
Building a mobile application for
a recycling startup: Oust!

Bachelor Thesis

Sylvain Losey
August 2019

Thesis supervisors:

Prof. Dr. Jacques Pasquier-Rocha
and

Pascal Gremaud
Software Engineering Group

Software Engineering Group
Department of Informatics

University of Fribourg (Switzerland)

Acknowledgments

I would like to express my gratitude to Prof. Dr. Jacques Pasquier and Pascal Gremaud
for their guidance during this project. I also want to thank the Faculty’s Exams Delegate,
Prof. Dr. Thierry Madiès, for allowing me to write this thesis.

I want to give a special thanks to my friends and colleagues of Oust! for their enthusiasm
throughout this adventure.

Finally, I am very grateful to my family for their continuous support and encouragement.

i

Abstract

Recycling is a vital tool to prevent climate change and use the planet’s resources effi-
ciently. Unfortunately, it can be inconvenient or inaccessible to some people.

In this report, we will present Oust!, a Swiss startup that aims to simplify recycling. To
help in this task, we will build a mobile application with Flutter, allowing us to create
an Android and iOS version from a single codebase.

Keywords: Mobile application, Flutter, Redux, Django, REST, Recycling

ii

Table of Contents

1. Introduction 1
1.1. Motivation and goals . 1
1.2. Outline . 2

2. Context 3
2.1. Waste management . 3

2.1.1. Recycling systems . 3
2.1.2. Situation in Switzerland . 4

2.2. Oust! . 5
2.2.1. The idea behind Oust! . 5
2.2.2. Next steps . 7

3. Global Architecture 8
3.1. Overview . 8
3.2. Backend - Django . 9

3.2.1. Advantages of Django . 9
3.2.2. Technologies used . 9
3.2.3. Hosting - Heroku . 11

3.3. REST API - Django Rest Framework . 11
3.3.1. Definition of REST . 12
3.3.2. HATEOAS . 12
3.3.3. Implementation . 13
3.3.4. Swagger . 14

3.4. Frontend . 15

4. Design process 16
4.1. Overview . 16
4.2. Requirements gathering . 17

4.2.1. Available technologies . 17
4.2.2. Tool used for our app . 18

iii

Table of Contents iv

4.3. App design . 18
4.3.1. Problem discovery . 19
4.3.2. UX Design . 19
4.3.3. Prototyping . 20
4.3.4. UI Design . 21

4.4. Implemented UI . 22
4.4.1. Lifts . 22
4.4.2. Subscription . 25

5. Development 28
5.1. Flutter . 28
5.2. State management . 29

5.2.1. Local state . 29
5.2.2. Global state . 31

5.3. Redux . 32
5.3.1. Redux cycle . 32
5.3.2. Redux middleware . 34

5.4. Implementation challenges . 36
5.4.1. Data modeling . 36
5.4.2. Wizard forms . 36
5.4.3. Push notifications . 37
5.4.4. Image storage . 37
5.4.5. Lift appointment timeslots . 38
5.4.6. Subscription start dates . 39

6. Conclusion 41

A. Common Acronyms 42

B. Repository of the Project 43

List of Figures

2.1. Route used by customers . 6
2.2. Route used by Oust! . 6

3.1. Software architecture of Oust! . 9
3.2. Example of an instance viewed on the browsable API 14
3.3. Example of a model’s endpoints viewed on Swagger 15

4.1. User Flow of the app . 20
4.2. Wireframe in Sketch . 21
4.3. UI Design in Sketch . 21
4.4. Lifts - Home page . 22
4.5. Lifts - Quote form 1 . 23
4.6. Lifts - Quote form 2 . 23
4.7. Lifts - Booking form 1 . 24
4.8. Lifts - Booking form 2 . 25
4.9. Subscription - Home screen . 25
4.10. Subscription - Registration form 1 . 26
4.11. Subscription - Registration form 2 . 27

5.1. Slot picker screen . 30
5.2. Redux cycle overview [37] . 32
5.3. Redux cycle with Middleware [37] . 34

v

List of Tables

2.1. Comparison of customers and Oust! rounds 6

5.1. Operations for availability timeslots . 39

vi

Listings

3.1. Example of a Model in Django . 13
3.2. Example of a Model Serializer in DRF 13
3.3. Example of a Model Viewset in DRF . 13

5.1. Hello, world! in Flutter . 29
5.2. Slot picker code . 30
5.3. Navigation State . 33
5.4. Navigation Action . 33
5.5. Navigation Reducer . 33
5.6. Lift slots Actions . 34
5.7. Lift slots Middleware . 35
5.8. Lift slots Reducers . 35
5.9. Scheduling set operations . 38

vii

1
Introduction

1.1. Motivation and goals . 1

1.2. Outline . 2

Our society advances at an increasing pace, and it seems that our standards of living
improve with each passing year. Unfortunately, we are also starting to realize that this
progress has consequences.
1.4 million students recently protested in the school climate strikes [6] to prevent further
global warming. In January 2018, China banned the import of recyclables from foreign
countries [7], which highlights the weaknesses in our global waste management strategy.
Thoughtful use of Earth’s finite resources and preservation of our climate are going to
be two significant challenges of the 21st century. Recycling is one of the ways to address
these challenges, but it can sometimes be a burden. In this report, we will introduce an
alternative way of recycling and see how technology can help us in this domain.

1.1. Motivation and goals

This report will be centered around Oust!, a startup that aims to simplify recycling. Oust!
offers at-home recycling through a subscription, as well as one time pickups of objects
and recyclables to discard.
The company was founded in 2017 by four students of the University of Fribourg. We
knew each other previously and launched it outside of the context of University, but
we had the chance to improve some aspects of the company through written works and
projects. This includes this bachelor thesis in which we will explore the existing software
architecture of the company, and build a new mobile application for customers to access
our services easily.
The application will be built with Flutter, allowing us to create an Android and iOS
app with a single codebase. The goal is to have an app ready to be used by the end of
this report. It should allow customers to book and manage our services as seamlessly as
possible.

1

1.2. Outline 2

1.2. Outline

Chapter 1: Introduction
The introduction provides an overview of the contents of this report

Chapter 2: Context
First, will see how recycling systems work in general, and how Oust! fits in the larger
picture of waste management. We will also define in more details what services we offer,
and why we decided to build a mobile app for our customers.

Chapter 3: Global Architecture
In this chapter, we will describe the complete software architecture of Oust!. Most of the
backend was developed before this report, but a REST API will be implemented for the
app we are building.

Chapter 4: Design process
We will then discuss the design process of the app. In the first sections, we will see how
the technology we used was chosen, and then the steps we took to build the UI and UX
of the app. In the last section of this chapter, we will present the interface that was
implemented and explain how it works.

Chapter 5: Development
This chapter presents how the app was built. First, we review the tools we used with
some examples. Then we will explore in more details the most challenging areas of the
implementation.

Chapter 6: Conclusion
Finally, the last chapter discuss the results of this report and offers a personal perspective
on the project as a whole.

2
Context

2.1. Waste management . 3

2.1.1. Recycling systems . 3

2.1.2. Situation in Switzerland . 4

2.2. Oust! . 5

2.2.1. The idea behind Oust! . 5

2.2.2. Next steps . 7

2.1. Waste management

In many countries, increasing the recycling rate has been defined as an important polit-
ical objective. However, recycling has a cost, and it can vary widely depending on the
collection system used.

2.1.1. Recycling systems

Single, dual and multi-stream recycling

We can separate recycling systems into three types, depending on the number of material
streams. In single-stream recycling, everything goes in a single bin, which is usually left on
the curbside and picked up by a truck. The recyclables are then separated at a Materials
Recovery Facility (MRF) through manual and automated sorting. This method has been
growing in popularity in North America in recent years [1]. A variant of this system is
dual-stream recycling, which works similarly but instead of one bin, paper fibers such
as newspapers and cardboard boxes are sorted in a second bin. A comprehensive study
[2] found that dual-stream recycling had a lower overall cost than single-stream. Higher
collection costs were offset by lower processing costs and higher resale value due to the
better quality of the resulting material. The third type of recycling system is multi-stream
recycling, where the depositor sorts recyclables into multiple types of materials. There
is usually no MRF involved. This system is more common in Europe, and especially
in Switzerland where citizens are asked to bring their recyclables to collection centers
accepting up to 50 different types of recyclables [8].

3

2.1. Waste management 4

Bringing and hauling systems

A second distinction between the different systems is whether citizens are in charge of
the transport to a facility, or if another entity is responsible for it. Whether a bringing
or hauling system is used often depends on the number of recycling streams. In single
and dual-stream recycling, materials are usually hauled from the curbside by a truck. For
multi-stream recycling, a common method is collection centers where citizens bring their
recyclables. Hauling of specific materials is, however, also organized in some regions,
usually more urban ones.

Systems used in different parts of the world

No single system has imposed itself throughout the world, which shows that the best
option is not self-evident. The fact that, in general, North American countries moved
from multi-stream recycling to dual or single-stream recycling indicates that they were
considered superior or at least more convenient. However, this may have been predicated
on the assumption that China would continue to import a large part of the resulting
recyclables, which have a high contamination rate relative to multi-stream recycling.
China banning imports of recyclables with a contamination standard higher than 0.5%
changes the situation. The economics of recycling worldwide have been altered as a
consequence of this ban, resulting in many municipalities resolving to send waste to
landfills instead of recycling it [10].

