
ChestVision
Ecosystem for medical image analysis

and disease prediction on thoracic x-rays

Bachelor Thesis

Yannick Künzli
June 2024

Thesis supervisors:

Prof. Dr. Jacques Pasquier-Rocha
Software Engineering Group

Software Engineering Group
Department of Informatics

University of Fribourg (Switzerland)

Acknowledgements

I want to thank Prof. Dr. Jacques Pasquier, my supervisor, and all the people that
helped me and read my thesis during its development.

i

Abstract

A specialised Flask web application, named “ChestVision”, was developed and imple-
mented using Python. The application is designed to facilitate the analysis of thoracic
x-rays and predict potential diseases. Its primary function allows users to store and
manage images, patient data, and their corresponding diseases.
The application leverages the National Institutes of Health (NIH) Chest X-ray Dataset
and a deep learning model that implements a pretrained MobileNet layer to predict be-
tween 13 diseases, providing a comprehensive tool for medical image analysis. Secondary
functions, such as accessing patient records, displaying the state of disease prediction
were added during development.

Keywords: Flask, Python, CXR8, Deep Learning, Medical Image Analysis, MobileNet

ii

Table of Contents

1. Introduction 2
1.1. Motivation and Goals . 2
1.2. Organization . 3
1.3. Notations and Conventions . 3

2. NIH Chest X-ray Dataset description and context 5
2.1. Dataset description . 6

2.1.1. Pathologies . 6
2.1.2. Goal . 6
2.1.3. Data . 6
2.1.4. Limitations . 7
2.1.5. Personal decisions . 7
2.1.6. Distribution of co-occurrence diseases 7

2.2. Statistical data analysis in python . 8
2.2.1. Gender distribution . 8
2.2.2. Disease distribution . 8
2.2.3. Image sample . 10

2.3. Diseases descriptions and diagnosis . 11
2.3.1. Atelectasis . 11
2.3.2. Cardiomegaly . 11
2.3.3. Consolidation . 12
2.3.4. Edema . 12
2.3.5. Pleural Effusion . 13
2.3.6. Emphysema . 13
2.3.7. Fibrosis . 14
2.3.8. Infiltration . 14
2.3.9. Mass . 15
2.3.10. Nodule . 16
2.3.11. Pleural Thickening . 16

iii

Table of Contents iv

2.3.12. Pneumonia . 17
2.3.13. Pneumothorax . 17
2.3.14. Hernia . 18

3. ChestVision - User demonstration 19
3.1. Description of the application and context 19
3.2. Description of the pages . 20
3.3. Scenarios . 20

3.3.1. Sign-up & Login pages . 20
3.3.2. Homepage . 21
3.3.3. Patients page . 23
3.3.4. Patient’s detail page . 24
3.3.5. Predictions page . 25

4. ChestVision - Technologies and architecture 28
4.1. Technologies . 28

4.1.1. Flask . 29
4.1.2. Flask-SQLAlchemy . 29
4.1.3. Flask-Login . 29
4.1.4. Flask-Migrate . 29
4.1.5. Werkzeug Security . 29
4.1.6. Keras and Tensorflow . 29
4.1.7. Additional Python libraries . 30

4.2. Architecture . 30
4.2.1. Overview . 30
4.2.2. Application structure . 31
4.2.3. Key components . 33
4.2.4. Routing and Functionality . 33
4.2.5. Database design . 34
4.2.6. Security measures . 36
4.2.7. Local deployment . 36

5. Machine Learning Model implementation 37
5.1. Data preparation . 37

5.1.1. Data downloading and resizing 37
5.1.2. Data analysis . 38
5.1.3. Data splitting . 42
5.1.4. Data augmentation . 42

5.2. Model description . 44
5.2.1. Callbacks for Model Training . 45
5.2.2. Model training, prediction and evaluation 45

Table of Contents v

5.2.3. Optimizer selection . 47
5.2.4. Parameter tuning . 50

5.3. Model performance . 51

6. Application Implementation 52
6.1. Backend . 52

6.1.1. API . 52
6.1.2. Authentication . 55
6.1.3. Database . 57

6.2. Frontend . 59
6.2.1. Integration with Jinja and Bootstrap 60
6.2.2. HTML Pages . 60

7. Conclusion 68
7.1. Review . 68
7.2. Results Review . 69

7.2.1. Future Improvements . 70
7.3. Future research . 70

A. Common Acronyms 71

B. License of the Documentation 72

C. Repository of the Project 73

D. Referenced Web Resources 74

List of Figures

2.1. Distributions of 14 disease categories with co-occurrence statistics 7
2.2. Distribution of findings . 9
2.3. Sample of the dataset . 10
2.4. Example of Atelectasis on chest x-ray[4] 11
2.5. Example of Cardiomegaly on chest x-ray [6] 12
2.6. Example of Consolidation on chest x-ray [8] 12
2.7. Example of Edema on chest x-ray [10] . 13
2.8. Example of Effusion on chest x-ray [37] 13
2.9. Example of Emphysema on chest x-ray [11] 14
2.10. Example of Fibrosis on chest x-ray [13] 14
2.11. Example of healthy lungs on chest x-ray [21] 15
2.12. Example of Infiltration on chest x-ray [24] 15
2.13. Example of Mass on chest x-ray [30] . 15
2.14. Example of Nodule on chest x-ray [33] 16
2.15. Example of Pleural Thickening on chest x-ray [38] 16
2.16. Example of Pneumonia on chest x-ray [39] 17
2.17. Example of Pneumothorax on chest x-ray [40] 17
2.18. Example of Hernia on chest x-ray [22] . 18

3.1. Sign Up Page . 20
3.2. Login Page . 21
3.3. Homepage . 21
3.4. Homepage 2 . 22
3.5. First result . 22
3.6. Second Result . 22
3.7. Third Result . 22
3.8. Patients Page . 23
3.9. Patient’s detail Page . 24
3.10. Adding a patient . 25

vi

List of Figures vii

3.11. Adding a Diagnosis to a patient . 26
3.12. Patient 12 before . 27
3.13. Patient 12 after . 27

4.1. Folder structure diagram . 32
4.2. Database Diagram . 35
4.3. Deployment Diagram . 36

5.1. Findings’ distribution . 39
5.2. Findings’ distribution without "No Finding" 40
5.3. Resampled data . 41
5.4. Initial ROC Curve . 46
5.5. Final ROC Curve . 47
5.6. Optimizer selection graph . 49
5.7. Learning Rate Table . 50
5.8. Image Size Graph . 51

Listings

2.1. Gender Distribution in the dataset . 8
2.2. Findings’ Distribution plot . 9

5.1. Zip Files Downloading . 37
5.2. Image resizer method . 38
5.3. Download Verification Code . 38
5.4. Distribution of findings . 39
5.5. Distribution of findings second graph . 39
5.6. Resampling data . 40
5.7. Data splitting . 42
5.8. Formatting . 42
5.9. Data augmentation instance . 43
5.10. Data Preprocessing . 43
5.11. Deep Learning Model . 44
5.12. Callbacks . 45
5.13. ".fit" training ".predict" prediction and plots for evaluation 45
5.14. Evaluation with longer training . 46
5.15. Optimizer selection . 48

6.1. "/" route . 53
6.2. "/predict" route . 53
6.3. "/get_patient/<int:patient_id>" route 55
6.4. "/login" route . 56
6.5. "/logout" route . 56
6.6. "/sign-up" route . 56
6.7. Database population script . 58
6.8. navbar . 60
6.9. Jinja content block . 61
6.10. Login page . 61
6.11. home page . 62

viii

Listings 1

6.12. Database form . 63
6.13. FollowUpNumber script . 64
6.14. Patients’ table . 64
6.15. Navigation system . 66
6.16. deletePatient function . 66
6.17. Information loops . 67

1
Introduction

1.1. Motivation and Goals . 2

1.2. Organization . 3

1.3. Notations and Conventions 3

1.1. Motivation and Goals

The advancements of technology have revolutionized various sectors, including healthcare.
With the increasing prevalence of diseases and the need for efficient diagnostic tools, the
role of technology, particularly machine learning and artificial intelligence, has become
more significant than ever. This project, ChestVision [7], aims at building a simple
application that can help medical practitioners make their diagnosis.
The primary goal of this project is to develop a Flask web application that serves as a
comprehensive platform for managing patient data, specifically X-ray images and their
associated diseases. The application is designed to not only store and manage data but
also to analyze it using a deep learning Convolutional Neural Network (CNN) model. The
CNN model is capable of analyzing X-ray images and predicting the presence of thoracic
and lung diseases, thereby assisting in the diagnostic process.
The motivation behind this project stems from the critical need for efficient and accurate
diagnostic tools in the healthcare sector. Diseases such as atelectasis, cardiomegaly, and
pneumonia affect a significant portion of the population. Early detection and diagnosis
can profoundly impact patient outcomes, and having a reliable tool to aid in this process
is invaluable.
Additionally, the project aims to demonstrate the practical application of various tech-
nologies, including Python, Flask, SQLAlchemy, TensorFlow, Keras, Open Computer Vi-
sion Library (OpenCV), Bootstrap, Cascading Style Sheets (CSS)/JavaScript (JS)/HyperText
Markup Language (HTML), and Jinja, in developing a functional and user-friendly web
application.

2

1.2. Organization 3

1.2. Organization

Chapter 1: Introduction
This chapter presents the motivation and goals of this work, provides an overview of
the structure of each subsequent chapter, and outlines the formatting conventions used
throughout the document.
Chapter 2: NIH Chest X-ray Dataset description and context
This chapter provides an overview of the NIH Chest X-ray Dataset [9], essential for
developing ChestVision. It includes a description of the dataset, statistical insights, and
detailed descriptions of the diseases the CNN model can detect, along with their diagnostic
methods using chest X-ray imaging.
Chapter 3: ChestVision - User demonstration
This chapter offers a user-centric demonstration of the ChestVision application, detailing
different scenarios and functionalities from the perspective of an end-user. It describes
the user experience for each view of the website, illustrating how the application can be
used in a clinical setting.
Chapter 4: ChestVision - Technologies and Architecture
In this chapter, the global architecture of the ChestVision application is explained using
a deployment diagram. It also discusses all the technologies involved in creating this web
application, providing insights into how these technologies integrate to form a cohesive
system.
Chapter 5: Model implementation
This chapter focuses on the implementation of the CNN model. It describes how the
data and images from the dataset are processed, the training of the model, and provides
a detailed description of the model architecture. It also highlights the advantages of
certain image processing methods and presents the model’s results.
Chapter 6: Application implementation
This chapter covers the implementation of the ChestVision application. It explains the
Application Programming Interface (API), the relational database, and the authentica-
tion system. It also includes the frontend development, detailing the creation of the
‘Home’, ‘Predictions’, and ‘Patients’ pages.
Chapter 7: Conclusion
The final chapter summarizes the functionalities of the ChestVision application, presents
the model’s results, and discusses improvements. It highlights the strengths and limita-
tions observed and suggests future directions for enhancing the application.
Appendix
Contains extracts of artefacts or service messages, abbreviations and references used
throughout this work.

1.3. Notations and Conventions

• Formatting conventions:

1.3. Notations and Conventions 4

– Abbreviations and acronyms as follows Convolutional Neural Network (CNN)
for the first usage and CNN for any further usage;

– http://127.0.0.1:5000 is used for web addresses;
– Code is formatted as follows:
1 import json
2

3 def greet():
4 print(’Hello World !’)
5

6 def main():
7 greet()
8

9 if __name__ == ’__main__’:
10 main()

• The work is divided into seven chapters that are formatted in sections and subsec-
tions. Every section or subsection is organized into paragraphs, signalling logical
breaks.

• Figure s, Table s and Listings s are numbered inside a chapter. For example, a
reference to Figure j of Chapter i will be noted Figure i.j.

• As far as gender is concerned, I systematically select the masculine form due to
simplicity. Both genders are meant equally.

http://127.0.0.1:5000

2
NIH Chest X-ray Dataset description

and context

2.1. Dataset description . 6

2.1.1. Pathologies . 6

2.1.2. Goal . 6

2.1.3. Data . 6

2.1.4. Limitations . 7

2.1.5. Personal decisions . 7

2.1.6. Distribution of co-occurrence diseases 7

2.2. Statistical data analysis in python 8

2.2.1. Gender distribution . 8

2.2.2. Disease distribution . 8

2.2.3. Image sample . 10

2.3. Diseases descriptions and diagnosis 11

2.3.1. Atelectasis . 11

2.3.2. Cardiomegaly . 11

2.3.3. Consolidation . 12

2.3.4. Edema . 12

2.3.5. Pleural Effusion . 13

2.3.6. Emphysema . 13

2.3.7. Fibrosis . 14

2.3.8. Infiltration . 14

2.3.9. Mass . 15

2.3.10. Nodule . 16

2.3.11. Pleural Thickening . 16

2.3.12. Pneumonia . 17

2.3.13. Pneumothorax . 17

2.3.14. Hernia . 18

5

2.1. Dataset description 6

2.1. Dataset description

In the field of medical imaging and computer-aided detection and diagnosis (CAD) sys-
tems, the quality and comprehensiveness of datasets are incredibly important. Good
datasets serve as the foundation for developing robust and accurate models that can assist
healthcare professionals in making timely and precise diagnoses. They enable the training
and validation of machine learning algorithms, ensuring these models can generalize well
to real-world clinical scenarios. In medical imaging, where the accurate identification of
pathologies is critical, high-quality datasets facilitate the development of CAD systems
that enhance diagnostic accuracy, improve patient outcomes, and ultimately contribute
to more efficient healthcare delivery. This chapter dives into the specifics of the dataset
used in our project, highlighting its characteristics and significance in advancing thoracic
disease diagnosis through machine learning.

2.1.1. Pathologies

The National Institutes of Health (NIH) Chest X-ray Dataset[9] is a compre-
hensive collection of chest X-ray images that are labeled with 14 common thorax disease
categories. These include: atelectasis, cardiomegaly, effusion, infiltration, mass, nodule,
pneumonia, pneumothorax, consolidation, edema, emphysema, fibrosis, pleural thickening
and hernia.

2.1.2. Goal

The dataset was created to facilitate the development of CAD systems that can assist
in the interpretation of chest X-ray images, which is one of the most common and cost-
effective medical imaging examinations but can be challenging to interpret accurately.
The NIH Chest X-ray Dataset is an enhanced version of the dataset used in previous
work, with six additional disease categories and more images. It contains 112,120 frontal-
view X-ray images of 30,805 unique patients, with each image potentially having multiple
disease labels. The labels were mined from the associated radiological reports using
Natural Language Processing (NLP).

2.1.3. Data

The dataset includes:
1. 112,120 frontal-view chest X-ray Portable Network Graphics (PNG) images in 1024*1024
resolution.
2. Meta data for all images, including Image Index, Finding Labels, Follow-up #, Patient
ID, Patient Age, Patient Gender, View Position, Original Image Size, and Original Image
Pixel Spacing.
3. Bounding boxes for approximately 1000 images.
4. Two data split files (train_val_list.txt and test_list.txt) that divide the images into
training/validation and testing sets on the patient level.

https://nihcc.app.box.com/v/ChestXray-NIHCC

2.1. Dataset description 7

2.1.4. Limitations

The dataset has some limitations, including the potential for erroneous labels due to the
NLP extraction process (though the accuracy is estimated to be over 90%), a limited
number of disease region bounding boxes, and the fact that the original radiology reports
are not publicly shared.

