
Connecting constrained devices to the cloud
using Zephyr

A prototype with nRF Connect

Bachelor Thesis

Alex Nyffenegger
January 2020

Thesis supervisors:

Prof. Dr. Jacques Pasquier-Rocha
and

Arnaud Durand
Software Engineering Group

Software Engineering Group
Department of Informatics

University of Fribourg (Switzerland)



Acknowledgements

I want to thank my supervisor Arnaud Durand for guiding me through the project and
helping me with any problems I encountered. He helped me resolve a lot of issues which
I could not have overcome without his help.

i



Abstract

With the rise of the Internet of Things (IoT) new technologies are emerging. This work
gives an insight on state of the art tools and their applications in the field of IoT and
a prototype is implemented with the goal to minimize bandwidth. The lightweight IoT
protocol CoAP and the serialization standard CBOR are used to reduce bandwidth. The
prototype is built with the IoT framework nRF Connect SDK built on top of the Real
Time Operating System (RTOS) Zephyr. As a prototyping platform a constrained device
called Thingy:91 is used. The prototype is evaluated for its performance. Furthermore
the used tools and technologies are evaluated and compared to other options. It was
found that the nRF Connect SDK together with the other technologies used are still in
the early phase of their development and not yet well established, but suited the purposes
precisely. The CoAP protocol outperformed MQTT and HTTP in the chosen approach.

Keywords: IoT, Internet of Things, Zephyr, CBOR, CoAP, constrained devices, Cloud,
aiohttp, aiocoap, prototype, Nordic Semiconductors, nRF Connect, Segger Studio, Thingy:91
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Introduction

1.1. Motivation and Goals . . . . . . . . . . . . . . . . . . . . . . . 2
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1.1. Motivation and Goals

The Internet of Things (IoT) is taking off and new technologies to fit the requirements
of the new web and its connected devices are emerging everywhere. Low power cellular
networks like NB-IoT and LTE-M allow for communication with low power consumption,
while protocols such as the Constrained Application Protocol (CoAP) and the Message
Queuing Telemetry Transport (MQTT) make their use lightweight and efficient. It seems
undeniable that those technologies will be an important part of our future. It is therefore
significant to be informed and get in contact with the new capabilities those technologies
make possible.
The goal of this thesis is to minimize bandwidth of IoT devices using state-of-the-art
technology by implementing a prototype, compare the approach to other solutions and
evaluate the used technologies. The focus lies on building a prototype with a constrained
device and connect it to the cloud using the IoT protocol CoAP. The device runs on the
RTOS Zephyr and the development environment nRF Connect Software Development
Kit (SDK) is used.
The chosen solution is evaluated together with the technologies used by validating the
prototype and comparing the approach with other options.
The prototype should be capable of reading sensors data while connecting to a cloud server
and publishing its measurements over CoAP. Furthermore the prototype should be able to
observe resources on the cloud server and act accordingly. The cloud server is implemented
as well, including a small client interface to access the collected data. All data sent
should be encoded with the Concise Binary Object Representation (CBOR) serialization
standard. In the end the whole project is deployed and tested on the Swisscom LPN
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network. The advantages and disadvantages of the approach, the used tools and the new
technologies in comparison to others are evaluated.

1.2. Organization

This work is organized as follows:
Introduction The introduction contains goals and motivation of this work. A short
overview over the thesis as well as some insights into the IoT and constrained devices are
given.
Chapter 1: Technologies This chapter gives an overview on the technologies used in
this thesis. It includes the Zephyr Operating System (OS) as well as tools provided by
the Nordic nRF Connect infrastructure. Furthermore an introduction to the lightweight
IoT protocol CoAP and the compression format CBOR will be given.
Chapter 4: Prototype implementation From a programmers view this chapter shows
the architecture and design of the prototype, and explains in more detail the capabilities
and possible usages of the prototype. It concludes with limitations and problems of the
implementation.
Chapter 4: Evaluation This chapter aims to compare advantages and disadvantages
of the prototype and evaluates the tools used. It will take a closer look at the differences
in architecture, applied technologies and ease of use for new applications. Applied tools
and technologies are compared to alternative options.
Chapter 5: Conclusion Contains a summary of what was the original idea and what
was achieved in this thesis. Summarizes the evaluation and its contribution to the research
community. It concludes with a statement of personal challenges.
Appendix Holds links to used hardware and results of this thesis including a web client
and the code base.

1.3. Internet of Things

Today buzzwords like cloud computing, M2M, smart cities, connected devices, smart
meters and many others surround the IoT, which has become a buzzword of its own. But
what is the IoT?
The term IoT emerged with the rise of devices getting connected to the internet but is
still discussed [7]. Smaller and smaller microcontrollers allow us to connect nearly any
device, even the tiniest. A few years ago connected devices were just electronics, their
purpose mainly to connect to the web. Today its not just the electronic devices that are
connected, now people connect their "Things" [4]. Things include anything one could
imagine. Washing machines, automatic windows, thermostats, weather stations, vacuum
cleaners, watches and anything that is large enough to fit a small microcontroller. They
are not designed to access the web for a user, but for the user to access their Thing or its
data. By collecting and combining knowledge from all the Things connected, a user can
gain a lot of information, making more informed decisions and allowing him to control
his Things automatically rather than having to control everything himself.
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Fig. 1.1.: Project architecture overview with prototype, cloud server and web client

The car heats its seats when the owner is near, a house closes its shades if the weather
forecast predicts a heatwave and the dishwasher at home can be started from the office.
With all those capabilities it is no wonder the IoT is taking off. With it new technologies
emerge to satisfy the demand as more and more devices require a connection to the
internet.

1.4. Constrained Devices

To connect all devices in a household, every single device needs a microcontroller which
does the data collection, some thinking and most importantly, the publishing of data over
a network. Computers, phones and other electronic devices are expensive and have a lot
of computing power. For simple actions—like reading a sensor and publishing its data
on the network or waiting for a command and start a small actuator—the computing
resources of such devices are overpowered. Microcontrollers can do the same task with
very limited resources. With just a few kilobytes of flash storage, an antenna, and a very
simple chip set those controllers are able to achieve almost all small tasks. Their energy
consumption is very low and they are cheap enough to be built into any kind of item.
The term constrained device comes from the controllers in devices which have very lim-
ited resources. Constrained devices are therefore just devices with very low computing
capabilities while still able to interact trough the internet with simple interactions.

1.5. Contributions

In this work a prototype and surrounding infrastructure is implemented. The prototype
runs on a constrained device. The device is called Thingy:91 and is fitted with several
sensors, a microcontroller and a low-power antenna to connect to LTE-M and NB-IoT
networks.
The surrounding infrastructure consists of a cloud server and a web client for users. The
architecture is shown in Figure 1.1. The prototype collects data of its environmental
sensors and sends them to the cloud server using the CoAP protocol. The data is stored
on the server and provided to users of the web client. Furthermore users are able to
change the color of the LED of the prototype. To achieve this the prototype observes the
LED resource on the cloud server which can be mutated on the web client.
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2.1. Overview

In this project, many different technologies were used in several different fields. It is
indispensable to understand the underlying technologies to find a good approach for the
given project and apply fitting technology to it. This chapter gives an in-depth overview
on all the relevant technologies used in this work.
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2.2. Zephyr

Zephyr is a RTOS for constrained devices. It is open source and widely used and even
supported by large companies such as google, Intel and Facebook. According to the
Zephyr project team, it "strives to deliver the best-in-class RTOS for connected resource-
constrained devices, built to be secure and safe."[31]

2.2.1. Features

The system is used for many projects as it supports a wide variety of hardware boards and
architectures. With its many features it gives developers the freedom to focus efforts on
their application instead of the operating system. Very high configurability and modular
usage let users tune the system to their exact requirements. With many different example
applications, developers can start from a template without doing the initial configuration
themselves, saving a lot of time and effort. This holds true especially for the first project,
as the initial knowledge required is high.
According to the Zephyr project page1 the operating system supports cooperative and
preemptive threading, as well as static allocation of memory to help systems to run for
long time spans. To ensure good error handling it provides thread isolation, device driver
permission tracking and memory protection using stack overflow protection [31].
Furthermore bluetooth, USB, filesystems, logging and firmware upgrades on running sys-
tems are supported. It also has a fully-featured networking stack natively integrated
[31].