2.1.2. Situation in Switzerland

In Switzerland, where our company is active, a bringing multi-stream recycling system is
the most common. Federal law requires cantons to establish a waste management plan1.
Cantons, in turn, give the responsibility of waste management to municipalities, usually
by requiring collection centers to be established2. This means most municipalities have
collection centers available, which citizens regularly visit to deposit their recyclables.
Smaller collection points accepting the most common recyclables and designed to be
at walking distance are also used. Larger municipalities sometimes offer to haul some
recyclables such as paper and cardboard on the curbside.
Collection through recycling centers, with recyclables separated from the beginning of the
valorization process, yields materials of high quality [9]. It is also relatively cost-effective
for municipalities because there are no direct collection costs for recyclables, in contrast
to single or dual-stream recycling that is generally implemented with hauling. This cost,
however, does not disappear. It is reported on citizens that have to use their time and
usually their vehicles to transport recyclables. This can be a burden as collection centers
may have restrictive opening hours, requiring citizens to visit them during their leisure
time.

1Environmental Protection Act (EPA) Article 31 Paragraph 1 - https://www.admin.ch/opc/en/
classified-compilation/19830267/index.html#a31 - Accessed 31/07/2019

2Example of the Canton of Fribourg: Loi sur la gestion des déchets (LGD) Article 14 - https://bdlf.
fr.ch/app/fr/texts_of_law/810.2 - Accessed 31/07/2019

https://www.admin.ch/opc/en/classified-compilation/19830267/index.html##a31
https://www.admin.ch/opc/en/classified-compilation/19830267/index.html##a31
https://bdlf.fr.ch/app/fr/texts_of_law/810.2
https://bdlf.fr.ch/app/fr/texts_of_law/810.2

2.2. Oust! 5

Alternatives

Elderly people, in particular, have a hard time accessing recycling centers. They often
do not have a vehicle or have difficulty lifting heavy loads. As a result, they must find
other solutions such as asking family members to do it, but this is not always possible.
Sadly, we have found that a large number of them have to dispose of their recyclables in
the trash.
Some other options have been developed to help with this problem. Mr Green, for exam-
ple, is a company active in the German-speaking part of Switzerland that proposes to its
customers to put all their recyclables in a plastic bag, unsorted. The bags are then picked
up and sorted by them. This has the benefit of solving the inconvenience of transport
but introduces the problems of single-stream recycling: the resulting recyclables can be
of lower quality, and processing costs are high, especially in this case as everything is
sorted manually.

2.2. Oust!

2.2.1. The idea behind Oust!

Many people have a strong desire to recycle, but the task can be time consuming and
inconvenient. When we started the company, we realized the shortcomings of the different
systems and thought there could be an alternative. As a result, we had the idea to offer a
subscription service to take care of this burden. Customers would just have to leave their
sorted recyclables at their front door, or wherever is most convenient, and we would pick
it up at regular intervals. Effectively, we would offer a hauling multi-stream recycling
system. We started very small, by distributing flyers and picking up recyclables with our
private cars at first. We quickly saw that there was a strong demand and bought utility
vehicles more adapted to the task.
This system has the advantage of being more efficient than collection centers, since one
vehicle can pickup up the recyclables of around 15 customers in one round, resulting in
much fewer kilometers traveled than if the 15 took their car to go to the recycling center.
We can see an example of this in Figures 2.1 and 2.2, which are a graphical representation
of one of our rounds of 30 customers. In Figure 2.1, we see the path our customers would
take if each of them took their car to go to the recycling center. Figure 2.2 shows the path
one of our vehicles takes to collect recyclables, consisting of two rounds of 15 customers.

2.2. Oust! 6

Fig. 2.1.: Route used by customers

Fig. 2.2.: Route used by Oust!

The more customers we have, the less distance between them, making it more efficient
and ecological since less gas is used for transport. From an economic standpoint, we can
accomplish the task of transporting recyclables in much less time and with fewer resources
than if the customer was doing it himself. Table 2.1 shows the results of the two variants
illustrated in Figures 2.1 and 2.2. For the customer route model, these results come from
the sum of the driving distance and duration from each customer to the recycling center.
For the Oust! route, they are the sum of the same distance and duration values between
customers in the order shown in Figure 2.2. This route is optimized to get the fastest path
visiting each customer. For both models, the values for the distance and duration between
points come from the Open Source Routing Machine (OSRM), which we will discuss later.

Customers route (Figure 2.1) Oust! route (Figure 2.2)

Total distance 510.27 km 128.41 km
Total duration 6:40:10 2:05:36

Tab. 2.1.: Comparison of customers and Oust! rounds

2.2. Oust! 7

As can be seen in Table 2.1, the optimized route with a utility vehicle requires less than a
third of both time and kilometers traveled than the route customers would take. Thanks
to this increased efficiency, we can offer competitive prices profitably if we have enough
customers in a given area.

2.2.2. Next steps

Up until now, we have not had a real customer web or mobile application. Most of the
subscriptions are requested through phone calls or registration on the website, which is
a simple email form, followed by an appointment at the home of the customer.
As our customer base grew, we have been asked more and more to do one-time pickups
of a sofa or a closet, for example, and to bring them to a recycling center. One of the
problems we faced when customers booked what we call lifts was the difficulty of giving
a quote with only text information. A closet can be tiny and picked up in two minutes,
or very large and requiring multiple employees to transport it. In most cases, pictures of
the materials to dispose of were the most effective way to communicate and allowed us
to give an accurate price. However, it is not very practical to ask for pictures by email
for each new request. As a result, the idea of a mobile app became very appealing, as it
would allow taking pictures of the different materials and get an accurate quote in a few
steps. It would also let customers get a subscription directly from the app without an
appointment and manage it easily.

3
Global Architecture

3.1. Overview . 8

3.2. Backend - Django . 9

3.2.1. Advantages of Django . 9

3.2.2. Technologies used . 9

3.2.3. Hosting - Heroku . 11

3.3. REST API - Django Rest Framework 11

3.3.1. Definition of REST . 12

3.3.2. HATEOAS . 12

3.3.3. Implementation . 13

3.3.4. Swagger . 14

3.4. Frontend . 15

3.1. Overview

The software system we use features two main parts, depicted in Figure 3.1. A backend
stores all relevant data and performs the necessary processes. Multiple front ends let
customers and employees interact with the data stored in the backend. In the middle, a
REST API allows the two parts to communicate.

8

3.2. Backend - Django 9

Backend
Django

Rest API
DRF

Customer App
Flutter

Employee App
Flutter

Database
PostgreSQL

Worker / Scheduler
Celery

Heroku

Firebase
Image storage

Push notifications

OSRM
Routing service

Bexio
Invoicing / Accouting

Twilio
SMS

Google Maps

Sendgrid
Email

Sentry
Logging / Monitoring

Slack
Internal messaging

Google Cloud Platform

AWS EC2

Google Calendar
Android / iOS

Admin Site
Django

Web

Fig. 3.1.: Software architecture of Oust!

3.2. Backend - Django

Different technologies were considered to build the backend, and Django, a Python-based
framework was chosen for several reasons. The framework’s slogan is "The Web frame-
work for perfectionists with deadlines" [11], which is an excellent fit for a startup that
usually wants to build and use a product fast.

3.2.1. Advantages of Django

• Learning the basics of the framework and the Python language is considered rela-
tively easy
• Highly customizable admin interface to manage resources stored in the database
• The data we need to store is structured, making a relational database better suited

than a NoSQL database. Django is built primarily for relational databases.
• The main plugin used to create REST APIs for this framework, Django Rest Frame-

work, is very well made and easy to use.

3.2.2. Technologies used

Several packages and external services were used to accomplish a variety of different tasks.

3.2. Backend - Django 10

Celery

Celery is an asynchronous task/job queue based on distributed message passing [12].
Using such software was necessary in our case as Django does not support asynchronous
tasks. Celery is handy to perform work that is not urgent, such as updating data in
external APIs. Coupled with Celery Beat, a plugin for Celery, it allows us to schedule
repeating tasks following a CRON schedule. We use this to automate many business
processes, such as sending payment reminders.

Bexio

Bexio is a Swiss company that offers invoicing and accounting software through a sub-
scription [14]. We chose this solution as most of the data on their platform is accessible
through an API, which allows us to automatically create invoices and synchronize their
payment status with our database, for example. We found that it was also important to
use software specifically designed for the country served as some features change between
regions and are usually not customizable, such as generating the correct payment slips or
following the accounting rules of the country of operation.

Firebase

Firebase is a platform developed by Google which offers many services to help with cre-
ating web and mobile applications [16]. It was chosen for its ease of implementation, and
very comprehensive integration with Flutter, the tool we use to create mobile applica-
tions, which we will see in more detail in Chapter 5. We use Firebase to store images sent
by customers as it is generally not recommended to store them in a database. The link
of the image is then stored in our database. We also use the push notification service,
which allows us to send notifications to both Android and iOS users.

Google Calendar

Our first idea to manage appointments with customers was to create our own scheduling
server, but we quickly realized that this could be a very time consuming and complicated
task. A frontend to display and allow CRUD operations on appointments would also
have to be implemented. As employees already use Google Calendar to add appointments
manually, we decided to use Google’s API and store scheduling information directly in
Google Calendar [17]. The API is flexible and easy to use, allows users to create as many
calendars as needed and most importantly, to keep using Google Calendar for inputting
appointments scheduled via phone calls, for example.

Open Source Routing Machine (OSRM)

As we serve customers at their physical location, we have a lot of geographical data and
operations to perform. At first, we used Google Maps and its API but were quickly
limited by its cost, and by constraints imposed on some operations. Retrieving a matrix
of distance and travel duration between customers, for example, is limited to around 12
customers, but our rounds can go up to 40 customers per vehicle. Therefore, we turned

3.3. REST API - Django Rest Framework 11

to a free open source project, OSRM, a routing engine offering most of the functions
we needed [18]. There is a limited demo test server running OSRM, but to be used
in production OSRM is usually self-hosted. We chose to deploy it on an Amazon Web
Services EC2 instance (t2.small) as it is one of the most popular options for the task,
and is relatively cheap [19]. This allows us to have our own routing engine to generate
optimal subscription start dates, for example.

