
ParTI

An ecosystem (database, server and user interface) to get
information on bars and restaurants of Canton Ticino that are

application's partners.

Bachelor Thesis

Sebastian Käslin

July 2024

Thesis supervisors:

Prof. Dr. Jacques Pasquier-Rocha
Software Engineering Group

Software Engineering Group
Department of Informatics

University of Fribourg (Switzerland)

Table of Contents

1. Introduction 2

1.1. Motivation and Goals . 2

1.2. Organization . 2

1.3. Notations and Conventions . 3

2. The project ParTI 4

2.1. Introduction . 4

2.2. State of the art . 4

2.2.1. TheFork . 5

2.3. ParTI Application . 7

2.3.1. Introduction . 7

2.3.2. Use cases . 8

2.3.3. Database . 9

3. User point of view 12

3.1. Introduction . 12

3.2. Global overview . 12

3.2.1. Map component . 12

3.2.2. List component . 15

3.2.3. See own . 16

3.3. Scenarios . 17

3.3.1. Write review on a business . 17

3.3.2. See comments under an own review 20

4. Programmer point of view 22

4.1. Introduction . 22

4.2. Database . 22

4.3. Backend . 24

4.3.1. Database connection . 24

4.3.2. Backend REST API . 25

i

Table of Contents ii

4.3.3. Postman . 26

4.4. Frontend . 27

4.4.1. GeoJSON data . 27

4.4.2. D3.js . 29

4.4.3. Vue.js . 30

5. Conclusion 33

5.1. Summary . 33

5.2. The future . 33

A. Common Acronyms 34

B. License of the Documentation 35

C. Repository GitHub of the project 36

References 37

List of Figures

2.1. TheFork screenshot - Fribourg partners 5

2.2. TheFork screenshot - tooltip on the map 6

2.3. TheFork screenshot - information on a restaurant 6

2.4. TheFork screenshot - reviews' section . 7

2.5. Clients' use cases . 8

2.6. Intermediate ERD - Business Entity . 10

2.7. Updated Version Intermediate ERD - Review Entity 10

2.8. ERD ecosystem's database . 11

3.1. ParTI main page . 13

3.2. ParTI Map - select a district . 13

3.3. ParTI Map - select a business . 14

3.4. ParTI Map - e�ect on list component . 14

3.5. ParTI List - view reviews and comments 15

3.6. ParTI List - write a review . 15

3.7. ParTI List - write a comment . 16

3.8. ParTI Menu see own . 17

3.9. ParTI user personal information . 17

3.10. Scenario 1.1 - �nd the business . 18

3.11. Scenario 1.2 - add to favorites and write review 18

3.12. Scenario 1.3 - new review . 19

3.13. Scenario 1.4 - see favorites . 19

3.14. Scenario 2.1 - see own reviews . 20

3.15. Scenario 2.2 - see comments and answer to them 20

3.16. Scenario 2.3 - visualize the newly written comment 21

4.1. MongoDB Compass screenshot . 23

4.2. Postman screenshot . 27

4.3. D3.js map screenshot . 30

4.4. Vue-lea�et map component . 32

iii

List of Tables

4.1. REST API backend application . 25

iv

Listings

4.1. MongoDB database connection . 24

4.2. Establish database connection . 25

4.3. Express.js REST API implementation . 26

4.4. Function to handle the request of a business 26

4.5. Districts' GeoJSON . 28

4.6. Map in D3.js . 29

4.7. Vue map component . 31

1

1
Introduction

1.1. Motivation and Goals . 2

1.2. Organization . 2

1.3. Notations and Conventions 3

1.1. Motivation and Goals

This bachelor thesis presents the process of developing a software that allows users to get
information on bars and restaurants of Canton Ticino. The thesis will treat in detail the
main idea, its modelization, the �nal result and the technologies used for the implemen-
tation. The goal of this work is to create an application's ecosystem that provides to the
user the expected functionalities and that it is developed in a manner that will facilitate
future improvements.

1.2. Organization

Introduction

The introduction chapter treats the motivation and goals, the structure of the work by
explaining the content of each chapter and in the end an overview of the formatting
conventions.

Chapter 2: The project ParTI

This chapter tells the state of the art of applications that o�er the same aimed function-
alities. It �rst of all discusses and shows some intersting Graphical User Interface (GUI)
aspects of one of these applications and �nally it describes the application protagonist of
this work, ParTI, from the point of view of the use cases and the database structure that
supports the ecosystem.

Chapter 3: User point of view

This chapter contains the discussion on the �nal result of the application by showing
screenshots of the GUI and then by describing in more detail two distinct scenarios that
apply some of the de�ned use cases.

2

1.3. Notations and Conventions 3

Chapter 4: Programmer point of view

It describes the technology stack used for the implementation by dividing the ecosystem
into three subparts: database, backend and frontend. The technology are explained with
the use of screenshots and code snippets.

Conclusion

It discusses the goals achieved and sets some directions to improve the application.

Appendix

It contains a list of common abbreviations, information about the github repository and
the references.