2.2.2. West Building Tool

To allow easy compilation, versioning and flashing of software to the desired boards,
Zephyr provides a building and flashing tool called west [30]. To set up the development
environment of Zephyr, many different repositories are required. Instead of installing each
one separately and configure the correct version for each, west manages all requirements
and their correct versions with a few simple commands. Additional libraries such as the
ARM compile toolchain can be set in a configuration file as well.
west works very similar as Git or Docker in respect to its command line usage. It takes
some basic command and options for this command. For example, to compile code for a
board, the command ‘west build‘ can be used with the options for the desired target board
and the project to be compiled. west will fetch all dependencies and call all necessary
tools from the toolchain and output a compiled binary file.
Configurations for the compilation are written to configuration files by developers. This
includes information for the board for which the code should be compiled, but also settings
variables for the application. To easily configure said variables west allows developers to
open the command line tool menuconfig, with which options can be edited in an interactive
settings app. Chosen settings will be written to the configuration file, of which several
versions can exist and be passed as option when building with west.

1https://zephyrproject.org/

https://zephyrproject.org/
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Apart from dependency management and compilation, west can also flash the com-
piled application to the connected hardware. This requires the necessary connectors and
drivers, but once they are installed a simple ‘west flash‘ will upload the most recent com-
pilation to the configured board and start the application. With options, the parameters
for the upload—such as the board or the desired application—can be changed.

2.2.3. QEMU

Developers may not always have the needed hardware available and can therefore not run
and test their applications directly on the devices. The solution to this problem is QEMU.
QEMU is a generic and open source machine emulator and virtualizer [28]. Developers
can compile their applications to different architectures, among them the x86 architecture.
This type of architecture can be run on QEMU [32]. This allows quick testing without
requiring any hardware. There are however some limitations. Some modes and memory
management features are not supported, and neither is I2C or supervisor mode execution
protection (SMEP). Networking is possible but requires some more configuration to setup
NAT (masquerading) and IP forwarding. Zephyr provides the tool set net-tools which
helps to configure the necessary interfaces.

2.3. nRF Connect

nRF Connect is a software built by the Norwegian company Nordic Semiconductor. The
company specializes in ultra-low power wireless systems. They build software and hard-
ware for the IoT market and are a driving force in the field of IoT.

2.3.1. nRF Connect SDK

To make development easier, Nordic Semiconductors provides a cross-plattform software
called nRF Connect. It allows to build, deploy and test software for constrained devices
much easier. As most projects, nRF Connect is updated regularly and has a developer
help forum. It builds up on Zephyr by using the same code base but expanding it with
additional code, example applications and development features.
The tool is split into several components with different capabilities. There is an instal-
lation assistant which will setup all requirements and guide users through the required
steps. Unlike west, this tool will also install the ARM toolchain and set path variables to
be able to compile projects. The tool "Toolchain Manager" is included as well and allows
to configure the installed toolchain.
Once everything is installed, a plethora of tools is available. The LTE Link Monitor
provides, as the name suggests, a console to monitor the LTE link connection showing
all current data of the LTE connection including the connected mast and position as
well as signal strength. Additionally it has a AT command terminal through which the
monitored device can be controlled and application output can be read.
Another tool used in this project was the "Programmer". It allows to flash not just the
compiled application to the connected hardware, but also update its firmware.



2.3. nRF Connect 8

The other tools included in the nRF Connect can help test applications with several
devices by connecting them, control Bluetooth Low Energy applications, collect traces of
applications and generate power profiles.

2.3.2. Segger Studio

To further simplify development of applications, Nordic Semiconductors teamed up with
Segger 2 to expand the Segger Embedded Studio IDE with further tools to directly support
Nordic products. The added features are very similiar to the ones provided by west as
explained in section 2.2.2. The toolchain, required repositories and project settings can all
be set directly in the IDE. It can automatically detect connected devices and can compile
and flash hardware to them. A big advantage is the debugging mode, which allows to
run the application on the device with breakpoints, memory inspection, function stepping
and other typical debugging tools for low level languages.
A drawback is the poor editor capability, which is not very user friendly and responds
very sluggish especially when resource intensive tasks such as compiling or flashing are
executed.

2.3.3. Nordic Repositories

To provide developers with an easy start into their products Nordic Semiconductor pro-
vides two open source Github repositories, their main repository and a secondary called
NordicPlayground. Together they provide nearly two hundred example applications, snip-
pets and other tools to quickly get going. The projects go from simple tasks such as
parsing some file formats to full development environments such as the sdk-nrf3 used in
this project.

2.3.4. Thingy:91

Fig. 2.1.: Thingy:91

The device used in this project is the Thingy:91,
which is a constrained IoT device built by Nordic
Semiconductors. Its purpose is to serve as a play-
ground and prototyping platform for companies to
test out their IoT ideas for cheap within short time-
spans. The Thingy:91 provides a large amount of
features to allow all kinds of different applications.
The most important for IoT is most likely its LTE-
M and NB-IOT (see section 2.6) capabilities to con-
nect to the web on low power networks. The other
very important components for IoT are its many
sensors. It includes environmental sensors for tem-
perature, humidity, air quality, air pressure as well
as color and light sensors. Furthermore there is a
low-power accelerometer and high-g accelerometer

2Segger Embedded Studios (segger.com)
3https://github.com/nrfconnect/sdk-nrf

segger.com
https://github.com/nrfconnect/sdk-nrf
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built-in. It can also connect via Bluetooth and NFC (antennas) and has a GPS. To allow
user interaction, a multi color LED, a button and a buzzer emitting sounds on different
frequencies are provided as well.
The device offers a UART port for programming and debugging as well as a USB-mini
port to charge its 1440 mAh li-Po battery and supervise the application output in a
console. The 64MHz ARM Cortex-M33 processor with 1MB flash and 256KB RAM
allows for relatively resource-intensive applications.

2.3.5. Segger J-Link

To program applications and firmware to the device used in this work a J-Link EDU4

debugger was used. It allows to flash binaries to the device and can start debugging
session which can be interactively controlled with Segger Studio. Breakpoints can be set,
execution can be controlled on a step-by-step basis, and running routines, CPU cycles,
current memory and registry entries can be precisely monitored and examined.

2.4. Constrained Application Protocol

The CoAP is an IoT protocol running on User Datagram Protocol (UDP). It is specialized
in low-bandwidth networking for machine-to-machine (M2M) applications. Such networks
are not always very reliable and generally have a low throughput. Devices using such low
power networks often have very limited computing power. The CoAP protocol intends to
solve this problem by allowing packets to be sent over UDP with much smaller headers and
therefore reduced overall packet size while reducing fragmentation5. For simplicity and
easy interoperability with the Hypertext Transfer Protocol (HTTP) the CoAP protocol
supports a Representational State Transfer (REST) architecture. Other features include
support for content-type, Uniform Resource Identifier (URI) and low parsing complexity
for packets. As common with REST, auto discovery is available as well.
The messages used in CoAP are split in several types:

confirmable: A message that requires an acknowledgement from the receiver. Each such
confirmable message results in a separate acknowledgement or reset message.

non-confirmable: Message which does not need confirmation upon arrival. Used for
messages which are transfered but their correct arrival does not need to be
guaranteed.

acknowledgement: A message to acknowledge that a specific confirmable message has
arrived.

reset: Message type which can be sent to reset a message transfer if the received con-
firmable or unconfirmable message could not be interpreted or some required
information was forgotten, for example if the recipient has rebooted. Empty
messages (see empty response below) can be used to provoke a reset message to
check the online status of an endpoint (CoAP ping).