3.2.3. Hosting - Heroku

The backend is hosted on Heroku, a Platform as a Service company, which makes building,
running and scaling applications very easy [20]. It supports many languages including
Python, and once implemented it reduces the deployment process to a single terminal
command. Heroku may be more expensive than a simple server or instance on other
hosting providers, but the time gained in managing the deployment and the security it
brings makes it well worth it in our case. Our application runs on 3 Hobby dynos. One
is used to host the Django gunicorn server, one for the Celery worker, and one for Celery
Beat, which schedules tasks to send to Celery.
Heroku also provides equally easy to install and manage add-ons for various tools and
services. In our case, we use a Heroku Postgress add-on as a database, and a Redis
cloud message broker for Celery. Dynos and add-ons are easily scalable as the application
grows. For example, our Redis cloud usage fits into the free plan, but for the Heroku
Postgres database, we recently switched to a paid plan with more capacity.

3.3. REST API - Django Rest Framework

Different pieces of software need to access data stored in the backend.

• Employee Android/iOS mobile application used to provide all necessary informa-
tion when completing rounds and recording the time necessary to complete each
customer
• Customer Android/iOS mobile application that allows customers to create and man-

age subscriptions, as well as order one-time lifts.
• A custom software we use to optimize rounds and complete them as efficiently as

possible. It will be hosted on an AWS EC2 instance.

Other projects are planned for the following months, such as rebuilding the customer-
facing website which will retrieve and post live data to the backend and might run a web
version of the customer mobile app, when Flutter fully supports it.
A widely used method to allow all of these parts to communicate is RESTful APIs. Rep-
resentational State Transfer (REST) is an architecture style described by Roy Fielding for
designing loosely coupled applications over HTTP [3]. REST defines a set of constraints
but does not give rules regarding implementation.

3.3. REST API - Django Rest Framework 12

3.3.1. Definition of REST

Six architectural constraints define a true RESTful API:

Client-server
The goal of this constraint is to enforce separation of concerns between the server and
clients

Stateless
The server does not keep track of any state data between sessions. The clients send all
necessary state information with each request.

Cacheability
The server should define if its response is cacheable or not, allowing the client to reuse
the response for equivalent requests if the data is cacheable.

Layered system
REST allows using a layered architecture where the APIs are deployed on a server, the
data stored in another and the authentication handled on a third server for example.

Uniform interface
This is the main distinguishing factor between REST and other styles. The idea is to
decouple implementation from the services provided, to allow server and clients to evolve
independently.

Code on demand
This constraint is optional and was not implemented in our API.

3.3.2. HATEOAS

The uniform interface constraint defines four subconstraints, of which our API follows
three. Hypermedia as the engine of application state (HATEOAS), the fourth one, spec-
ifies that a REST client should return links to related resources instead of URIs. This
would allow someone to discover all resources of the API by following the links, without
needing prior knowledge of the structure of the data.
We chose not to implement this, even though it would be easy to do using DRF. Our
client applications are relatively small, and the API is intended to be consumed by in-
ternal developers who have a good knowledge of the data structure. Furthermore, using
HATEAOS would complicate the logic on the frontend without bringing clear benefits in
our case.
As a result, we can consider the API implemented a RESTful API, but not a truly REST
API. Following Leonard Richardson’s levels of REST [21], the API developed is at level
2, the final level 3 being a REST interface using HATEOAS.

3.3. REST API - Django Rest Framework 13

3.3.3. Implementation

One of the reasons for choosing Django as our framework was the ability to use Django
Rest Framework, making it easy to develop our API.
We use the Django ORM (Object Relational Mapping) with models that contain data
and methods for each type of resource. We can see an example of the Phone Number
model in Listing 3.1.

1 class PhoneNumber(models.Model):
2 customer = models.ForeignKey(’Customer’, on_delete=models.CASCADE)
3 phone_number = PhoneNumberField()
4 number_type = models.CharField(choices=PHONE_NUMBERS_TYPES)
5 reminder = models.BooleanField()

List. 3.1: Example of a Model in Django

Setting up a standard endpoint with GET, POST, PUT, PATCH, and DELETE oper-
ations is very straightforward. First, we define a serializer for the model, as shown in
Listing 3.2.

1 class PhoneNumberSerializer(serializers.ModelSerializer):
2 class Meta:
3 model = PhoneNumber
4 fields = ’__all__’

List. 3.2: Example of a Model Serializer in DRF

DRF can serialize and deserialize most standard data types by default, and, if necessary,
defining custom logic for a field is simple. We then implement a viewset that takes two
required arguments: a serializer and a queryset, which is the query to the data exposed
by the endpoint. There are optional arguments, here we also define a permission class,
allowing access to the resource if it is linked to the current user or if the user is an admin.

1 class PhoneNumberViewSet(viewsets.ModelViewSet):
2 serializer_class = PhoneNumberSerializer
3 queryset = PhoneNumber.objects.all()
4 permission_classes = [IsCustomerOrAdmin]

List. 3.3: Example of a Model Viewset in DRF

3.3. REST API - Django Rest Framework 14

Result

Django REST framework automatically creates a browsable API when the requested
format is HTML, such as when the endpoints are accessed through a web browser. Figure
3.2 shows an instance of a phone number viewed with admin credentials. We found this
functionality very useful, and it made developing the API more convenient.

Fig. 3.2.: Example of an instance viewed on the browsable API

3.3.4. Swagger

Having documentation of each endpoint of an API can be very handy, and we chose
Swagger for this task. Swagger UI creates an interactive HTML webpage displaying each
endpoint with its properties and allows direct interaction with the API [22]. To implement
it, we use a Django package called drf_yasg (Yet Another Swagger Generator) [23]. This
package auto-generates OpenAPI 2.0 schemas from the Django REST Framework code,
which are then displayed by Swagger. The Swagger documentation for the API we built is
available here: https://admin.oust.ch/api/swagger/ at the time of writing, however,
most of the endpoints are not public.

https://admin.oust.ch/api/swagger/

3.4. Frontend 15

Fig. 3.3.: Example of a model’s endpoints viewed on Swagger

Filtering

Several options are available when building an API to filter the results or find related
resources. We decided to use query parameters in the URL, which allows us to filter
queries with several different parameters concurrently. For example, if we want to request
the phone numbers associated with a specific customer, customerId 1002 let’s say, we can
add the query parameter /?customerId=1002 to the end of the request. We could add other
filters if necessary, such as type of phone number, and use them simultaneously.

3.4. Frontend

We have not included our web frontend www.oust.ch in Figure 3.1, as it is a static website
with no connection to the backend for now.
Currently, the other existing front ends are not customer-facing. We customized the
built-in admin interface of Django to manage everything related to the backend from the
admin side. We also have an internal mobile application used to help drivers complete
rounds.
The center of our attention, however, is going to be the customer mobile application that
was developed for this report. The next two chapters will go into detail about the design
and development of this app.

www.oust.ch

4
Design process

4.1. Overview . 16

4.2. Requirements gathering . 17

4.2.1. Available technologies . 17

4.2.2. Tool used for our app . 18

4.3. App design . 18

4.3.1. Problem discovery . 19

4.3.2. UX Design . 19

4.3.3. Prototyping . 20

4.3.4. UI Design . 21

4.4. Implemented UI . 22

4.4.1. Lifts . 22

4.4.2. Subscription . 25

4.1. Overview

To get the most of our limited development resources, we tried to incorporate UI (User
Interface) and UX (User Experience) best practices from the beginning. As a result, we
followed this plan:

• Gather requirements and select the most appropriate technologies to use
• Build a prototype of the app and continuously user test it
• Once we have a good prototype of the UI, develop the app itself

In this chapter, we will go through those steps and discuss the main challenges encountered
with each one.

16

4.2. Requirements gathering 17

4.2. Requirements gathering

The tool we choose to build the app should satisfy the following requirements:

• Good performance on both iOS and Android
• High development velocity and easy to learn
• Support for Google Maps
• Support for push notifications
• Ability to register credit cards

4.2.1. Available technologies

Several tools can be used to build mobile apps, which can be divided into two main
groups.

Native development

The first one is building the app in the designated language of the operating system,
usually Java or Kotlin for Android, and Objective-C and Swift for iOS. This method
is used by most large companies as the resulting app usually has the best performance
and uses the native components of the operating system. However, this requires two
separate apps written in different languages, essentially doubling the work required. For
smaller companies, this can be very hard to do, and might not be the most efficient way
to operate.

Cross-platform development

Ideally, one would have a single codebase that can be deployed on several platforms. This
is the promise of cross-platform development tools, but this can come with significant
drawbacks. Some of the popular tools are React Native, Xamarin, PhoneGap, and Ionic.
Each has a slightly different way of operating, which, unfortunately, usually has some
major disadvantage. React native, for example, is not fully cross-platform and frequently
requires some parts to be written in native iOS and Android. The performance usually is
not on par with native apps, resulting in large companies that were using React Native,
such as Airbnb, deciding to turn away from it [24].

Flutter

One of the newest cross-platform development tools, Flutter, was initially released by
Google in 2017, with its 1.0 stable release coming out in December 2018 [25]. Flutter
takes a radically new approach by completely sidestepping the native platforms. The
framework could theoretically run anywhere, as it draws every pixel on the screen itself
through Google’s Skia Graphics Engine, which also powers Chrome. It currently supports
Android and iOS. Desktop and web versions are available in technical preview.