1.3. Notations and Conventions

� Formatting conventions:

� Abbreviations and acronyms as follows Entity-Relationship Diagram (ERD)
for the �rst usage and ERD for any further usage;

� The notation used for the ERD is the Modi�ed Chen Notation (MC-Notation)
[5];

� http://localhost:3000/businesses is used for web addresses;

� Code is formatted as follows:

1 public double division(int _x, int _y) {

2 double result;

3 result = _x / _y;

4 return result;

5 }

� Figure s, Table s and Listings s are numbered inside a chapter. For example, a
reference to Figure j of Chapter i will be noted Figure i.j.

http://localhost:3000/businesses

2
The project ParTI

2.1. Introduction . 4

2.2. State of the art . 4

2.2.1. TheFork . 5

2.3. ParTI Application . 7

2.3.1. Introduction . 7

2.3.2. Use cases . 8

2.3.3. Database . 9

2.1. Introduction

This chapter starts by covering applications that are similar to the one protagonist of this
work, similar in the sense that they o�er to the user a comparable set of functionalities. In
particular it will be shown in detail one of these applications, TheFork, by presenting the
most interesting part of its GUI. In the second part of the chapter instead we are going
to de�ne the ParTI application's goals by discussing the clients' use cases. Consequently
once stated the client's use cases, it will be discussed and drawn an according Entity-
Relationship Diagram (ERD) for the ecosystem's database.

2.2. State of the art

On the market there are already multiple applications that o�er to users a similar typology
of services as the one that are aimed for the realization of the ParTI ecosystem. Mainly
they allow users to navigate a map to look for restaurants in user's proximity, or they
directly enable the users to scroll a list of restaurants in an area, and the way the list is
sorted is customizable. In both ways then the user can select and acquire information on
a speci�c restaurant. The information can be objective, such as the menu, opening hours,
address, and so on; or subjective, e.g., the experiences of other users shared in reviews.
In this section it will be analyzed one of the most popular application in this context, the
well-known TheFork.

4

2.2. State of the art 5

2.2.1. TheFork

TheFork [3] is a french platform created in 2007 by Bertrand Jelensperger, Partrick Dal-
sace and Denis Fayolle, originally named LaFourchette. In 2014 was bought by the
american website TripAdvisor, and after the success and the expansion of the application
across all Europe, in 2020 the name has been changed to TheFork to create a uniform
and recognizable brand.

TheFork o�ers the possibility to the user to select an area near him to start the search of
restaurants. The application has a partnership with over 55000 restaurants and TheFork
shows to the users the subset of partners located in the selected area. As case study we
can take Fribourg as area of interest, and by doing so we obtain a set of 24 restaurants
that we can inspect, as shown in Figure 2.1.

Figure 2.1.: TheFork screenshot - Fribourg partners

The user has then two options to obtain more information on a restaurant: he can scroll
and click on a restaurant with the left GUI component; or he can use the map on the
right and click on a marker to visualize a tooltip of the clicked restaurant, Figure 2.2.

2.2. State of the art 6

Figure 2.2.: TheFork screenshot - tooltip on the map

Once clicked on a restaurant it is possible to see its menu and many other additional
information, as shown in Figure 2.3.

Figure 2.3.: TheFork screenshot - information on a restaurant

2.3. ParTI Application 7

By scrolling down on the restaurant page the user can reach the reviews section, where
he can consult the reviews written by other users, Figure 2.4.

Figure 2.4.: TheFork screenshot - reviews' section

These discussed main characteristics will be present in the ParTI application, i.e., being
able to navigate a map, obtaining more information on a restaurant and see the reviews,
as well as other functionalities.

2.3. ParTI Application

2.3.1. Introduction

ParTI application has the aim of allowing users to inform themselves on the bars and
restaurants in the region of Canton Ticino. In this section we will see in more detail what
are the use cases that the application must provide to the users, and consequently a way
to structure the database to support the ecosystem.

2.3. ParTI Application 8

2.3.2. Use cases

The application idea comes with three distinct actors: clients, businesses and adminis-
trators. Each one of these actors has its own speci�c use cases, however the application
was developed by starting to focus on the clients' use cases, and this work will only cover
the latter. Therefore from now one we assume that businesses, word that I use to refer to
both restaurants and bars, cannot actively participate into the application, even though
the idea is to make it possible in the future. Instead there is a single administrator, my-
self, that is able to communicate with the businesses and manage their pro�les on their
behalf.

The ensemble of clients' use cases are shown in Figure 2.5, in which we can identify �ve
subgroups distinguished by colors:

1. Use cases related to the client account (yellow)

2. General use cases on a restaurant (blue)

3. Use cases related to reviews on businesses (green)

4. Use cases related to comments on reviews (beige)

5. Use cases related to businesses' events and o�ers (red)

Figure 2.5.: Clients' use cases

The �rst subgroup implies that there must be a way to authenticate clients in the ap-
plication, and that clients must be able to access and modify their personal information:
�rst name, last name and email.
The second subgroup is a more general one and it de�nes that a client must be able to

2.3. ParTI Application 9

visualize businesses that are application's partners, see their information as well as add
them to their favorites to have a shortcut access in the future.
The third and fourth subgroup are built analogously, and represent the actions that clients
can perform on respectively reviews and comments. For both reviews and comments the
client must be able to read them, write them and see his own.
The �fth and last subgroup is related to the additional information that a client can ob-
tain about a business. There are two types of additional information: o�ers and events.
An o�er represents an opportunity for the client to save money, and the business must
de�ne a validity time interval for the o�er. Instead an event is something that is organized
by the business and it doesn't necessarily translate in saving money for the client, but
instead it consists in o�ering to the client a special experience. For example for a bar it
could be an evening with theme music or a darts tournament, while for a restaurant it
could be a dinner with multi-ethnic cuisine or accompanied by live music.

