23 def get(self,device_name):
24 _device = DeviceModel.find_by_name(device_name)
25 if _device:
26 _temperature = TemperatureModel.find_last_one_by_

device_id(_device.id)
27 if _temperature:
28 return _temperature.json(), 200
29 return {'message': 'temperature data of device {} not foun

d'.format(device_name)}
30 return {'message': 'device {} not found'.format(device_name

)}

Code 2.16 /thingy-restful-api/temperature.py

In line 18, the URI of the API is defined. Instead of a post() method, a get() method needs
to be overwritten in the class for implementing the GET-method. The code between lines 23
and 29 realize this GET-method with 2 different exception handlings. When an unknown
device_name is input or if no data is stored for a certain requested device, a response with a
proper error message will be returned to the client.

A new decorator is introduced in line 22. This decorator handles response marshaling within
fields model, in which it works like an internal filter layer inside the resource object, to avoid
exposing the unexpected internal data structure.

2 Implementation of the Web Service Endpoint and Field Object

31

2.4.2 Field Objects and Swagger-UI

1 common_fields = {
2 'timestamp': fields.String(readOnly = True, description = '

The real timestamp of by sampling the data'),
3 'created': fields.DateTime(readOnly = True),
4 'updated': fields.DateTime(readOnly = True),
5 'device_id': fields.Integer(readlOnly = True, description =

 'The related id of device')
6 }
7 temperature_sensors = api.model('temperature sensors', {
8 'temperature': fields.Float(attribute = 'temperature')
9 })
10 temperature_get_fields = {
11 'id': fields.Integer(readOnly = True, description = 'The un

ique identifier of a temperature data entity'),
12 'sensors': fields.Nested(temperature_sensors),
13 **common_fields
14 }
15 temperature_get = api.model('Temperature', temperature_get_fiel

ds)

Code 2.17 Snippets of field models for the temperature resource in api/fields_models/__init__.py

The correspondent nested fields object for the temperature resource in the GET-method, which
is defined as temperature_get in the Code 2.17, is in charge of documentation automation
based on Swagger-UI. A field object can be regarded as a “response formatter + response filter”.
Furthermore, it can contain descriptions for the response payload in details, which is
represented automatically in API-docs for the client developer.

Figure 2.8 shows an automatically generated online API-documentation for the temperature
resource that is accessed with GET-method. It is generated from Code 2.17, which contains all
necessary description elements. A crystal-clear, professional, and interactive API-
documentation is prepared for the front-end developers. In addition, the documentation and the
marshaling are dynamically bound to the field model. If the field model is changed, the
correspondent content in the documentation and the specification in the real response will be
modified automatically.

2 Implementation of the Web Service Endpoint and Field Object

32

Figure 2.8 Screenshot of an API-doc supported by Swagger UI

After all the thingy-related resources are implemented, the presence resource must be created
from the sketch, because this resource is project-specified.

It is defined that the presence resource enables the web server:

1. to know the presence state per request

2. to create or update the presence in the database

3. to respond if the operations above have succeeded

Thus, the HTTP-method is determined as PUT for creating a new presence or updating the
presence. The endpoint for updating the presence state is /presence/enter for the state
“entered” and /presence/leave” for “left”. In addition, an endpoint /presence with the GET-
method is designed to fetch the last presence state. All endpoints for presence resource are
defined in Table 2.6

Http-methods Endpoints

PUT {base_url}/presence/enter
PUT {base_url}/presence/leave
GET {base_url}/presence

Table 2.8 Endpoints URI and correspondent Http-methods for presence resource

After all resources and the related fields objects have been implemented, the web server is
successfully built. If all settings are properly configured, the web service application can be
launched by the following command line instruction under the root folder of the project:
$ python app-restplus.py
After that, some similar information as in Figure 2.9 will be shown in the terminal/console.

2 Implementation of the Web Service Endpoint and Field Object

33

Figure 2.9 Screenshot of the web service launch

After opening the web browser, the API docs can be represented by typing the URL with the
port number, i.e. http://192.168.0.108:7777 as Figure 2.10 shows.

Figure 2.10 Screenshot of the homepage of automated APIs-docs

Thus, the web server is in running and everything is set up to collect the temperature, the
concentration of CO2 (value of eCO2 in fetched gas information. All eCO2 in the following
context refer to the concentration of CO2) and the presence state.

http://192.168.0.108:7777/

3 Measurement and Data Analysis Modelling Measurement

34

3 Measurement and Data Analysis

3.1 Modelling Measurement .. 34
3.2 Calibration before Collecting Data .. 34
3.3 Optimization of Measurement ... 35

3.3.1 Proper Conditions for Measurement .. 35
3.3.2 Measurement before optimization .. 35
3.3.3 Measurement after optimization ... 36

3.4 Data Analysis, Visualization, and Pre-processing ... 37
3.4.1 Formatting Data with Tagged Presences in DataFrame 37
3.4.2 Data Visualization and Data Pre-processing .. 40

3.5 Final Data after Pre-processing ... 41

3.1 Modelling Measurement

The purpose of this project is to find a functional model to infer the presence of human beings
upon the measured environmental data. It can be described as a mathematical function as the
following mapping relationship:

𝑓𝑓(𝑇𝑇) → {𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 | "entered" , "𝑙𝑙𝑝𝑝𝑓𝑓𝑙𝑙"},
in which T can be a set of environmental data or its derivative set based on sliding-window and
f the correspondent mapping function. Mapping function f shall be found by the machine-
learning module in the later chapter.

As it has been seen in the previous chapter, the Thiny:52 is equipped with various sensors, so
that it can be used to measure different environmental data. In the previous chapter, a web server
has been implemented, which is able to collect all transferred data from Thingy-gateway via the
RESTful API. It is well known that the presence of human beings can mainly affect the Emission
of CO2 (eCO2) and temperature in the environment for the biological breathing and heat
radiation. Usually, the eCO2 and the temperature will increase, when one entered, and decrease
when one left. These 2 dimensions are regarded as the input parameters in the modeling.
Therefore, the research will be firstly focused on these 2 dimensions and their development.

The state of presence is the third dimension in the modeling, regarded as the output parameter
of the mapping function.

3.2 Calibration before Collecting Data

The Thingy:52 is equipped with a CCS811 sensor for measuring eCO2 and Volatile Organic
Compound (VOC), such as formaldehyde. CO2 measurements values range from 400 to 8192
ppm (parts-per-million). It is very important to calibrate the gas sensor unit (burn-in) according
to the manual. Otherwise, the performance in terms of resistance levels and sensitivities will

3 Measurement and Data Analysis Optimization of Measurement

35

change dramatically during data collection. For performing the burn-in/calibration, it is strongly
recommended to run the Thingy:52 in the working environment for 48 hours5.

3.3 Optimization of Measurement

The first try-out may fail or not yield expected values. This can be improved by solving some
found issues. By refining the modeling of measurement, a progressive result can be analyzed
once more and it can approach the proper model even closer. The next subsections cover the
issues of measuring data, and their solutions for improvement.

