
Relator

A RESTful application to manage relations
between persons and data based on dynamic

schemas

B A C H E LO R T H E S I S

CHRISTIAN FR IE S

August 2017

The s i s s upe rv is ors :

Prof. Dr. Jacques PASQUIER–ROCHA

Software Engineering Group

Pascal GREMAUD

Software Engineering Group

Software Engineer ing Group

Department of Informatics

Univers ity of Fr ibourg

(Switzer land)

ii

“Productivity is never an accident. It is always the result of a commitment to
excellence, intelligent planning, and focused effort.”

- Paul J. Meyer

Abstract

iii

Abstract

Relator is a web application allowing users to manage persons and relations between persons,

group persons and attach dynamic data to them in user separated workspaces. The available

types of relations and dynamic data schemas can be defined by the user.

The application consists of two parts, the RESTful API called Relator API and a web client

consuming the API called Relator GUI. Implementing a stable and flexible API is the main

focus of this project. The GUI is a prototype acting as proof of concept.

Keywords: Web service, REST, API, JSON, PHP, Angular

Table of Contents

iv

Table of Contents

1 Introduction 9

1.1 Motivation and Goals ... 9

1.2 Organization ... 9

1.3 Notations and Conventions .. 10

2 RESTful Web Services 11

2.1 What is REST? ... 11

2.2 Key Principles .. 12

2.2.1 Addressability... 12

2.2.2 A Uniform, Constrained Interface .. 12

2.2.3 Representation-Oriented... 13

2.2.4 Communicate Statelessly ... 13

2.2.5 HATEOAS ... 13

3 Relator – The Architecture 14

3.1 Use Case and Requirements ... 14

3.2 Architecture .. 15

4 Relator API 16

4.1 Implementation Tools and Services ... 16

4.1.1 Symfony – A PHP Framework... 17

4.1.2 Doctrine – An Object-Relational Mapper .. 17

4.1.3 Continuous Integration / Continuous Deployment... 17

4.1.4 Swagger – Interactive API Documentation .. 18

4.2 Data model ... 18

4.2.1 User Entity.. 19

4.2.2 NodeType Entity .. 19

4.2.3 Node Entity .. 22

4.2.4 DynamicNodeType Entity.. 23

4.2.5 DynamicNode Entity .. 24

4.3 Endpoints ... 25

4.3.1 Register a New User ... 26

4.3.2 Fetching a Collection of Dynamic Node Types ... 27

4.3.3 Creating a Dynamic Node Type ... 30

Table of Contents

v

4.3.4 Creating a Dynamic Node .. 31

4.4 Implementation Specifics ... 31

4.4.1 Transforming Entities to Representations .. 32

4.4.2 Adding Links to Representations ... 33

4.4.3 Collections .. 34

5 Relator GUI 37

5.1 User Guide ... 37

5.2 Advanced Options .. 46

6 Conclusion 49

6.1 Lessons Learned ... 49

6.2 Future Improvements ... 49

6.3 Final Statement .. 50

A Project Files 51

Directory structure.. 51

B Domain Model 52

References 54

Referenced Web Resources 55

List of Figures

vi

List of Figures

Figure 1: The parts of an URI .. 12

Figure 2: The architecture of Relator ... 15

Figure 3: Relator domain model... 18

Figure 4: The login screen .. 37

Figure 5: The register screen ... 38

Figure 6: The dashboard .. 38

Figure 7: The persons module .. 39

Figure 8: Detail view of a person ... 40

Figure 9: Form to add a new person .. 41

Figure 10: The dynamic nodes module ... 41

Figure 11: Dynamic nodes of a selected dynamic node type .. 42

Figure 12: Form to add a new dynamic node... 42

Figure 13: The relations types module ... 43

Figure 14: Detail view of a relation type.. 44

Figure 15: List of relations of a person .. 45

Figure 16: Add new relation to a person .. 45

Figure 17: List of dynamic nodes attached to a selected person .. 46

Figure 18: The Postman UI .. 47

Figure 19: Authentication with Postman .. 47

Figure 20: Accessing a protected endpoint with Postman ... 48

Figure 21: Collection of dynamic node types after successful authentication 48

List of Tables

vii

List of Tables

Table 1: Endpoints of the Relator API ... 26

Table 2: Available properties for the field configuration of a dynamic node type 31