The de�nition of these use cases specify the di�erent goals that the �nal ecosystem wants
to reach. For a single use case there are multiple sub-goals, for example by taking the
use case regarding obtaining information on a business, we can develop di�erent ways to
make it feasible, e.g., list of businesses and map, as seen implemented by TheFork.

2.3.3. Database

The �rst step in the development of the ecosystem is the de�nition of a database. The
database represents the foundations of the application, and it needs to be de�ned in a way
that makes the future implementation of the use cases the most straightforward possible.
A good way to de�ne the database is to create an ERD [4], even if then in the actual
implementation a non-relational database may be used.

To understand what are the necessary entities we can analyse the clients use cases in
Figure 2.5, from it we identify the main entities:

� Client

� Business: restaurant or bar

� Review

� Comment

� O�er

� Event

To �nd the relationships between the entities we need to think at the interactions that
are implicit in the use cases. Starting from the Business entity, we have four interactions:

1. A Business can organize none or multiple Events

2. A Business can make available none or multiple O�ers

3. A Business can have none or multiple Reviews

4. A Business can be the favorite of none or multiple Clients

From this de�ned interactions it is possible to draw an ERD with the main focus on the
Business Entity, that is the entity involved in the largest number of relationships. To
make it easier to follow I have drawn intermediate diagrams, that represent a sort of
di�erent steps to create the �nal ERD of the ecosystem, and the �rst one is shown in
Figure 2.6.

2.3. ParTI Application 10

Figure 2.6.: Intermediate ERD - Business Entity

Now we can focus our attention on the Review Entity, and from the use cases are extracted
two necessary relationships involving a Review:

1. A Review can have none or multiple Comments

2. A Review is written by a Client

These two new Review's relationships can be added to the intermediate ER diagram in
Figure 2.6 to create a new updated version, shown in Figure 2.7.

Figure 2.7.: Updated Version Intermediate ERD - Review Entity

2.3. ParTI Application 11

From the client's use cases lastly we need to add to the ERD the relationship standing
between a client and a comment, i.e., a comment is written by a client. By only considering
the client's use cases this would be achievable simply by adding a relationship between the
entities Client and Comment, stating that a client can write none or multiple comments.
However this solution is not appropriate if for example we would like that in the future,
when treating Businesses' use cases, a Business has the ability of writing a comment on a
review that it has received. For this reason I opted for a less straightforward solution but
that leave more room for maneuver for future implementations, that consists in adding a
new entity, User, that is a common parent entity for businesses and clients. In this way
the relationship stating who is the author of a comment is between the entities Comment
and User, and a User can be both a Client or a Business. The �nal ERD of the ecosystem
is shown in Figure 2.8.

Figure 2.8.: ERD ecosystem's database

3
User point of view

3.1. Introduction . 12

3.2. Global overview . 12

3.2.1. Map component . 12

3.2.2. List component . 15

3.2.3. See own . 16

3.3. Scenarios . 17

3.3.1. Write review on a business 17

3.3.2. See comments under an own review 20

3.1. Introduction

On this chapter is discussed the �nal result of the ParTI application from the point of
view of a User. In particular �rstly is shown the GUI in its di�erent components, and
then two di�erent scenarios are presented in which are demonstrated how some use cases
are covered by the application.

3.2. Global overview

The ParTI application main page is divided into two sub-components, following analo-
gously the visualisation concept of TheFork. On the left sub-component there is a list of
available businesses, while on the right there is the map with markers for each one of the
available businesses, as shown in Figure 3.1.

3.2.1. Map component

The user can navigate the map component using the selectors on top of it or by manually
zooming. By clicking the district selector it is possible to choose one of the eight districts
of Canton Ticino, and by clicking one of them, the map automatically zooms in on the
district and it shows its borders, as shown in Figure 3.2.

12

3.2. Global overview 13

Figure 3.1.: ParTI main page

Figure 3.2.: ParTI Map - select a district

In function of the district selection the options listed in the municipality selector are
dynamically modi�ed to contain only the municipalities located in the selected district.
By clicking on a marker on the map it switches color to green to distinguish it from the

3.2. Global overview 14

others, as shown in Figure 3.3

Figure 3.3.: ParTI Map - select a business

Instead of showing a tooltip once a marker is clicked as seen in the Fork implementation,
there is a connection between the two GUI sub-components, so that when a marker is
clicked on the map the corresponding business card in the list of businesses switches color
to green and it is put at �rst place in the list, as shown in Figure 3.4. Vice versa when
clicking on a business on the list its corresponding marker on the map becomes green.

Figure 3.4.: ParTI Map - e�ect on list component

3.2. Global overview 15

3.2.2. List component

As already mentioned the component containing the list of businesses and the map com-
ponent are interconnected. When a business on the list component is selected, as shown
in Figure 3.4, then it is possible to obtain more information on the selected business.
By clicking on the view reviews button a pop-up appears that shows all the reviews on
the business, and on each review it is possible to click on view comments to see all the
comments on the review, Figure 3.5.

Figure 3.5.: ParTI List - view reviews and comments

By clicking the plus symbol at the bottom of the reviews' list it is possible to write a new
review on the business, Figure 3.6.

Figure 3.6.: ParTI List - write a review

3.2. Global overview 16

Analogously by clicking on the plus symbol at the bottom of the comments' list it is
possible to write a new comment on a review, Figure 3.7.