3.3.1 Proper Conditions for Measurement

Different environmental conditions, such as ventilation, heating/radiator or air condition, can
change the results significantly.

The interval between the presence-state is but the most important key value to choose. If it is
too short, the influence of the presence-change is too small to be observed by the measurement,
if it is too long, the environment will then reach a new thermal equilibrium and dynamic balance
for eCO2, of which the measured data changes no longer. That could confuse the later machine
learning and get a deviated result. After some tests, the proper interval is determined as ca.15-
20 minutes.

During the research, it has been found that the collected data without proper conditions can
influence the data analysis dramatically.

3.3.2 Measurement before optimization

Below is a series of plotting for a measurement in one session with neither ventilation nor
calibration for eCO2. The red/green plotting shows the temperature development. The red curve
shows when a state of presence is tagged as left, green when a state as entered. The blue
plotting is the development of eCO2.

5 Source: page 8, https://cdn.sparkfun.com/assets/learn_tutorials/1/4/3/CCS811_Datasheet-DS000459.pdf ,
accessed on 04. April 2018

https://cdn.sparkfun.com/assets/learn_tutorials/1/4/3/CCS811_Datasheet-DS000459.pdf

3 Measurement and Data Analysis Optimization of Measurement

36

Figure 3.1 Data plotting for temperature and eCO2 upon time series (segmented by the presence, before pre-processing)

Even though the data swings heavily, some abnormal curves can be discovered in left-
segmentation, which are highlighted in yellow. These curve areas tell an abnormal increasing
trend for eCO2 even though people left, which should be due to bad ventilation and/or wrong
drifting caused by the bad performance without calibration.

Segmented by Session vs. Segmented by Presence
It is found that the visualization segmented by presence is not ideal to represent a continuous
development during the changes of state. Besides that, heavily swung dataset hinders
observation. Therefore, the relevant file /commons/old-data-analyse.py is deprecated. A
new one /commons/data-analyse.py is re-written and improved, resulting in a continuous
and smoothed plotting (with segmentation by session, after pre-processing). Figure 3.2 shows
a new data-visualization after pre-processing (smoothing) upon the exact same dataset as one
applied in Figure 3.1. In the next section all around data analysis will be explained more in
detailed.

In Figure 3.2, presence is displayed as a square wave, in which the high level means state
entered and low-level state left. By checking the curve of eCO2, an abnormal result can be
found directly, which is highlighted in yellow, due to the unusual increment after people left.

Figure 3.2 New continuous data plotting (segmented by session, after pre-processing)

3.3.3 Measurement after optimization

After research, it is found, that the abnormal result probably happens due to:

3 Measurement and Data Analysis Data Analysis, Visualization, and Pre-
processing

37

− Non-compliant experimental procedure without eCO2 burn-in / calibration

− Improper room environments, such as a room with bad ventilation or thermos-
insensitivity

To ensure a better result, a thermal sensitive environment must be chosen, in order to avoid
such an abnormal phenomenon, and a 48h calibration must also be performed. Figure 3.3 shows
a much better result from the measurement with the optimized environmental condition and
after calibration. Now it looks much closer as expected, though it is not smoothed.

Figure 3.3 Plots for data from optimized environments and after calibration

Finally, the importance of optimizing the environmental conditions by measurement was
confirmed after multiple try-outs, because all improper measurement failed in data analysis.
For a better explanation with an intuitive view, some plots i.e. Figure3.2 and Figure 3.3 have
to be introduced in advance. In the next section, the implementation of data visualization and
pre-processing will be introduced.

3.4 Data Analysis, Visualization, and Pre-processing

When combining Python, NumPy, Pandas and Matplotlib, we gain a powerful data analysis
toolkit. In this project, all the following libs are required for data analysis.

• NumPy is the fundamental package for scientific computing, which supports a powerful
N-dimensional array object.

• Pandas is the data analysis library in Python, with which the data can be manipulated
as a DataFrame object, similar to a programmable worksheet in excel. Furthermore, it
supports featured rolling-window and “group-by engine”, which allows split-apply-
combine operations on data sets.

• Matplotlib is a Python 2D plotting library which can produce a high-quality image for
various plots.

3.4.1 Formatting Data with Tagged Presences in DataFrame

Before analyzing data, the data must be fetched from the database and tagged with the state of
presence. As it was introduced before, a DataFrame object is applied to wrap all data for

3 Measurement and Data Analysis Data Analysis, Visualization, and Pre-
processing

38

analysis, from data generation to data pre-processing. The second application of this project
/common/data-analyse.py has been designed to accomplish all necessary procedures around
this DataFrame object.
Code 3.1 shows a part of function data_frame_from_device(device_id). For a standalone
continuous measurement, the DataFrame can be generated in 4 steps.

1. All temperature entities and gas entities shall be retrieved by the given device_id and
wrapped into 2 list objects.

2. The temperature list will be then iterated. In the iteration, a new list which contains the
temperature and timestamp will be generated. The state of presence shall be determined
by temperature.is_present(), and attached the new list.

3. The gas list will be iterated, too. In the iteration, a new list which contains only the
eCO2 and timestamp will be created.

4. These 2 lists will be merged into a DataFrame indexed by time stamps.

Some datetime-class methods, such as strftime("%Y-%m-%d %H:%M:%S") must not be
applied for converting datetime to string, because string type variables cannot be plotted.
Instead we just keep the timestamp as datetime object. Otherwise, an exception will be
raised, when it starts to be plotted.

1 def data_frame_from_device(device_id) -> pd.DataFrame:
2 temperature_list =

TemperatureModel.find_all_by_device_id(device_id)
3 new_temperature_list = []
4 for temperature in temperature_list:
5 entity = Entity()
6 entity.temperature = temperature.temperature
7 entity.timestamp = temperature.get_time()

.strftime("%Y-%m-%d %H:%M:%S")
8 entity.presence = 1 if temperature.is_present() else

0
9 new_temperature_list.append(entity)
10
11 gas_list = GasModel.find_all_by_device_id(device_id)
12 new_gas_list = []
13 for gas in gas_list:
14 entity = Entity()
15 entity.eco2 = gas.eco2
16 entity.timestamp = gas.get_time()

.strftime("%Y-%m-%d %H:%M:%S")
17 new_gas_list.append(entity)
18
19 df_temperature = pd.DataFrame(data=new_temperature_list)
20 df_gas = pd.DataFrame(data=new_gas_list)
21 return pd.merge(df_temperature, df_gas, on='timestamp')

Code 3.1 Snippets for data generating in /commons/data-analyse.py

Presences in Multiple Sessions
A session is a time interval, in which the data can be measured and stored via APIs continuously
with a determined presence. Within a session, the state of presence must be either “entered” or
“left”. During the research, it is found that the session information is an indispensable part to

3 Measurement and Data Analysis Data Analysis, Visualization, and Pre-
processing

39

determine the state of presence, especially when the states of presence are segmented in
multiple time-discrete sessions. Figure 3.4 shows a typical example of entities.