2.1.5. Personal decisions

In the context of this study, I opted not to use the provided data split files. Instead, I
divided the images during the model’s training phase using the train_test_split module
from the sklearn.model_selection library.
The model was not trained on the ‘Hernia’ disease category. This decision was made due
to the relatively small number of hernia images in the entire dataset, which was less than
a thousand. By excluding this category, it allowed for a more balanced training across
the other diseases, which in turn improved the overall accuracy of the model.

2.1.6. Distribution of co-occurrence diseases

The diagram below (Figure 2.1) shows the proportion of images with multi-labels in each
of the 14 pathology classes and the labels’ co-occurrence statistics.

Fig. 2.1.: Distributions of 14 disease categories with co-occurrence statistics

2.2. Statistical data analysis in python 8

2.2. Statistical data analysis in python

Statistical analysis plays a crucial role in understanding the underlying patterns and dis-
tributions within a dataset. In the context of medical imaging and disease diagnosis, it
helps us gain insights into the prevalence of various conditions, the demographic char-
acteristics of the patient population, and potential biases in the data. By performing a
thorough statistical analysis, we can ensure that our machine learning models are trained
on a representative sample, leading to more reliable and generalizable predictions. This
section aims to provide an overview of the statistical characteristics of the dataset, includ-
ing gender distribution and the distribution of disease findings, to highlight the dataset’s
comprehensiveness and potential areas of interest.

2.2.1. Gender distribution

The analysis of the gender distribution within the dataset reveals a balanced representa-
tion of male and female patients. This balance is crucial for developing a model that does
not exhibit gender bias and can accurately predict diseases across both sexes. A balanced
gender distribution ensures that the model is equally effective in diagnosing conditions in
both male and female patients, contributing to fair and unbiased medical assessments.
In this small code snippet, we simply print the number of patient per gender (men and
women). We can see that the dataset is fairly well divided with 53.98% of men and
46.02% of women.

1 print(’Number of men : ’, all_xray_df[all_xray_df[’Patient Gender’] == ’M’][’Patient
ID’].nunique())

2 print(’Number of women : ’, all_xray_df[all_xray_df[’Patient Gender’] == ’F’][’Patient
ID’].nunique())

List. 2.1: Gender Distribution in the dataset

Number of men : 16630
Number of women : 14175

2.2.2. Disease distribution

In the following section, we perform a statistical data analysis using Python. The goal is
to visualize the distribution of findings from the diagnoses tied to the X-rays.
The distribution of disease findings in the dataset provides valuable insights into the
prevalence of various thoracic conditions. The statistical analysis shows that some condi-
tions are more prevalent than others, which can influence the model’s performance. For
instance, cardiomegaly has a higher representation in the dataset, which may lead to
higher accuracy for this condition. On the other hand, diseases like pneumonia, which
have a lower prevalence, present a greater challenge for the model to accurately predict.
Understanding these distributions helps in assessing the model’s strengths and identifying
areas where additional data might be needed to improve diagnostic accuracy.
We start by importing two essential Python libraries: Numerical Python (NumPy)[34],
for numerical operations, and matplotlib.pyplot[31], for creating plots. Next, we count the
number of images associated with each pathology and store these counts in label_counts.

2.2. Statistical data analysis in python 9

We then create a bar plot to visualize these counts. The x-axis represents the differ-
ent pathologies, and the y-axis represents the number of images associated with each
pathology.

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 label_counts = all_xray_df[’Finding Labels’].value_counts()[:15]
5 fig, ax1 = plt.subplots(1,1,figsize = (12, 8))
6 ax1.bar(np.arange(len(label_counts))+0.5, label_counts)
7 ax1.set_xticks(np.arange(len(label_counts))+0.5)
8 _ = ax1.set_xticklabels(label_counts.index, rotation = 90)

List. 2.2: Findings’ Distribution plot

Fig. 2.2.: Distribution of findings

2.2. Statistical data analysis in python 10

2.2.3. Image sample

Finally, the code below displays 16 images from the dataset along with their diagnosis.
1 t_x, t_y = next(train_gen)
2 fig, m_axs = plt.subplots(4, 4, figsize = (16, 16))
3 for (c_x, c_y, c_ax) in zip(t_x, t_y, m_axs.flatten()):
4 c_ax.imshow(c_x[:,:,0], cmap = ’bone’, vmin = -1.5, vmax = 1.5)
5 c_ax.set_title(’, ’.join([n_class for n_class, n_score in zip(all_labels, c_y)
6 if n_score>0.5]))
7 c_ax.axis(’off’)
8

9 fig.savefig(’sample.png’)

Fig. 2.3.: Sample of the dataset

2.3. Diseases descriptions and diagnosis 11

2.3. Diseases descriptions and diagnosis

As I am not a doctor or a healthcare professional, all of the definitions and images below
were found directly on the websites associated with the images.

2.3.1. Atelectasis

Description : Atelectasis[4] is a condition where lungs collapse partially or completely.
It may be caused by a blocked airway or pressure from outside (also could be blocked my
muccus). Symptoms include difficulty in breathing, rapid shallow breathing, chest pain,
and coughing.
Diagnosis on x-ray imaging : On the image on the left, we can see a normal chest
x-ray, with the heart correctly positioned one third of its length on the right side of the
spine and two thirds on the left side. On the image on the right, we see a clear deviation
to the left side caused by the collapse of the left lung.

Fig. 2.4.: Example of Atelectasis on chest x-ray[4]

2.3.2. Cardiomegaly

Description : Cardiomegaly[6] is a medical condition in which the heart becomes en-
larged. It is usually the result of underlying conditions that make the heart work harder,
such as obesity, heart valve disease, high blood pressure.
Diagnosis on x-ray imaging : When compared to the normal image that was defined
in the chapter about Atelectasis (Figure 2.4), Figure 2.5 clearly shows the enlarged heart.

2.3. Diseases descriptions and diagnosis 12

Fig. 2.5.: Example of Cardiomegaly on chest x-ray [6]

2.3.3. Consolidation

Description : In the context of lung disease, consolidation [8] refers to the process
where the lung tissue becomes filled with liquid instead of air, often due to an infection
or inflammation.
Diagnosis on x-ray imaging : on this image, the consolidation is located on the lower
right zone. It is described as a patchy area.

Fig. 2.6.: Example of Consolidation on chest x-ray [8]

2.3.4. Edema

Description : Edema [10] is swelling caused by too much fluid trapped in the body’s
tissues. It can affect any part of the body but it’s more likely to show up in the legs and
feet.
Diagnosis on x-ray imaging : lungs are supposed to be a lot darker, as air does not
reflect light, however here, as the lungs are filled with fluids, the image is very white,
because fluids do reflect the x-ray light.

2.3. Diseases descriptions and diagnosis 13

Fig. 2.7.: Example of Edema on chest x-ray [10]

2.3.5. Pleural Effusion

Description : In medical terminology, an effusion [37] refers to the accumulation of fluid
in an anatomic space, usually without loculation. Specific examples include subdural,
mastoid, pericardial and pleural effusions. Often seen on the base of the lung.
Diagnosis on x-ray imaging : Here the lung is clearly filled with fluid on more than
half of its volume.

Fig. 2.8.: Example of Effusion on chest x-ray [37]

2.3.6. Emphysema

Description : Emphysema [11] is a lung condition that causes shortness of breath.
In people with emphysema, the air sacs in the lungs (alveoli) are damaged, leading to
difficulty in breathing. Often in the top of lungs.
Diagnosis on x-ray imaging : Here emphysema manifests as areas of low density
(black) with thinning of the pulmonary vessels. The vessels are a lot darker than the
normal pulmonary vessels.

2.3. Diseases descriptions and diagnosis 14

Fig. 2.9.: Example of Emphysema on chest x-ray [11]

2.3.7. Fibrosis

Description : Fibrosis [13], also known as fibrotic scarring, is a pathological wound heal-
ing in which connective tissue replaces normal parenchymal tissue leading to considerable
tissue remodelling and the formation of permanent scar tissue.
Diagnosis on x-ray imaging : pulmonary fibrosis causes reticular shadowing of the
lung peripheries, it may cause the contours of the heart to be less distinct or "shaggy".

Fig. 2.10.: Example of Fibrosis on chest x-ray [13]

2.3.8. Infiltration

Description : In the context of lung diseases, infiltration [24] usually refers to the
accumulation of cells or fluids in the lung tissues that are not normally present. This can
be due to an infection, inflammation, or other disease processes.

2.3. Diseases descriptions and diagnosis 15

Diagnosis on x-ray imaging : all of the white spots showing on the image on the right
are caused when a substance denser than air (e.g., pus, oedema, blood, proteins, or cells)
lingers within the lung parenchyma.

Fig. 2.11.: Example of healthy lungs on
chest x-ray [21]

Fig. 2.12.: Example of Infiltration on
chest x-ray [24]

2.3.9. Mass

Description : In the context of medicine, a mass [30] refers to a lump or growth that can
occur in various parts of the body, including the lungs. It can be benign (non-cancerous)
or malignant (cancerous), and its cause can range from infection to cancer.
Diagnosis on x-ray imaging : a large round area of increased density shows the
presence of a mass in the region of the left hilum.

Fig. 2.13.: Example of Mass on chest x-ray [30]

2.3. Diseases descriptions and diagnosis 16

2.3.10. Nodule

Description : A nodule [33] is a growth or lump that develops on or within the body. For
example, it can develop beneath the skin, in the lungs, or on glands such as the thyroid.
When a health condition presents with nodules, it is considered nodularity. Most of the
time, nodules are tumoral or ganglions.
Diagnosis on x-ray imaging : the nodule on this image is clear and is located in the
left upper lobe.

Fig. 2.14.: Example of Nodule on chest x-ray [33]

2.3.11. Pleural Thickening

Description : This [38] is a condition where the pleura (the thin membranes covering
the lungs) become thickened. This is usually caused by inflammation of the pleura and
subsequent scarring. It can be caused by several conditions including infection, asbestos
exposure, and pleural effusion. The cause is often tumoral, it can also be caused by a
pneumothorax drainage. Often seen at the top of the lungs.
Diagnosis on x-ray imaging : Pleural thickening is displayed as a shadowing on the
right and as a loss of right lung volume.

Fig. 2.15.: Example of Pleural Thickening on chest x-ray [38]

2.3. Diseases descriptions and diagnosis 17

2.3.12. Pneumonia

Description : Pneumonia [39] is an infection that inflames the air sacs in one or both
lungs. The air sacs may fill with fluid or pus, causing cough with phlegm or pus, fever,
chills, and difficulty breathing.
Diagnosis on x-ray imaging : This chest X-ray shows an area of lung inflammation
indicating the presence of pneumonia.

Fig. 2.16.: Example of Pneumonia on chest x-ray [39]

2.3.13. Pneumothorax

Description : Also known as a collapsed lung, pneumothorax [40] occurs when air leaks
into the space between your lung and chest wall. This air pushes on the outside of your
lung and makes it collapse.
Diagnosis on x-ray imaging : Pneumothorax is displayed with a visible pleural edge
(blue line).

Fig. 2.17.: Example of Pneumothorax on chest x-ray [40]

2.3. Diseases descriptions and diagnosis 18

2.3.14. Hernia

Description : A hernia [22] is a condition that occurs when an organ or fatty tissue
squeezes through a weak spot in a surrounding muscle or connective tissue called fascia1.
The most common types of hernia are inguinal (inner groin), incisional (resulting from
an incision), femoral (outer groin), umbilical (belly button), and hiatal (upper stomach)
Diagnosis on x-ray imaging : Hiatus hernias may be very large, as is the case in this
image. Seeing a gas/fluid level helps to make the diagnosis. The stomach can actually
get as high as the heart because of hernias.

Fig. 2.18.: Example of Hernia on chest x-ray [22]

3
ChestVision - User demonstration

3.1. Description of the application and context 19

3.2. Description of the pages . 20

3.3. Scenarios . 20

3.3.1. Sign-up & Login pages . 20

3.3.2. Homepage . 21

3.3.3. Patients page . 23

3.3.4. Patient’s detail page . 24

3.3.5. Predictions page . 25

3.1. Description of the application and context

ChestVision is a web application that is designed to assist medical practitioners in an-
alyzing x-ray medical imaging. In countries like Switzerland, quick access to healthcare
professionals for health assessments is common. However, in many other regions, the
scarcity of doctors severely limits access to healthcare. The need for fast and accurate
diagnoses is even more critical in these under-resourced areas.
The development and deployment of applications like ChestVision in these regions could
enable more people to receive diagnoses, thereby alleviating the workload of overburdened
doctors. With this technology, a technician in medical radiology could capture the images,
and the application would provide an initial diagnosis. A healthcare professional could
then confirm or adjust the diagnosis as needed. This process would allow more people to
receive diagnoses while freeing up valuable time for doctors.
Moreover, this technology has the potential to outperform medical doctors in terms of
accuracy, as demonstrated by Google’s Health[20] team. Their model, used in under-
resourced countries, has helped prevent vision loss caused by diabetes.

19

3.2. Description of the pages 20

3.2. Description of the pages

3.3. Scenarios

In this chapter, we dive into the various functionalities of the ChestVision application.
This exploration is facilitated through the use of annotated screenshots from the actual
application along with textual descriptions. The explanations are designed to be accessi-
ble and not not necessitate any prior knowledge in computer science. This chapter serves
as a user guide, detailing each scenario within the application and how to navigate them.

3.3.1. Sign-up & Login pages

Figure 3.1 shows a very straightforward sign-up page, you can sign-up using any email
and password. For logging in, users simply enter the credentials created during sign-up.
In the real-world environment, the sign-up page would not exist and only doctors would
have access to this application and would be able to access the patients’ information.

Fig. 3.1.: Sign Up Page

3.3. Scenarios 21

Fig. 3.2.: Login Page

3.3.2. Homepage

The homepage is composed of three parts. The first one, is the image below (Figure 3.3).
It takes as input one or multiple thoracic x-ray images, and predicts which diseases are
contained within the image. If the model does not estimate that the likelihood of any
disease is above 30%, it will display "No Findings". This threshold was chosen to balance
the trade-off between precision and recall in the model’s predictions.

Fig. 3.3.: Homepage

3.3. Scenarios 22

The second part of this page is the results, as you can see with the example given in this
image. This is an example with 3 images as input, it gives the disease(s) detected with
their respective percentage of likelihood.

Fig. 3.4.: Homepage 2

Finally, the third part of the homepage is this image. Below the textual prediction of the
model, you can find the actual images that were given as input along with their respective
predictions. This was made using the matplotlib library in python and you can actually
find these images in the folder myApp/static/assets/uploaded_images/predictionsi.png
with "i" being the number of the image that was generated using the ith input image
that was given to the model. All of these images are stored in that folder and are being
displayed in the frontend code. Those images will be overwritten during the next pre-
diction of the model, it always starts with "predictions1.png" so not all images may be
overwritten depending on the number of images given to the model as input during the
next prediction.
The main difference between this homepage and the "predictions" page that is showed
in the next chapter, is that the homepage does not interact with the database and it is
therefore not possible to add, or modify a patient from the homepage.