Figure 3.7.: ParTI List - write a comment

With the same logic by clicking on view events and view o�ers it is possible to visualize
on the pop-up respectively the events and the o�ers. Finally there is the last button that
makes sure that the user can dynamically keep a list of its favorite businesses, as shown in
Figure 3.4. In case the client has already inserted into the favorites the selected business
there would be a button that allow the user to remove the business from its favorites, as
visible in Figure 3.8.

3.2.3. See own

The user can maintain a list of its favorite businesses, to visualize this list and visualize
other personal information there is the see own menu. This menu gives access to the
client's personal information, favorites, reviews and comments, as shown in Figure 3.8.

3.3. Scenarios 17

Figure 3.8.: ParTI Menu see own

By clicking on one of the four options a corresponding pop-up will appear on the screen,
for example by clicking on information the user can visualize its personal information:
�rst name, last name and email, Figure 3.9.

Figure 3.9.: ParTI user personal information

3.3. Scenarios

3.3.1. Write review on a business

In this scenario we assume that the client John Doe has eaten in the restaurant Reginella
in Mendrisio. He is really satis�ed about it and he would like to write a positive review
and add the restaurant to its favorites. To do so therefore he �rst searches for the business
on the map by selecting as municipality Mendrisio, as shown in Figure 3.10.

3.3. Scenarios 18

Figure 3.10.: Scenario 1.1 - �nd the business

Once Reginella is found, he can add it to its favorites and open the review pop-up to
write a new review, Figure 3.11. The addition of the review is �nalized by clicking add,
and the result of this action is shown in Figure 3.12.

Figure 3.11.: Scenario 1.2 - add to favorites and write review

Now we can assume that after some time John Doe is again in Mendrisio but it doesn't
remember anymore the name of that restaurant that had made such a good impression on
him last time he was there. However he remembers that he had added it to its favorites
in the ParTI application, therefore it opens up its favorites and he easily �nds it, Figure
3.13.

3.3. Scenarios 19

Figure 3.12.: Scenario 1.3 - new review

Figure 3.13.: Scenario 1.4 - see favorites

3.3. Scenarios 20

3.3.2. See comments under an own review

In this second scenario we assume that the client David Taylor wants to inspect the
reviews that he has written to see if someone has written a comment about it. To do so
�rstly in the see own menu he selects the reviews, as shown in Figure 3.14.

Figure 3.14.: Scenario 2.1 - see own reviews

Once opened the pop-up to visualize its reviews he can view the comments on each one of
them, and ultimately he decides to answer to the comment done by Olivia Garcia, Figure
3.15.

Figure 3.15.: Scenario 2.2 - see comments and answer to them

3.3. Scenarios 21

Once written the comment it is now possible to �nalize the operation by clicking add,
and then we can see the new comment under the review, Figure 3.16.

Figure 3.16.: Scenario 2.3 - visualize the newly written comment

4
Programmer point of view

4.1. Introduction . 22

4.2. Database . 22

4.3. Backend . 24

4.3.1. Database connection . 24

4.3.2. Backend REST API . 25

4.3.3. Postman . 26

4.4. Frontend . 27

4.4.1. GeoJSON data . 27

4.4.2. D3.js . 29

4.4.3. Vue.js . 30

4.1. Introduction

On this chapter we will discuss the ParTI application from the point of view of a pro-
grammer, and therefore we are going to discuss the di�erent technologies used. With
technology stack [6] we refer to the ensemble of programming languages, frameworks,
libraries and technologies that combined create the ecosystem of the application. In
this chapter we will treat the tech stack, starting from the database, then the backend
and lastly the frontend. The ParTI application uses a full-stack JavaScript denominated
MEVN, that stands for MongoDB, Express.js, Vue.js and Node.js, each singular of these
technologies will be brie�y discussed.

4.2. Database

Previously we have drawn an ERD for the application's database, Figure 2.8. As already
mentioned, typically an ERD is drawn as a model for implementing a relational database,
however for this application I have chosen to work with MongoDB. MongoDB [7] is a
popular open-source NoSQL database, it is therefore non-relational, meaning that it is

22

4.2. Database 23

not structured with tables and rows, but instead MongoDB is based on Collections and
Documents. A collection contains multiple documents and it can be interpreted as an
Entity Type, while a document can be seen as an actual Entity of a speci�c Entity
Type. A document represents a record on the database, and it is stored as a Binary
JSON (BSON), that is a special type of JavaScript Object Notation (JSON) format.

The implementation of the database in MongoDB is pretty much straightforward, for
each Entity that we have we create a Collection, and inside each collection we populate
the database by adding Documents. With MongoDB it comes a GUI called MongoDB
Compass that facilitates the creation and population of the database, for example in
Figure 4.1 we can see on the left the database called bachelor_work, that contains seven
di�erent collections and by opening the businesses collection there are multiple documents
in JSON format.

Figure 4.1.: MongoDB Compass screenshot

When inserting a new document in a collection it is not necessary to de�ne explicitly the
_id �eld, this �eld is added automatically by MongoDB, and the ObjectID generated is
a 24-character hexadecimal string that uniquely identi�es the document on the database.
To implement the relationships between di�erent Collections, I have added some addi-
tional �elds that act as foreign keys, as shown in Figure 4.1 in a business document we
have three �elds that contains arrays of ids: eventsId, o�ersId and reviewsId.