Figure 3.4 Screenshot of the presence table with filled data.

For example, the state of presence can be misunderstood by the DataFrame generating function
from the end of last presence in the previous session (id:2, left_on) to the begin of the first
presence in the next session (id:3, entered_on). It will be recognized as an 8-day-long left
state period. Sessions can be regarded as a project specified environment parameter, which
should be stored in /settings.py. Code 3.2 shows an example of sessions, which is nothing
more than a list object.

1 SESSIONS = [
2 ['2018-02-15 14:00:00+00:00', '2018-02-

15 16:00:00+00:00'],
3 ['2018-02-16 14:00:00+00:00', '2018-02-

16 16:00:00+00:00']
4]

Code 3.2 Customized session variables in /settings.py, line 2 – session 1, line 3 – session 2

Then, a new function can wrap the previous data_frame_from_device(device_id) as in
Code 3.1. It can be called as sessions_by_device(dev, sessions), since it can output a list
of DataFrame objects which are segmented by the given sessions and device. Code 3.3 is the
implementation of this function.

1 def sessions_by_device(dev, sessions=settings.SESSIONS):
2 dfs = []
3 for i, session in enumerate(sessions):
4 data = data_frame_from_device(dev.id)
5 # filter by session, avoid unexpected wrong session

segmentation
6 data_session = data[(data.timestamp>session[0]) &

(data.timestamp<session[1])]
7 # filtering null data.
8 data_session =

data_session[(data_session.temperature!=0) &
(data_session.eco2 != 0)]

9
data_session.to_csv(dev.device_name+'_session_'+str(i)+'.csv'
)

10 dfs.append(data_session)
11 return dfs

Code 3.3 Snippets for segmented data generating by sessions in /commons/data-analyse.py

3 Measurement and Data Analysis Data Analysis, Visualization, and Pre-
processing

40

3.4.2 Data Visualization and Data Pre-processing

Data Visualization
Data visualization is usually applied to analyze data via intuitive plots, statistical graphics or
Info-graphics. It is a very clear and efficient way to find out the proper solution for data mining,
such as a proper regression model or a proximate classification algorithm.

In this project, the data visualization will be applied as follows.

• The 1st plotting consists of the raw temperature and eCO2, their derivate data and
presence state (values on axis-y) dependent on the time-series (values on axis-x), in
order to find out the proper data pre-processing from which the outputs have mostly
constant trend to the correspondent presence state.

• The 2nd plotting consists of the scatter of the state of presence, dependent on a tuple of
proper data after data pre-processing, which are refined after first plotting. The tuple of
data contains temperature-related and eCO2-related values. Temperature-related values
are located on axis-x, eCO2-related ones are located on axis-y and the tagged state of
presence is displayed in different colors. This scatters graphics can be used to decide,
whether the dataset can be applied to SVM training directly.

Figure 3.5 shows examples of the 1st plotting for 2 different sessions and Figure 3.6 shows the
2nd plotting.

Data Pre-processing
Data pre-processing is the last procedure in this chapter, which usually includes data-filtering,
data-stabilizing, data-transforming, etc. In this project, the data pre-processing consists in the
following steps:

1. Data-filtering: The entities with invalid null values will be swiped.
2. Data-stabilization: the swing of data will be stabilized/smoothed by averaging the

value in a certain rolling-window.
3. Data-transforming:

I. For a more intuitive view to observe the trends in different presence state, the
value of presence will be transformed to 800 for state entered and to 700 for
state left, the temperature will be multiplied by 35 for a clear and grouped
view together with eCO2.

II. For compensation of the influence from the environment, it is necessary to
transform the directly measured values to incremental values according to the
standard-addition method.

4. Besides the common pre-processing methods, delay compensation and an off-set at
the start will be applied, since the time by reflects of sensors has a certain delay after
the change of presence-state. The cause for the delay is probably due to the speed of
molecular diffusion.

The data_pre_process(ds)shall be called before the construction of DataFrame objects.
Hence, the function can be implemented as it shows in Code 3.4.

3 Measurement and Data Analysis Final Data after Pre-processing

41

1 def data_pre_processing(ds):
2 # filtering null data.
3 data_session = ds[(ds.temperature != 0) & (ds.eco2 != 0)]
4 # eCO2: smoothing data in a rolling-window in 400 seconds
5 data_session['eco2'] =

data_session['eco2'].rolling(window=400, center=False,
min_periods=1).mean()

6 # delta temperature:
7 # 1. diff in 120 seconds and delay it in 400 seconds.
8 # 2. smoothing delta_temperature in a rolling window for

45s
9 data_session['delta_temp'] =

data_session['temperature'].diff(120).shift(-400)
10 data_session['delta_temp'] =

data_session['delta_temp'].rolling(window=45, center=False,
min_periods=1).mean()

11 data_session['delta_eco2'] =
data_session['eco2'].diff(120).shift(-400)

12 data_session['delta_eco2'] =
data_session['delta_eco2'].rolling(window=45, center=False,
min_periods=1).mean()

13 # off-set for 200sec at session start, to avoid random
error.

14 data_session = data_session.iloc[200:]
15 return data_session

Code 3.4 Snippets for data_pre_processing(ds) in /commons/data-analyse.py

Thus, the newly added function can then be called in sessions_by_device(). The
modification is shown in Code 3.5.

1 def sessions_by_device(dev, sessions=settings.SESSIONS):
2 dfs = []
3 for i, session in enumerate(sessions):
4 data = data_frame_from_device(dev.id)
5 # filter by session, avoid unexpected wrong session

segmentation
6 data_session = data[(data.timestamp>session[0]) &

(data.timestamp<session[1])]
7 data_session = data_pre_processing(data_session)
8

data_session.to_csv(dev.device_name+'_session_'+str(i)+'.csv'
)

9 dfs.append(data_session)
10 return dfs

Code 3.5 Snippets for modified sessions_by_device() in /commons/data-analyse.py

3.5 Final Data after Pre-processing

After data pre-processing, the trend of eCO2, delta-eCO2, delta-temp (abbr. delta-temperature)
are represented in the state of presence as expected. Values with prefix “delta” are incremental
values.

Finally, we have two plots after data pre-processing, shown in Figure 3.5.

3 Measurement and Data Analysis Final Data after Pre-processing

42

Figure 3.5 The 1st Plotting for 2 different sessions, left – session 1, right – session 2

After being observed, it is determined, that the curves of eCO2 and of delta-eCO2 shows
expected trends upon the state of presence. When entered, eCO2 is increased quickly, when
left, eCO2 is decreased slightly.

With the same data, the classification by state of presence shows in the two scatters below. The
points are colored upon the state of presence, “yellow” for entered and violet for left. Each
colored point has a coordination includes delta-temperature (value in axis-x) and delta-eCO2
(value in axis-y), as same as the 2nd plotting mentioned before.