Listings

viii

Listings

Listing 1: Simplified version of the NodeType class .. 19

Listing 2: The NodeTypeInterface .. 20

Listing 3: Using a class as a Doctrine entity ... 20

Listing 4: Using a property as a database field ... 20

Listing 5: Defining associations in Doctrine ... 21

Listing 6: Adding a discriminator to a Doctrine entity .. 21

Listing 7: Database schema for NodeType .. 22

Listing 8: Many-to-one association from Node to NodeType .. 22

Listing 9: Lifecycle method loadIcon() of the Node entity ... 23

Listing 10: Database schema for Node .. 23

Listing 11: Simplified version of the DynamicNodeType entity ... 24

Listing 12: Simplified version of the DynamicNode entity ... 25

Listing 13: Example payload to create a new user .. 26

Listing 14: Response to an invalid request .. 27

Listing 15: Response to a successful registration or token request ... 27

Listing 16: Response to a GET request to an endpoint returning a collection of resources ... 28

Listing 17: One item of the collection returned by GET /v1/dynamic-node-types 29

Listing 18: Payload to create a new dynamic node type .. 30

Listing 19: Payload to create a new dynamic node ... 31

Listing 20: Basic serializer configuration .. 32

Listing 21: Virtual properties in the serializer configuration .. 32

Listing 22: Excerpt of the serializer configuration of Person .. 33

Listing 23: Excerpt of HATEOAS configuration of the Person entity...................................... 34

Listing 24: Example HATEOAS links of a Person representation ... 34

Listing 25: Definition of sortable fields of an entity .. 35

Listing 26: Definition of searchable fields of an entity .. 36

1 Introduction

9

 1 Introduction

1.1 Motivation and Goals 9

1.2 Organization 9

1.3 Notations and Conventions 10

1.1 Motivation and Goals

In the recent years, the internet has evolved tremendously. It has a huge impact on our daily

lives by providing services for all different aspects of our lives. Services for medical

assistance, personal fitness tracking, electronic voting, electronic banking, social networking

and a lot more.

Since the introduction of REST, it has played an important role in the evolvement of the web.

Every big company providing services online offers an API to interact with their content.

The main goal of this project is to understand, what the REST architecture is. To illustrate

this, an app named Relator will be developed that allows users to manage persons and

relations between persons, group persons and attach dynamic data to them in user separated

workspaces. The available types of relations and dynamic data schemas can be defined by the

user.

This main goal is split into 4 tasks:

• Study the theory of RESTful web services

• Define the domain and the architecture for the application

• Implement the RESTful API

• Implement a prototype to consume the API

1.2 Organization

Chapter 1: Introduction

The introduction contains the motivation and goals of this work, a short recapitulation of the

structure of each chapter along with an overview of the formatting conventions.

Chapter 2: RESTful Web Services

This chapter explains the theoretical fundament of REST. It answers questions like what is

REST, who came up with it and what are the key principles.

1 Introduction

10

Chapter 3: Relator – The Architecture

This chapter introduces the domain of Relator and explains the architecture of the tool.

Chapter 4: Relator API

This chapter explains the tools that were used to implement the Relator API, how the data was

modeled, what endpoints exist and some implementation specifics.

Chapter 5: Relator GUI

This chapter contains a user guide for the Relator GUI and explains how the Relator API can

be accessed with another GUI.

Chapter 6: Conclusion

This chapter contains the conclusion of the project, explains the learnings of this project and

what could be improved in the future.

1.3 Notations and Conventions

▪ The report is divided into chapters that are formatted in sections and subsections. Every

section or subsection is organized into paragraphs, signaling logical breaks.

▪ Figures, Tables and Listings are numbered in ascending order

▪ Formatting conventions

- Italic is used for emphasis and to signify the first use of a term.

- https://api.relator.ch/v1/persons is used for web addresses.

- Monospace font is used for class names, method names and inline code.