To start working at the application with some entries in the database I have manually
created a test database with 40 businesses, 10 clients, 20 reviews, 20 comments, 10 o�ers
and 10 events. Having a test database we want now to start doing something with the
data stored in it. To communicate with the database programmatically and not using
the MongoDB Compass GUI or the mongo shell, we have to choose a MongoDB driver
[8], and the choice depends on how we want to implement the backend of the application.

4.3. Backend 24

4.3. Backend

As already mentioned the ParTI application was conceived using the full-stack JavaScript
MEVN, therefore the technologies used for the backend are Express.js and Node.js.
Node.js [9] is a free, open-source JavaScript runtime environment that allows to create
servers and web apps, while Express.js [10] is a web application framework for Node.js
specialized in making quick and easy the creation of an Application Programming Inter-
face (API). The API is the interface that will establish a way of communicate between the
frontend and the backend of the application, concretely it will allow the user to request
information about bars and restaurant of Canton Ticino. The API implemented will be
of type Representational State Transfer (REST), that means that it uses the standard
Hypertext Transfer Protocol (HTTP) methods (GET, POST, PUT, DELETE, PATCH,
...); the communication is stateless and the resources are returned in this case in JSON
format. The role of the backend is therefore to establish a connection with the database
and handle requests from the frontend.

4.3.1. Database connection

Using the MongoDB driver we have to �rst of all create a connection to the database, to
do so we simply need the Uniform Resource Locator (URL) that locates the application's
database, as shown in Listing 4.1.

1 // MongoDB driver for node.js

2 const { MongoClient } = require("mongodb");

3

4 // Variable that stores the database connection

5 let dbConnection;

6

7 // Select the functions to export in a module in node.js

8 module.exports = {

9 // It has as argument a callback function.

10 connectToDb: (cb) => {

11 // The argument is a connection string, that is a special URL for a MongoDB

database.

12 MongoClient.connect("mongodb://localhost:27017/bachelor_work")

13 .then((client) => {

14 dbConnection = client.db();

15 return cb();

16 })

17 .catch((err) => {

18 console.log(err);

19 return cb(err);

20 });

21 },

22 // Get the connection to the database.

23 getDb: () => dbConnection,

24 };

Listing 4.1: MongoDB database connection

This module now allows us to establish a connection to our database and this is the �rst
thing that we do when the backend Node.js application is started, Listing 4.2.

4.3. Backend 25

1 // Require the package express

2 const express = require("express");

3 // Import functions defined to create and get connection to the database

4 const { connectToDb, getDb } = require("./db");

5 // Init app and middleware

6 const app = express();

7 // Call the imported function and define the callback function

8 connectToDb((err) => {

9 if (!err) {

10 // listen for requests on a port number, localhost:3000

11 app.listen(3000, () => {

12 console.log("app listening on port 3000");

13 });

14 db = getDb();

15 }

16 });

Listing 4.2: Establish database connection

4.3.2. Backend REST API

The backend server REST API [11] de�nes what are the requests that a client's application
can make and the responses it can expect. We have already de�ned the client's use cases,
Figure 2.5, the REST API must cover all of them. For doing so I have de�ned the di�erent
routes shown in Table 4.1.

Method Route

GET .../businesses

GET .../business/{businessId}

GET .../businessesOnLocation?d={district}&m={municipality}&s=

{section}

PATCH .../addFavorite/{businessId}

PATCH .../removeFavorite/{businessId}

GET .../businessReviews/{businessId}

GET .../clientReviews/{clientId}

POST .../addReview

GET .../reviewComments/{reviewId}

GET .../clientComments/{clientId}

POST .../addComment

GET .../businessOffers/{businessId}

GET .../businessEvents/{businessId}

Table 4.1.: REST API backend application

The framework express.js facilitates the implementation of our REST API. To use the
express framework we �rst instantiate the app as shown in Listing 4.2, then we can
call special methods on the app instance dedicated to handle di�erent types of HTTP
requests, Listing 4.3.

.../businesses
.../business/{businessId}
.../businessesOnLocation?d={district}&m={municipality}&s={section}
.../businessesOnLocation?d={district}&m={municipality}&s={section}
.../addFavorite/{businessId}
.../removeFavorite/{businessId}
.../businessReviews/{businessId}
.../clientReviews/{clientId}
.../addReview
.../reviewComments/{reviewId}
.../clientComments/{clientId}
.../addComment
.../businessOffers/{businessId}
.../businessEvents/{businessId}

4.3. Backend 26

1 // handle a GET request of a single business with a given id

2 app.get("/business/:id", (req, res) => {

3 getDocById(db, "businesses", req, res);

4 });

5 // handle a POST request of inserting a business in the businesses collection

6 app.post("/addBusiness", (req, res) => {

7 addUser(db, "businesses", req, res);

8 });

Listing 4.3: Express.js REST API implementation

In Listing 4.3 we see that to handle a speci�c type of request we give to the according
express.js method two arguments, the route of the request and an anonymous function
that handles the request. Taking as example the GET request of a single business with
a given id the function that handles the request is the one shown in Listing 4.4.