Figure 3.6 The 2nd Plotting (scattering) for 2 different sessions, left – session 1, right – session 2

We can suppose now that SVM should be applied for this data model because the points with
same presence state are clustered in 2-dimensional coordination and the border between 2
classifications can be found from the graphics of both sessions intuitively in Figure 3.6. This
figure shows a visualization of 2 different sessions. From the visualization of classification in
both sessions, we can suppose that delta-temp appears irrelevant to the classification. From
now on, the data set gets ready for being parsed into a machine learning model.

4 Presence Recognition with Machine
Learning Machine Learning with Python

43

4 Presence Recognition with Machine
Learning

4.1 Machine Learning with Python ... 43
4.1.1 Classification upon Learning Tasks ... 43
4.1.2 Learning Techniques and Algorithms. ... 44
4.1.3 Scikit-learn, a Toolkit for Machine Learning in Python 45

4.2 Theory and Algorithms of SVM .. 45
4.2.1 Overview .. 45
4.2.2 Maximal Margin Algorithm ... 46
4.2.3 Slack Variables and Penalty for Misclassification ... 47

4.3 Applying the SVM on Pre-proceeded Data ... 49
4.3.1 Splitting the Pre-proceeded Data for Training and Testing 49
4.3.2 Training the Data .. 50
4.3.3 Validating the Hyperplane with the Test-set .. 50
4.3.4 Adjusting the C-parameter and Re-training the Data. 50
4.3.5 Validating the Hyperplane after Optimization ... 51

4.4 Results of Validation ... 51

4.1 Machine Learning with Python

Machine learning uses statistical techniques to “learn” with data, without being explicitly
programmed. Since the learning system is strongly dependent on the quantity of the statistical
data, the more data as well as “study material” being input, the better the machine learns.

Machine learning can be grouped in the different criterion. Generally, the criteria can be the
learning tasks or the outputs from learning applications.

4.1.1 Classification upon Learning Tasks

Depending on whether there is a learning signal or feedback available to a learning system, the
learning tasks can be classified into 2 categories, as it shows in Figure 4.1.

• Supervised learning, which trains a model on known input and output data, so that it
can predict future outputs.

• Unsupervised learning, which finds hidden patterns or intrinsic structures in input data.

4 Presence Recognition with Machine
Learning Machine Learning with Python

44

Figure 4.1 Supervised learning vs. unsupervised learning (taken from [4], accessed on April 10, 2018)

4.1.2 Learning Techniques and Algorithms.

Under the learning tasks, machine learning can be divided in different learning techniques. As
seen in Figure 4.2, supervised learning uses classification and regression techniques to
develop predictive models and clustering is the most common unsupervised learning
technique.

Figure 4.2 Categorized hierarchy in machine learning (taken from [4], accessed on April 10, 2018)

4 Presence Recognition with Machine
Learning Theory and Algorithms of SVM

45

Classification techniques, which predict discrete responses, are generally applied if the data
can be tagged, categorized, or separated into specific groups or classes. Common algorithms
for performing classification include Support Vector Machine (SVM), discriminant analysis,
Naïve Bayes and Nearest neighbor.

Regression techniques, which predict continuous responses, are used if the task concerns a data
range or the nature of the response is a real number. Common regression algorithms include
linear model, nonlinear model, regularization, stepwise regression, boosted and bagged
decision trees, neural networks and adaptive neuro-fuzzy learning.

Clustering techniques are used for exploratory data analysis to find hidden patterns or
groupings in data. Common algorithms for performing clustering include k-means and k-
medoids, hierarchical clustering, Gaussian mixture models, hidden Markov models, self-
organizing maps, fuzzy c-means clustering and subtractive clustering.

4.1.3 Scikit-learn, a Toolkit for Machine Learning in Python

Scikit-learn is a very efficient and easy-to-use toolkit for data mining, data analysis, and
machine learning. It is built on NumPy, SciPy, and Matplotlib, which are the most widely used
libraries for scientific research in python. In this project, scikit-learn is applied to train and test
and optimize the machine learning model.

4.2 Theory and Algorithms of SVM

By investigating the plotted scatters in the previous Figure 3.6, we have found out, that SVM
can be applied since the data are discrete and tagged in two classifications by different states of
presence. This section mainly provides a theoretical background of SVM.

4.2.1 Overview

SVM is a supervised machine learning algorithm which can be used for classification problems.
In SVM, each data item acts as a point in n-dimensional space (where n is the number of features)
with the value of each feature being the value of a particular coordinate. Thus, the classification
by finding the hyperplane that differentiate the two classes can be then performed. This project
covers only the linear separable classification.

Support Vectors are simply the coordinates of individual observation. Support Vector Machine
is applied to approach a frontier (hyperplane) which best segregates the two classes.

Figure 4.3 shows the SVM classification in 2-dimensional coordinates.

4 Presence Recognition with Machine
Learning Theory and Algorithms of SVM

46

Figure 4.3 A simple SVM classification with support vectors and hyperplane (taken from [5], accessed on April 10, 2018)

Any separating line can be described as the locus of points(x) in the 2-dimensional plane that
satisfies the following equation:

𝛽𝛽0 + 𝛽𝛽𝑇𝑇𝑥𝑥 = 0, 𝛽𝛽 𝑎𝑎𝑝𝑝𝑎𝑎 𝑥𝑥 ∈ ℝ2
It is obvious that there are many possible separating lines can be found between 2 classifications.
Thus, it is necessary to use additional criteria to uniquely specify the best-fit separating line (or,
hyperplane in a higher-dimensional space)

4.2.2 Maximal Margin Algorithm

Considering a training set consisting of {(𝑥𝑥, 𝑦𝑦)} where 𝑦𝑦 ∈ {−1,1} . For any point 𝑥𝑥𝑖𝑖 , the
functional margin can be calculated as 𝛾𝛾�𝑖𝑖 = 𝑦𝑦𝑖𝑖 (𝛽𝛽0 + 𝛽𝛽𝑇𝑇𝑥𝑥𝑖𝑖) . Thus, 𝛾𝛾�𝑖𝑖 > 0 when 𝑥𝑥𝑖𝑖 is
correctly classified. The geometrical margin from 𝑥𝑥𝑖𝑖 to hyperplane is: 𝛾𝛾𝑖𝑖 = 𝛾𝛾�𝑖𝑖

‖𝛽𝛽‖
. When 𝑥𝑥𝑖𝑖 is

correctly classified, 𝛾𝛾𝑖𝑖 is equal to the perpendicular distance from 𝑥𝑥𝑖𝑖 to the line.

Let 𝑀𝑀 be the width of the functional margin. The maximal margin algorithm can be formulated
as a quadratic programming problem. It is required to simultaneously maximize the margin M
while ensuring that all of the data points are correctly classified.

𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚
𝛽𝛽0,𝛽𝛽,‖𝛽𝛽‖=1 𝑀𝑀

𝑝𝑝𝑠𝑠𝑠𝑠𝑗𝑗𝑝𝑝𝑝𝑝𝑙𝑙 𝑙𝑙𝑡𝑡 𝑦𝑦𝑖𝑖(𝛽𝛽𝑇𝑇𝑥𝑥𝑖𝑖 + 𝛽𝛽0) ≥ 𝑀𝑀, 𝑖𝑖 = 1, … ,𝑁𝑁.