4https://www.segger.com/products/debug-probes/j-link/models/j-link-edu/
5Fragmentation is the process of splitting data packets into several smaller packets to allow them to pass
networks with constrained Maximum Transfer Unit (MTU)

https://www.segger.com/products/debug-probes/j-link/models/j-link-edu/
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piggyback: A response included in the acknowledgement message is called a piggyback
response.

separate: If instead of a piggyback response a confirmable message is confirmed with
an acknowledgement message, the response sent afterwards, for example because
the response was not yet ready on the server, can be sent as a separate response.

empty: Messages sent without any content and code 0.00 are neither request nor re-
sponse. It only contains the 4 byte header and can be used to execute a CoAP
ping.

Using those types, a reliable communication can be executed on top of the unreliable
UDP protocol. While with HTTP the Transmission Control Protocol (TCP) protocol
handles reliable packet transfer, on UDP this is done directly on the CoAP layer. Us-
ing confirmable and acknowledgement messages reliable messaging is achieved. To keep
track of which message a recipient responds to, tokens are used. Each message gets a
token which identifies it for both the recipient and the sender. If for example the sender
requests a resource but the recipient is not yet ready to serve it, the recipient sends an
acknowledgement message for the request with the token, but does not yet include the
requested data. Once the data is ready, it is sent with the same token included, allowing
the sender to interpret the message as the response containing the data for the previously
sent request. This separate response can be sent as confirmable or non-confirmable, de-
pending on the importance of the message. The decision is normally based on the type
of the initial request from the sender [18].
Like for the REST standard, the CoAP messages support the types GET, PUT, POST
and DELETE in a similar way HTTP does [3]. For basic usage, the knowledge about
the HTTP methods with the same names are enough to use CoAP, but according to the
specification by Internet Engineering Task Force (IETF) [11] it is worthwhile to go into
detail about the small differences between the two protocol’s methods.
In HTTP devices who need an always up-to-date representation of an object on a server
have to poll the server. This causes a lot of traffic and does not make sense for constrained
devices for which CoAP is designed for. To resolve this problem, a standard [11] has been
defined to implement the observer pattern. With the header option OBSERVE clients
can register themselves to servers. The server holds a list of all subscribers and notifies
them upon changes on the observed resource. This removes the need for polling. To stop
observing clients can send a termination message and the server removes them from their
observers list. Which resources on a server are observable is not defined by the protocol.
Applications have to define this themselves.
A more special feature of CoAP is its multicast functionality. As it is based on UDP,
recipients do not have to be defined as single entities. Currently secure communication
is not possible with this feature, and great care has to be taken when using multicast as
congestions can happen if it is not correctly implemented.
Problems of congestion can also happen if large messages are sent and fragmented. CoAP
offers block communication to send large chunks of data, which can be split into several
blocks to most efficiently use the MTU of UDP packets. The exact implementation
of this is left to the developers. Some libraries might automatically switch to block
communication if a message is too large for a single packet, others might trim the message.
CoAP offers many more capabilities, such as caching, security over Datagram Transport
Layer Security (DTLS) [9], proxying, energy saving methods [6] and other features which
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are not elaborated in this work. For further information consult the official specification
by IETF[11].

2.5. Concise Binary Object Representation

The Concise Binary Object Representation (CBOR) is a compact binary data format to
serialize data. It is based on JSON and similar to it it allows to serialize data into a
specific format standard which allows data transfer between applications. Unlike JSON
however, CBOR data embraces the binary format which reduces the overall size of the
data at the cost of human readability. For some applications the binary format allows for
faster processing for the conversion.
As with JSON, CBOR has defined tags to identify the different data types. Supported
types are numbers, strings, arrays, maps and some values like false, true and null [2]. The
format was published as official standard in 2013 and is regularly reviewed [2].

2.6. Low power networks

2.6.1. Narrow Band Internet of Things (NB-IoT)

Narrow Band Internet of Things is an open Low Power Wide Area Network (LPWAN)
standard. It specifies in good connectivity in buildings and hard-to-reach places. Fur-
thermore, it tries to reduce costs, helps with high connectivity density and is supposed to
extend battery life of IoT devices using it [29],[1]. The standard is a substandard of LTE
and is limited to a specific bandwidth of 200kHz and the leading standard in Europe.
Even though the bandwidth is limited to a single frequency, the NB-IoT networks have a
high capacity with more than 100’000 connected devices per sending mast [15]. It is well
suited for IoT as modems for the network can cost less than 5 US dollars. A restriction
which made it bad for other mobile applications is that it did not support hand-overs
from cell tower to cell tower. This means a new connection had to be made every time a
modem enters a new zone and is therefore inefficient and slow when moving a lot. This
will be resolved with the newer version Cat NB2. Another point rendering the standard
bad for fast mobile applications is its high latency.

2.6.2. Long Term Evolution for Machines (LTE-M)

LTE-M is similar to NB-IoT. Both are substandards of LTE and try to make IoT more
affordable and easier to implement while covering indoor environments much better. In
comparison to NB-IoT the LTE-M standard has a higher bandwidth and lower latency.
The battery usage for devices increases accordingly. Unlike NB-IoT, LTE-M allows for
mobile devices and will even support voice in the near future [20].
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2.7. Other technologies

Python is a powerful scripting language and was used to implement several server com-
ponents of the project. It offers simple syntax, a large selection of packages and allows
for asynchronous applications using asyncio [14]. In the implementation of this project
several Python libraries were used. aiohttp [13] and aiocoap [12] are used to build HTTP
and CoAP web servers. They both run asynchronously using the asyncio [14] library.
The cbor2 library was used to implement compatibility with CBOR [16].
Docker is a containerization software and was used to encapsulate components of the
project allowing them to be set up quickly and run on different machines without prior
setup [21].
MySQL is a relational database and available as an open source version [26].
Web Tools used in the project include the Cascading Style Sheet (CSS) and Javascript
(JS) framework Materialize [24], the JS library jQuery for helper functions and Document
Object Model (DOM) handling [23] and the JS plotting library Plotly [27]. All of them
are open source and free to use.
Thingy:91 tools were included in the Zephyr or nRF-SDK. The most important ones are
CoAP tinycbor. The library cJSON by Dave Gamble [17] was included from his Github
and allowed to parse and create JavaScript Object Notation (JSON) strings.
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3.1. Architecture

The implementation architecture shown in Figure 3.1 consists of three parts: The Thingy:91
operates as a measuring device and communicates with the server. The server is the sec-
ond part and runs a CoAP server and an HTTP server. The third part is the web client,
which is served by the HTTP server part but will then operate over asynchronous requests
without the client being reloaded.
The communication between the Thingy:91 and the server runs over the CoAP protocol
on the internet. On this connection the collected data from the Thingy:91 is sent to the

13
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server and the Thingy:91 observes the LED resource on the server to get updates for
changing LED colors.
On the other side there is the connection between the server and the web client, which
runs on HTTP. It is used to initiate the web client in a users browser and after the initial
setup data from the server is periodically polled and the LED can be updated.

Thingy:91

MySQL Database

aiocoap

aiohttp

Docker

Web Client

HTTP
- poll data

- update LED

- publish data

- observe LED

CoAP

Fig. 3.1.: Project architecture

3.2. Communication Flow

3.2.1. Thingy:91 to Server

The communication flow for the Thingy:91 and the server is shown in Figure 3.2. It shows
the two threads on the Thingy:91 explained in section 3.5.3 and 3.5.4. At startup the
connection is checked. If it is successful, the observation thread sends its observation re-
quest, and the data transmission from the main thread starts to send data—as illustrated
in the bracket "Data transmission". This transmission is triggered every 15 seconds by
the main application.
If after some time the HTTP server receives an update for the LED (represented as
yellow icon) from the web client, it triggers an event on the CoAP server component,
which notifies the Thingy:91’s observation thread.

3.2.2. Server to web client

The Figure 3.3 shows how the communication between the web client, server and its
database work. Initially the web client does not exist and is loaded as index page from
the HTTP server component. Like explained in section 3.4 the web client polls all required
data regularly from the server. As can be seen in 3.3, this happens right after the web
client has been initialized. Upon receiving a data request the server queries the database
and returns the desired data to the web client. For a status update on the Thingy:91,
the server reads directly from memory.
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thread CoAP

observe
thread

check connection

send DATA /temp
send DATA /humid

start OBSERVE /led

send DATA /airpress

store DATA temp

HTTP

store DATA humid
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from web
client

NOTIFY LED color change

Data
transmission

trigger
update

Fig. 3.2.: Communication flow between Thingy:91 and cloud server

As displayed, the LED change on the web client prompts a request to the server to
update the LED with the given color from the web client request. The HTTP component
triggers an update and the CoAP server component notifies all its observers, in this case
the Thingy:91.