Fig. 3.5.: First result Fig. 3.6.: Second Result Fig. 3.7.: Third Result

3.3. Scenarios 23

3.3.3. Patients page

On the patients page, which is the database page, you can firstly see the number of pa-
tients that are currently stored in the database. Secondly, there is a table that displays
25 patients per page. You can go to the next or the previous page at the bottom of
the table. There is also the possibility to delete the patient from the database using the
delete button next to the patient’s detail button.

Fig. 3.8.: Patients Page

3.3. Scenarios 24

3.3.4. Patient’s detail page

On the patient’s detail page, you also have the possibility to delete the patient from the
database. All of the patient’s information for each followup is displayed on this page in-
cluding all of the image information too. The information given in the followups cannot
be modified. It is however possible to add a followup for a patient, as will be explained
in the "Adding a diagnosis to an existing patient" sub chapter in the following.

Fig. 3.9.: Patient’s detail Page

3.3. Scenarios 25

3.3.5. Predictions page

Adding a new patient

On this page, you can type "0" in the Follow-up# field, to create a new patient. You
can then input a single image, along with the patient and the image’s information, all of
this information is stored together in the appointment’s table of the database. The rest
of the page works the same as is showed in the homepage, except that here you only get
the prediction result written down and the image is displayed on the top right.

Fig. 3.10.: Adding a patient

3.3. Scenarios 26

Adding a diagnosis to an existing patient

On the same page, as you can see on the image below (Figure 3.11), you can also type a
number bigger than 0 for the Follow-up#, this will add an additional input field for the
Patient ID number. This way, you can choose a patient that already exists and add a
follow-up to this patient along with the new image and its diagnostic.

Fig. 3.11.: Adding a Diagnosis to a patient

As you can see from the two images that are displayed on the following page, this adds a
follow-up with all of the given information and the image with its diagnostic to a specific
patient, in this example, it was added to patient 12.

3.3. Scenarios 27

Before :

Fig. 3.12.: Patient 12 before

After :

Fig. 3.13.: Patient 12 after

4
ChestVision - Technologies and

architecture

4.1. Technologies . 28

4.1.1. Flask . 29

4.1.2. Flask-SQLAlchemy . 29

4.1.3. Flask-Login . 29

4.1.4. Flask-Migrate . 29

4.1.5. Werkzeug Security . 29

4.1.6. Keras and Tensorflow . 29

4.1.7. Additional Python libraries 30

4.2. Architecture . 30

4.2.1. Overview . 30

4.2.2. Application structure . 31

4.2.3. Key components . 33

4.2.4. Routing and Functionality 33

4.2.5. Database design . 34

4.2.6. Security measures . 36

4.2.7. Local deployment . 36

4.1. Technologies

This chapter provides an overview of the key technologies employed in the development
of the application. These technologies, ranging from web frameworks to machine learning
libraries, form the backbone of the application.

28

4.1. Technologies 29

4.1.1. Flask

Flask [14] is a lightweight and flexible web framework for Python, designed to get appli-
cations up and running quickly with minimal setup. In this application, Flask is used to
handle the routing, request processing, and template rendering. It provides the structure
for defining endpoints such as user authentication and patient management, facilitating
the core operations of the application.

4.1.2. Flask-SQLAlchemy

Flask-SQLAlchemy [17] is an extension for Flask that integrates SQLAlchemy, a powerful
Object-Relational Mapper (ORM) for database interactions. It simplifies database man-
agement by allowing the use of Python objects to interact with the database instead of
writing raw Structured Query Language (SQL). In this application, Flask-SQLAlchemy is
used to define and manage the Patient, Appointment, Image, Finding, and User models,
making database operations straightforward and efficient.

4.1.3. Flask-Login

Flask-Login [15] is a Flask extension that handles user session management, including
login, logout, and session persistence. It integrates with the User model to manage
authentication, ensuring secure access to protected routes within the application. This
extension is important for managing user authentication and maintaining session integrity.

4.1.4. Flask-Migrate

Flask-Migrate [16] is an extension that integrates Alembic with Flask-SQLAlchemy for
managing database migrations. It helps in evolving the database schema over time with-
out losing data. In the application, Flask-Migrate is used to handle changes to the
database schema, such as adding new tables or modifying existing ones, ensuring the
database structure remains up-to-date with application requirements.

4.1.5. Werkzeug Security

Werkzeug [48] is a comprehensive Web Server Gateway Interface (WSGI) web applica-
tion library that includes utilities for secure password hashing and verification. In this
application, Werkzeug Security is used to hash and verify user passwords, ensuring that
credentials are stored securely and authentication processes are robust.

4.1.6. Keras and Tensorflow

Keras [28] is a high-level neural networks Application Programming Interface (API) that
runs on top of TensorFlow [46], a flexible and comprehensive machine learning framework.
These libraries are used in the application to load and run the machine learning model
(modelx2.h5) for image prediction. They provide the tools necessary for preprocessing
images and making predictions, leveraging deep learning techniques.

4.2. Architecture 30

4.1.7. Additional Python libraries

• JavaScript Object Notation (JSON): Used for handling JSON data in API responses
and requests, facilitating data exchange between the server and client.

• NumPy [34]: A fundamental package for numerical operations and array manipu-
lations, essential for processing image data.

• Open Computer Vision Library (OpenCV) [35]: An open-source computer vision
library used for image processing tasks, such as reading and transforming images
before prediction.

• Matplotlib [31]: A plotting library used for creating visualizations, which can aid
in analyzing and presenting data.

• Keras Preprocessing: Provides utilities for preparing image data before feeding it
into the machine learning model, ensuring consistency in data input.

• Werkzeug Utils: Additional utility functions from the Werkzeug library used for
various helper tasks throughout the application.

• Pandas [36]: A powerful data manipulation and analysis library, used for handling
and analyzing structured data.

• Seaborn [43]: A statistical data visualization library based on Matplotlib, used for
creating attractive and informative statistical graphics.

• Holoviews [23]: A high-level data visualization library that makes it easier to visu-
alize large and complex datasets.

• Bokeh [5]: A visualization library that provides interactive plots and dashboards.
Used in conjunction with Holoviews to display interactive visualizations in note-
books.

• Keras Callbacks (EarlyStopping): Used to monitor training and stop early when
the performance metric has stopped improving, preventing overfitting.

• Glob [19]: A library for finding all the pathnames matching a specified pattern,
used for handling file operations.

• Itertools [25] (chain): A library providing functions that create iterators for efficient
looping, used for chaining multiple iterables together.

• Scikit-learn [42]: A machine learning library used for various tasks, including calcu-
lating Receiver Operating Characteristic (ROC) curves and Area Under the Curve
(AUC) scores to evaluate the performance of classification models.

4.2. Architecture

4.2.1. Overview

The architecture of this application is designed to seamlessly integrate various components
and deliver a robust and maintainable system. It leverages a combination of frontend and
backend technologies to create an efficient workflow for handling user authentication, data
processing, and machine learning predictions. This chapter provides a detailed overview
of the application’s architecture, including its structure, components, and the interactions
between them.

4.2. Architecture 31

4.2.2. Application structure

The application is organized into several key folders and files, each serving a distinct
purpose. The main components include the Flask application, database, machine learning
model, and static assets. Below is a breakdown of the folder structure:

• myApp
– Documentation : contains documentation files, such as the data entry (the

patients’ information) Comma-Separated Values (CSV) file that can be found
on the dataset’s web page along with a JSON version of the same file that I
made.

– Instance : contains the database file that was generated with SQLite.
– Models : contains "modelh2x.h5" which is the machine learning model that

was trained using the code provided on this application’s Github repository.
– Website : contains the main flask application modules.

∗ static : contains the static files like "styles.css" and all of the images.
∗ templates : contains the HyperText Markup Language (HTML) templates

and web pages.
∗ __init__.py : initializes the Flask application.
∗ auth.py : manages the authentication routes.
∗ models.py : defines the dabase tables.
∗ views.py : defines the main application routes and prediction logic with

the image management for the model’s input.
– main.py : the entry point for running the application.
– database_script.py : script to populate the database.

4.2. Architecture 32

Fig. 4.1.: Folder structure diagram

4.2. Architecture 33

4.2.3. Key components

• Frontend
– HTML/Cascading Style Sheets (CSS)/JavaScript (JS) [26]: Used to create the

user interface, with Jinja2 for template rendering.
– Bootstrap: Utilized for responsive design and styling.

• Backend
– Flask: Serves as the web framework, handling routing, request processing, and

template rendering.
– Flask_SQLAlchemy: An ORM for managing database interactions.
– Flask_Login: Manages user authentication and session handling.
– Flask_Migrate: Handles database migrations for schema changes.

• Database
– SQLite: Used for storing application data, managed via Flask_SQLAlchemy.

• Model
– TensorFlow/Keras: Libraries used to load and run the machine learning model

for predictions.
– OpenCV (CV2): Used for image preprocessing before feeding data to the ML

model.
– NumPy: Utilized for numerical operations on image data.

• Security
– Werkzeug.Security: Provides utilities for hashing passwords and other security-

related functions.

4.2.4. Routing and Functionality

The application routes are defined in "views.py" and "auth.py", handling various user
interactions and API calls.

• "views.py" routes:
– "/": Redirects to the home page.
– "/delete-patient": Deletes a patient record.
– "/predict": Handles the prediction used on the "Predictions" page. It prepro-

cesses the image, then makes a prediction using the model and then saves the
image, and the prediction along with the patient and the image’s information
in the database.

– "/predictions": Handles the predictions of the "Home" page of the web appli-
cation. It also preprocesses the images and makes predictions, then it gener-
ates a graph with the image and the result but it does not interact with the
database.

– "/patients": Displays a list of patients on the "Patients" page.

4.2. Architecture 34

– "/patients/<int:patient_id>": Shows details for a specific patient when you
click on "Patient ID: <patient_number>" in the "Details" column of the
"Patients" page.

– "/get_patient/<int:patient_id>": Fetches patient data in the database to
display it in the patient_detail page.

• "auth.py" routes:
– "/login": Logs the user in the application.
– "/logout": Logs the user out.
– "/sign-up": Signs a new user up.

4.2.5. Database design

The database schema consists of several tables, each with a specific purpose and relation-
ships to other tables.

Serialization methods

Serialization methods in each table convert SQLAlchemy objects to JSON-serializable
dictionaries. This ensures that data can be easily transferred between the server and
client.

Tables

• Patient: the table name is "patients", it has the columns "id" and "gender", it con-
tains a one-to-many relationship with the "appointments" table and a serialization
method.

• Appointment: the table name is "appointments", it contains the columns "id",
"patient_id", "follow_up_number" and "group", it has a one-to-one relationship
with the "images" table and has a serialization method.

• Image: the table name is "images", it contains the columns "id", "appointment_id",
"image_index", "patient_age", "view_position", "original_image_width_height"
and "original_image_pixel_spacing". It has a one-to-one relationship with the
"findings" table and has a serialization method as well.

• Finding: the table name is "findings", it contains the columns "id", "image_id",
"finding_label". It also has a serialization method.

• User: the table’s name is "users" and contains the columns "id", "email", "pass-
word", "first_name", "last_name". It also uses "UserMixin" from Flask_Login
for user session management.

4.2. Architecture 35

Database diagram

Fig. 4.2.: Database Diagram

As you can see, this database has a one-to-many relationship between patients and ap-
pointments, meaning a patient can have multiple appointments, but one appointment
can only have one patient. It also has two one-to-one relationships: between the tables
appointments and images, and images and findings. This structure implies that for each
appointment, there is one image taken, and each image has one corresponding finding
(one finding can be multiple diseases, one disease, or "No Finding"; findings are stored
in a one-dimensional array).
This architecture makes it easier to manage and query the database. Keeping these tables
separate allows us to maintain clear and distinct records for each entity, ensuring that the
data is organized and easily retrievable. This design also allows for future improvements,
such as enabling multiple images per appointment. This way, the structure can be easily
adapted.

• Patient: Contains patient demographic information and has a one-to-many rela-
tionship with the appointments table.

• Appointment: Records details about each appointment, linking to a single patient
and image.

• Image: Stores image data and metadata, linked to a specific appointment.
• Finding: Contains the results of the image analysis, associated with a specific image.
• User: Manages user credentials and authentication details.

4.2. Architecture 36

4.2.6. Security measures

The application employs a few security measures to protect user data and ensure secure
operations.

• Password Hashing: Passwords are hashed using Werkzeug.Security to ensure they
are stored securely.

• User Authentication: Flask_Login manages user sessions, ensuring that only au-
thenticated users can access certain routes and functionalities.

4.2.7. Local deployment

For local deployment, all components reside on the same machine, simplifying develop-
ment and testing but it was not deployed for this work. The entire app can be cloned
from the ChestVision [7] Github repository.

Local deployment diagram

Fig. 4.3.: Deployment Diagram

• User’s Browser: Interacts with the application via HyperText Transfert Protocol
(HTTP)/HyperText Transfert Protocol Secure (HTTPS) on the local machine.

• Local Machine: Hosts the Flask application, database, and ML model.
• Local Database: SQLite database managed by Flask_SQLAlchemy.
• Local ML Model: TensorFlow/Keras model loaded and used for predictions.
• Local Static Files: CSS, JS, and images served locally.

5
Machine Learning Model

implementation

5.1. Data preparation . 37

5.1.1. Data downloading and resizing 37

5.1.2. Data analysis . 38

5.1.3. Data splitting . 42

5.1.4. Data augmentation . 42

5.2. Model description . 44

5.2.1. Callbacks for Model Training 45

5.2.2. Model training, prediction and evaluation 45

5.2.3. Optimizer selection . 47

5.2.4. Parameter tuning . 50

5.3. Model performance . 51

5.1. Data preparation

This chapter covers the first part of implementing the machine learning model, the data
preparation. Many parts of the code were inspired by various authors. [45] [29] [18] [9]

5.1.1. Data downloading and resizing

The data consists of 112’120 images of 1024x1024 pixels. First, I downloaded all of the
images using the code found on the Dataset’s website.

1 def downloadImagesZips():
2 # URLs for the zip files
3 links = [
4 ’https://nihcc.box.com/shared/static/vfk49d74nhbxq3nqjg0900w5nvkorp5c.gz’,
5 ’https://nihcc.box.com/shared/static/i28rlmbvmfjbl8p2n3ril0pptcmcu9d1.gz’,
6 ’https://nihcc.box.com/shared/static/f1t00wrtdk94satdfb9olcolqx20z2jp.gz’,

37

5.1. Data preparation 38

7 ’https://nihcc.box.com/shared/static/0aowwzs5lhjrceb3qp67ahp0rd1l1etg.gz’,
8 ’https://nihcc.box.com/shared/static/v5e3goj22zr6h8tzualxfsqlqaygfbsn.gz’,
9 ’https://nihcc.box.com/shared/static/asi7ikud9jwnkrnkj99jnpfkjdes7l6l.gz’,

10 ’https://nihcc.box.com/shared/static/jn1b4mw4n6lnh74ovmcjb8y48h8xj07n.gz’,
11 ’https://nihcc.box.com/shared/static/tvpxmn7qyrgl0w8wfh9kqfjskv6nmm1j.gz’,
12 ’https://nihcc.box.com/shared/static/upyy3ml7qdumlgk2rfcvlb9k6gvqq2pj.gz’,
13 ’https://nihcc.box.com/shared/static/l6nilvfa9cg3s28tqv1qc1olm3gnz54p.gz’,
14 ’https://nihcc.box.com/shared/static/hhq8fkdgvcari67vfhs7ppg2w6ni4jze.gz’,
15 ’https://nihcc.box.com/shared/static/ioqwiy20ihqwyr8pf4c24eazhh281pbu.gz’
16]
17 for idx, link in enumerate(links):
18 fn = ’images/Zipped/images_%02d.tar.gz’ % (idx+1)
19 print(’downloading ’+fn+’...’)
20 urllib.request.urlretrieve(link, fn) # download the zip file
21 print("Download complete. Please check the checksums")

List. 5.1: Zip Files Downloading

After which, I reduced the size of each image to 256x256 pixels so that the image folder was
easier to store for the application. The sized down version was still 9.67GigaBytes (GB),
down from more than 40GB. These images need to be downloaded in order to firstly, train
the model and to be able to display these images in the application, on each patient’s
page.