By getting rid of ‖𝛽𝛽‖ = 1 in the constraints with the following reformulation:

𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚
𝛽𝛽0,𝛽𝛽

𝑀𝑀
‖𝛽𝛽‖

𝑝𝑝𝑠𝑠𝑠𝑠𝑗𝑗𝑝𝑝𝑝𝑝𝑙𝑙 𝑙𝑙𝑡𝑡 𝑦𝑦𝑖𝑖(𝛽𝛽𝑇𝑇𝑥𝑥𝑖𝑖 + 𝛽𝛽0) ≥ 𝑀𝑀, 𝑖𝑖 = 1, … ,𝑁𝑁.

Since the functional margin M can be adjusted in any scale, so let 𝑀𝑀 = 1:
𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚

𝛽𝛽0,𝛽𝛽
1
‖𝛽𝛽‖

𝑝𝑝𝑠𝑠𝑠𝑠𝑗𝑗𝑝𝑝𝑝𝑝𝑙𝑙 𝑙𝑙𝑡𝑡 𝑦𝑦𝑖𝑖(𝛽𝛽𝑇𝑇𝑥𝑥𝑖𝑖 + 𝛽𝛽0) ≥ 1, 𝑖𝑖 = 1, … ,𝑁𝑁.

Transforming the objective as follows, (to a quadratic form)

4 Presence Recognition with Machine
Learning Theory and Algorithms of SVM

47

𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚
𝛽𝛽0,𝛽𝛽

1
‖𝛽𝛽‖

 𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚
𝛽𝛽0,𝛽𝛽 ‖𝛽𝛽‖ 𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚

𝛽𝛽0,𝛽𝛽
1
2‖𝛽𝛽‖

2

There are two classes shown in Figure 4.4 (white and grey points), which are linearly separable.
The maximal margin solution is shown by the bold line in the middle. The dotted lines show
the extent of the margin. The large circles indicate the support vectors for the maximal margin
solution.

Figure 4.4 SVM classification with maximal margin solution (taken from [p.253, Jos16])

4.2.3 Slack Variables and Penalty for Misclassification

However, the situation becomes usually more complex when the two classes are not separable.
By allowing some unavoidable mixing between the two classes in the solution, the slack
variable has to be introduced.

The slack variables 𝜁𝜁𝑖𝑖 are the slack variables and represent the proportional amount that the
prediction is on the wrong side of the margin. Thus, elements are misclassified when 𝜁𝜁𝑖𝑖 > 1.

The objective of the quadratic programming has to be modified as follows:
𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚

𝛽𝛽0,𝛽𝛽
1
2‖𝛽𝛽‖

2+𝐶𝐶 ∑𝜁𝜁𝑖𝑖

𝑝𝑝𝑠𝑠𝑠𝑠𝑗𝑗𝑝𝑝𝑝𝑝𝑙𝑙 𝑙𝑙𝑡𝑡 𝑦𝑦𝑖𝑖(𝛽𝛽𝑇𝑇𝑥𝑥𝑖𝑖 + 𝛽𝛽0) ≥ 1 − 𝜁𝜁𝑖𝑖 , 𝜁𝜁𝑖𝑖 ≥ 0, 𝑖𝑖 = 1, … ,𝑁𝑁.

Because the 𝜁𝜁𝑖𝑖 terms are all positive or 0, the objective becomes to maximize the margin
(minimize ‖𝛽𝛽‖) while minimizing the proportional drift of the predictions to the wrong side
of the margin (minimize 𝐶𝐶 ∑𝜁𝜁𝑖𝑖).
It has been already calculated, that the functional margin must be bigger than 0 for a correct
classification. Hence, it can be resulted in the following relationships, with the latest introduced
slack variables 𝜁𝜁𝑖𝑖.

4 Presence Recognition with Machine
Learning Theory and Algorithms of SVM

48

�
𝜁𝜁𝑖𝑖 = 0 𝑓𝑓𝑡𝑡𝑝𝑝 𝑎𝑎𝑝𝑝𝑦𝑦 𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙 𝑝𝑝𝑙𝑙𝑎𝑎𝑝𝑝𝑝𝑝𝑖𝑖𝑓𝑓𝑖𝑖𝑝𝑝𝑎𝑎 𝑥𝑥𝑖𝑖
0 < 𝜁𝜁𝑖𝑖 ≤ 1 𝑓𝑓𝑡𝑡𝑝𝑝 𝑎𝑎𝑝𝑝𝑦𝑦 𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙 𝑝𝑝𝑙𝑙𝑎𝑎𝑝𝑝𝑝𝑝𝑖𝑖𝑓𝑓𝑖𝑖𝑝𝑝𝑎𝑎 𝑥𝑥𝑖𝑖 𝑤𝑤𝑖𝑖𝑙𝑙ℎ𝑖𝑖𝑝𝑝 𝑙𝑙ℎ𝑝𝑝 𝑝𝑝𝑥𝑥𝑙𝑙𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑎𝑎 𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎.
𝜁𝜁𝑖𝑖 > 1 𝑓𝑓𝑡𝑡𝑝𝑝 𝑎𝑎𝑝𝑝𝑦𝑦 𝑖𝑖𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙 𝑝𝑝𝑙𝑙𝑎𝑎𝑝𝑝𝑝𝑝𝑖𝑖𝑓𝑓𝑖𝑖𝑝𝑝𝑎𝑎 𝑥𝑥𝑖𝑖

Thus, larger values of C lead algorithmic focus on more correctly classified points near the
decision boundary and smaller values on further data.

In other words, a larger C causes a bigger penalty for a misclassification, and a smaller one
tolerates more misclassifications. C is the so-called penalty cost for misclassification.

Figure 4.5 Different classification due to the modification of C-parameter (taken from [p.254, Jos16])

In Figure 4.5, the maximal margin algorithm finds the separating line that maximizes the
margin shown. The elements which touch the margins are the support elements. The dotted line
is not relevant to the solution anymore. It is easy to find that the bigger the C is, the closer the
circled elements to the hyperplane and vice versa.

Until now, a linear separable SVM model is built completely. However, SVM can be applied
for non-linear separable classification with kernel trick as well, which is but out of the scope
of this project.

4 Presence Recognition with Machine
Learning Applying the SVM on Pre-proceeded Data

49

4.3 Applying the SVM on Pre-proceeded Data

To find the optimized hyperplane, which is equivalent to the solution of the quadratic
programming, the “method of Lagrange multipliers” will be used to transform the objective
with constraints into a Lagrangian dual problem. Then, the Sequential Minimal Optimization
Algorithm (SMO) can be applied to find the optimized hyperplane. Implemented with the
popular LIBSVM tool, SMO has been proved as a very efficient iterative algorithm for training
SVM.

The introduction to theoretical part of SVM ends up here because the aim of this project is to
apply the SVM for analyzing the data instead of analyzing the algorithm itself.