3.3. Server

The server of this project consists of three components. The two server components
aiocoap and aiohttp run in the same process and exchange information directly over global
variables. Those variables include the current number of observers on the observable
LED resource as well as a reference to the LED resource to access its functionalities from
both components. The third part is the MySQL database. It is accessed by both the
aiohttp and the aiocoap components using a database helper class which handles query
building and execution as well as error handling. All three components run in a Docker
environment with the MySQL component in a container and the two other components
in one. Communication between the two containers is internal to Docker over the defined
ports for the applications. All three components expose a port to the host which can be
accessed with the methods presented in the following sections.
Normally it would make sense to split the HTTP and the CoAP components into separate
processes, but given the fact that both libraries as well as the database adapter work
asynchronously there is no delay on actions and a single process suffices.
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Fig. 3.3.: Communication flow between web client and cloud server

3.3.1. HTTP

The HTTP server component runs on the Python library aiohttp. It serves the routes
presented in table 3.1. The base route / serves the index page with all the requirements
for the web client to run autonomously. The route thingy_status allows to get the current
online status of the thingy. The http server does not directly receive the status of the
thingy, but reads the global observer count variable on the CoAP server component. If
there is an observer the Thingy:91 must be online, as no other devices connect to server.
The route sensors allows to get all kinds of measurements stored on the server. Currently
implemented are the data for temperature, humidity and air pressure. The structure is
prepared to quickly add new data points. The request triggers a request to the database
helper class which retrieves the requested measurements from the MySQL database.
There is no restriction on the time-span, which means that all stored data points are
retrieved. This can become a problem if the project is ran over long time periods because
the retrieved data is sent to the web client in JSON format. With thousands of data
points the client might reach a limit or the HTTP packet size gets too large.
For the led route requests from the client specify the desired color in hexadecimal as a
body parameter in the POST request. As further explained in section 3.2.2 the HTTP
component triggers an update event on the CoAP component to notify its observers about
the change.

Method URI
GET /
GET /thingy_status
GET /sensors/{measurement}
POST /led

Tab. 3.1.: Routes for the HTTP server component

/
/thingy_status
/sensors/{measurement}
/led
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3.3.2. CoAP

The CoAP server component runs using the Python library aiocoap [12]. It offers three
routes shown in table 3.2 to send new data for temperature, humidity and air pressure.
The only other paths are the auto discovery under /.well-known/core and the observable
resource /led.
If data is sent to one of the data accepting routes, the incoming message payload is parsed
from CBOR back to a number value. Depending on the route which was requested, the
value is stored to the database using the timestamp of the current time at the server and
the type of the measurement based on the chosen resource route. The data is saved using
the database helper class, which accepts the mentioned options and stores the data.
For the observable resource each observation requester is written to a list of observers
and the current state of the desired color is returned as an integer encoded in CBOR.
The global count of observers on the resource is updated as well and can be used by the
HTTP component of the server to check if the Thingy:91 has already connected. If the
led resource is updated, all observers in the list—in this case the Thingy:91—are notified
the same way the original response was sent.

Method URI
GET /.well-known/core
GET (OBSERVE) /led
PUT /temp
PUT /humid
PUT /air_press

Tab. 3.2.: Routes for the CoAP server component

3.3.3. MySQL Database

The database runs in its own container and only exposes the standard port 3306. Upon
initial application startup, no schema is present. The schema is created by the server upon
startup. It detects if the schema with the correct tables already exists on the database.
If not, the schema and the corresponding tables are created.
The schema includes one table for each measurement type, consisting of the types tem-
perature, humidity and air pressure. Other types can quickly be added. Each table entry
has an id, a value of type float and a time stamp of type datetime.
Data is read and written by the python helper class included in the server components.
It uses an asynchronous MySQL adapter to keep the advantage of the asynchronicity.

3.4. Web Client

The web client shown in Figure 3.4 is loaded upon the first site visit. Once loaded, the
page does not need to be reloaded for updates. It automatically polls all needed data for
the charts. Every 15 seconds all the data for the charts as well as the online status of the
Thingy:91 is requested from the server. If the Thingy:91 is online and connected to the
server, a green button with the text "CONNECTED" will indicate the online status. If

/.well-known/core
/led
/temp
/humid
/air_press
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Fig. 3.4.: Web client interface with connected Thingy:91

the Thingy:91 is disconnected the status indication will display a "DISCONNECTED"
info in a grey tone.
In the "Actions" section of the web client users can alter the color of the LED of the
Thingy:91. This action is only possible if the status of the Thingy:91 is shown as con-
nected. Otherwise the color update is not possible and the corresponding action button
is grayed out.
The data visualizations at the bottom are always accessible. The different measurements
are separated into several tabs, each showing a different measurement timeline. The
tabs for CO2, GPS and the orientation of the Thingy:91 (FLIP) are already present, but
currently not available as the server does not provide this data. The shown time line can
be zoomed, panned and downloaded as a chart.

3.5. Thingy:91 Firmware

3.5.1. Overview

As Nordic Semiconductors—the manufacturer of the Thingy:91—suggests, the application
was built on top of an already existing application. The Asset Tracker is an application
provided by Nordic Semiconductors. It collects sensor and GPS data from the sensors
on the Thingy:91 and sends it to a cloud application by connection to either the NB-IoT
or LTE-M network. To implement the project in this work, the cloud backend had to be
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swapped to use CoAP and CBOR, while changes to the main application explained in
the section 3.5.2 were minimal.

3.5.2. Base application: Asset Tracker

The asset tracker—which formed the basis of this work—consists of a cloud backend
and a main application. The main application handles all necessary tasks. At startup
it initialises all sensors. Then the modem of the Thingy:91 is connected to the next
cell tower. A work thread is initialized at application startup which executes all tasks
pushed to the work queue by different parts of the main application. This allows the main
application to handle and coordinate several tasks without getting stuck on a single one
when a resource might block or some error occurs. Once the network is connected and
the applications initial setup is done, the cloud backend is started. In a separate thread,
the specified cloud backend is executed and the exposed functionalities are called. In the
case of the asset tracker, the default backend is implemented to use MQTT and allows
for FOTA updates. It connects to the specified Nordic cloud server. Once the connection
to the cloud suceeds, the main application starts to read data from the sensors every 15
seconds and sends it to the Nordic cloud by calling the according cloud backend methods.
The same happens for other data such as the GPS, buttons and accelerometers. On the
Nordic cloud website, users can activate the buzzer. The cloud backend receives the
MQTT messages and forwards them to the main application. The main application
handles the messages and executes the corresponding actions, in this case starting the
buzzer on the Thingy:91. To ensure that all messages can be parsed, a cloud message
standard is defined in the asset tracker. It defines format, types and other options allowed
for the messages. The format specified is JSON and contains properties such as the
command type and exact value for incoming command messages, and the sensors type,
measurement type and other parameters for outgoing messages.