▪ Code blocks are formatted as follows

1 public function getName() {

2 return $this->name;

3 }

https://api.relator.ch/v1/persons

2 RESTful Web Services

11

 2 RESTful Web Services

2.1 What is REST? 11

2.2 Key Principles 12

2.2.1 Addressability .. 12

2.2.2 A Uniform, Constrained Interface.. 12

2.2.3 Representation-Oriented .. 13

2.2.4 Communicate Statelessly ... 13

2.2.5 HATEOAS ... 13

Web services are getting more popular from day to day. In the recent years, lots of software

development companies started moving from developing traditional desktop software to

developing web services.

There are several reasons for that. One reason is the fact that most people today have a

smartphone in their pocket and are always connected to the world wide web. Every

smartphone has a web browser built in by default so, from a technical point of view, almost

everyone is a potential user for a web service. Additionally, mobile devices are so powerful,

they even outperform traditional computer systems in some cases.

Another reason is the simplicity to create cross-platform applications. No need for multiple

code bases to support different platforms, one code base can serve all clients.

With these considerations in mind, it’s important for computer scientists to understand web

technologies and to keep improving them. In this report, we focus on one of them called

REST.

2.1 What is REST?

The term REST, which stands for «Representational State Transfer», was introduce by Roy

Fielding in the year 2000 [Fie00 76]. In his dissertation «Architectural Styles and the Design

of Network-based Software-Architectures», he analyzes different styles of network-based

architectures and describes a new architectural style for distributed hypermedia systems,

called REST.

2 RESTful Web Services

12

2.2 Key Principles

In his dissertation, Fielding describes six constraints to define the REST architecture whereof

one of them is optional. These constraints are quite theoretical and apply to multiple

scenarios. Bill Burke, an American software architect and author, identifies in his book

«RESTful Java with JAX-RS 2.0» [Bur13] five key architectural principles for REST in the

context of HTTP, so called RESTful web services.

2.2.1 Addressability

“Addressability is the idea that every object and resource in your system is reachable through

a unique identifier” [Bur13 6]. For REST over HTTP, unique resource identifiers (URIs) are

used as unique identifiers as they’re standardized [Ber05] and widely known.

Figure 1: The parts of an URI

URIs contain the protocol, the host, the port and the path to a resource in a human readable

way and can be used for direct linking. If no port is specified, the default port, 80 for http and

443 for https, is used.

2.2.2 A Uniform, Constrained Interface

The idea of a uniform, constrained interface is to keep the interactions between server and

client as simple as possible. To achieve this constraint, only the small set of HTTP methods is

used in a RESTful web service. Each of these methods has a specific purpose as defined by

the Internet Engineering Task Force (IETF) in the RFC7231 [FR14 24ff]. The most important

methods are:

GET

The GET method is used for information retrieval. Browsing the internet in a web browser is

mostly a sequence of GET requests sent to one or multiple servers. GET is an idempotent and

safe operation. Idempotent means, no matter how many times you send the same request to

the server, the result is always the same. Safe means in this context, that the state of the server

cannot be changed by using this method.

The response to a GET request can be cached unless the Cache-Control header indicates

otherwise.

POST

The POST method is used to create a resource on the server. The request contains a

representation of the data needed to create the resource as payload. This method is non-

idempotent and unsafe. Sending the same POST request multiple times will create multiple

resources with different identifiers.

2 RESTful Web Services

13

When a new resource is created, the response should contain a location header telling the

client what URI it can use to address the newly created resource.

PUT

The PUT method is similar to the POST method but it is idempotent. While it can be used to

create a resource, it’s meant to be used to update a resource. The main difference to the POST

method is the fact, that the PUT method needs the unique identifier of a resource. If the client

can decide on the unique identifier, PUT can be used to create a resource. If not, the POST

method should be used for creating and PUT should be used to replace or update a resource.

DELETE

The DELETE method is used to delete a resource. It is idempotent as well.

2.2.3 Representation-Oriented

The payload, that is transmitted between server and client, is called representation. Whatever

format is used on the server to store a resource, before it is sent to the client, it is converted

into a specific format of representation. Typical representations are JSON and XML but it can

be any format one can come up with.

With HTTP, the representation of the resources can be negotiated between the client and the

server by using a set of headers. The client specifies the representation of the request in the

Content-Type header. By adding an Accept header, the client specifies its preferred response

format.