Fortunately, all of this complicated reformulation and iterative computing are neatly inside of
Scikit-learn, which is also developed based on LIBSVM for SVM training.
Applying the SVM on the pre-proceeded data consists in 5 steps, described in the next
subsections.

4.3.1 Splitting the Pre-proceeded Data for Training and Testing

In order to train the model, the data points must be first split into training- and test-dataset
randomly, in both of which the input-data (X_train | X_test) and output-data (y_train |
y_test) are prepared for the training and validation.

Since the pre-proceeded data have been saved in CSV format, a DataFrame can be initialized,
by reading all data from the CSV-file. Then, they can be split into 2 data-frames, in which one
(y) contains a reference (presence) and another (X) the features (delta_temperature,
delta_eco2). By using train_test_split() method, the train-dataset (X_train | y_train)
and test-dataset (X_test | y_test) are built, in which the size of the test-dataset is as twice
big as the training-dataset. The Train_test_split() method is a commonly used method to
split arrays or matrices into random train and test subsets. A float between 0.0 (0%) and 1.0
(100%) can be parsed into the parameter test_size, in which the size of test-dataset can be set
using a percentage. A random seed can be then parsed into parameter random_state as a
random number generator. If it is set as None, the random number generator is the RandomState
instance used by np.random. A literal random_state with value 101 is applied here, which can
keep the split results identical for reproducibility with pseudo-random-method.

1 # get data from csv file
2 file_name = 'cfe137a13701_session_0.csv'
3 df = pd.read_csv(file_name).dropna()
4 del(df['Unnamed: 0'])
5 y = df['presence']
6 X = df[['delta_temp', 'delta_eco2']]
7 # init the test and training set from y, X
8 X_train, X_test, y_train, y_test =

train_test_split(X,y,test_size=0.66,random_state=101)

Code 4.1 Snippets for splitting training- and test-dataset in /commons/training.py

4 Presence Recognition with Machine
Learning Applying the SVM on Pre-proceeded Data

50

4.3.2 Training the Data

With the powerful tool offered by scikit-learn, training data may be the simplest work in this
project, as Code 4.2 shows.
Method SVC(kernel=’linear’) will initialize a model for SVM-training. The parameter
kernel declares that a linear-kernel is explicitly applied in this training-model. With
model.fit(X_train, y_train) method, the training-dataset has been already evaluated.

1 # init training model
2 model = SVC(kernel='linear') # linear kernel
3 # training model
4 model.fit(X_train,y_train)

Code 4.2 Snippets for training data by SVM in /commons/training.py

4.3.3 Validating the Hyperplane with the Test-set

The function model.predict() offers a simple way to validate the trained model in one line
(Code 4.3). The output results in Table 4.1.

1 # get the validation without grid search
2 predictions = model.predict(X_test)

Code 4.3 First validation before optimization in /commons/training.py

4.3.4 Adjusting the C-parameter and Re-training the Data.

As it was discussed before, the C-parameter, aka. penalty cost of misclassification, can be
adjusted to improve the classification. Scikit-learn offers a GridSearchCV class to evaluate
the best-fit C and gamma. Gamma-parameter can be ignored here because it is for the non-linear
kernel. After a grid search, the best parameters can be found. Code 4.6 shows an example of
output after a grid research.

1 # improve the presicise
2 from sklearn.grid_search import GridSearchCV
3 param_grid =

{'C':[0.1,1,10,100,1000],'gamma':[1,0.1,0.01,0.001,0.0001]}
4 grid = GridSearchCV(model,param_grid,verbose=3)
5 grid.fit(X_train,y_train)
6
7 # Re-training
8 model = SVC(kernel='linear',C=grid.best_params_['C'])
9 model.fit(X_train, y_train)

Code 4.4 Optimizing by grid search and re-training the model with best parameters in /commons/training.py

4 Presence Recognition with Machine
Learning Results of Validation

51

4.3.5 Validating the Hyperplane after Optimization

Code 4.5 shows validation using a grid search (The code looks similar to Code 4.3). The
output shows in Table 4.2.

1 # validation with new predicted model
2 grid_predictions = grid.predict(X_test)

Code 4.5 Second validation after optimization with a better C-parameter in /commons/training.py

4.4 Results of Validation

4.4.1 Introduction to the Confusion Matrix

In the field of machine learning, a confusion matrix is a specific table layout that can be applied
to visualize the performance of classification algorithms, esp. in a supervised learning case.
Each row of the matrix represents the instances in a predicated class (aka. predicted condition)
while each column represents the instances in an actual class (aka. true condition). Table 4.1
shows a general 2x2 confusion matrix. Each predicted results can be filled in the following 4
cells:

• True positive (TP), if a predicted condition positive hits the actual condition (correctly
identified);

• True negative (TN), if a predicted condition negative hits the actual condition (correctly
rejected);

• False positive (FP), if a false predicted condition positive occurs (incorrectly identified);

• False negative (FN), if a false predicted condition negative occurs (incorrectly rejected).

Because the scalar values are enormously different from case to case, some derivations from a
confusion matrix are applied as performance-index. These derivations are listed below in
terminology.

• Precision:= 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

, aka. Positive Predictive value (PPV)

• Recall:= 𝑇𝑇𝑇𝑇
𝑇𝑇

= 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

, aka. True Positive Rate (TPR)

• F1-score:= 2 ∙ 𝑇𝑇𝑇𝑇𝑃𝑃∙𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑃𝑃+𝑇𝑇𝑇𝑇𝑇𝑇

= 2𝑇𝑇𝑇𝑇
2𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝐹𝐹

, aka. Harmonic Mean of precision and recall.

All 3 factors have values between 0.0 (0%) and 1.0 (100%). The higher the values, the better
performance algorithms have.

4 Presence Recognition with Machine
Learning Results of Validation

52

True condition

Condition positive (P) Condition negative (N)

Predicted
condition

Predicted
condition
positive

True positive (TP) False positive (FP)

Predicted
condition
negative

False negative (FN) True negative (TN)

 Table 4.1 A general 2x2 confusion matrix (adapted from [11], accessed on August 15, 2018)

4.4.2 Validation before Grid Search

Confusion Matrix:

 Real presence: Entered Real presence: Left

Predicted presence: Entered 2122 47

Predicted presence: Left 31 2227

Table 4.2 Confusion matrix before optimization

Classification Report:

 Precision Recall F1-score Support

0 0.99 0.98 0.98 2169

1 0.98 0.99 0.98 2258

Avg. / total 0.98 0.98 0.98 4427
Table 4.3 First validation results before optimization

By investigating the confusion matrix in Table 4.2, we find that all cells of the diagonal (from
left-top to right-bottom) show the correct recognition (true entered and true left), and all cells
of anti-diagonal (from left-bottom to right-top) show the confusion (false left and false entered).
With high recognition and low confusion, a well-qualified classification report is shown in
Table 4.3.