4.3. App design 18

Flutter has several advantages over its competitors. Hot reload increases development
speed as changes to the code are reflected instantly, in stark contrast to the long compile
times of other tools. It usually has excellent performance in tests because Flutter is
directly compiled to native code and executed very efficiently. The rise in popularity in
the short time it has been available makes apparent the warm welcome that the developer
community has given it. It was ranked third most loved framework in the Stackoverflow
2019 Developer Survey [26].

4.2.2. Tool used for our app

Given the good fit with our requirements and the features currently in development such
as web support, we decided to use Flutter to build our mobile app. It has a plugin for
Google Maps developed by the Flutter team itself, and support for push notifications
through Firebase, which is built by Google too and is very well integrated with Flutter.
Flutter only falls short on the last requirement: the ability to easily register credit cards,
as no official plugin exists for the major credit card payment providers such as Stripe.
However, this is not a deal-breaker since this functionality will be implemented later, and
we expect better options to be available by then.

4.3. App design

The top priority we set for our mobile app was to be as simple to use as possible. A
large part of our target audience is not necessarily used to booking services through a
mobile app. If we want the app to be successful, using it should be intuitive, and getting
a subscription or booking a lift would have to be seamless. That is not easy to do in
general, and especially in our case, where we need quite a few data points to perform the
tasks mentioned above.
To achieve that goal, we tried to inform ourselves as best as possible about the current
best practices. One of the ways to do this was to follow online courses, such as the
ones on learnux.io [27]. We also did some research with books, most notably The design
of Everyday Things by Don Norman which is seen by many as one of the best books
about design basics, very useful to know for UI/UX design [4]. We used the 10 Usability
Heuristics for User Interface Design as guidelines throughout the process [5] [28].
The general idea when designing a mobile application is to start from the problems the
app is trying to solve. With that in mind, the goal is to get from a vague idea to a
reasonably high fidelity prototype that a developer can implement. These are the steps
we followed:

1. Problems discovery: User and market research
2. UX Design: User journey maps, sketches of major components.
3. Prototyping: Wireframes, low fidelity prototypes.
4. UI Design: Mockups of final UI, high fidelity prototypes.

4.3. App design 19

4.3.1. Problem discovery

As we started the company around two years ago, we have a good idea of the problems
we want to solve for our customers, and of the most practical ways to do it. A common
practice in this phase is to perform user interviews. We were able to skip this step as
we start each subscription by a meeting with the customer, which is a good opportunity
to learn more about them and what they need. We also have a good idea of our target
audience because of these appointments.
Before starting the company, we thought that the majority of our customers would be
elderly people, but we found that around 70% of them are younger than 50 years old.
As mobile apps generally see a better adoption in young people, this was a motivating
factor in deciding to build an app. In general, we have a good sense of our customer’s
needs, and therefore did not feel the need to go through the step of establishing Personas
or "Jobs To Be Done" forms.

4.3.2. UX Design

User Experience is how a user experiences and interacts with a product. Our goal here
is to design the app to maximize user satisfaction when using it. This means making it
simple, logical, and efficient to use, but also taking into account how the average user
feels when using the product. We had to choose how to structure the app, and what the
best method to get from a new user to a subscribed customer was.
For the structure, we quickly decided on using two separate bottom tabs, one for lifts
and one for subscriptions. A third bottom tab would be the profile with general customer
information, invoices, and payment methods. We think that the most appropriate way for
a user to get a subscription or lift is through a wizard form: multiple forms separated into
several steps that are often easier to go through than single page forms. The idea is that
the form asks for the information it needs dynamically. If a user does not have an account
yet, one will be created while completing the wizard form, whereas an authenticated
user will not see an account creation screen, for example. A user that wants either a
subscription or lift should just have to follow the steps of the form, and after the last
step, everything should be ready for him.
At this point, we have a general idea of how the app would work. The next step is to
think of the concrete steps a user would take through the app. This generally takes the
form of a user flow chart as we can see in Figure 4.1. Not every step is represented, but
the major ones should be there.

4.3. App design 20

User flow

Home

Lift

View lift View Subcription

View Pickups

Change payment

Change location

Change subscription

Cancel pickup

Push back pickup

Add note

New Lift New Subscription

Take pictures Choose subscription

Address

Receive price

Accept

Choose date

Create account

Choose payment

Refuse

Address

Location details

Recycling bins

Start date

Unavailable

Get email

Subscription
Profile

Personal info Payment info

With
authentication

With and without
authentication

Fig. 4.1.: User Flow of the app

We want a user to be able to explore as much of the app as possible before having to
create an account. We know that if the first screen we show when opening the app is
a sign in or sign up screen, we will lose a large part of users right away. This way, the
user can discover what the app is about before committing to creating an account. This
should help get a higher retention rate during the signup process.

4.3.3. Prototyping

Now that the general structure of the app is set, we get to the largest part of the UI design
process: deciding how each screen will work. Wireframes are usually used here. They
are similar to blueprints, as they do not go into details about the appearance. The goal
is to arrange different elements, such as buttons, titles, lists, or text fields, to determine
how screens will function. Many tools can be used to draw wireframes, but we started
with hand-drawn sketches for the early steps. When we had a good idea of the major
screens, we switched to Sketch, a vector graphic software specifically designed for UI and
UX design [29]. In Figure 4.2, we can see an example of the wireframe of some screens
from the profile tab designed in Sketch.

4.3. App design 21

Fig. 4.2.: Wireframe in Sketch

Sketch has a prototype function that links one part of a screen, a button, for example, to
the screen that should appear when the button is clicked. This results in a low fidelity
prototype available online [30]. We used this prototype to test our ideas with friends and
family, updating it with the feedback received continuously.

4.3.4. UI Design

The last step of the design process is to define the appearance of the app . Due to time
constraints, we could not give this step as much time as we would have wanted to. We
designed some screens, as shown in Figure 4.3, to get a general idea of what the final
design would be, but it is more an indication than a final design.

Fig. 4.3.: UI Design in Sketch

4.4. Implemented UI 22

4.4. Implemented UI

Before detailing how the app was implemented in the next chapter, we will go through
the final UI of the finished app and explain how its main parts function.

4.4.1. Lifts

The app is divided into two parts, the first one being lifts or one-time pickups. The idea
is simple: customers can take a picture of anything they would like to dispose of, receive
a quote for the elimination and book an appointment for it.

Fig. 4.4.: Lifts - Home page

Figure 4.4 shows the home page of the lift tab, on the left when the user is not authenti-
cated or has not booked any lift yet, and on the right when there are existing lifts.

4.4. Implemented UI 23

Fig. 4.5.: Lifts - Quote form 1

When the user clicks on discover or new a wizard form starts. On the first step, he is asked
to provide pictures of what he wants to discard. The second step collects information
about the location, such as the number of floors and whether there is an elevator or
not. On the next step, personal information like name and address are asked. If they
have already been inputted while creating another lift of subscription, those fields will be
pre-filled.//

Fig. 4.6.: Lifts - Quote form 2

4.4. Implemented UI 24

Postal codes are downloaded from the database and are searchable in the corresponding
field. If a user is located in a postal code that is not covered, he will be redirected to
a screen asking him if he wants to be contacted when we start serving his area. If the
postal code is covered and the user is not authenticated, the form will ask for an email
and password to create an account. If the user is authenticated, this step will be skipped.
When all steps are completed, a confirmation screen, as shown in the last screen of Figure
4.6 is displayed. At this point, all the data entered into the form is sent to the backend.
Employees are then notified that a new lift has been created.

Fig. 4.7.: Lifts - Booking form 1

As soon as a price is set in the backend, a push notification is sent to the customer to
inform him. When he clicks on the notification, the first screen of Figure 4.7 is displayed,
and he can choose to accept or refuse the price that was set. If he accepts, the booking
form starts. He is first asked whether he as to be present for the lift or not. This will
determine if a date and time are scheduled, or just a date if he does not need to be
present.

4.4. Implemented UI 25

Fig. 4.8.: Lifts - Booking form 2

On the last step, the user can choose his payment method and then receives a confirmation
message. Finally, the lift is set at the requested time.

4.4.2. Subscription

The second part of the app is dedicated to the customer’s subscription. Here, users can
manage their subscription and its pickups. If they do not have a subscription, they can
create one through a wizard form similar to the one used to book a lift.

Fig. 4.9.: Subscription - Home screen

4.4. Implemented UI 26

Figure 4.9 shows the home screen of a user who has a subscription, as well as the list of
all pickups. For each pickup, the user can push it back, cancel it, or add a note. The
blue dot on the left of the first six pickups indicates that they are part of the current
subscription period and have been paid.

Fig. 4.10.: Subscription - Registration form 1

To create a subscription, the form guides the user through the registration process by
first asking which frequency he wants. Some screens that appear next are not shown for
the sake of brevity, such as name and address. The user can order sorting bins directly
during sign up if he wants to. He is then asked where the sorting bins will be located.

4.4. Implemented UI 27

Fig. 4.11.: Subscription - Registration form 2

A phone number must be provided in case the sorting bins cannot be found, as well as
to send optional SMS reminders one day before the pickup. The user can then choose
the date of the first pickup from a list of possible start dates. At the end, the preferred
payment method and the payment interval can be selected, after which the subscription
is created. The resulting screen is the first displayed in Figure 4.9.