3.5.3. Cloud backend

The cloud backend in the asset tracker works as an encapsulated component. It commu-
nicates with the main application by exposing actions and sending messages of a special
cloud event type which is received by the main application. Therefore, the implementa-
tion of a cloud backend using CoAP consists of building a backend which offers the same
actions to the main application and is able to generate events and send them to the main
application at the required moments.
The actions minimally required are init, connect, disconnect and send. They are handled
by the main cloud backend thread.
Init starts the cloud backend and returns the configured backend. For the implemented
backend this is just a struct containing the most important configurations for the backend
and a pointer to the backend itself.
Connect tells the cloud backend to connect to the configured cloud server. For this,
the IP address is resolved and two sockets are initialized with the resolved IP address
and UDP as protocol. The first socket is used for the main thread which will send data
to the cloud server. The second thread will wait for updates from the remote server
and parse those. There are two reasons why two separate threads each with a separate
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connection exist: first of all, it is easier to implement two different flows for the two
conceptually different actions. The second reason is that to send data to the cloud it is
not very important to wait for acknowledgements of messages. If data does not arrive
at the server because of some small outages or similar problems, the application is not
affected. It can keep sending data and the server will receive it once it is back up. If the
sending thread would block until an acknowledgement for each message was received it
might cause the thread to lag behind with its messages when some ACKs return with a
delay. The listening thread on the other hand has to block and wait for incoming data.
Without being busy sending data and receiving ACKs it can quickly react on incoming
commands from the cloud server.
The listening thread is started upon application start, but does not execute any code.
It listens on a semaphore which is activated in the main thread of the cloud backend in
the connect function. Once the semaphore is set at the end of the connect function, the
thread will start receiving commands on the socket provided by the connect function of
the main cloud backend thread.
Send takes a struct of type message, containing data which should be sent to the remote
server. The message is parsed and compiled into CBOR format. Then the CoAP request
is prepared and the CBOR payload appended. Once the message is sent, the socket is read
for new incoming messages. If a confirmation is received, an ACK is sent, otherwise the
function is skipped. If the cloud backend would block on confirmations, other messages
might get slowed down. Confirmations can be acknowledged on the next pass as well.
Disconnect releases the connection to the server and changes the semaphore which
allows the message receiving thread to listen for messages to terminate its connection as
well. The sockets are closed and the cloud has to be connected again to do any further
messaging.

3.5.4. Observation thread

As explained in the previous section, the cloud backend consists of two threads, of which
one sends sensor data to the cloud server while the other waits for incoming commands
from the cloud server. This thread is the second one of those two and started at the
startup of the application. It does however not take any action until the main thread
of the cloud backend has changed a semaphore instructing this thread to use the given
socket to listen for incoming commands. To receive any instructions, the first action this
thread does is to send an OBSERVE request to the cloud server. It then waits for the
confirmation of this request and sends an ACK upon arrival. From then on it enters a
loop listening for incoming messages on the socket. If a message is received, the contents
are parsed from CBOR to a JSON format and an event (see 3.5.5) containing the message
contents is sent to the main application. Once the event is sent, the thread goes back to
waiting for incoming messages on the socket.
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3.5.5. Messaging

Application internal messaging

For the internal communication between the main application and the cloud backend on
the Thingy:91 itself messages of the type event and an API on the cloud backend are
used. The API on the cloud backend exposes the methods explained in section 3.5.3,
which accept arguments to send messages. Each message contains the appId, which
represents the entity the message is for. This can be a sensor, a button or the LED.
In the data parameter are the corresponding values, either a single value in case of a
DATA message or otherwise an attribute hash. The last attribute messageType contains
as the name implies the type of the message. CFG_SET is used to define commands
changing settings for the Thingy:91, such as the LED. DATA is used for any messages
containing only data. There are other types available, but they are not used in the current
implementation.
The messages received on the cloud backend from the cloud server get encapsulated in
events mentioned in 3.5.4. As shown in the snippet below the event contains the message
received, its size and the type of the event so that the main application can interpret it
correctly.

1 // trigger cloud event with received data
2 struct cloud_event cloud_evt = {
3 .type = CLOUD_EVT_DATA_RECEIVED,
4 .data.msg.buf = message,
5 .data.msg.len = sizeof(message)
6 };
7 cloud_notify_event(coap_cloud_backend, &cloud_evt, message);

Network messaging

The communication uses the Constrained Application Protocol (CoAP) and serializes
messages in CBOR format. The data which is sent to the cloud backend from the main
application. To reduce size, the data is not sent to a single server resource containing
all information for the data type sent, the cloud backend parses the data from the main
application and reads the sensor data type. Depending on the type, the message will
be sent to a different resource on the cloud server. The sensor data for temperature for
example will be sent to the server resource at /temperature. To send the value, the cloud
backend reads the measurement data from the JSON string and encodes it in CBOR
format of type float. This will then be appended to the CoAP packet and sent to the
cloud server. The response does not need to be parsed, as it is just a confirmation or
acknowledgement message with no payload.
The messaging for the observation thread works very similar, just the other way around.
If a message is received, the payload is parsed. As the only supported command in the
implemented cloud backend is the LED color change, the incoming data is a color in
hexadecimal representation. To make payload size smaller and reduce parsing effort, the
hexadecimal value is converted to an integer on the cloud server before being encoded
in CBOR and sent. The observation thread parses the CBOR payload and converts the
integer back to a hexadecimal string. This string is then used to build an event message
for the main application as explained in section 3.5.5.
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3.5.6. Application Flow

The execution flow of the application is similar to the initial asset tracker explained in
section 3.5.2. The Figure 3.5 shows the build up and running structure of the application.
On the left is the main part of the application and on the right the cloud backend. Startups
and terminations of threads are indicated with black dots. The execution is split into
three parts annotated on the left of the illustration.
Once the device is started, the initialization phase starts: the main thread starts a worker
thread handling all the heavy work tasks the application requires. As soon as the worker
thread is started, tasks to start the LTE connection and sensor initialization are delegated
to the work thread. After this, the cloud backend main thread is started. If this is
successful, the cloud backend’s functions to initialize and connect to the cloud server are
called. With the process elaborated in section 3.5.3 the already running thread for the
observation of cloud server events sends its requests and starts listening for messages.
With this step the initialization phase is finished and the repeated loop comes into play.
Every 15 seconds the main application thread delegates a task to read sensor data to
the work thread. The returned data is passed to the cloud backend main thread using
the send function discussed in section 3.5.3. Data is sent to the cloud server. While this
process is done periodically, the arrival of cloud server messages is irregular. If a message
comes in from the web server, the observe thread forwards the message as a cloud event
presented in section 3.5.5. The message is passed to the worker and evaluated there,
where necessary actions are taken.

3.6. Capabilities and Limitations

The current state of the project serves as a prototype to show the capabilities of CoAP
and CBOR in this context and evaluating the used tools and technologies. It is therefore
quite limited in its capabilities.
The application only checks the server connection at the connecting stage, but not further
on. If the server fails in operation, data will be sent anyway by the Thingy:91 while
commands will no longer be received as the server does not have any count on its observers
after a restart or crash. Fail-safe mechanisms are not in place to handle such errors.
As of now, the Thingy:91 can only receive LED updates. While allowing for a very
small packet size and a simple implementation, this holds off the possibility to send other
commands for now. It would however not take much effort to expand it. The same goes
for the sending of other sensor data. The three environmental parameters sent in the
current implementation can all be represented in the format of a float. Communication
of GPS information and other data would have to be implemented in separate functions.
Another limitation is that the web client can show the online status of the Thingy:91.
As this only references the number of connected observers on the server, it can happen
that the Thingy:91 runs into an error, loses connection or gets shut down without proper
disconnection and still be on the observers list of the server.
While CoAP supports security through DTLS it is not implemented in this prototype.
This is not a serious limitations though. What does become a serious limitation is the
message complexity and size. In its current implementation, the web client receives a full
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Fig. 3.5.: Internal flow and threading

JSON of all available data. After several hours of operation this can grow to a very large
packet which makes the HTTP server lag behind and the web client side consumes most
of the cloud backends resources, leaving little for the responsiveness on the CoAP end.
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4.1. Prototype

The prototype works fairly well on first sight. The Thingy:91 connects quickly to the
cloud server and properly sends data and observes LED updates. The cloud server starts
without any issues and generally does its job well. They interact using CoAP and CBOR
without any severe issues.
The web client is responsive and allows for good user interaction. Data is shown accord-
ingly and the connection status as well as the LED update work in a basic form. The
goals of this thesis have been reached.
There are however a few problems still open. Most of them are limited by the time and
knowledge available to the developer. Cleaner code and better error handling would lead
to a more stable application.