2.2.4 Communicate Statelessly

In REST, stateless means that there is no client session data stored on the server. [Bur13 11]

Every request is handled independently without context. If context is required, the client has

to provide user state information included in the request.

This principle makes it a lot easier for RESTful web services to scale as load balancers and

server clusters don’t have to synchronize user state.

2.2.5 HATEOAS

HATEOAS, short for «Hypermedia as The Engine of Application State», is the final principle

of REST. The idea is to not only deliver the requested resource in the response body but also,

based on the application state, links to additional resources and links to interactions you can

do next.

As an example, when you request a list of villages all around the world, the response could be

too big and take too long to download because there are thousands of villages. The RESTful

service could instead return only a list of ten villages and provide a link to the get the next set

of ten villages. A request to the next set could return a link to the next set again but also to the

previous set so a client can find its way back.

As another example, every village could provide a link to get all of its streets or buildings.

3 Relator – The Architecture

14

 3 Relator – The Architecture

3.1 Use Case and Requirements 14

3.2 Architecture 15

3.1 Use Case and Requirements

Taking pieces of information and setting them in relation creates a network of information

which makes all the information within that network more valuable because they can be

viewed in a bigger picture.

The idea of Relator is to manage persons and the relations between them to help you organize

your environment – no matter if it’s your personal environment, your business environment or

a mix of both. The application shall not restrict you by providing a predefined set of relation

types, it should allow you to create whatever relation you could come up with.

Identifying relations between persons allows to analyze a network of persons and how they

are connected. It is not possible to attach flexible pieces of information to a person though, as

a person has a predefined set of properties. Relator introduces the concept of dynamic nodes

and dynamic node types to solve this restriction.

Dynamic node types allow the user to create user-defined schemas with multiple properties

and multiple types of properties. Based on such a dynamic node type, dynamic nodes can be

created. All the properties defined in the schema of the dynamic node type are available to

store data.

This use case requires the data model to have entities providing metadata and entities to

provide the actual data based on the entity providing metadata. In the Relator namespace,

entities containing metadata are called node types and entities containing actual data are

called nodes.

Based on this theoretical fundament, different types of nodes and different types of node types

are required. A special node for persons is required, a special node for relations is required

and a special node for dynamic data, a so called dynamic node, is required. To store the

metadata of relations, a relation type is required and to provide a schema for dynamic nodes, a

dynamic node type is required.

How these requirements can be met is described in the next chapter of this report.

3 Relator – The Architecture

15

3.2 Architecture

One of the big advantages of RESTful web services is separation of concerns. The user

interface is separated from the data storage, allowing the two components to evolve

independently [FIE00].

The Relator application is designed based on this principle. The Relator API handles the data

storage and delivers the requested resources. The Relator GUI is a frontend application that

consumes the Relator API.

Figure 2: The architecture of Relator

While the GUI does require the API to work in a meaningful way, the API is completely

independent of the GUI. One could write another user interface to consume the endpoints of

the API without having to know anything about the Relator GUI. As an example, the

interactive documentation of this project presented in section 4.1.4 allows to browse all

available endpoints of the API and test it by sending requests to the API and presenting the

response.

The API is implemented in Symfony [1], a powerful and wide spread PHP framework to

create web services and applications. It is served by a web server running an Apache HTTP

server and a MySQL database server. Details on the implementation are described in Chapter

4.

The Relator GUI is implemented in Angular. Angular is a leading frontend development

framework created and maintained by Google. It allows developing scalable applications on

one codebase and reuse the code across all platforms. The first version of Angular was called

«AngularJS». When the development team released the second version, they called it

«Angular 2» and switched to semantic versioning so starting from version 4, it’s officially

called «Angular» only. The Relator GUI is described in Chapter 5.

4 Relator API

16

 4 Relator API

4.1 Implementation Tools and Services 16

4.1.1 Symfony – A PHP Framework .. 17

4.1.2 Doctrine – An Object-Relational Mapper .. 17

4.1.3 Continuous Integration / Continuous Deployment .. 17

4.1.4 Swagger – Interactive API Documentation.. 18

4.2 Data model 18

4.2.1 User Entity ... 19

4.2.2 NodeType Entity .. 19

4.2.3 Node Entity .. 22

4.2.4 DynamicNodeType Entity ... 23

4.2.5 DynamicNode Entity .. 24

4.3 Endpoints 25

4.3.1 Register a New User .. 26

4.3.2 Fetching a Collection of Dynamic Node Types ... 27

4.3.3 Creating a Dynamic Node Type ... 30

4.3.4 Creating a Dynamic Node .. 31

4.4 Implementation Specifics 31

4.4.1 Transforming Entities to Representations .. 32

4.4.2 Adding Links to Representations ... 33

4.4.3 Collections ... 34

4.1 Implementation Tools and Services

Choosing the right set of tools to implement a piece of software is an important task.