5
Development

5.1. Flutter . 28

5.2. State management . 29

5.2.1. Local state . 29

5.2.2. Global state . 31

5.3. Redux . 32

5.3.1. Redux cycle . 32

5.3.2. Redux middleware . 34

5.4. Implementation challenges . 36

5.4.1. Data modeling . 36

5.4.2. Wizard forms . 36

5.4.3. Push notifications . 37

5.4.4. Image storage . 37

5.4.5. Lift appointment timeslots 38

5.4.6. Subscription start dates . 39

5.1. Flutter

Flutter apps are written in Dart, a language developed by Google. It is an object-
oriented statically typed language taking inspiration from many other languages, includ-
ing Javascript and C [32]. Dart can be both AOT (Ahead of Time) and JIT (Just in
Time) compiled, making fast development cycles possible with a feature called hot reload.
Unlike many other tools used to build apps, Flutter does not have a layout language like
JSX or XML, but only Dart code. Flutter uses a declarative style of programming in
opposition to most other UI frameworks such as Android SDK or iOS UIKit [31].
In Flutter, everything is called a widget. The idea is that each widget is a small element
of the UI that can be composed with many others to build an app. As Flutter follows
the declarative style, widgets describe what the UI should look like for a given state.
When the state changes widgets are rebuilt to reflect the new state of the application.
For example, a setting switched from off to on will trigger a rebuild of the interface.

28

5.2. State management 29

1 import ’package:flutter/material.dart’;
2

3 void main() {
4 runApp(
5 Center(
6 child: Text(’Hello, world!’),
7),
8);
9 }

List. 5.1: Hello, world! in Flutter

Listing 5.1 shows a "Hello, world!" example in Flutter, composed of two widgets: Center
and Text. Here the only state is the string "Hello, world!", and it does not change.
In a real-world app, however, state changes a lot and managing it is one of the major
challenges of building a mobile application.

5.2. State management

First, we need to clarify what is meant by state in this context. The Flutter documenta-
tion says that state is "whatever data you need in order to rebuild your UI at any moment
in time" [33]. We can divide state into two types: local and global state.

1. Local state: This state is usually needed by a single widget, such as the progress
of an animation. It is also called ephemeral state and can be assimilated to the
RAM in a computer: used now and discarded later.

2. Global state: Several widgets generally share this state, and it is not ephemeral.
Also called application state, it can be data related to the user or data that should
be preserved through time.

5.2.1. Local state

Local state is relatively easy to manage through a widget included in Flutter: Stateful-
Widget1. Figure 5.1 shows an example of a screen using a StatefulWidget. This screen
allows the user to choose when he wants us to pick up something. Several possible ap-
pointment times are displayed for July 19th, and the arrows can be used to navigate to
later dates and their corresponding available times. Storing the currently displayed date
is ideal for a StatefulWidget as this is purely ephemeral.

1StatefulWidget class: https://api.flutter.dev/flutter/widgets/StatefulWidget-class.html -
Accessed 31/07/2019

https://api.flutter.dev/flutter/widgets/StatefulWidget-class.html

5.2. State management 30

Fig. 5.1.: Slot picker screen

Listing 5.2 is a shortened version of the code of the slot picker. The full version is available
on the GitHub repository. We can see that the SlotPicker widget extends StatefulWidget,
and creates its state through _SlotPickerState. It takes a viewmodel as an argument,
which we will see more in detail later as it gives access to the global state. In this case,
the viewmodel makes available the list of dates and times available.

1 class SlotPicker extends StatefulWidget {
2 final _ViewModel viewModel;
3 SlotPicker(this.viewModel);
4

5 @override
6 _SlotPickerState createState() => _SlotPickerState();
7 }
8

9 class _SlotPickerState extends State<SlotPicker> {
10 List<DateTime> dates;
11 int currentDate = 0;
12

13 @override
14 Widget build(BuildContext context) {
15 return Column(
16 children: <Widget>[
17 Row(
18 children: <Widget>[

5.2. State management 31

19 DateNavigationButton(
20 direction: Direction.previous,,
21 isActive: currentDate > 0,
22 onPressed: _previousDate),
23 RaisedButton(...), // Button between the two arrows
24 DateNavigationButton(
25 direction: Direction.next,
26 isActive: currentDate < dates.length - 1,
27 onPressed: _nextDate),
28],
29),
30 GridView(...) // Grid of available times
31],
32);
33 }
34

35 void _previousDate() {
36 setState(() {
37 currentDate--;
38 });
39 }
40

41 void _nextDate() {
42 setState(() {
43 currentDate++;
44 });
45 }
46

47 @override
48 void initState() {
49 dates = toUniqueDates(widget.viewModel.liftSlots.toList());
50 super.initState();
51 }
52 }

List. 5.2: Slot picker code

The two pieces of local state here are a list of dates dates, and the index of the currently
selected date currentDate initialized at 0 (line 10 and 11). The dates list is initialized each
time the state object is created through initState() at line 48, which takes the complete
list of available slots from the global state and returns a list of unique dates for our slot
picker.
The currentDate is modified by the _previousDate() and _nextDate() functions by calling
setState(), which notifies Flutter that the state changed, triggering a rebuild of the inter-
face. Those functions are passed to DateNativationButton, a widget we created ourselves
to display the arrow buttons, that calls the corresponding function when pressed.

5.2.2. Global state

Global state is not as straightforward, and there are many options available to manage
it. There is no consensus on the best method to use, and the most appropriate option
generally depends on the complexity and type of the application, as well as personal
preference. Here are the main state management approaches used in Flutter:

5.3. Redux 32

• InheritedWidget and InheritedModel
• Provider and Scoped Model
• Redux
• BLoC / MobX

We will not go into details about each one of them, but some characteristics can be useful.
InheritedWidget and InheritedModel are generally considered the most straightforward
methods and are great for a small, not too complex app. Provider is relatively new and
has recently been pushed by the Flutter team as a good default option when first starting
out. The options are evolving rapidly, as Provider did not exist when we started this
project. The remaining approaches: Redux, BLoC, and MobX, are generally used for
larger and more complex apps. We quickly realized that an approach best suited for
more complex apps would be a better option for us, leaving us with some leeway to grow
as we hope our app will expand in functionality in the future. After some research and
tests, we decided on Redux as it fits well with the type of app we have. It is also very
popular in its original language Javascript, and there are therefore many resources about
Redux available.

5.3. Redux

Flutter does its job very well: create user interfaces that run on multiple platforms.
However, it does not do much more, to handle data and logic inside the app we need
something else, which we have chosen to be Redux [34]. As a result, a large part of the
codebase is based on the Redux architecture. We will first explain the basics of how it
works so that the following sections are more comfortable to follow.
Redux was created in 2015 in Javascript, where it is widely used to manage state in web
and mobile applications. As it is a well-proven architecture, it has been ported to the
Dart language [35] and has a specific package for Flutter [36].

5.3.1. Redux cycle

Redux is based on a unidirectional data flow, as illustrated in Figure 5.2.

Fig. 5.2.: Redux cycle overview [37]

5.3. Redux 33

Redux follows three core principles that explain this cycle:

1. Single source of truth (Store): The global state of the app is stored in a single
object called a Store.

2. State is read-only (Actions): The only way to modify the state is by emitting an
action, which is an object describing what happened.

3. Changes are made with pure functions (Reducers): The state is updated by
a Reducer: a function taking the previous state and an action as an argument, and
returning a corresponding new state.

Let’s take an example: a user switches bottom tabs in the app. The index of the active
tab is in a part of the Store we named NavState as shown in Listing 5.3. Line 2 declares
selectedBottomNav, the integer that stores the corresponding value. We store data as
immutable values, but we will see more on that later.

1 abstract class NavState implements Built<NavState, NavStateBuilder> {
2 int get selectedBottomNav;
3

4 factory NavState() => _$NavState((NavStateBuilder b) => b
5 ..selectedBottomNav = 0
6);
7 }

List. 5.3: Navigation State

When the user clicks on a new bottom tab, ChangeBottomNavAction (Listing 5.4) is dis-
patched, with the index of the tab that was clicked as payload. ChangeBottomNavAction is
a simple Dart class, nothing more.

1 class ChangeBottomNavAction {
2 final int index;
3 ChangeBottomNavAction({this.index});
4 }

List. 5.4: Navigation Action

When ChangeBottomNavAction is dispatched, the Reducer function _changeBottomNavReducer
(Listing 5.5) is called with the state NavState and the corresponding action as arguments.
It return a new state with the selectedBottomNav value replaced by the value contained in
the payload of the action: the tab that the user clicked.

1 NavState _changeBottomNavReducer(NavState state, ChangeBottomNavAction action) {
2 return state.rebuild((NavStateBuilder b) => b
3 ..selectedBottomNav = action.index,
4);
5 }

List. 5.5: Navigation Reducer

At this point, the Store has been updated with the new state. The UI is rebuilt with
the new tab active. This might seem like a lot of code to accomplish a straightforward
action, and in this case, it is. One of the disadvantages of Redux is that it sometimes
requires a high percentage of boilerplate code. On the other hand, this pattern starts to
make sense as the application grows in complexity. It becomes easy to see the result of
each action, and even to travel through time and see step by step what happened in the
app.

5.3. Redux 34

5.3.2. Redux middleware

The cycle we have seen has one element missing: asynchronicity. When we need to fetch
data from our server, for example, we cannot do it from Reducers as they should be pure
functions. To handle this, we add a new step to the cycle called Middleware.

Fig. 5.3.: Redux cycle with Middleware [37]

Middlewares intercept actions before they get to Reducers. They can perform any opera-
tion, then dispatch the original action, another one or none at all. In our app, Middlewares
are frequently used as we need to communicate regularly with our API. We can take the
screen we saw earlier in Figure 5.1, where users can choose the date and time of a pickup,
as an example. An action is dispatched a few screens before the widget is displayed, to
fetch a list of timeslots available. As a result, the most up to date data is generated by
the server and added to our Store. The action in question is LoadLiftSlotsRequest (Listing
5.6, line 1).