1 import cv2
2 def resizeFiles():
3 dim = (256,256)
4 for file in os.listdir(’images/images’):
5 if file.endswith(’.png’):
6 img = cv2.imread(f’images/images/{file}’)
7 #cv2.INTER_AREA is a resampling method notably used for shrinking images
8 resized = cv2.resize(img, dim, interpolation = cv2.INTER_AREA)
9 cv2.imwrite(f’myApp/website/static/assets/images/{file}’, resized)

10 print(’Done’)

List. 5.2: Image resizer method

5.1.2. Data analysis

To verify that the data was correctly downloaded, here (listing 5.3) is a code snippet that
counts the number of images in the CSV file and counts the numbers of images found in
my folders. The print method of this code returns "Scans found 112120, Total Headers
112120" which confirms that everything has gone according to plan so far.

1 import pandas as pd
2 import glob
3 import os
4 all_xray_df = pd.read_csv(’./Documentation/Data_Entry_2017_v2020.csv’)
5 all_image_paths = {os.path.basename(x): x for x in
6 glob.glob(os.path.join(’.’, ’images’, ’images’, ’*.png’))}
7 print(’Scans found:’, len(all_image_paths), ’, Total Headers’, all_xray_df.shape[0])
8 all_xray_df[’path’] = all_xray_df[’Image Index’].map(all_image_paths.get)
9 all_xray_df.sample(3)

List. 5.3: Download Verification Code

5.1. Data preparation 39

Then, we need to do a bit of data analysis to understand the dataset and be able to
process it to feed it to the model for training. First, let’s see the number of diagnosis
using a graph.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 label_counts = all_xray_df[’Finding Labels’].value_counts()[:15]
4 fig, ax1 = plt.subplots(1,1,figsize = (12, 8))
5 ax1.bar(np.arange(len(label_counts))+0.5, label_counts)
6 ax1.set_xticks(np.arange(len(label_counts))+0.5)
7 _ = ax1.set_xticklabels(label_counts.index, rotation = 90)

List. 5.4: Distribution of findings

Fig. 5.1.: Findings’ distribution

As you can see, the most striking feature of the chart is the overwhelming number of
instances labeled as "No Finding". This shows that there is a substantial imbalance in
the dataset. Such an imbalance can affect the performance of our machine learning model
as it may get biased towards predicting the majority class.
Let’s remove the No Findings images and draw this graph again.

1 label_counts = all_xray_df[~all_xray_df[’Finding Labels’].str.contains(’|’, regex=
False)][’Finding Labels’].value_counts()[:15]

2 label_counts = label_counts[~label_counts.index.str.contains(’No Finding’)]
3 fig, ax1 = plt.subplots(1,1,figsize = (12, 8))
4 ax1.bar(np.arange(len(label_counts))+0.5, label_counts, color = ’green’)
5 ax1.set_xticks(np.arange(len(label_counts))+0.5)

5.1. Data preparation 40

6 _ = ax1.set_xticklabels(label_counts.index, rotation = 90)

List. 5.5: Distribution of findings second graph

Fig. 5.2.: Findings’ distribution without "No Finding"

Here we see that the dataset is still pretty imbalanced, especially the finding "Hernia"
has a very low number of occurrences. We need to balance the dataset and implement a
one thousand case minimum, which will remove "Hernia" since its count is lower than a
thousand. We also create binary columns for each label, where the presence of the label
is indicated by "1" and its absence by "0". Then, we calculate weights based on the
number of findings for each disease with the addition of a small constant to ensure non-
zero weights, we also normalize those weights so that they add up to one. These weights
are used to resample the dataset to a sample of 40’000 images. Finally, we calculate the
frequency of each label in the resampled collection and convert it to a percentage and
draw a new plot.

1 from itertools import chain
2 all_xray_df[’Finding Labels’] = all_xray_df[’Finding Labels’].map(lambda x: x.replace(

’No Finding’, ’’))
3 all_labels = np.unique(list(chain(*all_xray_df[’Finding Labels’].map(lambda x: x.split

(’|’)).tolist())))
4 all_labels = [x for x in all_labels if len(x)>0]
5 print(’All Labels ({}): {}’.format(len(all_labels), all_labels))
6 for c_label in all_labels:
7 if len(c_label)>1: # leave out empty labels
8 all_xray_df[c_label] = all_xray_df[’Finding Labels’].map(lambda finding: 1.0 if

c_label in finding else 0)

5.1. Data preparation 41

9 all_xray_df.sample(3)
10 all_labels
11

12 # keep at least 1000 cases
13 MIN_CASES = 1000
14 all_labels = [c_label for c_label in all_labels if all_xray_df[c_label].sum()>

MIN_CASES]
15 print(’Clean Labels ({})’.format(len(all_labels)),
16 [(c_label,int(all_xray_df[c_label].sum())) for c_label in all_labels])
17

18 # since the dataset is very unbiased, we can resample it to be a more reasonable
collection

19 # weight is 0.1 + number of findings
20 sample_weights = all_xray_df[’Finding Labels’].map(lambda x: len(x.split(’|’)) if len(

x)>0 else 0).values + 4e-2
21 sample_weights /= sample_weights.sum()
22 all_xray_df = all_xray_df.sample(40000, weights=sample_weights)
23 label_counts = all_xray_df[’Finding Labels’].value_counts()[:15]
24

25 label_counts = 100*np.mean(all_xray_df[all_labels].values,0)
26 fig, ax1 = plt.subplots(1,1,figsize = (12, 8))
27 ax1.bar(np.arange(len(label_counts))+0.5, label_counts)
28 ax1.set_xticks(np.arange(len(label_counts))+0.5)
29 ax1.set_xticklabels(all_labels, rotation = 90)
30 ax1.set_title(’Adjusted Frequency of Diseases in Patient Group’)
31 _ = ax1.set_ylabel(’Frequency (%)’)

List. 5.6: Resampling data

Fig. 5.3.: Resampled data

5.1. Data preparation 42

5.1.3. Data splitting

The following code snippet splits the dataframe into training and validation sets. The
test size is set to 25%, meaning 75% will be used for training. The "random_state=2018"
ensures the split will be reproducible. Finally, the "stratify" ensures that the split main-
tains the same proportion of classes in both training and validation sets. It uses the first
4 characters of the "Finding Labels" string for stratification. The purpose of splitting
is to create balanced training and validation datasets, which preserve the distribution of
findings across the split.

1 from sklearn.model_selection import train_test_split
2 train_df, valid_df = train_test_split(all_xray_df,
3 test_size = 0.25,
4 random_state = 2018,
5 stratify = all_xray_df[’Finding Labels’].map(lambda x:

x[:4]))
6 print(’train’, train_df.shape[0], ’validation’, valid_df.shape[0])

List. 5.7: Data splitting

5.1.4. Data augmentation

First, in order to use Keras’ ImageDataGenerator, we need our labels to be in the fol-
lowing format (in a list) (example): [Atelectasis, Consolidation, Infiltration], however we
currently have this: Atelectasis|Consolidation|Infiltration. The two lines of code in listing
5.8, will modify both the training and validation datasets accordingly.

1 valid_df[’newLabel’] = valid_df.apply(lambda x: x[’Finding Labels’].split(’|’), axis
=1)

2 train_df[’newLabel’] = train_df.apply(lambda x: x[’Finding Labels’].split(’|’), axis
=1)

List. 5.8: Formatting

The ImageDataGenerator in Keras is a tool for real-time image augmentation during
model training. Its primary purpose is to enhance the robustness and generalization of
deep learning models. It provides variations in the training data at each epoch, which
helps prevent overfitting. During training, it dynamically generates augmented versions
of input images, introducing variations such as rotation, shifts, flips, brightness changes
and so on. If we look at the code now, the "samplewise_center=True" simply centers
each sample by subtracting its mean from each pixel. This helps to remove the mean
bias from the images, making the training process more stable and efficient. The "sam-
plewise_std_normalization=True" normalizes each sample by dividing each pixel by its
standard deviation. The goal of this normalization is to help the model to converge
faster and improve performance. The next two lines of the code, simply randomly split
horizontally some images but it does not flip them vertically. The height and width
shifts randomly move the inputs vertically by 5% or horizontally by 10%. The rotation
randomly rotates inputs by up to 5 degrees. The shear range, applies shearing trans-
formations (image deformation, unlike rotations, which preserve the lengths and angles,
shearing changes the shape of an object) randomly. Next, the reflect fill mode determines
how points outside the boundaries of an image are filled during data augmentation, in

5.1. Data preparation 43

this case, the image is reflected at the boundary. Finally, the zoom range randomly zooms
inside the pictures by 15%.

1 from tensorflow.keras.preprocessing.image import ImageDataGenerator
2 IMG_SIZE = (128, 128)
3 core_idg = ImageDataGenerator(samplewise_center=True,
4 samplewise_std_normalization=True,
5 horizontal_flip = True,
6 vertical_flip = False,
7 height_shift_range= 0.05,
8 width_shift_range=0.1,
9 rotation_range=5,

10 shear_range = 0.1,
11 fill_mode = ’reflect’,
12 zoom_range=0.15)

List. 5.9: Data augmentation instance

The following code sets up the data generators on the test, training and validation data.
It also loads and preprocesses the images while applying the data augmentation to the
training and validation data to enhance the training process.

1 train_gen = core_idg.flow_from_dataframe(dataframe=train_df,
2 directory=None,
3 x_col = ’path’,
4 y_col = ’newLabel’,
5 class_mode = ’categorical’,
6 classes = all_labels,
7 target_size = IMG_SIZE,
8 color_mode = ’grayscale’,
9 batch_size = 32)

10 valid_gen = core_idg.flow_from_dataframe(dataframe=valid_df,
11 directory=None,
12 x_col = ’path’,
13 y_col = ’newLabel’,
14 class_mode = ’categorical’,
15 classes = all_labels,
16 target_size = IMG_SIZE,
17 color_mode = ’grayscale’,
18 batch_size = 256) # we can use much larger batches for

evaluation
19 test_X, test_Y = next(core_idg.flow_from_dataframe(dataframe=valid_df,
20 directory=None,
21 x_col = ’path’,
22 y_col = ’newLabel’,
23 class_mode = ’categorical’,
24 classes = all_labels,
25 target_size = IMG_SIZE,
26 color_mode = ’grayscale’,
27 batch_size = 1024))

List. 5.10: Data Preprocessing

5.2. Model description 44

5.2. Model description

In this section, we will discuss the model that was created and that is used in the appli-
cation.

1 from keras.applications.mobilenet import MobileNet
2 from keras.layers import GlobalAveragePooling2D, Dense, Dropout, Flatten
3 from keras.models import Sequential
4 from keras import optimizers, callbacks, regularizers
5 base_mobilenet_model = MobileNet(input_shape = t_x.shape[1:],
6 include_top = False, weights = None)
7 multi_disease_model = Sequential()
8 multi_disease_model.add(base_mobilenet_model)
9 multi_disease_model.add(GlobalAveragePooling2D())

10 multi_disease_model.add(Dropout(0.5))
11 multi_disease_model.add(Dense(512))
12 multi_disease_model.add(Dropout(0.5))
13 multi_disease_model.add(Dense(len(all_labels), activation = ’sigmoid’))
14 multi_disease_model.compile(optimizer = ’adam’, loss = ’binary_crossentropy’,
15 metrics = [’binary_accuracy’, ’mae’])
16 multi_disease_model.summary()

List. 5.11: Deep Learning Model

MobileNet [32] is an efficient neural network architecture designed for mobile and embed-
ded vision applications. It uses depthwise separable convolutions to reduce the number of
parameters and computational cost compared to standard convolutions. This approach
enables MobileNet to maintain performance while being lightweight and fast. In this
model, the base MobileNet processes input images to generate meaningful feature maps,
which can then be used for further tasks such as multi-label classification.
In the code, we first create a Sequential model. The Sequential model in Keras is a
linear stack of layers. It allows us to create a model by simply adding layers to it one
by one. In our case, it is used to build a neural network by adding the pre-trained
MobileNet as its base followed by a few additional layers. After adding the MobileNet
(the MobileNet does not include its top layers, which would have been fully connected
layers used for classification (because "include_top = False" in our code), we add a Global
Average Pooling Layer, this layer replaces the fully connected layers found in classification
networks. It reduces each feature map to a single value by taking the average of all
values in that feature map, which reduces the number of parameters and helps prevent
overfitting. Again, in order to help prevent overfitting, we add a Dropout layer, which
is a regularization technique. This layer randomly sets 50% of the input units to 0 at
each update during training, which helps the model generalize better. Then, we add a
Dense layer, that consists of 512 neurons and it is a fully connected layer that learns
complex features from the pooled feature maps generated by MobileNet. After that, we
add another Dropout Layer followed by an Output layer, this is the final layer. It has
a number of neurons equal to the number of labels ("len(all_labels)"). Each neuron
corresponds to a different disease and uses a sigmoid activation function to output a
probability between 0 and 1 for each disease.
The entire model is then compiled with the Adam optimizer, using binary cross-entropy as
the loss function, which is suitable for multi-label classification problems where each label
is independent. The metrics used are binary accuracy and Mean Absolute Error (MAE).

5.2. Model description 45

5.2.1. Callbacks for Model Training

The ModelCheckpoint is used to save the model weights to a file only when there is an
improvement in the validation loss. The EarlyStopping stops training when the validation
loss has stopped improving, here it will stop if the loss has not improved in 5 epochs.
The Callback list combines the checkpoint and early stopping callbacks into a list that
can be passed to the "fit" function later.