1 function getDocById(db, collection, req, res) {

2 // isValid checks whether the given id is a 24 character hex string, 12 byte

Uint8array, or an integer

3 if (!ObjectId.isValid(req.params.id)) {

4 res.status(500).json({ error: "Not a valid doc id" });

5 } else {

6 // Instantiate an ObjectId of mongodb with the id in the req

7 let idObject = new ObjectId(req.params.id);

8 db.collection(collection)

9 // Find the document with the given id

10 .findOne({ _id: idObject })

11 .then((doc) => {

12 if (!doc) {

13 res.status(404).json({

14 error: "No doc in " + collection + " with the given id was found!",

15 });

16 } else {

17 res.status(200).json(doc);

18 }

19 })

20 }

Listing 4.4: Function to handle the request of a business

4.3.3. Postman

Postman is an API platform for building and using APIs, it comes with a user-friendly
interface. I have used this tool to test my REST API implementation, indeed it is possible
to de�ne and save di�erent requests with their paths and arguments. Then we can execute
the request and retrieve and visualize the response from our backend server. The GUI of
Postman with an example of request and visualized response is shown in Figure 4.2.

4.4. Frontend 27

Figure 4.2.: Postman screenshot

4.4. Frontend

The frontend of the ecosystem represents the GUI of the application. The objective of the
work is the realization of an ecosystem that provides to the user the set of functionalities
de�ned by the client's use cases, Figure 2.5. The �rst component that I started developing
for the frontend was the map. The map indeed is an important part of the GUI, it must
show to the users where are located the businesses and the user must be able to navigate
the map. The �rst approach was to obtain the basic geographical information of Canton
Ticino, i.e., its border and its subdivision in districts and municipalities, and use it to
draw a map.

4.4.1. GeoJSON data

Geographic JSON (GeoJSON) [12] is a widely used format in web mapping applications
and it encodes a variety of geographic data structures using the JSON format. The
structure of a GeoJSON �le is con�gured in the following way:

� there is a top-level structure that is a collection of features (type FeatureCollection);

� a single feature (type Feature) is composed of two objects, geometry and properties;

� the geometry object de�nes the shape of the feature, the types of shapes are Point,
LineString, Polygon, MultiPolygon, and so on;

� the properties object contains additional information about the feature, e.g., the
feature's name.

4.4. Frontend 28

As an example for the districts of Canton Ticino [13] we have a GeoJSON �le with a
FeatureCollection that has an array of 8 features, and each feature has its own properties
and geometry objects, as shown in Listing 4.5.

1 {

2 "type": "FeatureCollection",

3 name: "Ticino",

4 features: [

5 {

6 "type": "Feature",

7 properties: {

8 name: "Blenio",

9 ...

10 },

11 geometry: {

12 "type": "MultiPolygon",

13 coordinates: [

14 [

15 [

16 [9.040158148352059, 46.493947296456597, 3389.864999999999782],

17 ...,

18 [8.95397576570887, 46.356003928842917, 286.404]

19]

20]

21]

22 }

23 },

24 {

25 "type": "Feature",

26 properties: {

27 name: "Mendrisio",

28 ...

29 },

30 geometry: {

31 "type": "MultiPolygon",

32 coordinates: [

33 [

34 [

35 [8.939342910131256, 45.86379349305961, 440.334],

36 ...,

37 [8.939342910131256, 45.86379349305961, 440.334]

38]

39]

40]

41 }

42 },

43 ...

44]

45 }

Listing 4.5: Districts' GeoJSON

4.4. Frontend 29

4.4.2. D3.js

The �rst technology that I have decided to use to implement a map visualization was
D3.js. D3.js [15] is a JavaScript library that is specialized in producing dynamic and
interactive data visualizations in web browsers. It binds data to Document Object Model
(DOM) elements and it makes it possible to use the GeoJSON data to plot a map as a
Scalable Vector Graphics (SVG). To do so using D3.js three steps are necessary:

1. Select a <div> element in the DOM

2. Create a function that projects latitude and longitude coordinates from the GeoJSON
data into pixels coordinates in the <div> element.

3. Bind the GeoJSON data to create the map, it is also possible to add event listeners
to each feature.

Following the previous steps we obtain the code in Listing 4.6.

1 // Creation of the SVG element in the div with divId

2 const svg = d3

3 .select("#" + mergedOptions.divId)

4 .append("svg")

5 .attr("width", mergedOptions.width)

6 .attr("height", mergedOptions.height);

7 // define the transform function to project latLng coordinates into pixels

8 const pathFct = d3.geoPath(

9 d3

10 .geoMercator()

11 .fitSize([mergedOptions.width, mergedOptions.height], filteredGeoJsonMap)

12);

13 // All the paths that represent the border of each feature

14 svg

15 .selectAll("path")

16 .data(filteredGeoJsonMap.features)

17 .join("path")

18 .attr("d", pathFct)

19 .style("fill", () => {

20 return mergedOptions.fillColorFct(counterColor++);

21 })

22 .on("mouseenter", (event, d) => {

23 const pathElement = d3.select(event.currentTarget);

24 pathElement.classed("selected", true);

25 });

Listing 4.6: Map in D3.js

In the �nal code I have de�ned di�erent event listeners, such as mouseenter, mousemove,
mouseout, click, etc., to make the map interactive. I have also added the canton names,
special tooltips and drawn the two Ticino's lakes, the screenshot of the map is present in
Figure 4.3. D3.js is a really powerful tool, and my initial idea was to use a combination
of this type of maps and other ones with lea�et.js when the user actually zooms in on a
municipality or in a su�ciently small surface. However in the end as the work advanced
and the complexity increased I have noticed that this way of proceeding it wasn't optimal,
since it would make di�cult to add new GUI components and connect it to the map.
Until now the frontend was written entirely in pure JavaScript, with no frameworks.
However, as the implementation progressed, this approach became unsustainable. To
simplify modularization and code reusability, I decided to use a JavaScript framework.