1 class LoadLiftSlotsRequest {}
2

3 class LoadLiftSlotsSuccess {
4 final List<DateTime> liftSlots;
5 LoadLiftSlotsSuccess({this.liftSlots});}
6

7 class LoadLiftSlotsFailure {
8 final String error;
9 LoadLiftSlotsFailure({this.error});

10 }

List. 5.6: Lift slots Actions

When the action is dispatched, _loadLiftSlots() (Listing 5.7) is called as it is set up to in-
tercept LoadLiftSlotsRequest actions. We have a repository class containing fetchLiftSlots
(), as well as a function for every endpoint we need to use on our API. It takes as argument
the ID of the currently selected lift, which will be used in the URL of the request. In line
5, the JSON data is deserialized to a Dart list of datatimes. Then the Middlewareare
dispatches a new action, LoadLiftSlotsSuccess (Listing 5.6, line 3) with the fetched list
as argument. If an error occured at any point during those steps, LoadLiftSlotsFailure
(Listing 5.6, line 7) is called instead with the corresponding error.

5.3. Redux 35

1 void _loadLiftSlots(Store<AppState> store, LiftBookFormStart action, NextDispatcher
next) async {

2 next(action);
3 try {
4 final dynamic data = await repository.fetchLiftSlots(store.state.liftState.

selectedId);
5 final List<DateTime> liftSlots = List<DateTime>.from(data.map<dynamic>((dynamic x)

=> DateTime.parse(x)));
6 store.dispatch(LoadLiftSlotsSuccess(liftSlots: liftSlots));
7 } catch (e) {
8 store.dispatch(LoadLiftSlotsFailure(error: e.toString()))
9 }

10 }

List. 5.7: Lift slots Middleware

Let’s clarify the order of what happens. The Middleware (Listing 5.7) passes the orig-
inal action to the Reducer with next(action) at line 2. The Reducer processes this ac-
tion, and only then does the fetching of the data begin. Therefore in the Reducer,
first _loadLiftSlotsRequestReducer() (Listing 5.8, line 1) gets the LoadLiftSlotsRequest ac-
tion, and as a result returns a new state with the isLoading flag set to true. Then if
the data fetching was successful, _loadLiftSlotsSuccessReducer() is called with the list
of datetimes as payload of the action. The isLoading flag is set to False, and the list
of time slots are added to the new state. If the data fetching isn’t successful, then
_loadLiftSlotsFailureReducer() is called, isLoading is set to False and the error message
is saved to the Store.

1 LiftBookFormState _loadLiftSlotsRequestReducer(LiftBookFormState state,
LoadLiftSlotsRequest action) {

2 return state.rebuild((b) => b..isLoading = true);
3 }
4

5 LiftBookFormState _loadLiftSlotsSuccessReducer(LiftBookFormState state,
LoadLiftSlotsSuccess action) {

6 return state.rebuild((b) => b
7 ..isLoading = false
8 ..liftBookForm.replace(state.liftBookForm.rebuild((b) => b
9 ..liftSlots.replace(action.liftSlots)

10)));
11 }
12

13 LiftBookFormState _loadLiftSlotsFailureReducer(LiftBookFormState state,
LoadLiftSlotsFailure action) {

14 return state.rebuild((b) => b
15 ..isLoading = false
16 ..error = action.error);
17 }

List. 5.8: Lift slots Reducers

5.4. Implementation challenges 36

5.4. Implementation challenges

Now that we have covered the two main building blocks of our app, Flutter and Redux,
we will go through the main challenges we encountered during the development of the
app.

5.4.1. Data modeling

As we have around twenty different data models such as user, customer, and subscription,
we need an efficient way to serialize and deserialize data from the API. We could write
the functions to do it by hand, but this can take a long time, and there are more efficient
ways of doing this.
One of them is a package called built_value [38]. The primary purpose of this package is
to provide immutable value types. The term value type is used to describe types where
equality is based on value, not on a reference. A 6 is always equal to another 6 and cannot
be changed. They are immutable by nature.
That property goes hand in hand with Redux, which for various reasons usually requires
immutable data types [39]. What is interesting about the built_value package is that it
comes with serialization and deserialization built-in. If we take our user data model as
an example, it is declared in around 10 lines of code, and 140 corresponding lines of code
are generated by built_value. The generated code includes serialization functions, and
many other repetitive functions we would otherwise have to write ourselves.

5.4.2. Wizard forms

We had a few requirements in mind for the wizard forms before we started building them.
As they are quite long and ask for numerous information, the user should be able to leave
the form and come back to it without losing data he entered. Achieving data persistence
is not a trivial task. In our case, it means each time a letter is tapped or an option is
chosen, data should be saved to the Redux Store. We did this by creating a data model
for each form that includes every answer as fields. At every input event, an action is
dispatched with the new value as payload. A corresponding Reducer updates the Store
with the new information. Form fields retrieve data saved in the Store when they are
built so that the data inputted is still here if the user leaves the form.
Another requirement is that the user should be able to navigate back and forth between
screens freely. As some screens are conditional on previous input, the back and next
button will not always link to the same page. There are several ways we could have
built this, but we choose to use Flutter built-in Navigator [40] along with Redux. An
integer called step is saved in the Store. When the next button is tapped, an action is
dispatched, the Reducer increments step by 1, and a Middleware navigates to the screen
corresponding to the current step. The Reducer also checks the values currently in the
Store, and can conditionally increment by a different number if a screen has to be skipped
based on the user’s previous choices. For example, if a user said he does not want sorting
bins on screen 7, the Reducer is going to increment the step to 9 if screen 8 is the sorting
bins screen. Forward navigation works by pushing a new route onto a navigation stack.
As a result, the back button simply pops the current route to get to the previous screen.

5.4. Implementation challenges 37

The last problem is that if the user closes the form, every route pushed to the navigation
stack is popped until only the home tab is left. If the user starts the form again, and we
just navigate to the screen corresponding to the current step, back navigation would be
lost. This is because the routes of the previous screens would not be in the navigation
stack. To solve this, a Middleware checks the current step when the user starts or returns
to a form. It then pushes every route from the first step of the form to the current step
onto the navigation stack. In doing so, it also skips screens that should not be in the
stack based on previous choices of the user. This results in the same navigation stack
than if the user never left the form, where he can freely navigate between screens.

5.4.3. Push notifications

Having a way to contact our users after they have requested a quote for a lift is critical.
If we do not have a reliable way to contact users, we may lose potential customers. That
is the purpose of notifications, which can be either local or push. Local notifications are
programmed by the app to be sent at a specific time. Push notifications are sent from a
server at any time, and they are the type we need as prices are set at an undetermined
time.
Android and iOS both have different ways of managing push notifications. Luckily there
is a service offered by Firebase called Firebase Cloud Messaging (FCM) that simplifies the
process. Some platform-specific setup has to be done on the Flutter app for FCM to be
used, but it is relatively straightforward. Once this is done, the process is the following:

• On the app, retrieve a device registration token. This is a unique identifier linked
to the current install of the app.
• When the user submits a lift, save the current token on the backend and link it to

the user that submitted the lift.
• After a price is set for the lift, send a push notification from the backend to the

corresponding token.

For both the Flutter app and the python backend, there is an FCM package [42] or library
[43] available.

5.4.4. Image storage

Ideally, we would have liked to store the images from the lift request on our existing
servers. After some research, we found out that storing images directly in a relational
database such as PostgreSQL is not optimal. Instead, it is generally considered a better
approach to store images in dedicated hosts such as Amazon S3 or Firebase.
There are two main methods to get the image to a dedicated host [41]. The first one,
called pass-through, consists of creating an endpoint on the backend REST API, which in
turn uploads the image to the chosen host. However, this method has several drawbacks,
such as latency issues and timeout problems on the backend.
Instead, we chose the second option: direct uploads. Here the image is sent directly to the
host, which returns a URL to the image. We then store the URL in the database. Since
there is excellent support from Firebase in Flutter, we chose this provider as host for
our images. When the user selects an image, it is immediately uploaded by the Firebase

5.4. Implementation challenges 38

plugin. When the upload is complete, a URL is returned, and an action is dispatched
with the URL as payload. A Middleware then creates a Lift Image object in the database
with the URL of the image and the backend assigns it an ID. The app saves both the
URL used to fetch images from Firebase and the ID to manage them on our backend.

5.4.5. Lift appointment timeslots

After customers have accepted the price of a lift, they can choose the date and time of the
appointment. To generate this list, we need to take different scheduling information into
account. First, appointment slots should be given during Oust! opening hours. They
should also be proposed when the recycling center closest to them is open. Moreover, at
least one vehicle must be available during the expected duration of the lift.
Scheduling information can be very tricky to store and manage. Opening hours of recy-
cling centers, for example, are recurring events that can be modified if they happen to be
on a public holiday. This gets quickly complicated to implement if we decide to store that
data on our database. What’s more, we then need to create a user interface to display
existing appointments and modify them as some are added after a phone call or email.
We decided instead to store all scheduling information on Google Calendar. It is already
used in the company because the mobile and web app to consult appointments are excel-
lent. There is an API through which we can easily create and manage calendars from our
backend through a Google service account. As a result, we have a separate calendar for
our opening hours and opening hours of recycling centers. The backend also automati-
cally creates two calendars per vehicle, one for lift appointments and one for scheduled
rounds.
To generate the list of available timeslots, we use simple operations that can be assimilated
to set theory. We fetch each event of a given calendar and transform them in timeslots,
which are simple instances with a start and end datetime. We have defined two operations:
intersection and difference, as shown in Listing 5.9.