Although there are always different tools and techniques available for a specific need,

choosing the right ones can make a developer’s life a lot easier.

Several criterions can influence the choice such as security, technical requirements, support,

price, license and the developer’s knowledge.

For the implementation of Relator, I chose a set of open source software.

4 Relator API

17

4.1.1 Symfony – A PHP Framework

The Relator API is based on the PHP web application framework Symfony [1] in version 3.2.

Symfony was first released in 2005 under MIT license and has since been under active

development. It aims to speed up the development of web application by offering a wide

range of tools and presets replacing repetitive coding tasks. By implementing a lot of

important design patterns such as MVC, factories and singletons and by sticking to the

approach of domain-driven design, it helps writing good quality code.

Symfony encourages the use of other open source PHP projects such as PHPUnit [2].

PHPUnit is a programmer-oriented testing framework. It allows to write unit and integration

test and execute them with one simple CLI command. Relator uses PHPUnit for testing the

most important endpoints of the API.

Symfony’s modular architecture allows developers to create extensions for the framework.

Relator makes use of such extensions like the FOSUserBundle [3]. This bundle provides a

basic user entity and forms to sign up, login and request a new password.

4.1.2 Doctrine – An Object-Relational Mapper

Doctrine ORM [4] is an object relational mapper for PHP. It is based on the Doctrine database

abstraction layer (DBAL). The DBAL creates an interface to communicate with the database

no matter what database system is used. This makes it easy for existing tools to migrate from

one database system to another. On top of that, the ORM allows you to fetch objects from the

database and persist objects in the database instead of writing complex SQL statements.

Doctrine provides one big benefit for PHP developers: The use of code annotations to

automatically create database tables and fields. This is explained in detail in section 4.2.

4.1.3 Continuous Integration / Continuous Deployment

Continuous integration is a development practice that has gotten more popular in the recent

years. The idea is to integrate code as fast as possible into a shared repository instead of

developing code over a long period of time separated from the main repository. Repository

refers to a version control system such as Git, Subversion, Maven, etc. For the development

of Relator, Git is used. The main repository is hosted on Bitbucket [5].

Each commit pushed to the main repository is tested by an automated build, allowing

developers to detect and solve problems early.

Continuous deployment is based on continuous integration. The idea is to deploy software to

staging or production as soon as the automated tests pass successfully.

Relator uses CircleCI [6] as a service for continuous integration and continuous deployment.

Every commit that is pushed to the origin on Bitbucket starts the build process on CircleCI.

The build process clones the latest changes from the repository, installs required components

and runs the PHPUnit tests. If they fail, CircleCI notifies registered developers that the build

failed. If they succeed, the deployment process is started.

4 Relator API

18

For the deployment of Relator, I use Capistrano [7], a deployment tool written in Ruby.

Capistrano comes with a lot of predefined tasks for deployment so that writing a configuration

for the deployment consists mostly of providing server access credentials and paths.

Depending on the branch the commit was pushed to, Capistrano uses different deployment

settings. If a commit is pushed to the master branch, the deployment for the staging

environment is started. If the commit is pushed to the release branch, the deployment for the

production environment is started.

With this setup, creating a new release is as simple as merging changes from master branch

into release branch, committing the changes and pushing them to the main repository. About 5

minutes later, the changes will be available in production.

4.1.4 Swagger – Interactive API Documentation

Swagger [8] is a set of tools to create interactive documentations for APIs. The Swagger

specification defines, how the documentation has to be written in a structured way. The

swagger documentation file can be created and edited in the Swagger editor by hand but it can

also be generated automatically based on the code when the code is decorated with Swagger

annotations. Finally, the Swagger documentation file can be visualized in the Swagger UI.