4 Presence Recognition with Machine
Learning Results of Validation

53

4.4.3 Optimized Parameters and Validation after Grid Search

Best Parameters Found:

1 {'C': 1000, 'gamma': 1}

Code 4.6 Best parameters found after grid search

Confusion Matrix:

 Real presence: Entered Real presence: Left

Predicted presence: Entered 2123 46

Predicted presence: Left 27 2231

Table 4.4 Confusion matrix after optimization

Classification Report:

 Precision Recall F1-score Support

0 0.99 0.98 0.98 2169

1 0.98 0.99 0.98 2258

Avg. / total 0.98 0.98 0.98 4427
Table 4.5 Second validation results after optimization

4.4.4 Results Visualization and Evaluation

By comparing the confusion matrices and the classification reports of the SVM-modelling
before (Table 4.2 and Table 4.3) and after optimization with grid search (Table 4.4 and Table
4.5), there is no noteworthy difference found, although C is adjusted from 1.0 to 1000. However,
if these 2 models are plotted in a 2-dimensional space, it is still very clear to uncover that the
slope of optimized hyperplane looks more similar to the trends of the support elements (yellow-
colored dots).

4 Presence Recognition with Machine
Learning Results of Validation

54

Figure 4.6 Before- vs. after-optimization, different classification and hyperplanes due to different C-parameters

According to the high values in precision (0.99), recall (0.98) and F1-score (0.98), it is
confirmed that the trained hyperplane fit the data very well and should be regarded as an
acceptable model to predicate the presence with the pre-proceeded data.

All codes for this section, incl. training, validation, optimizing with grid search and all the data
visualization can be found in /commons/training.py (The source code was given along with
the thesis).

5 Conclusion and Future Work Process Review

55

5 Conclusion and Future Work

5.1 Process Review .. 55
5.2 Conclusion ... 55
5.3 Improvement and Application ... 56

5.3.1 Improvement .. 56
5.3.2 Application ... 56

5.1 Process Review

The project duration was approximately 11 months. The scope of this project is so wide, that it
has to take a lot of time to read various theoretical literature, technique documentation, and
device user-manual.

Initially, it was thought, that the coding could be more challenging. However, the most
headache part is the measurement, which was considered the simplest phase on the before
getting started. This lets me realize that the data sampling is very important for data analyzing.
When encountering some unexpected results, it is always worthwhile to review the data
sampling process once more.

5.2 Conclusion

Given the final results, the goal of this system has been successfully reached. After repeated
attempts, it is found that state of presence is more highly related to the development of eCO2
in the air than to the room temperature.

Features
Due to the benefits of machine learning and RESTful style web service, the system has
following remarkable features:

+ This system has the ability to responsively recognize presence by adopting the given
devices and environment. Otherwise, the measurement can be enormously deviated by
different devices, different positions, different sizes of the environment or even different
time-periods (day/night), which might fail any pre-defined logic for presence prediction.
Due to the machine learning algorithm, it is simple to compensate the system error
caused by differences from devices and environments during the “leaning-phase”.

+ The layered system makes “high cohesion, low coupling”, which enhances
consequently the flexibility, maintainability, and scalability of the system. For example,
nothing needs to be modified in model objects for changing/adding any web resource
endpoint or for improving the machine learning algorithms.

+ Thanks to the accessibility, the system can communicate with other web services for the
purpose as aggregation, notification, or data mining with other criteria.

5 Conclusion and Future Work Improvement and Application

56

Limitations
Any system has its own limitations. During the development and measurement, some issues
have been uncovered during implementation as follows:

− This recognition is strongly depended on a single data modeling related to eCO2. Hence,
it might be hard or even failed to find a hyperplane, while it is being performed in a
room without ventilation or in a too big room, which cannot be measured with only one
sensor.

− Although the linear kernel is simple to understand and works well in development, an
important fact must be taken into consideration that all the time interval in the same
presence cannot exceed 20 minutes. By shortening or prolonging the interval, the linear
kernel can probably invalid and leads to an incorrect result.

− Much time needs to be spent on repeated experimental analysis to determine the pattern
of data pre-processing.

− Due to the “client-service-pattern”, the system can be influenced by any network-traffic
and network-security issues as well. Without authentication, any client can pretend as a
thingy-gateway to request the data via RESTful API.

5.3 Improvement and Application

5.3.1 Improvement

By solving the above-listed limitations, this project might be optimized and improved in
following aspects:

Increment of Sampling
Multiple sensors can be applied to augment the correctness of measuring, esp. in a room with
large space.

Automation of Data Pre-process
Correspondent to the multiple sensor data, a well fit data pre-process pattern can be generalized
with machine learning automatically.

Optimizing the Machine Learning Algorithms.
The non-linear kernel can replace the linear kernel for a more generalized solution.

Enhancing Security Policy
JSON web token (abbr. JWT) can be integrated into the system for enhanced security.

5.3.2 Application

Based on this project, a monitoring or a notification system can be built with extended APIs.

For monitorin the presence, prediction event can be run as a time-scheduled job/cronjob. The
results should be persisted in a normal RDBMS or Redis and the correspondent API can be

5 Conclusion and Future Work Improvement and Application

57

prepared for querying the last state of presence. Figure 5.1 shows newly added Detection-APIs
for the monitoring system.

Figure 5.1 Screenshots of API Docs with newly added Detection-APIs

Thus, people can use client or another service to retrieve the predicted presence for monitoring
the presence in real-time. Figure 5.2 shows newly updated system with monitoring function.

Figure 5.2 Updated architecture of monitoring system (newly added Detection-APIs and Scheduled-Event)

Furthermore, a notification system with predefined constraints can be built upon the monitoring
API. By adding the event listener and flask-mail object, we can trigger a sending mail request
to a certain SMTP-server, when the state of presence is changed. Hence, a pre-defined email
can be sent to the pre-defined user. A completed architecture shows in Figure 5.3.

5 Conclusion and Future Work Improvement and Application

58

Figure 5.3 Updated architecture of notification system (newly added Email-Notification)

Figure 5.4 shows the example of email notifications in a webmail client. For purpose of
development, Mailtrap is used as a pseudo mail server/client.

Figure 5.4 Examples of email notifications in mailtrap web client

The latency of notification takes about 30 seconds to 90 seconds, which can be regarded as an
acceptable performance.

6 Terms of Use Author

59

6 Terms of Use

6.1 Author .. 59
6.2 License ... 59

6.1 Author

Yi Zhang

Student for BSc. Informatics in university Fribourg (CH)

6.2 License

This work is licensed under a Creative Commons Attribution 2.5 License.
This means you may use it for any purpose, and make any changes you like as long as you
include a reference to the authors of this thesis, like:

This documentation is based on a thesis created by Yi Zhang (Software Engineering Group,
University of Fribourg, Switzerland).