1 class TimeSlot:
2 def __init__(self, start, end):
3 self.start = start
4 self.end = end
5

6 # Returns true if a and b overlap
7 def overlap(a, b):
8 return a.start < b.end and b.start < a.end
9

10 # Returns true if a is contained in b
11 def contains(a, b):
12 return a.start >= b.start and a.end <= b.end
13

14 # Returns all timeslots_a contained in any timeslot_b
15 def intersection(timeslots_a, timeslots_b):
16 result = []
17 for timeslot_a in timeslots_a:
18 for timeslot_b in timeslots_b:
19 if TimeSlot.contains(timeslot_a, timeslot_b):
20 result.append(timeslot_a)
21 break
22 return result

5.4. Implementation challenges 39

23

24 # Returns all timeslots_a not overlapping with any timeslot_b
25 def difference(timeslots_a, timeslots_b):
26 result = timeslots_a.copy()
27 for timeslot_a in timeslots_a:
28 for timeslot_b in timeslots_b:
29 if TimeSlot.overlap(timeslot_a, timeslot_b):
30 result.remove(timeslot_a)
31 break
32 return result

List. 5.9: Scheduling set operations

When we set the price of a lift, we also decide whether it should be completed during
a round if it is small, or during a day without rounds otherwise. Possible timeslots are
generated from the estimated duration and an appointment interval of 30 minutes, for
example. Then we take the difference or intersection of the sets of timeslots as needed to
get to the list of available appointment times, as shown in Table 5.1.

Calendars

- P = {Possible timeslots }
- O = {Oust! Opening hours }
- C = {Collection Center Opening hours }
- R = {Rounds scheduled }
- L = {Lifts scheduled }

Lift outside of rounds P ∩O ∩ C \R \ L

Lift during a round P ∩O ∩ C ∩R \ L

Tab. 5.1.: Operations for availability timeslots

5.4.6. Subscription start dates

Up until now, as customer’s subscriptions were manually created during an appointment,
we would choose the starting date by grouping customers in the same area. If a sub-
scription is created through the app, this grouping must be done by the backend with an
algorithm.
This is how it works:

1. Get the GPS coordinates of the new subscription-based on its address using Google
Geocoding [44].

2. For every future round of this postcode, get a driving duration matrix from the new
subscription to every customer in the round using OSRM. Save the lowest value,
which is the closest customer, as an estimate of the time added to the round.

3. Iterate over every future round of this postcode. For each, sum up the additional
times from step 2 over the next 4 pickups. For example, if the current date iterated

5.4. Implementation challenges 40

is July 1 and the subscription is for a pickup every 2 weeks, get the sum of the
additional time for July 1, July 15, July 29, and August 12. This gives us an
estimate of the impact on rounds duration if the new subscription were to start on
July 1.

4. Group the result of step 3 for every future round of this postcode using mean shift
clustering.

5. Order the clusters of step 4 from the lowest impact on rounds to the highest and
add the clusters of dates to the result following this order until there is at least one
start date proposed per month.

We had to take a few points into account when developing this algorithm. First, there
are different frequencies of pickups: a subscription can include a pickup every 1, 2 or 4
weeks. As a result, calculating the additional time the new subscription would add to
a single round does not reflect the whole picture. We have to check the impact a new
subscription has on a given round and the rounds coming after it.
In this algorithm, we use the driving duration to the closest customer in the round as an
approximation of the additional time required to complete the pickup. The ideal method
would be to optimize the route of the round with and without the new customer to get
a better estimate. We have an optimization model specifically designed for our rounds
and customers, but it takes at least several seconds to complete. Since the request for
possible start dates is made by the mobile app a few seconds before the list of dates is
displayed, this is too long. Getting a driving duration matrix from OSRM, on the other
hand, takes less than 100 milliseconds.
Finally, the calculation of the impact of different start dates on rounds is grouped in
clusters for a specific reason. If we were to return the start dates lower than the median
or the mean, some start date just over the threshold would be similar to those lower and
should be proposed, but would not be. By clustering the results and returning clusters
of values, we ensure that the largest possible number of optimal start dates are offered to
the user. We use a mean shift method for the clustering itself, from the sklearn package
[45]. Mean shift does not need to be given the number of clusters to be found, which is
ideal in our case as there can be an arbitrary number of them.

6
Conclusion

When we started Oust!, I would never have thought such an incredible learning process
would follow. Having a practical experience alongside my studies has been a fantastic way
to put into practice theoretical knowledge from courses. That is also the case because
the other co-founders and I have been fortunate enough to find professors that welcomed
projects dear to our hearts with an open mind. In the case of this report in particular,
I am very thankful to the professors and assistants that supported it even though my
bachelor’s degree is in Economics.

I learned about software development by necessity to allow our company to function. In
the process, I discovered an intense interest in the subject, and this knowledge is invalu-
able for guiding the future of my professional life. Developing this app has been a lot
of work, and there is still a lot more to be done. Many small but critical pieces have to
be put together carefully. At the time of writing, the app is still a few weeks away from
being launched as we want to test it with early users and iron out a few details. If the
app has some success after the launch, we are full of ideas to implement and ways to
improve what was built up until now.

In the end, I am very happy with the result of this project. I think that tools such as
Flutter open the doors of building mobile applications to a much larger number of people
than ever before. The ability to build an app in one codebase and one language is key
for small companies or individuals that want to test out an idea. I hope it brings lots of
innovation to a world that, in some domains, urgently needs it.

41

A
Common Acronyms

API Application Programming Interface
AWS Amazon Web Services
AOT Ahead Of Time
CRUD Create, Read, Update and Delete
DRF Django Rest Framework
FCM Firebase Cloud Messaging
HTTP Hypertext Transfer Protocol
JIT Just In Time
JSON JavaScript Object Notation
JSX JavaScript XML
MRF Material Recovery Facility
ORM Object Relational Mapping
OSRM Open Source Routing Machine
REST Representational State Transfer
SDK Software Development Kit
SQL Structured Query Language
UI User Interface
UX User Experience
URI Unified Resource Identifier
URL Uniform Resource Locator
XML Extensible Markup Language

42

B
Repository of the Project

The mobile app will be available on Google Play and on the Apple Store.

The repository of the app is available here: https://github.com/SylvainLosey/oust.
A majority of the code is located in the lib folder, in which can be found:

• Data: models of the different data structure as well as the repository.
• Redux: the business logic of the app is grouped in this folder
• UI: the files related to the user interface of the app
• Utils: various utility files

The code for the backend is not public but can be provided upon request.

43

https://github.com/SylvainLosey/oust

References

[1] X. Shi, A. E. Thanos, and N. Celik, “Multi-objective agent-based modeling of single-
stream recycling programs,” Resources, Conservation and Recycling, vol. 92, pp. 190–
205, nov 2014. 3

[2] C. Lakhan, “A Comparison of Single and Multi-Stream Recycling Systems in Ontario,
Canada,” Resources, vol. 4, no. 2, pp. 384–397, jun 2015. 3

[3] R. T. Fielding, “Architectural Styles and the Design of Network-based Software Ar-
chitectures,” Ph.D. dissertation, University of California, Irvine, 2000. 11

[4] D. A. Norman, The Design of Everyday Things. New York, NY, USA: Basic Books,
Inc., 2002. 18

[5] R. Molich and J. Nielsen, “Improving a human-computer dialogue,” Communications
of the ACM, vol. 33, no. 3, pp. 338–348, mar 1990. 18

44

Referenced Web Resources

[6] D. Carrington, “School climate strikes: 1.4 million people took part,
say campaigners,” The Guardian, Mar. 2019, Accessed 31/07/2019.
[Online]. Available: https://www.theguardian.com/environment/2019/mar/19/
school-climate-strikes-more-than-1-million-took-part-say-campaigners-greta-thunberg
1

[7] C. Katz, “How China’s Ban on Importing Waste Has Stalled Global
Recycling,” Yale School of Forestry and Environmental Studies, Mar.
2019, Accessed 31/07/2019. [Online]. Available: https://e360.yale.edu/features/
piling-up-how-chinas-ban-on-importing-waste-has-stalled-global-recycling 1

[8] “Coûts et prestations de la gestion communale des déchets,” Infrastructures
communales, Union des villes suisses et de l’Association des Communes Suisses,
2009, Accessed 31/07/2019. [Online]. Available: https://kommunale-infrastruktur.
ch/cmsfiles/rapport_annexe.pdf 3

[9] “Rapport sur la gestion des déchets 2008,” Office fédéral
de l’environnement OFEV, 2008, Accessed 31/07/2019. [On-
line]. Available: https://www.bafu.admin.ch/bafu/fr/home/themes/dechets/
publications-etudes/publications/rapport-gestion-dechets-2008.html 4

[10] T. Guardian, “Americans’ plastic recycling is dumped in landfills, investigation
shows,” Accessed 31/07/2019. [Online]. Available: https://www.theguardian.com/
us-news/2019/jun/21/us-plastic-recycling-landfills 4

[11] “The Web framework for perfectionists with deadlines | Django,” Accessed
31/07/2019. [Online]. Available: https://www.djangoproject.com/ 9

[12] “Celery: Distributed Task Queue,” Accessed 31/07/2019. [Online]. Available:
http://www.celeryproject.org/ 10

[13] “Django Celery Beat,” Accessed 31/07/2019. [Online]. Available: https:
//github.com/celery/django-celery-beat

[14] “Bexio: Business Software for Small Businesses and Startups,” Accessed 31/07/2019.
[Online]. Available: https://www.bexio.com/en-CH/ 10