1 from keras.callbacks import ModelCheckpoint, LearningRateScheduler, EarlyStopping,
ReduceLROnPlateau

2 weight_path="{}_best_.weights.h5".format(’xray_class’)
3 checkpoint = ModelCheckpoint(weight_path, monitor=’val_loss’, verbose=1,
4 save_best_only=True, mode=’min’, save_weights_only = True)
5 early = EarlyStopping(monitor="val_loss",
6 mode="min",
7 patience=5)
8 callbacks_list = [checkpoint, early]

List. 5.12: Callbacks

5.2.2. Model training, prediction and evaluation

First we will do a very short training followed by a much longer one to see how the results
improve.
Using the ".fit" method, we can train the model very quickly on a single epoch with 100
steps using the training data generator we created earlier. This small training already
shows a training accuracy of 83.89% and a validation accuracy of 86.73%.
Then, we use the ".predict" method to generate predictions on the test dataset. We
will analyze the result of those 32 predictions using and ROC curve graph. The AUC
is provided in the legend. The ROC curve plots the True Positive Rate (TPR) against
the False Positive Rate (FPR) at various threshold settings. It is used to evaluate the
diagnostic ability of a binary classifier. An AUC of 1.0 indicates perfect classification,
while an AUC of 0.5 suggest no discriminative power (equivalent to random guessing).
Our initial results here are all very close to 0.5, with 0.44 for Fibrosis which is the worst
result (the model performed worse than random guessing) and the best result it 0.53 for
Edema, which is slightly better than random guessing.

1 multi_disease_model.fit(train_gen,
2 steps_per_epoch=100,
3 validation_data = (test_X, test_Y),
4 epochs = 1,
5 callbacks = callbacks_list)
6

7 pred_Y = multi_disease_model.predict(test_X, batch_size = 32, verbose = True)
8

9 from sklearn.metrics import roc_curve, auc
10 fig, c_ax = plt.subplots(1,1, figsize = (9, 9))
11 for (idx, c_label) in enumerate(all_labels):
12 fpr, tpr, thresholds = roc_curve(test_Y[:,idx].astype(int), pred_Y[:,idx])
13 c_ax.plot(fpr, tpr, label = ’%s (AUC:%0.2f)’ % (c_label, auc(fpr, tpr)))
14 c_ax.legend()
15 c_ax.set_xlabel(’False Positive Rate’)
16 c_ax.set_ylabel(’True Positive Rate’)

5.2. Model description 46

17 fig.savefig(’barely_trained_net.png’)

List. 5.13: ".fit" training ".predict" prediction and plots for evaluation

Fig. 5.4.: Initial ROC Curve

The updated ROC curve (see Figure 5.5) illustrates the performance of our model after
extended training. The AUC values indicate significant improvements in the model’s
ability to distinguish between different diseases.

• Cardiomegaly achieves the highest AUC value of 0.90, suggesting that the model
correctly classifies this condition 90% of the time.

• Pneumonia has the lowest AUC value of 0.61, which, although not optimal, still
provides some predictive power.

• The average AUC across all conditions is approximately 0.75, demonstrating a gen-
erally good performance by the model.

While there are substantial variations in the results, the overall trend shows that the
model is capable of effectively aiding in the diagnosis of multiple thoracic and lung dis-
eases. Those results are in accord with the prediction made in chapter 2.2.2. "Disease
distribution", we stated that the condition "cardiomegaly" has a higher representation
in the dataset, while "pneumonia" has very low prevalence in it. Those results indeed
show that the model classifies correctly cardiomegaly the best and his worst performance
is pneumonia.

1 from sklearn.metrics import roc_curve, auc
2 fig, c_ax = plt.subplots(1,1, figsize = (9, 9))

5.2. Model description 47

3 for (idx, c_label) in enumerate(all_labels):
4 fpr, tpr, thresholds = roc_curve(test_Y[:,idx].astype(int), pred_Y[:,idx])
5 c_ax.plot(fpr, tpr, label = ’%s (AUC:%0.2f)’ % (c_label, auc(fpr, tpr)))
6 c_ax.legend()
7 c_ax.set_xlabel(’False Positive Rate’)
8 c_ax.set_ylabel(’True Positive Rate’)
9 fig.savefig(’trained_net.png’)

List. 5.14: Evaluation with longer training

Fig. 5.5.: Final ROC Curve

5.2.3. Optimizer selection

In this subchapter, we explore the impact of various optimization algorithms on the
performance of our multi-disease classification model. The selection of an appropriate
optimizer can significantly influence the convergence speed and final performance of the
neural network. Here, we evaluate five different optimizers: Stochastic Gradient Descent
(SGD) [44], SGD with momentum, Adagrad [2], Adadelta [1], and Adam [3].

Optimizers Overview

• SGD:

5.2. Model description 48

– Basic form of gradient descent where updates are performed using individual
samples.

– Can be slow to converge and sensitive to the learning rate.
• SGD with Momentum:

– Enhances SGD by adding a fraction of the previous update to the current
update, helping to accelerate convergence in the right direction.

• Adagrad:
– Adaptively adjusts the learning rate for each parameter, providing larger up-

dates for infrequent parameters and smaller updates for frequent ones.
– Particularly useful for sparse data.

• Adadelta:
– An extension of Adagrad that seeks to reduce its aggressive, monotonically

decreasing learning rate.
– Uses a moving window of gradient updates to improve performance.

• Adam (Adaptive Moment Estimation):
– Combines the benefits of Adagrad and RMSProp (Root Mean Squared Propa-

gation). It computes adaptive learning rates for each parameter and has been
shown to work well in practice for a wide range of problems.

Experimental Setup

We train the multi-disease classification model using each optimizer for up to 50 epochs.
Early stopping is employed to halt training if no improvement in validation loss is observed
for 5 consecutive epochs. The model performance is evaluated using the validation loss.

1 import keras
2

3 sgd = keras.optimizers.SGD(learning_rate=0.1)
4 sgd_momentum = keras.optimizers.SGD(learning_rate=0.1, momentum=0.9)
5 adagrad = keras.optimizers.Adagrad()
6 adadelta = keras.optimizers.Adadelta()
7 adam = keras.optimizers.Adam(learning_rate = 0.0005)
8 adam2 = keras.optimizers.Adam(learning_rate = 0.005)
9 adam3 = keras.optimizers.Adam(learning_rate = 0.05)

10 adam4 = keras.optimizers.Adam()
11 optimizers_list = [(’sgd’,sgd),
12 (’sgd_momentum’,sgd_momentum),
13 (’adagrad’,adagrad),
14 (’adadelta’,adadelta),
15 (’adam, lr=0.0005’, adam),
16 (’adam, lr=0.005’, adam2),
17 (’adam, lr=0.05’, adam3),
18 (’adam, default’, adam4)]
19

20 early = EarlyStopping(monitor="val_loss",
21 mode="min",
22 patience=5)
23 callbacks_list = [early]
24

25

5.2. Model description 49

26 plt.figure(figsize=(20,5))
27 for optimizer in optimizers_list:
28 print(optimizer)
29 multi_disease_model.compile(optimizer = optimizer[1], loss = ’binary_crossentropy’

,
30 metrics = [’binary_accuracy’, ’mae’])
31 history = multi_disease_model.fit(train_gen,
32 validation_data = (test_X, test_Y),
33 epochs = 50,
34 callbacks = callbacks_list)
35 plt.plot(history.history[’val_loss’])
36 plt.legend([x[0] for x in optimizers_list], loc=’upper right’)
37 plt.title(’model accuracy’)
38 plt.ylabel(’loss’)
39 plt.xlabel(’epoch’)
40 plt.show()
41 plt.savefig(’optimizer_selection.png’, bbox_inches=’tight’)

List. 5.15: Optimizer selection

Fig. 5.6.: Optimizer selection graph

As you can see on the graph, the training always stops before reaching 50 epochs and
in some cases it stops very early, this is due to the 5 epochs early stopping callback we
added to prevent overfitting.

Results and Analysis

The resulting plot compares the validation loss across different optimizers over the training
epochs. The key observations include:

• Adam Optimizer:
– Adam often converges quickly and achieves the lowest validation loss, indicat-

ing its effectiveness for this problem.
• SGD with Momentum:

– Adding momentum to SGD significantly improves convergence speed and sta-
bility compared to standard SGD.

• Adagrad and Adadelta:
– Both optimizers show adaptive learning rate benefits, with Adadelta generally

maintaining better stability in later epochs.

5.2. Model description 50

• Standard SGD:
– Standard SGD without momentum shows the slowest convergence and higher

validation loss, demonstrating its inefficiency for this problem.

From our experiments, Adam proves to be the most effective optimizer for our multi-
disease classification task, achieving the lowest validation loss and faster convergence.
These results highlight the importance of optimizer selection in training deep learning
models effectively.

5.2.4. Parameter tuning

Based on the findings made by the authors of this Github page [18], we can see a few
interesting points. These are also improvements that can be made to the model used in
our application.

Batch Size and Learning Rate

The table compares batch size accumulation steps (32 × n) with learning rates. Their
model achieves better loss when using learning rates around 0.0005, combined with a
gradient accumulation step size of 8 or a batch size of 256. Interestingly, similar perfor-
mance is observed for both smaller and larger batch sizes. Therefore, we can confidently
conclude that batch sizes of 1024 or 2048 would not substantially improve performance.
Moving forward, we recommend using the ADAM optimizer with a batch size of 256 and
gradient accumulation.

Fig. 5.7.: Learning Rate Table

https://github.com/paloukari/NIH-Chest-X-rays-Classification

5.3. Model performance 51

Image size and color

As is showed with the following graph, it seems that an image size of 256 yields great
results.

Fig. 5.8.: Image Size Graph

In our application, we opted for grayscale images. Unlike RGB images, which use three
color channels, grayscale images use only one channel. This choice allows us to conserve
memory and run larger batch sizes during training, thus resulting in shorter training
times.

5.3. Model performance

The multi-disease classification model was trained using the Adam optimizer with a learn-
ing of 0.0005, which demonstrated superior performance compared to other optimizers
such as SGD, SGD with momentum, Adagrad, Adadelta, and Adams with learning rates
of 0.005, 0.05 and the default value. The result of Adam with a value of 0.0005 for the
learning rate is very close to the results of Adagrad and Adadelta, however, based on the
findings of the Github [18] page mentioned earlier, during longer training Adam gets bet-
ter, which is why I chose to train my model using the Adam optimizer. After 14 epochs of
training, the model achieved a training loss of 0.2606, with a binary accuracy of 89.65%
and a MAE of 0.1549. On the validation set, the model reported a validation loss of
0.2788, a binary accuracy of 89.11%, and an MAE of 0.1586. These metrics indicate that
the model has learned to generalize well to unseen data, maintaining a balance between
fitting the training data and preserving accuracy on the validation set. The high binary
accuracy and relatively low MAE across both training and validation datasets under-
score the model’s robustness and effectiveness in diagnosing multiple diseases from X-ray
images. This performance aligns with the expectations for a well-trained Convolutional
Neural Network (CNN), particularly when using a powerful optimizer like Adam, which
adaptively adjusts the learning rate and handles sparse gradients effectively.

6
Application Implementation

6.1. Backend . 52

6.1.1. API . 52

6.1.2. Authentication . 55

6.1.3. Database . 57

6.2. Frontend . 59

6.2.1. Integration with Jinja and Bootstrap 60

6.2.2. HTML Pages . 60

6.1. Backend

The backend of the ChestVision [7] application forms the core of its functionality, manag-
ing data, processing requests, and ensuring secure and efficient interactions between the
user and the server. This section delves into the implementation of the REpresentational
State Transfer (REST) API, detailing the endpoints and their roles in handling various
operations such as data retrieval and manipulation. It also covers the authentication
mechanisms put in place to safeguard patient information, along with a comprehensive
overview of the database structure and the scripts used for populating it.

6.1.1. API

The RESTful API in the ChestVision application serves as the communication bridge
between the frontend and backend. It comprises various endpoints designed to handle
different operations, such as retrieving patient data, submitting new diagnostic results,
and updating patient records. Each endpoint is crafted to respond to specific HTTP
requests (GET, POST, PUT, DELETE) and is integrated with the frontend to provide
real-time data and functionalities. This section details the purpose and implementation
of each endpoint, including code examples and explanations of how error handling and
data validation are managed to ensure robust and reliable interactions.

• GET / : simply renders the "home.html" page if the user is logged in.

52

6.1. Backend 53

• DELETE /delete-patient : Deletes the selected patient by ID, if the patient exists.
• POST /predict : takes a single image as input, returns the diagnostic, fetches the

patient information if adding a follow-up to an existing patient, or creates a new
patient if "Follow-up#" is set to 0.

• POST /predictions : takes one or multiple images as input, simply returns the
findings without interacting with the database.

• GET /patients : returns a list of 25 patients per page on the "Patients" pages.
• GET /patients/<int:patient_id> : renders the "patient_detail.html" page.
• GET /get_patient/<int:patient_id> : returns the specific patient’s information.

Some code snippets

The "/" route is really simple, if the request is GET it renders the home.html page.
1 @views.route(’/’, methods=[’GET’, ’POST’])
2 @login_required
3 def home():
4 if request.method == ’POST’:
5 pass
6 return render_template("home.html", user=current_user)

List. 6.1: "/" route

The "/predict" route is the most complicated route. It first loads the model "modelx2.h5",
then gets the image uploaded by the user in the HTML page. After that, it processes
the image, reducing its size, converting it to grayscale and converts it to a NumPy array.
Then, it feeds it to the model and generates a prediction for the image and displays the
prediction if the probability found by the model of a specific disease is higher than 30%.
After which, it saves the image in the images folder and checks if the given "Follow-up#"
given on the page by the user is higher than 0. If it is not, it will create a new patient,
if it is, it will add a new follow-up to an existing patient. All of this is then saved in
the database and finally, the page predict.html is rendered with the given image and its
diagnostic.

1 @views.route(’/predict’, methods=[’GET’, ’POST’])
2 @login_required
3 def predict():
4 if request.method == ’POST’:
5 model = tf.keras.models.load_model(’./models/modelx2.h5’)
6 uploaded_file = request.files[’image’]
7 finding_label = ’’
8

9 if uploaded_file and uploaded_file.filename != ’’:
10 image = PilImage.open(io.BytesIO(uploaded_file.read()))
11 gray = image.convert(’L’)
12 img = gray.resize(IMG_SIZE, PIL.Image.Resampling.LANCZOS)
13 numpydata = np.array(img)
14 input_image = preprocess_image(numpydata)
15

16 prediction = model.predict(input_image)
17 disease_probabilities = prediction[0]
18

19 result_text = ’Diseases detected:’

6.1. Backend 54

20 for disease, probability in zip(all_labels, disease_probabilities):
21 if probability >= 0.3: # Only include diseases with probability >= 30%
22 finding_label += disease + ’, ’
23 result_text += f’{disease}: {probability*100:.2f}% ’
24

25 finding_label = finding_label[:-2] # Remove the last comma and space
26

27 image_path = f"./website/static/assets/images/{uploaded_file.filename}" #
Use the uploaded file’s filename

28

29 if os.path.exists(image_path):
30 print("Image already exists")
31 else:
32 print("Adding image to folder")
33 image.save(image_path)
34 print("Image saved")
35

36

37 # Get details from form
38 gender = request.form.get(’gender’)
39 follow_up_number = int(request.form.get(’follow_up_number’))
40 group = request.form.get(’group’)
41 age = request.form.get(’age’)
42 view_position = request.form.get(’view_position’)
43 original_image_width_height = request.form.get(’original_image_width_height

’)
44 original_image_pixel_spacing = request.form.get(’

original_image_pixel_spacing’)
45

46 # Check if follow_up_number is greater than 0
47 if follow_up_number > 0:
48 # If it is, get the existing patient
49 patient_id = request.form.get(’patient_id’)
50 patient = Patient.query.filter_by(gender=gender).first()
51 if patient:
52 patient = Patient.query.get(patient_id)
53 appointment = Appointment(patient_id=patient.id,
54 follow_up_number=follow_up_number,
55 group=group)
56 else:
57 # If patient does not exist, create a new patient
58 patient = Patient(gender=gender)
59 db.session.add(patient)
60 db.session.commit()
61 else:
62 # If follow_up_number is not greater than 0, create a new patient
63 patient = Patient(gender=gender)
64 db.session.add(patient)
65 db.session.commit()
66

67 # Create new appointment
68 appointment = Appointment(patient_id=patient.id,
69 follow_up_number=follow_up_number,
70 group=group)
71 db.session.add(appointment)
72 db.session.commit()
73

74 # Create new image

6.1. Backend 55

75 image = Image(appointment_id=appointment.id,
76 image_index=uploaded_file.filename,
77 patient_age=age,
78 view_position=view_position,
79 original_image_width_height=original_image_width_height,
80 original_image_pixel_spacing=original_image_pixel_spacing)
81 db.session.add(image)
82 db.session.commit()
83

84 # Create new finding
85 finding = Finding(image_id=image.id,
86 finding_label=finding_label)
87 db.session.add(finding)
88 db.session.commit()
89

90 myfile = uploaded_file.filename
91

92 return render_template(’predict.html’, prediction_texts=[result_text], user
=current_user, myfile=myfile)

93 else:
94 return render_template(’predict.html’, prediction_texts=[’No files selected

’], user=current_user)
95 return render_template(’predict.html’, user=current_user)

List. 6.2: "/predict" route

Finally, the "/get_patient/<int:patient_id>" route is used to query the database and it
uses the serialize method defined directly in the Patient’s table to find all of the patient’s
information. It then returns it all as a JSON object.