Relator is running the Swagger UI tool on https://docs.relator.ch.

4.2 Data model

Relator is using Doctrine ORM as noted in section 4.1.2. Doctrine creates the database

schema automatically based on the entities defined in the source code. Therefore, I will

mainly explain the object model and discuss only small pieces of the resulting database

schema.

Figure 3: Relator domain model

Figure 3 illustrates the domain model of the Relator API without properties and methods. The

full domain model can be found in appendix B.

https://docs.relator.ch/

4 Relator API

19

The data model is based on two main entities: The Node entity and the NodeType entity. All

other entities of Relator extend one of these entities except for the User entity.

All entities of type Node require an associated NodeType. While the actual data is stored in the

Node entity, the NodeType contains the metadata for the Node.

As the two node types PersonType and GroupType do not provide any important metadata for

their nodes except for the icon which is the same for all the nodes of each type, these two

types are not exposed through the API and are handled automatically.

The most important entities are described in the following sections.

4.2.1 User Entity

The User entity is one of the key entities of the Relator API. All resources of the API have a

property named owner which is a many-to-one association to a user. Only that associated user

has permission to access, modify and remove those resources.

Relator uses the FOSUserBundle [3] for the user management. This bundle provides a basic

User entity with typical properties like username, password and email. The password is

hashed and salted by default to maintain a high standard of security.

The User entity of Relator extends this basic User entity and adds some custom properties

like the date the user was created or the date the user was modified. Like all other entities of

Relator, the user entity uses the standardized UUID format [Lea05] as identifier.

4.2.2 NodeType Entity

The NodeType entity is an abstract class serving as a base class for all the node types that are

described later in this chapter.

4 abstract class NodeType implements NodeTypeInterface

5 {

6 private $id;

7 private $title;

8 private $icon;

9 private $owner;

10 private $created;

11 private $modified;

12

13 // Setters and getters for the properties

14 }

Listing 1: Simplified version of the NodeType class

The simplified version of the NodeType class presented in Listing 1 shows the properties of

the class. The setters and getters are left out to save space. The abstract class implements the

NodeTypeInterface presented in Listing 2.

4 Relator API

20

15 interface NodeTypeInterface

16 {

17 public function getId();

18 public function getTitle();

19 public function setTitle($title);

20 public function getIcon();

21 public function setIcon($icon);

22 public function getCreated();

23 public function getModified();

24 public function getOwner();

25 public function setOwner($owner);

26 }

Listing 2: The NodeTypeInterface

As the abstract entity NodeType implements the NodeTypeInterface, all the node types

extending this class have to implement the methods defined in the interface.

The values for id, created and modified are generated by the persistence layer, that’s why

there are no setters for these properties required.

In the introduction of this section, I mentioned, that Doctrine creates the database schema

directly from the source code. This can be achieved by using annotations for the class and the

properties. To use a class as a Doctrine entity, the class needs the annotation @ORM\Entity.

27 /**

28 * @ORM\Entity

29 */

30 abstract class NodeType implements NodeTypeInterface {

31 // ...

32 }

Listing 3: Using a class as a Doctrine entity

This annotation tells Doctrine to create a table for this class and use the class as an entity. To

add properties as fields to the database table, they need an annotation, too. Let’s have a look

at the property id:

33 /**

34 * @ORM\Column(type="string", length=36)

35 * @ORM\Id

36 * @ORM\GeneratedValue(strategy="UUID")

37 */

38 private $id;

Listing 4: Using a property as a database field

The annotation @ORM\Column tells Doctrine to create a database field for the property. The

attributes in the parenthesis can be used to specify parameters for the database field. The

annotation @ORM\Id tells Doctrine to mark this field as the primary key. The annotation

@ORM\GeneratedValue can be used to specify the format Doctrine should use to create the

value for the id.

Doctrine supports a lot of different types like strings, integers, booleans, DateTime objects

etc. But what if we want to store an association to another entity? The property owner stores

4 Relator API

21

the primary key of the user owning this NodeType, so let’s have a closer look at the owner

property:

39 /**

40 * @ORM\ManyToOne(targetEntity="User")

41 * @ORM\JoinColumn(name="owner_id", referencedColumnName="id")

42 */

43 private $owner;

Listing 5: Defining associations in Doctrine

The property owner is decorated with two annotations: @ORM\ManyToOne and

@ORM\JoinColumn. The first one defines the many-to-one association and uses the User entity

as the target entity. The second one defines the name of the field to be used to store the value

and what property should be used to get the value on the associated entity from.