4.1.1. Communication

Though the communication works, several drawbacks hold the success of the prototype
somewhat back. As already mentioned in section 3.6, the Thingy:91 does not always
properly handle ACK messages and sometimes does not send ACK messages itself. Tim-
ing issues do not help either. This means that retransmissions of messages are no rarity
and occur often. For an application that focuses on a lightweight application with a small
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need for bandwidth and power this certainly is a problem. Another problem is the num-
ber of messages. As the base application used for this work sends a message for each data
point, the same behavior now causes a lot of messages with very little content. If some of
those get retransmitted the problem is even more severe. The message complexity could
be reduced, but was kept at a high level to stay compliant with the base asset tracker
application.
Similar problems occur on the web side of the application. A request is sent for each
data type. This leads to many more requests. Each one of these requests is much larger
than needed, as the time format is unnecessary large and the format of the JSON used
quickly get very large. This also comes from the fact that there is no restriction on the
data retrieved, the server just returns all available data, even if the messages reaches
megabytes in size. A better approach would restrict the data sent to size or even better
to certain date ranges. Another good solution would be paging.
Overall, the communication works but is riddled with small errors which quickly lead the
application to its limits.

4.1.2. Quality

In regards to overall quality the prototype receives a similar verdict as its communication.
On the surface everything is fine, but at lower levels small issues are at place. On
the Thingy:91 software the capabilities of the cloud backend are quite restricted. Error
handling is implemented but not always executes good recovery actions. Of course some
issues are difficult to resolve on a constrained device, but connection errors, bad message
transmissions or missing responses could be handled with clean fallbacks instead of error
logs. The same goes for messaging on the web part. There are no fallbacks on the
server and wrong formats might already cause the loss of a message. This is not a severe
issue as the server only ever communicates with a device where the format of messages
is controlled. The only part properly handling problems is the web client, which shows
proper error dialogues to the user.
Regarding code quality, parts of the project lack refactoring. Functions often fulfill very
specific purposes and cannot be reused. Many of them should be split into smaller entities.
It can be argued that for a prototype this is not a severe problem, but it does prevent
quick adjustments in the development process, which is a desirable trait for a prototype
under development.
Both the limited implementation and the code quality can be attributed to the limited
knowledge and time given for this project. For a first project in the field of IoT without
prior experience the quality is sufficient.

4.1.3. Usability

From a users perspective the prototype is a success. It is easy to setup and use and
provides users with easy access to measured data. Furthermore, the LED can be changed
without issues. Simply turning the Thingy:91 on and taking it wherever it should take
measurements is enough. If it ever loses connection it will eventually regain it by itself
and start sending data again. If the LED update suddenly does not work anymore or the
connection is not recovered quickly enough, the user can just restart the Thingy:91.
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For a final product more stable runtime and scalability would definitely be indispensable,
but for the given requirements the prototype functions well from a user perspective.

4.2. Advantages and Disadvantages

4.2.1. Technology

TCP vs. UDP layer

For the purposes of this project the UDP protocol used for CoAP is the better option.
Constrained devices do not need the high reliability that TCP offers. To communicate
reliably, the tokens in the CoAP protocol are definitely enough to ensure good commu-
nication. The two main advantages UDP has over TCP in this context are its size and
capability to be sent without negotiating a connection first. Publishing new data on the
Thingy:91 and sending it to the server does not need to be reliable. For the Thingy:91 it
does not matter why exactly the connection broke; if it doesn’t arrive there is no big issue.
The server might have an incomplete time series, but given the type of series recorded
they can easily be recovered.
The size aspect of the packets is another point. It is not the packet size itself that
matters, packets can vary in size. The difference comes in the way the data is sent.
It takes a lot more resources to negotiate a connection first like TCP does. At least
three handshaking messages for every new connection are required. On a constrained
device, this uses much more power than necessary. And as the TCP handshake cannot
be skipped, there is no way to reduce this complexity. In UDP there is no connection
negotiation and every message can be sent as a single package. If the user decides he
needs the additional reliability he can use the specifications built into CoAP skipping
handshaking and needing one less message for a reliable connection.
The drawback that UDP has in this context is its limit in size of 65’507 bytes, but as
constrained devices barely ever surpass that, this is not an issue.

CoAP, MQTT and HTTP comparison

As mentioned previously, CoAP has a very small header compared to HTTP. Secondly,
it runs on UDP which is—as discussed in the previous section—a better solution for this
project. The other main difference between the two protocols is the OBSERVE option
built into CoAP which eliminates the need for polling. With smaller packet sizes, less
messages and less resource intensive creation of packets, CoAP is as expected the better
protocol for an IoT application such as this one.
The comparison of CoAP with another very common IoT protocol MQTT is more in-
teresting. Both are built to perform well on constrained devices in the IoT [8]. There
are however quite some differences which disqualify MQTT for the better solution in this
work. As HTTP, MQTT uses TCP, which forces the devices to build up a connection
and send more messages. This makes it more resource hungry [25]. Furthermore, the
header of MQTT is 2 bytes larger than the header of CoAP [10].
The most important reason why MQTT is commonly used is its capability to let publishers
publish messages and reroute them to several subscribers using topics. CoAP is meant for
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criteria HTTP MQTT CoAP
transport layer pro-
tocol

TCP TCP UDP

security TLS TLS DTLS
headersize undefined 2 bytes 4 bytes
communication
model

request/response publish/subscribe publish/subscribe
or request/response

messaging sync async sync or async
number of message
types

- 14 4

RESTful yes no yes
message identifica-
tion

provided by TCP provided by TCP message tokens

multicast no no yes

Tab. 4.1.: comparison of key features of HTTP, MQTT and CoAP

direct communication rather than distribution. In this work the distribution to several
clients is not necessary as there are only two devices. If there would be several devices
the Thingy:91 could send its data to several other clients with CoAP as well, as the UDP
layer of the the CoAP protocol allows for multicasts.
Another factor rendering MQTT the less desirable option is its need for a broker. The
broker is resource intensive and not meant to run on constrained devices. The idea of
the broker is to forward messages from several clients to others, but the scenario in this
work only has a single client. There is no need for a broker which can forward messages
to subscribers.
MQTT supports direct communication with the broker, but in the chosen approach not
only does the server receive data from the Thingy:91, but the Thingy:91 itself is observing
the LED resource on the server. A broker does not publish messages itself and the server
would therefore not be able to inform the Thingy:91 about updates on the LED resource.
To have a communication going both ways, the publisher-subscriber model is not a good
solution. If it is used anyway, CoAP can implement the same architecture as MQTT
using less and smaller messages. Instead of complicating the system with a publisher-
subscriber model, a simple REST communication with CoAP is a better solution. CoAP
performs well with REST architectures [5].
To conclude it can be said that HTTP would be a bad choice, as it has too many disad-
vantages over the other two candidates. The race between CoAP and MQTT is closer.
Both could be used for IoT projects. For the exact architecture of this project however,
CoAP outperforms MQTT. Its smaller package sizes, lower message complexity and
simple architecture for only two clients fulfills the requirements very well.

JSON vs. CBOR

CBOR should outperform JSON in this project. As described in section 2.5 CBOR is not
only smaller, it also is created faster than JSON. In the case of this project however, the
difference was not very notable. Messages only contained single integers and floats, for