1 @views.route(’/get_patient/<int:patient_id>’, methods=[’GET’])
2 def get_patient(patient_id):
3 patient = Patient.query.get(patient_id)
4 if patient:
5 return jsonify(patient.serialize())
6 else:
7 return jsonify({})

List. 6.3: "/get_patient/<int:patient_id>" route

6.1.2. Authentication

In a real-world scenario, patient authentication is crucial for applications such as ChestVi-
sion. Ensuring the privacy of patients’ data is a critical part of these applications. In our
case, anyone can sign up and log in, but if this application were to be deployed in a hos-
pital, then only doctors should be able to connect to the application, and each patient’s
data should only be accessible by their own doctors.

Routes

• POST /login : logs the user in.
• POST /sign-up : signs the user up.
• GET /logout : logs the user out.

6.1. Backend 56

For both the login and logout routes, we utilize the "Flask-Login" library to manage user
sessions.

• Login: The "login_user" function is used to log in a user and start a session. The
"remember=True" parameter allows users to stay logged in across browser sessions.

• Logout: The "logout_user" function logs the user out, terminating the session.

1 @auth.route(’/login’, methods=[’GET’, ’POST’])
2 def login():
3 if request.method == ’POST’:
4 email = request.form.get(’email’)
5 password = request.form.get(’password’)
6

7 user = User.query.filter_by(email=email).first()
8 if user:
9 if check_password_hash(user.password, password):

10 flash(’Logged in successfully!’, category=’success’)
11 login_user(user, remember=True)
12 return redirect(url_for(’views.home’))
13 else:
14 flash(’Incorrect password, try again.’, category=’error’)
15 else:
16 flash(’Email does not exist.’, category=’error’)
17

18 return render_template("login.html", user=current_user)

List. 6.4: "/login" route

1 @auth.route(’/logout’)
2 @login_required
3 def logout():
4 logout_user()
5 return redirect(url_for(’auth.login’))

List. 6.5: "/logout" route

Our application employs several security measures to protect user data:
• Password Hashing: Passwords are hashed using the pbkdf2:sha256 algorithm before

being stored in the database. This ensures that even if the database is compromised,
the actual passwords remain secure.

• Secure Transmission: In a deployed environment, HTTPS should be used to encrypt
data transmitted between the client and server, preventing eavesdropping and man-
in-the-middle attacks.

It also uses form validation and perfoms serveral checks during user registration.
• Email Validation: Ensures that the email is at least 4 characters long.
• Name Validation: Ensures that the first and last names are at least 2 characters

long.
• Password Validation: Ensures that passwords are at least 7 characters long and

that the password confirmation matches.
1 @auth.route(’/sign-up’, methods=[’GET’, ’POST’])
2 def sign_up():
3 if request.method == ’POST’:

6.1. Backend 57

4 email = request.form.get(’email’)
5 first_name = request.form.get(’firstName’)
6 last_name = request.form.get(’lastName’)
7 password1 = request.form.get(’password1’)
8 password2 = request.form.get(’password2’)
9

10 user = User.query.filter_by(email=email).first()
11 if user:
12 flash(’Email already exists.’, category=’error’)
13 elif len(email) < 4:
14 flash(’Email must be greater than 3 characters.’, category=’error’)
15 elif len(first_name) < 2:
16 flash(’First name must be greater than 1 character.’, category=’error’)
17 elif len(last_name) < 2:
18 flash(’Last name must be greater than 1 character.’, category=’error’)
19 elif password1 != password2:
20 flash(’Passwords don\’t match.’, category=’error’)
21 elif len(password1) < 7:
22 flash(’Password must be at least 7 characters.’, category=’error’)
23 else:
24 new_user = User(email=email,
25 first_name=first_name,
26 last_name=last_name,
27 password=generate_password_hash(password1,
28 method=’pbkdf2:sha256’))
29 db.session.add(new_user)
30 db.session.commit()
31 login_user(new_user, remember=True)
32 flash(’Account created!’, category=’success’)
33 return redirect(url_for(’views.home’))
34

35 return render_template("sign_up.html", user=current_user)

List. 6.6: "/sign-up" route

6.1.3. Database

Description

The database for ChestVision is designed to store and manage essential data related
to patients, their appointments, diagnostic images, and findings. The database schema
includes the following main tables:

• Users: Stores information about the users (doctors), including their email, pass-
word, first name, and last name.

• Patients: Contains patient details such as gender and a list of appointments.
• Appointments: Records appointments for patients, including the follow-up number

and group information.
• Images: Stores diagnostic images taken during appointments, along with metadata

such as the image index, patient age, and view position.
• Findings: Contains diagnostic findings associated with each image.

6.1. Backend 58

The relationships between these tables ensure that data integrity is maintained and allow
for efficient data retrieval. For example, each patient can have multiple appointments,
and each appointment can include multiple findings but only one image per appointment.

Database population script

To facilitate development and testing, a population script is provided to seed the database
with sample data from the JSON file "patient_data.json" found in the documentation
folder of the application. This script reads patient data, including appointments, images,
and findings, and populates the database accordingly. The provided script in listing 6.7
performs the following tasks:

• Initialization: Initializes the application context and reads patient data from a
JSON file (patient_data.json).

• Adding Patients: Iterates through each patient in the JSON data and creates a new
Patient record in the database.

• Adding Appointments: For each patient, iterates through their appointments, ex-
tracting follow-up information and creating new Appointment records. Each ap-
pointment is associated with the patient and includes a group attribute.

• Adding Images: For each appointment, extracts image information and creates new
Image records. These records include metadata such as image index, patient age,
view position, original image dimensions, and pixel spacing.

• Adding Findings: For each image, extracts diagnostic findings and creates new
Finding records, associating them with the respective image.

• Committing Data: Commits the changes to the database for each patient, ensuring
data integrity and proper association between records.

1 from website import db, create_app
2 from website.models import Patient, Appointment, Image, Finding
3 import json
4

5 app = create_app()
6 x = 0
7 with app.app_context():
8 with open(’./Documentation/patient_data.json’) as f:
9 data = json.load(f)

10 # Assuming data is your JSON data
11 for patient in data["Patients"]:
12 new_patient = Patient(id=patient["PatientID"],
13 gender=patient["PatientGender"])
14 db.session.add(new_patient)
15 db.session.commit()
16

17 #print(patient["PatientID"])
18 #print(patient["PatientGender"])
19

20 for appointment in patient["Appointments"]:
21 for follow_up, image in appointment.items():
22 # Include the ’group’ attribute when creating a new Appointment
23 new_appointment = Appointment(patient_id=new_patient.id,
24 follow_up_number=int(follow_up.split(’#’)

[-1]),

6.2. Frontend 59

25 group=image[0]["Group"]) # Assuming all
images in an appointment have the same
group

26 db.session.add(new_appointment)
27 db.session.commit()
28

29 #print("Appointment id")
30 #print(new_appointment.id)
31 #print(follow_up)
32 #print(image[0]["Group"])
33

34 new_image = Image(appointment_id=new_appointment.id,
35 image_index=image[0]["ImageIndex"],
36 patient_age=image[0]["PatientAge"],
37 view_position=image[0]["ViewPosition"],
38 original_image_width_height=image[0]["

OriginalImageWidthHeight"],
39 original_image_pixel_spacing=image[0]["

OriginalImagePixelSpacing[x-y]"])
40 db.session.add(new_image)
41 db.session.commit()
42

43 #print("Image id")
44 #print(new_image.id)
45 #print(image[0]["ImageIndex"])
46 #print(image[0]["PatientAge"])
47 #print(image[0]["ViewPosition"])
48 #print(image[0]["OriginalImageWidthHeight"])
49 #print(image[0]["OriginalImagePixelSpacing[x-y]"])
50

51 for finding_label in image[0]["FindingLabels"]:
52 new_finding = Finding(image_id=new_image.id,
53 finding_label=finding_label)
54 db.session.add(new_finding)
55 db.session.commit()
56

57 #print(finding_label)
58

59 # Commit the changes for each patient
60 print(f"Patient {x} has been added to the database.")
61 x += 1
62 db.session.commit()
63

64 print(’Done!’)

List. 6.7: Database population script

This script automates the process of populating the database with structured patient
data, facilitating the development and testing of the ChestVision application.

6.2. Frontend

The frontend of the ChestVision application is designed to provide a seamless and user-
friendly experience for medical practitioners. This section explores the development of
the user interface, focusing on the integration of Jinja templates and Bootstrap to create a

6.2. Frontend 60

responsive and interactive platform. It describes the various views available to users, such
as patient management and diagnostic result pages, and explains how these components
interact with the backend to display real-time data and predictions.

6.2.1. Integration with Jinja and Bootstrap

Jinja Templates: Jinja, a templating engine for Python, is used to dynamically generate
HTML pages by injecting data from the backend. This allows for the creation of reusable
templates and components, making the development process more efficient. For example,
the base template might include common elements like the navigation bar and footer,
which can be extended by other templates.
Bootstrap: Bootstrap is a popular front-end framework that ensures the application
is responsive and visually appealing. It provides a range of pre-designed components,
such as forms, buttons, and navigation bars, which can be easily customized to fit the
application’s design requirements. Bootstrap’s grid system is used to create a responsive
layout that adapts to different screen sizes, ensuring that the application is accessible on
both desktop and mobile devices.

6.2.2. HTML Pages

The frontend views include:

• Login and Sign-Up Pages: These forms allow users to authenticate themselves and
access the system.

• Home Page: This page allows the user to input multiple images to the model and
get their associated disease predictions, without any access to the database.

• Predictions Page: This page allow the user to add a follow-up or create a new
patient. He can do so by inputting a single image and get a prediction of its
associated disease, all of the patient’s and image’s information will be saved to the
database along with the prediction and the image will be saved in the images folder.

• Patients Page: The patient’s page consists of a table that displays each patient’s
information with the possibility to click on "details" to access the information of
each of the follow-ups for each patient. This page only displays 25 patients per
page.

• Patient’s details Page: This is the details page, it contains all of the follow-ups of
each patients, it displays their x-ray images and their diagnostic along with all of
the image’s information.

base.html

This page is used as the base template for jinja. It imports bootstrap and creates the
navbar. The navbar uses the "navbar navbar-expand-lg navbar-dark bg-dark" class from
bootstrap and it creates clickable buttons that redirect to each of the views mentioned
above.

1 <nav class="navbar navbar-expand-lg navbar-dark bg-dark">
2 <button

6.2. Frontend 61

3 class="navbar-toggler"
4 type="button"
5 data-toggle="collapse"
6 data-target="#navbar"
7 >
8
9 </button>

10 <div class="collapse navbar-collapse" id="navbar">
11 <div class="navbar-nav">
12 {% if user.is_authenticated %}
13 Home
14 Predictions
15 Patients
16 Logout
17 {% else %}
18 Login
19 Sign Up
20 {% endif %}
21 </div>
22 </div>
23 </nav>

List. 6.8: navbar

As mentioned earlier, this page is the base template of every other HTML page, meaning
that the navbar will be displayed on every page, even though it is only defined in this page.
To make this happen, we include this container div that includes a block of content. Then,
on every other page, we need to include this Jinja code at the beginning: "% extends
"base.html" %"

1 <div class="container">{% block content %} {% endblock %}</div>

List. 6.9: Jinja content block

Login.html and sign_up.html

Both the login and sign-up pages are simple forms, here (listing 6.10) is the code of login
page.

1 {% extends "base.html" %}
2 {% block title %}Login{% endblock %}
3 {% block content%}
4 <form method="POST">
5 <h3 align="center">Login</h3>
6 <div class="form-group">
7 <label for="email">Email Address</label>
8 <input
9 type="email"

10 class="form-control"
11 id="email"
12 name="email"
13 placeholder="Enter email"
14 />
15 </div>
16 <div class="form-group">
17 <label for="password">Password</label>

6.2. Frontend 62

18 <input
19 type="password"
20 class="form-control"
21 id="password"
22 name="password"
23 placeholder="Enter password"
24 />
25 </div>
26

27 <button type="submit" class="btn btn-primary">Login</button>
28 </form>
29 {% endblock %}

List. 6.10: Login page

home.html

The homepage, consists of a form that takes images as inputs, these are then given to
the model in the backend which, in turn, returns the findings found in each image. The
predictions are then displayed along with the image.

1 {% extends "base.html" %}
2 {% block title %}Home{% endblock %}
3 {% block content%}
4 <div class="container mt-5">
5 <h1 align="center">Welcome to my disease prediction app</h1>
6 </div>
7 <div class="container mt-5" align="center" padding-bottom="50px">
8 <h2 align="center">Predictions</h2>
9 <form action="/predictions" method="POST" enctype="multipart/form-data">

10 <div class="form-group">
11 <label for="image">Upload Image</label>
12 <input type="file" id="image" name="image" accept="image/*" multiple required>
13 <button type="submit" class="button-84">Predict</button>
14 </div>
15 </form>
16 {% if prediction_texts %}
17 <div class="result">
18 <h2>Prediction Results:</h2>
19
20 {% for prediction_text in prediction_texts %}
21 {{ prediction_text }}
22 {% endfor %}
23
24 </div>
25 </div>
26 {% endif %}
27 {% for i in range(1, num_images+1) %}
28 <img src="{{ url_for(’static’, filename=’assets/uploaded_images/predictions’ + i|

string + ’.png’) }}" alt="Predictions" class="img-fluid">
29 {% endfor %}
30 </div>

List. 6.11: home page

6.2. Frontend 63

predict.html

The predictions page contains a big HTML form that needs to be filled with all of the
information necessary to fill the 3 database tables associated to a follow-up. Every field
is required. It then displays the result along with the image. Here, you can only input a
single image. It also displays a placeholder image whenever no image has been inputted.