[15] “Bexio API Documentation,” Accessed 31/07/2019. [Online]. Available: https:
//docs.bexio.com/

[16] “Firebase,” Accessed 31/07/2019. [Online]. Available: https://firebase.google.com/
10

45

https://www.theguardian.com/environment/2019/mar/19/school-climate-strikes-more-than-1-million-took-part-say-campaigners-greta-thunberg
https://www.theguardian.com/environment/2019/mar/19/school-climate-strikes-more-than-1-million-took-part-say-campaigners-greta-thunberg
https://e360.yale.edu/features/piling-up-how-chinas-ban-on-importing-waste-has-stalled-global-recycling
https://e360.yale.edu/features/piling-up-how-chinas-ban-on-importing-waste-has-stalled-global-recycling
https://kommunale-infrastruktur.ch/cmsfiles/rapport_annexe.pdf
https://kommunale-infrastruktur.ch/cmsfiles/rapport_annexe.pdf
https://www.bafu.admin.ch/bafu/fr/home/themes/dechets/publications-etudes/publications/rapport-gestion-dechets-2008.html
https://www.bafu.admin.ch/bafu/fr/home/themes/dechets/publications-etudes/publications/rapport-gestion-dechets-2008.html
https://www.theguardian.com/us-news/2019/jun/21/us-plastic-recycling-landfills
https://www.theguardian.com/us-news/2019/jun/21/us-plastic-recycling-landfills
https://www.djangoproject.com/
http://www.celeryproject.org/
https://github.com/celery/django-celery-beat
https://github.com/celery/django-celery-beat
https://www.bexio.com/en-CH/
https://docs.bexio.com/
https://docs.bexio.com/
https://firebase.google.com/

Referenced Web Resources 46

[17] “Google Calendar API,” Accessed 31/07/2019. [Online]. Available: https:
//developers.google.com/calendar/ 10

[18] “Project OSRM,” Accessed 31/07/2019. [Online]. Available: http://project-osrm.
org/ 11

[19] “Amazon EC2,” Accessed 31/07/2019. [Online]. Available: https://aws.amazon.
com/ec2/ 11

[20] “Heroku,” Accessed 31/07/2019. [Online]. Available: https://www.heroku.com/ 11
[21] M. Fowler, “Richardson Maturity Model - steps toward the glory of REST,” Mar.

2010, Accessed 31/07/2019. [Online]. Available: https://martinfowler.com/articles/
richardsonMaturityModel.html 12

[22] “Swagger UI,” Accessed 31/07/2019. [Online]. Available: https://swagger.io/tools/
swagger-ui/ 14

[23] “drf-yasg - Yet Another Swagger Generator,” Accessed 31/07/2019. [Online].
Available: https://github.com/axnsan12/drf-yasg 14

[24] G. Peal, “Sunsetting React Native,” Jun. 2018, Accessed
31/07/2019. [Online]. Available: https://medium.com/airbnb-engineering/
sunsetting-react-native-1868ba28e30a 17

[25] “Flutter - Beautiful native apps in record time,” Accessed 31/07/2019. [Online].
Available: https://flutter.dev/ 17

[26] StackOverflow, “Developer Survey Results,” 2019, Accessed 31/07/2019. [Online].
Available: https://insights.stackoverflow.com/survey/2019 18

[27] “Get ahead in UI/UX Design - Video Courses - learnux.io,” Accessed 31/07/2019.
[Online]. Available: https://learnux.io/ 18

[28] J. Nielsen, “10 Usability Heuristics for User Interface Design,” Apr. 1994,
Accessed 31/07/2019. [Online]. Available: https://www.nngroup.com/articles/
ten-usability-heuristics/ 18

[29] “Sketch - The digital design toolkit,” Accessed 31/07/2019. [Online]. Available:
https://www.sketch.com/ 20

[30] “Prototype of the App in Sketch,” Accessed 31/07/2019. [Online]. Available:
https://sketch.cloud/s/5Yb9E/a/ZLm0Dv/play 21

[31] “Introduction to declarative UI,” Accessed 31/07/2019. [Online]. Available:
https://flutter.dev/docs/get-started/flutter-for/declarative 28

[32] “Dart programming language,” Accessed 31/07/2019. [Online]. Available: https:
//dart.dev/ 28

[33] “Ephemeral and app state,” Accessed 31/07/2019. [Online]. Available: https://
flutter.dev/docs/development/data-and-backend/state-mgmt/ephemeral-vs-app 29

[34] “Redux · A Predictable State Container,” Accessed 31/07/2019. [Online]. Available:
https://redux.js.org/ 32

[35] “Redux for dart,” Accessed 31/07/2019. [Online]. Available: https://pub.dev/
packages/redux 32

[36] “Flutter Redux,” Accessed 31/07/2019. [Online]. Available: https://pub.dev/
packages/flutter_redux 32

https://developers.google.com/calendar/
https://developers.google.com/calendar/
http://project-osrm.org/
http://project-osrm.org/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://www.heroku.com/
https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html
https://swagger.io/tools/swagger-ui/
https://swagger.io/tools/swagger-ui/
https://github.com/axnsan12/drf-yasg
https://medium.com/airbnb-engineering/sunsetting-react-native-1868ba28e30a
https://medium.com/airbnb-engineering/sunsetting-react-native-1868ba28e30a
https://flutter.dev/
https://insights.stackoverflow.com/survey/2019
https://learnux.io/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.sketch.com/
https://sketch.cloud/s/5Yb9E/a/ZLm0Dv/play
https://flutter.dev/docs/get-started/flutter-for/declarative
https://dart.dev/
https://dart.dev/
https://flutter.dev/docs/development/data-and-backend/state-mgmt/ephemeral-vs-app
https://flutter.dev/docs/development/data-and-backend/state-mgmt/ephemeral-vs-app
https://redux.js.org/
https://pub.dev/packages/redux
https://pub.dev/packages/redux
https://pub.dev/packages/flutter_redux
https://pub.dev/packages/flutter_redux

[37] X. Rigau, “Introduction to Redux in Flutter,” Novoda, Apr.
2018, Accessed 31/07/2019. [Online]. Available: https://blog.novoda.com/
introduction-to-redux-in-flutter/ v, 32, 34

[38] “built_value | Dart Package,” Accessed 31/07/2019. [Online]. Available: https:
//pub.dev/packages/built_value 36

[39] “Immutable Data · Redux,” Accessed 31/07/2019. [Online]. Available: https:
//redux.js.org/faq/immutable-data 36

[40] “Navigator class,” Accessed 31/07/2019. [Online]. Available: https://api.flutter.
dev/flutter/widgets/Navigator-class.html 36

[41] “Using AWS S3 to Store Static Assets and File Uploads,” Accessed 31/07/2019.
[Online]. Available: https://devcenter.heroku.com/articles/s3 37

[42] “Firebase Cloud Messaging for Flutter,” Accessed 31/07/2019. [Online]. Available:
https://pub.dev/packages/firebase_messaging 37

[43] “pyfcm,” Accessed 31/07/2019. [Online]. Available: https://pypi.org/project/pyfcm/
37

[44] “Google Geocoding API,” Accessed 31/07/2019. [Online]. Available: https:
//developers.google.com/maps/documentation/geocoding/intro 39

[45] “Sklearn Mean Shift,” Accessed 31/07/2019. [Online]. Available: https://scikit-learn.
org/stable/modules/generated/sklearn.cluster.MeanShift.html 40

https://blog.novoda.com/introduction-to-redux-in-flutter/
https://blog.novoda.com/introduction-to-redux-in-flutter/
https://pub.dev/packages/built_value
https://pub.dev/packages/built_value
https://redux.js.org/faq/immutable-data
https://redux.js.org/faq/immutable-data
https://api.flutter.dev/flutter/widgets/Navigator-class.html
https://api.flutter.dev/flutter/widgets/Navigator-class.html
https://devcenter.heroku.com/articles/s3
https://pub.dev/packages/firebase_messaging
https://pypi.org/project/pyfcm/
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html

Faculté des sciences économiques et sociales

Wirtschafts- und sozialwissenschaftliche Fakultät

Boulevard de Pérolles 90

CH-1700 Fribourg

Fribourg, ________________

D E C L A R A T I O N

I hereby declare that I wrote this thesis on my own and followed the

principles of scientific integrity.

I acknowledge that otherwise the department has, according to a
decision of the Faculty Council of November 11th, 2004, the right to
withdraw the title that I was conferred based on this thesis.

I confirm that this work or parts thereof have not been submitted in this
form elsewhere for an examination, according to a decision of the
Faculty Council of November 18

th
, 2013.

……………………………..……, the 20

...……................................…
 (Signature)

	Introduction
	Motivation and goals
	Outline

	Context
	Waste management
	Recycling systems
	Situation in Switzerland

	Oust!
	The idea behind Oust!
	Next steps

	Global Architecture
	Overview
	Backend - Django
	Advantages of Django
	Technologies used
	Hosting - Heroku

	REST API - Django Rest Framework
	Definition of REST
	HATEOAS
	Implementation
	Swagger

	Frontend

	Design process
	Overview
	Requirements gathering
	Available technologies
	Tool used for our app

	App design
	Problem discovery
	UX Design
	Prototyping
	UI Design

	Implemented UI
	Lifts
	Subscription

	Development
	Flutter
	State management
	Local state
	Global state

	Redux
	Redux cycle
	Redux middleware

	Implementation challenges
	Data modeling
	Wizard forms
	Push notifications
	Image storage
	Lift appointment timeslots
	Subscription start dates

	Conclusion
	Common Acronyms
	Repository of the Project