.

http://creativecommons.org/licenses/by/2.5/

References

60

References

[Gar17]
Gareth Dwyer, Shalabh Aggarwal, Jack Stouffer. Flask: Building Python Web Services,
Packt Publishing Ltd., 2017, ISBN 978-1-78728-822-5

[Gas16]
G. C. Hillar, Building RESTful Python Web Services, Packt Publishing Ltd., 2016, ISBN
978-1-78646-225-1

[Bre12]
E. Bressert. SciPy and NumPy, First edition, O’Reilly Media, Inc., 2012, ISBN: 978-1-
449-30546-8

[Ant15]
F. Anthony. Mastering pandas, Packt Publishing Ltd., 2015, ISBN 978-1-78398-196-0

[Jos16]
J. Unpingco. Python for Probability, Statistics, and Machine Learning, Springer
International Publishing Switzerland, 2016, ISBN 978-3-319-30715-2

[Nor18]
John D. Poole. Model-Driven Architecture: Vision, Standards And Emerging
Technologies. In ECOOP ’01: Workshop on Metamodeling and Adaptive Object
Models, OMG, 2001. [Retrieved January 08, 2008, from
http://www.omg.org/mda/mda_files/Model-
Driven_Architecture.pdf]

http://www.omg.org/mda/mda_files/Model-Driven_Architecture.pdf
http://www.omg.org/mda/mda_files/Model-Driven_Architecture.pdf

Referenced Web Resources

61

Referenced Web Resources

[1] Nordic Thingy:52 https://www.nordicsemi.com/eng/Products/Nordic-Thingy-52
(accessed on November 30, 2017)

[2] Remote Method Invocation (Java RMI)
https://www.slideshare.net/sonalizoya/distributed-systemremote-method-invocation-
java-rmi. (accessed on April 05, 2018)

[3] Wikipedia - Web service https://en.wikipedia.org/wiki/Web_service (accessed April
05, 2018)

[4] What Is Machine Learning https://www.mathworks.com/discovery/machine-
learning.html (accessed on April 10, 2018)

[5] Support Vector Machine - Classification (SVM
http://www.saedsayad.com/support_vector_machine.htm. (accessed on April 10, 2018)

[6] Flask’s documentation http://flask.pocoo.org/docs/0.12/ (accessed on January 05, 2018)

[7] Flask-RESTPlus’s documentation http://flask-restplus.readthedocs.io/en/stable/
(accessed on January 05, 2018)

[8] Understanding Support Vector Machine algorithm from examples (along with code)
https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-
example-code/ (accessed on April 15, 2018)

[9] Who Needs the Internet of Things https://www.linux.com/news/who-needs-internet-
things (accessed on November 30, 2017)

[10] Wikipedia - Representational state transfer
https://en.wikipedia.org/wiki/Representational_state_transfer (accessed on November
20, 2017)

[11] Wikipedia – Sensitivity and specificity
https://en.wikipedia.org/wiki/Sensitivity_and_specificity (accessed on August 15,
2018)

https://www.nordicsemi.com/eng/Products/Nordic-Thingy-52
https://www.slideshare.net/sonalizoya/distributed-systemremote-method-invocation-java-rmi
https://www.slideshare.net/sonalizoya/distributed-systemremote-method-invocation-java-rmi
https://en.wikipedia.org/wiki/Web_service
https://www.mathworks.com/discovery/machine-learning.html
https://www.mathworks.com/discovery/machine-learning.html
http://www.saedsayad.com/support_vector_machine.htm
http://flask.pocoo.org/docs/0.12/
http://flask-restplus.readthedocs.io/en/stable/
https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-example-code/
https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-example-code/
https://www.linux.com/news/who-needs-internet-things
https://www.linux.com/news/who-needs-internet-things
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Sensitivity_and_specificity

	Intelligent Human-Presence Assessment
	An IoT Application using RESTful-APIs and Machine Learning

	Abstract
	Preamble
	Foreword
	Acknowledgments
	Notations

	Table of Contents
	List of Figures
	List of Tables
	List of Source Code
	1 Introduction
	1.1 Goal of the Project
	1.2 Architecture of the Project
	1.2.1 Components
	1.2.2 Required Hardware

	1.3 How to Implement the Project

	2 Implementation of the Web Service
	2.1 Preparation and Prerequisites
	2.1.1 About Python
	2.1.2 Introduction to Web Services and RESTful-APIs
	2.1.3 Introduction to Flask and Flask-RESTPlus

	2.2 Studying the APIs from Thingy-Gateway
	2.3 Web Server with Flask and Data Persistence
	2.3.1 Overview of the Project Structure
	2.3.2 Main Application and Settings
	Main Application File of Web Service
	Settings

	2.3.3 Database Schema for Sensors and Presence.
	Database Schema for Sensors
	Database Schema for Presences

	2.3.4 Objects’ Modelling for Data of Sensors and Presence.

	2.4 Endpoint and Field Object
	In the Layered System
	2.4.1 Resource Object and Endpoint
	2.4.2 Field Objects and Swagger-UI

	3 Measurement and Data Analysis
	3.1 Modelling Measurement
	3.2 Calibration before Collecting Data
	3.3 Optimization of Measurement
	3.3.1 Proper Conditions for Measurement
	3.3.2 Measurement before optimization
	Segmented by Session vs. Segmented by Presence

	3.3.3 Measurement after optimization

	3.4 Data Analysis, Visualization, and Pre-processing
	3.4.1 Formatting Data with Tagged Presences in DataFrame
	Presences in Multiple Sessions

	3.4.2 Data Visualization and Data Pre-processing
	Data Visualization
	Data Pre-processing

	3.5 Final Data after Pre-processing

	4 Presence Recognition with Machine Learning
	4.1 Machine Learning with Python
	4.1.1 Classification upon Learning Tasks
	4.1.2 Learning Techniques and Algorithms.
	4.1.3 Scikit-learn, a Toolkit for Machine Learning in Python

	4.2 Theory and Algorithms of SVM
	4.2.1 Overview
	4.2.2 Maximal Margin Algorithm
	4.2.3 Slack Variables and Penalty for Misclassification

	4.3 Applying the SVM on Pre-proceeded Data
	4.3.1 Splitting the Pre-proceeded Data for Training and Testing
	4.3.2 Training the Data
	4.3.3 Validating the Hyperplane with the Test-set
	4.3.4 Adjusting the C-parameter and Re-training the Data.
	4.3.5 Validating the Hyperplane after Optimization

	4.4 Results of Validation
	4.4.1 Introduction to the Confusion Matrix
	4.4.2 Validation before Grid Search
	Confusion Matrix:
	Classification Report:

	4.4.3 Optimized Parameters and Validation after Grid Search
	Best Parameters Found:
	Confusion Matrix:
	Classification Report:

	4.4.4 Results Visualization and Evaluation

	5 Conclusion and Future Work
	5.1 Process Review
	5.2 Conclusion
	Features
	Limitations

	5.3 Improvement and Application
	5.3.1 Improvement
	Increment of Sampling
	Automation of Data Pre-process
	Optimizing the Machine Learning Algorithms.
	Enhancing Security Policy

	5.3.2 Application

	6 Terms of Use
	6.1 Author
	6.2 License

	References
	Referenced Web Resources