1 <div class="row" padding-top="50px">
2 <div class="col-md-6">
3 <form method="POST" action="/predict" enctype="multipart/form-data">
4 <div class="form-group">
5 <label for="follow_up_number">Follow-up #</label>
6 <input type="number" id="follow_up_number" name="follow_up_number"

required onchange="checkFollowUpNumber()">
7 </div>
8 <div class="form-group" id="patient_id_group" style="display: none;">
9 <label for="patient_id">Patient ID</label>

10 <input type="number" id="patient_id" name="patient_id">
11 </div>
12 <div class="form-group">
13 <label for="gender">Gender</label>
14 <input type="text" id="gender" name="gender" required>
15 </div>
16 <div class="form-group">
17 <label for="group">Group</label>
18 <input type="text" id="group" name="group" required>
19 </div>
20 <div class="form-group">
21 <label for="age">Age</label>
22 <input type="number" id="age" name="age" required>
23 </div>
24 <div class="form-group">
25 <label for="view_position">View Position</label>
26 <input type="text" id="view_position" name="view_position" required>
27 </div>
28 <div class="form-group">
29 <label for="original_image_width_height">Original Image Width Height</

label>
30 <input type="text" id="original_image_width_height" name="

original_image_width_height" required>
31 </div>
32 <div class="form-group">
33 <label for="original_image_pixel_spacing">Original Image Pixel Spacing</

label>
34 <input type="text" id="original_image_pixel_spacing" name="

original_image_pixel_spacing" required>
35 </div>
36 <div class="form-group">
37 <label for="image">Upload Image</label>
38 <input type="file" id="image" name="image" accept="image/*" multiple

required>
39 </div>
40 <button type="submit" class="btn btn-primary">Predict</button>
41 </form>
42 </div>
43 <div class="col-md-6">
44 {% if myfile %}

6.2. Frontend 64

45 <img src="{{ url_for(’static’, filename=’assets/images/’ + myfile) }}" alt=
"Image" class="img-fluid">

46 {% else %}
47 <img src="{{ url_for(’static’, filename=’assets/placeholder-256x256.gif’)

}}" alt="Placeholder Image" class="img-fluid">
48 {% endif %}
49 </div>
50 </div>
51 <div class="container mt-5">
52 {% if prediction_texts %}
53 <div class="result">
54 <h2>Prediction Results:</h2>
55
56 {% for prediction_text in prediction_texts %}
57 <li class="{% if ’No Finding’ in prediction_text %}no-finding{% else %}{{

prediction_text.lower().replace(’ ’, ’-’) }}{% endif %}">{{
prediction_text }}

58 {% endfor %}
59
60 </div>
61 {% endif %}
62 </div>

List. 6.12: Database form

This page also contains a small script with the "checkFollowUpNumber()" function that
checks if the Follow-Up number is bigger than 0, if it is, it adds a new field in the form
for the Patient ID number, this ID number is then used to add a follow-up to an existing
patient.

1 <script>
2 function checkFollowUpNumber() {
3 var followUpNumber = document.getElementById(’follow_up_number’).value;
4 if (followUpNumber > 0) {
5 document.getElementById(’patient_id_group’).style.display = ’block’;
6 } else {
7 document.getElementById(’patient_id_group’).style.display = ’none’;
8 }
9 }

10 </script>

List. 6.13: FollowUpNumber script

patients.html

This page contains a big table that displays 25 patients per page and it contains a page
navigation system to find the next 25 patients. It also contains a small script with the
"deletePatient" function that deletes a patient using its ID.

1 <table class="table">
2 <tr>
3 <th scope="col">Patient ID</th>
4 <th scope="col">Gender</th>
5 <th scope="col" class="age">Age</th>
6 <th scope="col" text-align="center">Number of Appointments</th>
7 <th scope="col">Diagnosis</th>

6.2. Frontend 65

8 <th scope="col">Delete</th>
9 <th scope="col">Details</th>

10 </tr>
11 {% for patient in patients.items %}
12 <tr>
13 <td>{{ patient.id }}</td>
14 <td>{{ patient.gender }}</td>
15 <td>
16 {% set ns = namespace(min_age=100, max_age=0) %}
17 {% for appointment in patient.appointments %}
18 {% for image in appointment.images if image.patient_age %}
19 {% if image.patient_age < ns.min_age %}
20 {% set ns.min_age = image.patient_age %}
21 {% endif %}
22 {% if image.patient_age > ns.max_age %}
23 {% set ns.max_age = image.patient_age %}
24 {% endif %}
25 {% endfor %}
26 {% endfor %}
27 {% if ns.min_age == ns.max_age %}
28 {{ ns.min_age }}
29 {% else %}
30 {{ ns.min_age }} - {{ ns.max_age }}
31 {% endif %}
32 </td>
33 <td class="appointmentsNum">{{ patient.appointments.count() }}</td>
34 <td>
35 {% set ns = namespace(diagnosis_set=[]) %}
36 {% for appointment in patient.appointments %}
37 {% for image in appointment.images %}
38 {% for finding in image.findings if finding.finding_label %}
39 {% set label = finding.finding_label %}
40 {% if label == "Pleural_Thickening" %}
41 {% set label = "Pleural Thickening" %}
42 {% endif %}
43 {% if label not in ns.diagnosis_set %}
44 {% set ns.diagnosis_set = ns.diagnosis_set + [label] %}
45 {% endif %}
46 {% endfor %}
47 {% endfor %}
48 {% endfor %}
49 {% if ns.diagnosis_set|length > 1 %}
50 {{ ns.diagnosis_set[:-1]|join(’, ’) }} & {{ ns.diagnosis_set[-1] }}
51 {% else %}
52 {{ ns.diagnosis_set[0] }}
53 {% endif %}
54 </td>
55 <td>
56 <button class="btn btn-secondary" type="button" style="display: block;

width: 100%; height: 100%;" onClick="deletePatient({{ patient.id }})
">

57 Delete
58 </button>
59 </td>
60 <td>
61 <button class="btn btn-secondary" type="button">
62 Patient ID: {{ patient.id }}
63 </button></td>

6.2. Frontend 66

64 </tr>
65 {% endfor %}
66 </table>

List. 6.14: Patients’ table

Listing 6.15 shows the code of the page navigation system.
1 <nav aria-label="Page navigation example">
2 <ul class="pagination justify-content-end">
3 {% if patients.has_prev %}
4 <li class="page-item">
5 <a class="page-link" href="{{ url_for(’views.patients’, page=patients.

prev_num) }}">Previous
6
7 {% else %}
8 <li class="page-item disabled">
9 Previous

10
11 {% endif %}
12 <li class="page-item">{{ patients.page }}
13 {% if patients.has_next %}
14 <li class="page-item">
15 <a class="page-link" href="{{ url_for(’views.patients’, page=patients.

next_num) }}">Next
16
17 {% else %}
18 <li class="page-item disabled">
19 Next
20
21 {% endif %}
22
23 </nav>

List. 6.15: Navigation system

Finally, the deletePatient function:
1 <script>
2 function deletePatient(patientId) {
3 fetch("/delete-patient", {
4 method: "POST",
5 body: JSON.stringify({ patientId: patientId }),
6 }).then((_res) => {
7 window.location.href = "/patients";
8 });
9 }

10 </script>

List. 6.16: deletePatient function

patients_detail.html

This page first displays the patient id along with the patient’s gender, it also implements
a delete patient button. Then, it displays the rest of the information using a for loop
that display the information found in the appointments, images and findings tables of the

6.2. Frontend 67

database and also displays the image of each appointment. Finally, it also contains the
same "deletePatient" function that was showed above.

1 {% for appointment in patient.appointments %}
2 <div class="card mt-3">
3 <div class="card-header">
4 Follow-up #{{ appointment.follow_up_number }}
5 </div>
6 <div class="card-body">
7 <div class="row">
8 <div class="col-md-6">
9 <h5 class="card-title">Appointment ID: {{ appointment.id }}</h5>

10 <p class="card-text">Group: {{ appointment.group }}</p>
11 {% set myns = namespace(diag=[]) %}
12 {% for image in appointment.images %}
13 <h6>Image ID: {{ image.id }}</h6>
14 <p>Age: {{ image.patient_age }}</p>
15 <p>View Position: {{ image.view_position }}</p>
16 <p>Original Image Width Height: {{ image.

original_image_width_height }}</p>
17 <p>Original Image Pixel Spacing: {{ image.

original_image_pixel_spacing }}</p>
18 {% for finding in image.findings if finding.finding_label %}
19 {% set myns.diag = myns.diag + [finding.finding_label] %}
20 {% endfor %}
21 {% if myns.diag|length > 1 %}
22 {{ myns.diag[:-1]|join(’, ’) }} & {{ myns.diag[-1] }}
23 {% else %}
24 {{ myns.diag[0] }}
25 {% endif %}
26 {% endfor %}
27 </div>
28 <div class="col-md-6">
29 {% for image in appointment.images %}
30 <img src="{{ url_for(’static’, filename=’assets/images/’ + image

.image_index) }}" alt="Image for appointment {{ appointment.
id }}">

31 {% endfor %}
32 </div>
33 </div>
34 </div>
35 </div>
36 {% endfor %}

List. 6.17: Information loops

7
Conclusion

7.1. Review . 68

7.2. Results Review . 69

7.2.1. Future Improvements . 70

7.3. Future research . 70

7.1. Review

When I started developing ChestVision [7], the first thing I did was research articles,
videos, and examples of models used to predict diseases from medical images. I found
plenty of examples of working models, but very few were integrated into actual applica-
tions. Personally, I had some experience with frontend development but not much with
backend development. I also lacked experience in training models and integrating them,
making every part of this work a great learning experience for me.
Initially, I found a complete working example of a model that could only detect pneumonia
in thoracic x-ray images. This allowed me to become familiar with the code and explore
this field while experimenting. After that, I managed to save that model and integrate it
into a simple HTML page, which served as the proof of concept I needed to propose the
type of application I wanted to develop to my teacher.
Later on, I attempted for a long time to train a deep learning model capable of detecting
all 13 diseases in the dataset. However, as difficulties arose, I took a break from that and
shifted my focus to developing the application itself. Throughout development, I used
my simple pneumonia model to test it.
Discovering backend development in Python was particularly fascinating as it opened up a
new realm of possibilities and challenges. Initially, I began by creating a basic HTML page
to test my backend. It was during this phase that I stumbled upon Flask and its associated
components like Flask-Login, which proved to be incredibly useful and straightforward
to implement. These modules, especially Flask-Login with its integration of Werkzeug
security, facilitated the development of critical application components. For instance,
setting up an authentication system with session management became remarkably easier.
Following that, I dove into working with databases. Here, I found SQLAlchemy to be a
standout module, significantly simplifying the database integration process. However, I

68

7.2. Results Review 69

first started with adapting the dataset, initially provided in CSV format. To enhance
usability, I transformed this dataset into JSON format using a custom script. This
conversion proved advantageous later on during frontend-backend integration, as JSON
is widely utilized in JavaScript, particularly for API development. The JSON format
streamlined the creation of database tables and serialization methods, facilitating seamless
data transfer.
Subsequently, I proceeded to develop the API. Starting with authentication routes in my
auth.py file, I built upon existing examples to acclimate myself to creating and testing
routes. Once these foundational routes were established, I implemented a basic route to
test my initial pneumonia detection model. With these components validated, I expanded
the frontend functionality, including patient tables and detailed pages for each of the
30,805 patients in the dataset. This expansion necessitated creating corresponding routes
to handle new pages and functionalities. Concurrently, I refined the application’s layout,
particularly improving image display on the homepage and enhancing prediction label
visibility.
Satisfied with the frontend’s interaction with the backend, I returned to training the
model. Starting afresh, I began by analyzing the CSV dataset through graphs to un-
derstand it better. Addressing the challenge posed by the dataset’s size, I researched
techniques for handling large image datasets, given that attempting to train the model
with the entire set of 112,120 images at full resolution caused significant constraints, for
example I ran into the following issue: I was missing about 40GB of Random Access
Memory (RAM). I implemented batches of images that I could feed one by one to the
model during training, but this still took a really long time and yielded suboptimal results,
which made me explore other options.
My breakthrough came when I discovered the Sequential model and the pretrained Mo-
bileNet, coupled with keras’ image preprocessing capabilities. Subsequent dataset resam-
pling significantly improved training efficiency, albeit it remained a time-intensive process.
Nevertheless, these efforts paid off with models achieving approximately 80% accuracy.
Further optimizations using different learning rates and optimizers pushed the model’s
accuracy to around 89%, marking a substantial improvement.
With a robust working model in hand, I integrated it into the application by creating a
new "Predictions" view. This view interacted with the database to provide predictions
based on the model’s outputs. Recognizing the limitation of having only one image per
appointment in the dataset, I enhanced the homepage to allow users to input multiple
images for immediate predictions without database interaction, facilitating easy testing
of the model.

7.2. Results Review

Overall, I am pleased with the outcomes of my model and the overall outlook of the
application. This project has been a significant learning experience for me. As mentioned
in Chapter 5, the model achieved an accuracy of 89.11%, which I consider a noteworthy
result. I believe the application is also user-friendly and effective.

7.3. Future research 70

7.2.1. Future Improvements

Looking ahead, there are several areas where I aim to enhance the application:

• Improved Security Features: Enhance security measures such as validating email ad-
dresses and implementing stronger password checks. This would bolster the overall
security posture of the application.

• Deployment: Currently, the application is only deployed locally. I plan to deploy it
on a production server to make it accessible beyond my local environment. This will
involve configuring the deployment environment and ensuring smooth operation in
a real-world setting.

• Expansion of Disease Detection: Expand the scope of disease detection by incor-
porating additional diseases beyond pneumonia. For instance, integrating models
trained on Magnetic Resonance Imaging (MRI) images for detecting diseases in
other organs like the brain could broaden the application’s utility in medical diag-
nostics.

These future developments aim to further refine the application’s functionality, security,
and usability, thereby improving its effectiveness in medical imaging diagnostics.

7.3. Future research

There are many areas of research that are really interesting. Here are a few that could
be used to make this project better.

• Multi-Modal Integration: Explore the integration of multiple imaging modalities
(e.g., combining X-ray with MRI or Computed Tomography (CT) scans) for com-
prehensive disease detection. Research on how different modalities can complement
each other to improve diagnostic accuracy.

• Enhanced Data Preprocessing Techniques: Develop and refine data preprocessing
pipelines to handle diverse medical imaging datasets more effectively. Explore tech-
niques such as data augmentation, noise reduction, and normalization specific to
medical images.

• Clinical Validation and User Studies: Conduct clinical validation studies to evaluate
the performance of your application in real-world medical settings. Gather feedback
from healthcare professionals to assess usability, accuracy, and clinical relevance.

• Integration with Healthcare Systems: Investigate integration strategies to seam-
lessly integrate your application with existing Healthcare Information Systems (HIS).
Explore interoperability standards such as Health Level Seven (HL7) Fast Health-
care Interoperability Resources (FHIR) for data exchange.