4.4. Frontend 30

As already anticipated when discussing the tech stack the JavaScript framework for the
frontend's application is Vue.js, and due to this change the map implementation switched
to using a special library built for handling maps in Vue.js, vue-lea�et.

Figure 4.3.: D3.js map screenshot

4.4.3. Vue.js

Vue.js [16] is an open-source JavaScript framework specialized for building web user in-
terfaces and Single Page Applications (SPAs). SPAs [17] are speci�c ways of conceiving
websites, in which the browser does an intial request to the server, the server responds
to it with a bare-bone html document and a JavaScript bundle, and then when the user
navigate the website he doesn't request new pages to the server, instead the bundle han-
dles everything and dynamically changes the bare-bone html. This makes the website's
transitions faster and the result is a website resembling a native app.

The main advantage of using Vue.js it is the possibility to write Single-File Components,
that are �les with a special .vue extension and are divided in three parts: <template>,
<script> and <style>. That means that the �le encapsulates all together respectively, the
HTML, the JavaScript and the CSS of a component. This allows the programmer to create

4.4. Frontend 31

modular and reusable components, making the code more readable and maintainable.
Vue.js o�ers also many additional libraries that can expand its potential, one of them
is vue-lea�et [18], a library that integrates the Lea�et map library in Vue.js, simplifying
the implementation of interactive maps. Vue-lea�et provides to the programmer a set of
vue components that wrap the functionalities of Lea�et. To implement the map in our
application we can combine four distinct vue-lea�et components:

� <LMap>
this component represents the root component;

� <LTileLayer>
loads tiles from a map server and display them, the used map server for the appli-
cation is OpenStreetMap [19];

� <LGeoJson>
allows to display GeoJSON features on the map.

� <LMarker>
allows to display a single marker on the map.

By combining these four components into a single .vue �le we create a map component,
the <template> part is shown in Listing 4.7.

1 <template>

2 <!-- This is the vue-leaflet component for the map -->

3 <LMap

4 ref="myMap"

5 :zoom="zoom"

6 :min-zoom="minZoom"

7 :center="center"

8 :max-bounds="maxBounds"

9 :max-bounds-viscosity="maxBoundsViscosity"

10 style="height: 100%; width: 100%"

11 @ready="setMaxBoundAndCenter"

12 >

13 <LTileLayer:url="url" />

14 <LGeoJson

15 v-if="geoJSONFeature"

16 :goejson="geoJSONFeature"

17 :options="{ style:{ color: '#ff7800', weight: 5, opacity: 0.65 } }"

18 />

19 <LMarker

20 v-for="business in businesses"

21 :key="business['_id']"

22 :lat-lng="[business.latitude, business.longitude]"

23 :icon="

24 getIcon(

25 selectedBusiness && selectedBusiness['_id'] === business['_id']

26)

27 "

28 />

29 </LMap>

30 </template>

Listing 4.7: Vue map component

A Vue.js app can be visualized as a tree of components, in which a parent and a child can
communicate. The child component can receive props, e.g., in Listing 4.7 the LGeoJson

4.4. Frontend 32

component has two props: geojson and options. While at the same time the child com-
ponent can emit arguments to the parent component, that can catch it with the keywork
@, e.g. the component LMap emits ready to the parent component, this communicates
to it that the map has been created and the parent component can de�ne a function
that handles this event, in this case it is the function setMaxBoundAndCenter. It is then
possible to set up the child component to be reactive, meaning that as its props changes
the component state changes, the vue-lea�et components all are reactive. The resulting
map component is shown in Figure 4.4.

Figure 4.4.: Vue-lea�et map component

5
Conclusion

5.1. Summary

The aim of the work was to create an ecosystem that o�ers to users the possibility to
inform themselves on businesses of Canton Ticino that are application's partners. The
main goals were successfully reached, making it possible for the users to navigate a map,
read and write reviews and comments, as well as keeping a list of favorite businesses.
The part of client's use cases that isn't completely implemented is everything related
to the authentication methods and the protection of certain routes of the API, indeed
new users considering the current state of the application can be added only by the
app administrator. The other goal was to make the code as modularized as possible
to facilitate reusability and maintainability, and with the help of Node.js and Vue.js
JavaScript frameworks that was mostly achieved.

5.2. The future

As stated above, there are some aspects of the application that can be improved and
worked on in the future. Indeed the �rst thing to do will be to implement a way to
authenticate users, and once done that also a way to distinguish between the three actors
of the application: clients, businesses and administrators. The idea is to modify what
the application o�ers in function of the actor that is logged in, therefore if the user is
a business it should be restricted to write comments only on reviews about itself and
be able to modify and customize the information that wants to show to the clients. An
administrator, that can be viewed as a sort of app moderator, should have the power of
deleting possible inappropriate reviews and comments. Therefore the main scope in the
future will be to de�ne new use cases and implement them in the most appropriate way,
by considering also security measures to be sure that only authorized people can act as
administrators.

33

A
Common Acronyms

API Application Programming Interface
BSON Binary JSON
CSS Cascading Style Sheet
DBMS Database Management System
DOM Document Object Model
ERD Entity-Relationship Diagram
GeoJSON Geographic JSON
GUI Graphical User Interface
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
JSON JavaScript Object Notation
REST Representational State Transfer
SQL Structured Query Language
SPAs Single Page Applications
SVG Scalable Vector Graphics
URL Uniform Resource Locator

34

B
License of the Documentation

Copyright (c) 2024 Sebastian Käslin.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts.