4.2. Advantages and Disadvantages 28

python object CBOR JSON

data: [1,’foobar’,(’ad’,’ff’),’cool’:4353,’kk’:45.342,’fff’:’aa’]
88 bytes 77 bytes 119 bytes

data: 22 (integer)
28 bytes 34 bytes 51 bytes

data: "foobar" (string)
55 bytes 40 bytes 57 bytes

data: 22.55 (float)
24 bytes 42 bytes 54 bytes

data: ["hello", "foo", "bar"] (string array)
80 bytes 48 bytes 72 bytes

data: [1,2,3,4,5] (integer array)
96 bytes 39 bytes 64 bytes

Tab. 4.2.: Comparison CBOR and JSON serialized data sizes in Python (D.1)

which the representation and precision matters more than the encoding. Table 4.2 shows
a comparison between encoded sizes of the two formats for different datasets. It can be
argued that a JSON string requires a few more bytes than CBOR, but on such a small
scale the difference is marginal. As packet sizes are around 70 bytes the few bytes for the
message did not matter too much.
Testing with the python library cbor2 showed that the difference for the used data is not
important for projects on this small scale. It could become an advantage if projects get
larger with more devices and every byte counts. In this case better optimisations could
help reduce the size of CBOR encoded data packets. For the development of the prototype
the CBOR encoding was rather a disadvantage. Debugging is much more complicated
as messages are no longer human readable and debugging with networking tools such
as Wireshark become tedious. The only advantage CBOR brought was that handling
of CBOR encoded data was to some extent simpler than parsing and handling JSON
strings, as low levels languages are easier to use on binary data than handling complex
string parsing.
Regarding the usage of the tinyCbor library used for the Thingy:91, the usage was very
tedious. Several buffer handlers, readers and encoders have to be initialized and if an
error occurs it is often very cryptic and the library offers no help resolving the issue.
The incorrect and imprecise documentation don’t help either. A more abstract interface
would be desirable. The Python library cbor2 offers two methods, dumps() and loads()
which are used to encode and decode a whole CBOR data packet. Given that CBOR is
built on the idea of JSON with keys and values in a serialized format one would expect
that a library has the capability to nest it. It could be that the tinyCbor library has
better options to further optimize the process, but for simple applications this is most
likely not necessary.
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4.2.2. Zephyr Platform

The Zephyr OS is very new and built with many of the important features for its usage on
constrained devices in mind. Like most open source projects, it has good documentation
and supports a tremendous amount of devices. It can run on most modern chips and
even runs in emulators. Not only does it run on a lot of hardware, but also uses very
few resources—allowing for powerful and large applications being run on very small and
constrained devices. Its incredibly high modularity allows users to configure the operating
system to their needs to keep resource requirements and power consumption low, while
getting the most performance out of it. All the configuration is documented in all details
and a plethora of small examples help developers to get started with new projects. There
are however not just good things. The operating system being fairly new on the market
means that it has not yet as many users and support is sometimes hard to get as only
few people might have run into the same issue and sometimes none of them was able to
resolve the issue properly. The configuration for the examples can be copied and single
variables are documented, but there is a lack of configuration overviews which would
help new users a great deal to configure their projects themselves without reading a large
documentation of very fine grained instructions.
Not only the initial configuration for projects is hard for new users, but the whole ecosys-
tem has a high entry level skill requirement. A good understanding of the Linux build
system with its configuration and Makefiles is required to achieve more than simply run-
ning the hello world examples. Even the small examples are often not explained and
following the poorly commented code might already pose problems when getting started
with Zephyr.
The learning curve stays quite steep even after the initial steps have been made. There is
more often than not no standard way to do something, as standards just not have had the
time to be developed yet. This results in developers spending a lot of time on searching
the documentation for good ways to achieve their task while not knowing if there was a
capability in the OS which would have done exactly what they needed.

4.2.3. Nordic nRF Connect

nRF Connect Toolkit

Expanding the Zephyr OS, the nRF-SDK does a great job adding custom functionalities
to help developers prototype their application. A lot of base applications are provided
which can directly be used and expanded for custom purposes. A drawback of the many
example applications is that the usage is well documented, but not necessarily the inner
working. This can be a problem for newbies as they have to browse trough code and try
to understand the functionality while reading the documentation for all the functions.
Nevertheless the samples work very well and can quickly be deployed, tested and altered
using the many provided tools.
A nice feature—while a drawback at the same time—is the quick development and ad-
vancements on the SDK. Every few months a new version is released. This means older
versions might quickly not work anymore. This would not be a problem when users use
the newer tags, but an issue is that the documentation sometimes cannot keep up with
the rapid development. The installation assistant might advise to use the stable tagged
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version v1.0.0 to get started, while tag 1.3 was already available. This caused some de-
pendency issues at times. A good example of this might be that on the version v10.0 in
the requirements a Python library is required which does no longer exist1. In the very
long list of dependencies it is very hard for an individual to find out what exactly the
library did and how to replace it or find it anyway. In the tag v1.0.0 for example the de-
pendency hub=2.0 failed because the package was no longer available. For first time users
getting into nRF SDK it would be very helpful that Nordic ensures their recommended
SDK version works out of the box using their instructions.
On top of the Zephyr environment the nRF Connect toolkit provides several helpful
tools as explained in section 2.3.1. They allow developers to get started much more
quickly. It became clear during this work, that the nRF Connect toolkit is marketed
as platform independent, but it quickly showed that the version for linux systems had
problems sorting out all dependencies and the build chain failed more often than not. At
times, flashing of software was a problem as well. Even compilation failed from time to
time, for example because Segger Studio passed incorrect command line arguements to
the compiler. A common error was the option -m32 instead of using the -m32b option.
There were no instructions found on how such options could be configured and the only
possible solutions were to remove the added functionalities again or to use the west build
tools instead of the Segger building capabilities.
The Windows version presented in most tutorials on the other hand works nearly flawless.
The installation process and dependency setup is very easy and quick, the toolkit com-
ponents and Segger Studio work right out of the box and compile and flash applications
with ease. Drivers for flashing are directly installed during the nRF Connect installation
assistant while on the linux version drivers and toolchain have to be installed manually.
There are however still small flaws in the tools which are from a users perspective very
annoying. The LTE Link Monitor to supervise application output for example would not
show more than a few hundred lines. After the maximum was reached, it would not show
any errors or be unresponsive, but the new output will just not be displayed. Users would
think their application is not running or the connection has gone bad, while the actual
fault lies with the monitoring tool. Similar issues could happen when the debugging
mode of the Segger Studio software was used. If the Thingy:91 ever lost connection to
the cell tower, no reconnecting was possible and the debug session had to be closed and
everything restarted. Another interesting thing with Segger Studio on windows was, that
if the flashing of an application to a device ever failed, it would never recover again. Every
try would stagnate at exactly 37% percent progress and would only every work again if
the Thingy:91 was restarted and the connection to the computer was disconnected and
connected again.
Such issues had no clear explanation and no direct solutions were found on the help forums
as pinpointing the issue was very hard given there were no error messages. Even with
error messages present, the resolution could often not directly be found as error messages
are often cramped into a small non-scrollable window meaning the message could not be
read nor copied. A tedious error search was often the resolution for such problems.
The issues with the provided tools are time consuming and require some perseverance
from time to time, but once the most common ones are found and users can quickly

1https://devzone.nordicsemi.com/f/nordic-q-a/51051/nrf-connect-sdk-install-issue-hub-
2-0-not-found-leading-to-build-errors

https://devzone.nordicsemi.com/f/nordic-q-a/51051/nrf-connect-sdk-install-issue-hub-2-0-not-found-leading-to-build-errors
https://devzone.nordicsemi.com/f/nordic-q-a/51051/nrf-connect-sdk-install-issue-hub-2-0-not-found-leading-to-build-errors
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mitigate them with a short application restart the development is fast and easy. During
this project there were already many improvements which leads to the conclusion that
tools will soon be much more stable and a great toolkit for development.