Each of these areas represents potential directions for future research and development
that build upon what I have built in this work. By exploring these topics, we can
contribute to advancing the field of medical image analysis and enhancing the practical
application of AI in healthcare.

A
Common Acronyms

CNN Convolutional Neural Network
AI Artificial Intelligence
NIH National Institutes of Health
SQL Structured Query Language
CSS Cascading Style Sheets
JS JavaScript
HTML HyperText Markup Language
OpenCV Open Computer Vision Library
CAD computer-aided detection and diagnosis
NLP Natural Language Processing
ML Machine Learning
DL Deep Learning
PNG Portable Network Graphics
ORM Object-Relational Mapper
WSGI Web Server Gateway Interface
API Application Programming Interface
JSON JavaScript Object Notation
NumPy Numerical Python
HTTP HyperText Transfert Protocol
HTTPS HyperText Transfert Protocol Secure
ROC Receiver Operating Characteristic
AUC Area Under the Curve
TPR True Positive Rate
FPR False Positive Rate
SGD Stochastic Gradient Descent
MAE Mean Absolute Error
REST REpresentational State Transfer
CSV Comma-Separated Values
RAM Random Access Memory
GB GigaBytes
MRI Magnetic Resonance Imaging
CT Computed Tomography
HIS Healthcare Information Systems
HL7 Health Level Seven
FHIR Fast Healthcare Interoperability Resources

71

B
License of the Documentation

Copyright (c) 2024 Yannick Künzli.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts.
The GNU Free Documentation Licence can be read from [12].

72

C
Repository of the Project

A Github repository for this application was created. The repository of the app is available
here: https://github.com/YannickKunz/ChestVision
The code for training the model is located in the jupyter notebook. All of the code for
the application is located in the folder myApp. After cloning the repository, you also
need to download the images on the official website, you can use the code in the first cells
of the notebook to download them and unzip them. The structure of the project needs
to be myApp/website/static/assets/images, and this is the folder where the images need
to be located.

73

https://github.com/YannickKunz/ChestVision

D. Referenced Web Resources

[1] Adadelta. https://keras.io/api/optimizers/adadelta/ (accessed June 20,
2024). 47

[2] Adagrad. https://keras.io/api/optimizers/adagrad/ (accessed June 20, 2024).
47

[3] Adam. https://keras.io/api/optimizers/adam/ (accessed June 20, 2024). 47
[4] Atelectasis diagnosis. https://www.maimonidesem.org/blog/

cxr-consolidation-or-atelectasis (accessed May 05, 2024). vi, 11
[5] Bokeh. https://bokeh.org (accessed June 20, 2024). 30
[6] Cardiomegaly diagnosis. https://www.radiologymasterclass.co.uk/gallery/

chest/cardiac_disease/cardiomegaly (accessed May 05, 2024). vi, 11, 12
[7] ChestVision. https://www.github.com/YannickKunz/ChestVision (accessed June

20, 2024). 2, 36, 52, 68
[8] Consolidation diagnosis. https://www.radiologymasterclass.co.uk/gallery/

chest/pulmonary-disease/lung_zones (accessed May 05, 2024). vi, 12
[9] NIH Chest X-ray dataset. https://nihcc.app.box.com/v/ChestXray-NIHCC (ac-

cessed May 10, 2024). 3, 6, 37
[10] Edema diagnosis. https://www.radiologymasterclass.co.uk/gallery/chest/

cardiac_disease/pulmonary_oedema (accessed May 05, 2024). vi, 12, 13
[11] Emphysema diagnosis. https://www.radiologymasterclass.co.uk/gallery/

chest/pulmonary-disease/chest_xray_copd (accessed May 05, 2024). vi, 13, 14
[12] Free Documentation Licence (GNU FDL). http://www.gnu.org/licenses/fdl.

txt (accessed July 28, 2005).
[13] Fibrosis diagnosis. https://www.radiologymasterclass.co.uk/gallery/chest/

pulmonary-disease/pulmonary_fibrosis (accessed May 05, 2024). vi, 14
[14] Flask Documentation. https://flask.palletsprojects.com/en/3.0.x/ (ac-

cessed June 18, 2024). 29
[15] Flask-Login Documentation. https://flask-login.readthedocs.io/en/latest/

(accessed June 18, 2024). 29
[16] Flask-Migrate Documentation. https://flask-migrate.readthedocs.io/en/

latest/ (accessed June 18, 2024). 29

74

https://keras.io/api/optimizers/adadelta/
https://keras.io/api/optimizers/adagrad/
https://keras.io/api/optimizers/adam/
https://www.maimonidesem.org/blog/cxr-consolidation-or-atelectasis
https://www.maimonidesem.org/blog/cxr-consolidation-or-atelectasis
https://bokeh.org
https://www.radiologymasterclass.co.uk/gallery/chest/cardiac_disease/cardiomegaly
https://www.radiologymasterclass.co.uk/gallery/chest/cardiac_disease/cardiomegaly
https://www.github.com/YannickKunz/ChestVision
https://www.radiologymasterclass.co.uk/gallery/chest/pulmonary-disease/lung_zones
https://www.radiologymasterclass.co.uk/gallery/chest/pulmonary-disease/lung_zones
https://nihcc.app.box.com/v/ChestXray-NIHCC
https://www.radiologymasterclass.co.uk/gallery/chest/cardiac_disease/pulmonary_oedema
https://www.radiologymasterclass.co.uk/gallery/chest/cardiac_disease/pulmonary_oedema
https://www.radiologymasterclass.co.uk/gallery/chest/pulmonary-disease/chest_xray_copd
https://www.radiologymasterclass.co.uk/gallery/chest/pulmonary-disease/chest_xray_copd
http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt
https://www.radiologymasterclass.co.uk/gallery/chest/pulmonary-disease/pulmonary_fibrosis
https://www.radiologymasterclass.co.uk/gallery/chest/pulmonary-disease/pulmonary_fibrosis
https://flask.palletsprojects.com/en/3.0.x/
https://flask-login.readthedocs.io/en/latest/
https://flask-migrate.readthedocs.io/en/latest/
https://flask-migrate.readthedocs.io/en/latest/

D. Referenced Web Resources 75

[17] Flask-SQLAlchemy Documentation. https://flask-sqlalchemy.
palletsprojects.com/en/3.1.x/ (accessed June 18, 2024). 29

[18] Github NIH Chest X Rays Classification. https://github.com/paloukari/
NIH-Chest-X-rays-Classification/tree/master/src (accessed May 10, 2024).
37, 50, 51

[19] Glob. https://docs.python.org/3/library/glob.html (accessed June 20, 2024).
30

[20] ARDA: Using Artificial Intelligence in Opthalmology - Google Health. https://
health.google/caregivers/arda/ (accessed May 10, 2024). 19

[21] Healthy lungs. https://www.radiologymasterclass.co.uk/tutorials/chest/
chest_home_anatomy/chest_anatomy_start (accessed May 05, 2024). vi, 15

[22] Hernia diagnosis. https://www.radiologymasterclass.co.uk/gallery/chest/
mediastinum_hilum/hiatus_hernia (accessed May 05, 2024). vi, 18

[23] Holoviews. https://holoviews.org (accessed June 20, 2024). 30
[24] Infiltration diagnosis. https://bestpractice.bmj.com/topics/en-gb/1094 (ac-

cessed May 05, 2024). vi, 14, 15
[25] Itertools. https://docs.python.org/3/library/itertools.html (accessed June

20, 2024). 30
[26] JavaScript. https://developer.mozilla.org/fr/docs/Web/JavaScript (ac-

cessed June 20, 2024). 33
[27] NIH Chest X-ray dataset on Kaggle. https://www.kaggle.com/datasets/

nih-chest-xrays/data (accessed May 10, 2024).
[28] Keras Website. https://keras.io (accessed June 18, 2024). 29
[29] Lung Diseases Data Analysis by Stephane Bernadac. https://www.kaggle.com/

code/sbernadac/lung-deseases-data-analysis (accessed May 10, 2024). 37
[30] Mass diagnosis. https://www.radiologymasterclass.co.uk/gallery/chest/

mediastinum_hilum/retrocardiac_mass (accessed May 05, 2024). vi, 15
[31] Matplotlib. https://matplotlib.org (accessed June 20, 2024). 8, 30
[32] MobileNet. https://keras.io/api/applications/mobilenet/ (accessed June 20,

2024). 44
[33] Nodule diagnosis. https://www.healthline.com/health/benign-lung-nodules

(accessed May 05, 2024). vi, 16
[34] NumPy. https://numpy.org (accessed June 19, 2024). 8, 30
[35] OpenCV. https://opencv.org (accessed June 19, 2024). 30
[36] Pandas. https://pandas.pydata.org (accessed June 19, 2024). 30
[37] Pleural effusion diagnosis. https://www.radiologymasterclass.co.uk/

tutorials/chest/chest_pathology/chest_pathology_page4 (accessed May
05, 2024). vi, 13

[38] Pleural thickening diagnosis. https://www.radiologymasterclass.co.uk/
tutorials/chest/chest_pathology/chest_pathology_page4 (accessed May 05,
2024). vi, 16

https://flask-sqlalchemy.palletsprojects.com/en/3.1.x/
https://flask-sqlalchemy.palletsprojects.com/en/3.1.x/
https://github.com/paloukari/NIH-Chest-X-rays-Classification/tree/master/src
https://github.com/paloukari/NIH-Chest-X-rays-Classification/tree/master/src
https://docs.python.org/3/library/glob.html
https://health.google/caregivers/arda/
https://health.google/caregivers/arda/
https://www.radiologymasterclass.co.uk/tutorials/chest/chest_home_anatomy/chest_anatomy_start
https://www.radiologymasterclass.co.uk/tutorials/chest/chest_home_anatomy/chest_anatomy_start
https://www.radiologymasterclass.co.uk/gallery/chest/mediastinum_hilum/hiatus_hernia
https://www.radiologymasterclass.co.uk/gallery/chest/mediastinum_hilum/hiatus_hernia
https://holoviews.org
https://bestpractice.bmj.com/topics/en-gb/1094
https://docs.python.org/3/library/itertools.html
https://developer.mozilla.org/fr/docs/Web/JavaScript
https://www.kaggle.com/datasets/nih-chest-xrays/data
https://www.kaggle.com/datasets/nih-chest-xrays/data
https://keras.io
https://www.kaggle.com/code/sbernadac/lung-deseases-data-analysis
https://www.kaggle.com/code/sbernadac/lung-deseases-data-analysis
https://www.radiologymasterclass.co.uk/gallery/chest/mediastinum_hilum/retrocardiac_mass
https://www.radiologymasterclass.co.uk/gallery/chest/mediastinum_hilum/retrocardiac_mass
https://matplotlib.org
https://keras.io/api/applications/mobilenet/
https://www.healthline.com/health/benign-lung-nodules
https://numpy.org
https://opencv.org
https://pandas.pydata.org
https://www.radiologymasterclass.co.uk/tutorials/chest/chest_pathology/chest_pathology_page4
https://www.radiologymasterclass.co.uk/tutorials/chest/chest_pathology/chest_pathology_page4
https://www.radiologymasterclass.co.uk/tutorials/chest/chest_pathology/chest_pathology_page4
https://www.radiologymasterclass.co.uk/tutorials/chest/chest_pathology/chest_pathology_page4

[39] Pneumonia diagnosis. https://www.mayoclinic.org/diseases-conditions/
pneumonia/multimedia/chest-x-ray-showing-pneumonia/img-20005827 (ac-
cessed May 05, 2024). vi, 17

[40] Pneumothorax diagnosis. https://www.radiologymasterclass.co.uk/
tutorials/chest/chest_pathology/chest_pathology_page4 (accessed May
05, 2024). vi, 17

[41] Python. https://docs.python.org/3/ (accessed June 20, 2024).
[42] Scikit-learn. https://scikit-learn.org/stable/ (accessed June 20, 2024). 30
[43] Seaborn. https://seaborn.pydata.org (accessed June 19, 2024). 30
[44] SGD. https://keras.io/api/optimizers/sgd/ (accessed June 20, 2024). 47
[45] Train Simple XRay CNN on Kaggle by K. Scott Mader. https://www.kaggle.com/

code/kmader/train-simple-xray-cnn (accessed May 10, 2024). 37
[46] Tensorflow. https://www.tensorflow.org (accessed June 19, 2024). 29
[47] Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and

Ronald Summers. Chestx-ray14: Hospital-scale chest x-ray database and bench-
marks on weakly-supervised classification and localization of common thorax dis-
eases. 09 2017.

[48] Werkzeug Security Documentation. https://pypi.org/project/Werkzeug/ (ac-
cessed June 18, 2024). 29

https://www.mayoclinic.org/diseases-conditions/pneumonia/multimedia/chest-x-ray-showing-pneumonia/img-20005827
https://www.mayoclinic.org/diseases-conditions/pneumonia/multimedia/chest-x-ray-showing-pneumonia/img-20005827
https://www.radiologymasterclass.co.uk/tutorials/chest/chest_pathology/chest_pathology_page4
https://www.radiologymasterclass.co.uk/tutorials/chest/chest_pathology/chest_pathology_page4
https://docs.python.org/3/
https://scikit-learn.org/stable/
https://seaborn.pydata.org
https://keras.io/api/optimizers/sgd/
https://www.kaggle.com/code/kmader/train-simple-xray-cnn
https://www.kaggle.com/code/kmader/train-simple-xray-cnn
https://www.tensorflow.org
https://pypi.org/project/Werkzeug/

	Introduction
	Motivation and Goals
	Organization
	Notations and Conventions

	NIH Chest X-ray Dataset description and context
	Dataset description
	Pathologies
	Goal
	Data
	Limitations
	Personal decisions
	Distribution of co-occurrence diseases

	Statistical data analysis in python
	Gender distribution
	Disease distribution
	Image sample

	Diseases descriptions and diagnosis
	Atelectasis
	Cardiomegaly
	Consolidation
	Edema
	Pleural Effusion
	Emphysema
	Fibrosis
	Infiltration
	Mass
	Nodule
	Pleural Thickening
	Pneumonia
	Pneumothorax
	Hernia

	ChestVision - User demonstration
	Description of the application and context
	Description of the pages
	Scenarios
	Sign-up & Login pages
	Homepage
	Patients page
	Patient's detail page
	Predictions page

	ChestVision - Technologies and architecture
	Technologies
	Flask
	Flask-SQLAlchemy
	Flask-Login
	Flask-Migrate
	Werkzeug Security
	Keras and Tensorflow
	Additional Python libraries

	Architecture
	Overview
	Application structure
	Key components
	Routing and Functionality
	Database design
	Security measures
	Local deployment

	Machine Learning Model implementation
	Data preparation
	Data downloading and resizing
	Data analysis
	Data splitting
	Data augmentation

	Model description
	Callbacks for Model Training
	Model training, prediction and evaluation
	Optimizer selection
	Parameter tuning

	Model performance

	Application Implementation
	Backend
	API
	Authentication
	Database

	Frontend
	Integration with Jinja and Bootstrap
	HTML Pages

	Conclusion
	Review
	Results Review
	Future Improvements

	Future research

	Common Acronyms
	License of the Documentation
	Repository of the Project
	D. Referenced Web Resources