The GNU Free Documentation Licence can be read from [1].

35

C
Repository GitHub of the project

The source code and additional resources for this project are stored in a private GitHub
repository. If you wish to access the repository, please send a request to sebastian.kaeslin@unifr.ch
or contact me via my GitHub pro�le at https://github.com/sebik2001/.

36

https://github.com/sebik2001/

References

[1] Free Documentation Licence (GNU FDL). http://www.gnu.org/licenses/fdl.txt
(30 July 2024).

[2] TheFork, Wikipedia. https://fr.wikipedia.org/wiki/TheFork (27 July 2024).

[3] About TheFork. https://about.thefork.com/ (27 July 2024).

[4] ERD. https://www.lucidchart.com/pages/er-diagrams (20 July 2024).

[5] Modi�ed Chen Notation. https://michael-fuchs-sql.netlify.app/2021/03/03/
entity-relationship-diagram-erd/#modified-chen-notation-mc-notation

(20 July 2024).

[6] Technology Stack.
https://www.mongodb.com/resources/basics/technology-stack (23 July 2024).

[7] MongoDB doc. https://www.mongodb.com/docs/ (23 July 2024).

[8] MongoDB drivers. https://www.mongodb.com/docs/drivers/ (23 July 2024).

[9] Node.js doc.
https://nodejs.org/docs/latest/api/documentation.html (25 July 2024).

[10] Express.js. https://expressjs.com/en/5x/api.html (25 July 2024).

[11] REST API. https://www.ibm.com/topics/rest-apis (25 July 2024).

[12] GeoJSON, Wikipedia. https://en.wikipedia.org/wiki/GeoJSON (25 July 2024).

[13] Swisstop, GeoJSON data.
https://www.swisstopo.admin.ch/de/landschaftsmodell-swissboundaries3d#

Weiterf%C3%BChrende-Informationen (26 July 2024).

[14] Swisstop, data information.
https://backend.swisstopo.admin.ch/fileservice/

sdweb-docs-prod-swisstopoch-files/files/2024/01/15/

433421c4-a282-421b-b7ad-b18e6bbb8f1b.pdf (26 July 2024).

[15] D3.js. https://d3js.org/ (26 July 2024).

[16] Vue.js. https://vuejs.org/ (27 July 2024).

[17] SPAs, Wikipedia. https://en.wikipedia.org/wiki/Single-page_application

(27 July 2024).

[18] Vue-lea�et. https://vue2-leaflet.netlify.app/components/ (27 July 2024).

[19] OpenStreetMap. https://www.openstreetmap.org/about (28 July 2024).

37

http://www.gnu.org/licenses/fdl.txt
https://fr.wikipedia.org/wiki/TheFork
https://about.thefork.com/
https://www.lucidchart.com/pages/er-diagrams
https://michael-fuchs-sql.netlify.app/2021/03/03/entity-relationship-diagram-erd/#modified-chen-notation-mc-notation
https://michael-fuchs-sql.netlify.app/2021/03/03/entity-relationship-diagram-erd/#modified-chen-notation-mc-notation
https://www.mongodb.com/resources/basics/technology-stack
https://www.mongodb.com/docs/
https://www.mongodb.com/docs/drivers/
https://nodejs.org/docs/latest/api/documentation.html
https://expressjs.com/en/5x/api.html
https://www.ibm.com/topics/rest-apis
https://en.wikipedia.org/wiki/GeoJSON
https://www.swisstopo.admin.ch/de/landschaftsmodell-swissboundaries3d#Weiterf%C3%BChrende-Informationen
https://www.swisstopo.admin.ch/de/landschaftsmodell-swissboundaries3d#Weiterf%C3%BChrende-Informationen
https://backend.swisstopo.admin.ch/fileservice/sdweb-docs-prod-swisstopoch-files/files/2024/01/15/433421c4-a282-421b-b7ad-b18e6bbb8f1b.pdf
https://backend.swisstopo.admin.ch/fileservice/sdweb-docs-prod-swisstopoch-files/files/2024/01/15/433421c4-a282-421b-b7ad-b18e6bbb8f1b.pdf
https://backend.swisstopo.admin.ch/fileservice/sdweb-docs-prod-swisstopoch-files/files/2024/01/15/433421c4-a282-421b-b7ad-b18e6bbb8f1b.pdf
https://d3js.org/
https://vuejs.org/
https://en.wikipedia.org/wiki/Single-page_application
https://vue2-leaflet.netlify.app/components/
https://www.openstreetmap.org/about

	Introduction
	Motivation and Goals
	Organization
	Notations and Conventions

	The project ParTI
	Introduction
	State of the art
	TheFork

	ParTI Application
	Introduction
	Use cases
	Database

	User point of view
	Introduction
	Global overview
	Map component
	List component
	See own

	Scenarios
	Write review on a business
	See comments under an own review

	Programmer point of view
	Introduction
	Database
	Backend
	Database connection
	Backend REST API
	Postman

	Frontend
	GeoJSON data
	D3.js
	Vue.js

	Conclusion
	Summary
	The future

	Common Acronyms
	License of the Documentation
	Repository GitHub of the project
	References