nRF SDK

While the provided extensions and functionalities of the SDK are very helpful there is
sometimes confusion on how those functionalities interact with the ones of the Zephyr
OS. There are cases where both implement the same function, for example the well known
linux function "recv" used to read messages from a socket. It is implemented in Zephyr
as "recv" and in the nRF SDK as "nrf_recv". While they are supposed to do the same
and the recv should be just a wrapper for the nrf_recv according to newest information
on the development help board2, they seem to behave somewhat different and mix very
poorly together. A good advise would be to just use either the Zephyr functions or the
nRF ones. The problem with this is that there might be different behaviors that one
might want to access. An example of this is that the Zephyr recv function allows for the
argument flag "MSG_WAITALL" which should be available in the nrf_recv as well, but
fails upon compilation. Such inconsistencies are not necessarily a big deal, but cause a
lot of anger and frustration when developing.
Similarly, issues with nRF libraries caused troubles as well. Specifically the CoAP library
provided by the SDK for example would cause a stack overflow when initialized, even
though the stack size should have been large enough according to documentation and
other examples. Those are not terrible problems but can get newbies into struggling
more than necessary.
Another library causing issues is the tinyCBOR library. It is included in the SDK, but
not developed by Nordic. The Nordic team changed some of the specification to still work
with the initial source which has changed. The documentation is not available on the
nRF SDK docs and developers are redirected to the documentation of the source, which
however was not updated. This lead to severe inconsistencies, where header files are
named differently, and functions are either not named the way the documentation says
or do not what they are supposed to. In the case of the tinyCBOR library even the small
example at the very beginning of the tutorials failed, resulting in an in depth analysis of
the source code of the library. This kind of problems should not occur, especially if they
are already known by the Nordic team3.
As a last point regarding libraries, the usage could be more clear. Zephyr shows the exact
configurations and header files which have to be set and included for each additional
library. For the nRF SDK, this is not always the case, and it can be a hassle to find the
headers and options necessary to use them.
It seems that overall many functions in the nRF SDK are very capable when used for
their exact purpose, which is nearly always well displayed in example applications. The
problem with the extensions is that they are seemingly wrappers for different Zephyr
capabilities. In the case of the CoAP client the nRF SDK extension is abstracted so
much, that only very basic actions can be achieved. As mixing Zephyr and nRF works

2https://devzone.nordicsemi.com/f/nordic-q-a/65848/nrf_recv-vs-recv
3https://devzone.nordicsemi.com/f/nordic-q-a/66409/missing-documentation-on-tinycbor-
for-nrfconnect-sdk-1-3-0

https://devzone.nordicsemi.com/f/nordic-q-a/65848/nrf_recv-vs-recv
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poorly, it is better to directly use the Zephyr functions when developing something more
specific. For the very basic prototypes which just need the most basic capabilities, the
nRF SDK functions are a good choice as long as they are kept up to date with the sources.
When functions of the nRF SDK do not work the same as the documentation states it is
hard to find the problem, as the SDK is proprietary and the source is not always open and
can therefore not be investigated. Given it is closed source there are less people looking
at it and support can only be found at the devzone forum of Nordic [19]. It is nearly
always just the Nordic employees who can answer questions.
In conclusion it can be stated that the additional functionalities of the SDK are very
helpful at times, especially in the many examples. Using them lets developers start very
quickly with their custom development and prototyping simple applications is very quick.
Many things are however already present in Zephyr on a lower level, and the additions
in the nRF SDK are often just wrappers with abstractions only good for the rapid and
simple development of prototypes. This is not an issue, as Nordic markets their SDK as
a prototyping platform, which it does well.

Thingy:91

The Thingy:91 is built as a prototyping device and therefore worked well for this project.
It has all necessary tools to build any kind of simple application. The sensors work well
and network connectivity behaves correctly. The firmware is stable and can easily be
updated with the nRF Connect toolkit. Setup is simple as well, the Thingy:91 works
right out of the box.
A drawback is its high cost. Some applications might not require GPS or high precision air
quality sensors, which are expensive. The Thingy:91 is not necessarily suited for specific
applications which do not require all the features. It could even be argued that for this
work another device with fewer capabilities would have been enough. The advantage of
the simple setup and tools the Thingy:91 and its surrounding tools of the nRF Connect
environment though are most likely worth the price.
Looking at the simplicity when using it, the Thingy:91 is mostly convenient. It is charge-
able over USB and has an ON/OFF switch, allowing for easy resets. One thing that
could be easier is the flashing of the firmware. To install a new application a user has to
either buy the development board from Nordic or get a J-Link debugger and programmer
from Segger. For a device which should serve as a rapid prototyping platform quickly
accessible for users, one could think it would have a separate controller on the board to
allow flashing over USB. Even more so as a USB-mini port is installed and can be used
to read the output of the Thingy:91.



5
Conclusion

5.1. Review

This work gave an introduction to IoT and elaborated on some of the current technologies
in the field. The RTOS Zephyr, the nRF Connect development environment by Nordic
Semiconductor and the CoAP protocol as well as several other technologies were explained
in more detail.
With the goal to reduce bandwidth for constrained devices, a prototype was implemented.
It also served as a learning experience and allowed to evaluate the used technologies. To
communicate it uses the CoAP protocol and serializes messages in CBOR format. It is
capable of tracking environmental data and collecting it on a central server. The server
is able to deserialize the data and save it to a MySQL database. It provides the saved
data to users on a web client, which also allows to change the color of an LED on the
measuring device using the observe pattern incorporated into CoAP.
The final prototype was evaluated for its approach, architecture and overall design. The
technologies used were examined and compared to alternatives. The quality of the proto-
type is not very high, as it has several smaller issues. However, as a prototype is performs
well and allows for a good evaluation of the chosen approach and the used technologies.
It was found that the used technologies are well suited for the goal of connecting a
constrained device to the cloud and publishing its data. The CoAP protocol outperforms
HTTP and MQTT for the purposes in this project due to its superior architecture in this
context, smaller message sizes and lower message complexity.
The nRF SDK proved to be a helpful tool to develop IoT applications, but it became
clear that the initial knowledge required to build an application is high. With similar
knowledge required, the RTOS Zephyr is not easy to setup, but runs stable and is a good
solution for IoT applications.

5.2. Outlook

The prototype in its current implementation fulfills all requirements, but lacks quality
in several sections. Further development would be required to make the prototype into
a valuable product. Benchmarking and testing would be required to refine the used
techniques and further increase performance. The next steps would be to overthink the
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message complexity and introduce more reliable error handling to ensure a communication
without redundant or lost messages.

5.3. Final statement

This thesis grew slowly as many problems arose from the new technologies throughout
the project, hindering progress but bringing new insights. Especially the start turned
out to be difficult, as unexpected errors and a defect SIM-card stalled any advancements.
With perseverance and intensive debugging the project reached its success at last.



A
Common Acronyms

CSS Cascading Style Sheet
HTTP Hypertext Transfer Protocol
IoT Internet of Things
JSON JavaScript Object Notation
REST Representational State Transfer
TCP Transmission Control Protocol
OS Operating System
RTOS Real Time Operating System
CoAP Constrained Application Protocol
CBOR Concise Binary Object Representation
MQTT Message Queuing Telemetry Transport
MTU Maximum Transfer Unit
UDP User Datagram Protocol
URI Uniform Resource Identifier
M2M machine-to-machine
IETF Internet Engineering Task Force
DTLS Datagram Transport Layer Security
JS Javascript
DOM Document Object Model
SDK Software Development Kit
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B
License of the Documentation

Copyright (c) 2020 Alex Nyffenegger.
Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts.
The GNU Free Documentation Licence can be read from [22].
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Website of the Project

The web client if online runs on http://212.47.236.188:4100/ and can be accessed
without credentials.

The code of the project is hosted on Github.

The firmware for the Thingy:91 is hosted at https://github.com/Skatinger/sdk-
nrf/tree/new_approach. The repository is a fork of the nRF-SDK.

The cloud server and web client are in the repository at https://github.com/Skatinger/
coap_server.
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D
Python benchmarking scripts

D.1. Script to benchmark CBOR and JSON encoding
parameters

1 import cbor2
2 import json
3 import time
4 import sys
5

6 def testing(data):
7 # cbor
8 start = time.time()
9 cbor_obj = cbor2.dumps(data)

10 cbor_time = time.time() - start
11

12 # json
13 start = time.time()
14 json_obj = json.dumps(data)
15 json_time = time.time() - start
16

17 #print
18 print("DATA:")
19 print(dataset)
20 print("python object: " + str(sys.getsizeof(data)) + " bytes")
21 print("cbor: " + str(sys.getsizeof(cbor_obj)) + " bytes in " + str(cbor_time) + "

ms")
22 print("json: " + str(sys.getsizeof(json_obj)) + " bytes in " + str(json_time) + "

ms")
23

24 datasets = [
25 [1,’foobar’,(’ad’,’ff’),{’cool’:4353,’kk’:45.342,’fff’:’aa’}],
26 22,
27 "foobar",
28 22.55,
29 ["hello", "foo", "bar"],
30 [1,2,3,4,5]
31 ]
32

33 for dataset in datasets:
34 testing(dataset)
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