NodeType is an abstract entity with the purpose of being extended by subclasses. To get this

working with Doctrine, the entity needs a discriminator column. Each entity extending the

NodeType entity needs a unique key that Doctrine can map to a specific entity.

44 /**

45 * @ORM\InheritanceType("JOINED")

46 * @ORM\DiscriminatorColumn(name="discr", type="string")

47 * @ORM\DiscriminatorMap({

48 * "person" = "PersonType",

49 * "group" = "GroupType",

50 * "relation" = "RelationType",

51 * "dynamic" = "DynamicNodeType"

52 * })

53 */

54 abstract class NodeType implements NodeTypeInterface {

55 // ...

56 }

Listing 6: Adding a discriminator to a Doctrine entity

The annotation @ORM\InheritanceType defines what type of inheritance should be used.

Doctrine supports single table inheritance and class table inheritance [9]. While single table

inheritance uses a single table for all the fields of all entities extending the base entity, class

table inheritance uses one table for the shared fields and a separated table for each entity

containing the entity-specific fields. Changing the inheritance type only affects the database,

no application code has to be changed. Single table inheritance is a bit more performant as all

the data is stored in one table and no joins are required. But as all fields are in one table, there

are lots of empty fields. Relator is structured in a modular way and strives for a clean database

structure, therefore it uses class table inheritance.

The annotation @ORM\DiscriminatorColumn defines the name and the type of the field to

store the discriminator.

The annotation @ORM\DiscriminatorMap defines the keys and the according classes to use

for the discriminator.

When Doctrine is told to update the database schema by calling the CLI command
./bin/console doctrine:schema:update, the following database schema is created for the

NodeType entity:

4 Relator API

22

57 CREATE TABLE `nodetype` (

58 `id` varchar(36) COLLATE utf8_unicode_ci NOT NULL,

59 `owner_id` varchar(36) COLLATE utf8_unicode_ci DEFAULT NULL,

60 `title` varchar(255) COLLATE utf8_unicode_ci NOT NULL,

61 `icon` varchar(255) COLLATE utf8_unicode_ci NOT NULL,

62 `created` datetime NOT NULL,

63 `modified` datetime NOT NULL,

64 `discr` varchar(255) COLLATE utf8_unicode_ci NOT NULL,

65 PRIMARY KEY (`id`),

66 KEY `IDX_B2906CA87E3C61F9` (`owner_id`),

67 CONSTRAINT `FK_B2906CA87E3C61F9` FOREIGN KEY (`owner_id`)

REFERENCES `user` (`id`)

68) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci;

Listing 7: Database schema for NodeType

4.2.3 Node Entity

The Node entity is very similar to the NodeType entity. It is an abstract class, it implements an

interface, it has a set of properties with getters and setters and uses class table inheritance for

the entities extending Node.

To connect nodes and node types, the Node entity has an association to the NodeType entity.

69 /**

70 * @ORM\ManyToOne(targetEntity="NodeType")

71 * @ORM\JoinColumn(name="nodetype_id", referencedColumnName="id")

72 */

73 private $nodeType;

Listing 8: Many-to-one association from Node to NodeType

Lifecycle methods

The Node class has two special properties, title and icon. These properties don’t have any

ORM annotations as they are not persisted to the database. They’re populated by the two

methods loadTitle() and loadIcon(). These two methods are so called lifecycle callback

methods. When a Node object or an object extending Node is instantiated by the ORM, these

two methods are called.

The advantage of this concept is, that every class extending the Node class can use its own

properties and the properties of the assigned NodeType to define the title and the icon

property.

4 Relator API

23

74 /**

75 * @ORM\PostLoad

76 * @ORM\PostUpdate

77 */

78 public function loadIcon()

79 {

80 $this->setIcon(

81 $this->getNodeType()->getIcon()

82);

83 }

Listing 9: Lifecycle method loadIcon() of the Node entity

Whenever a new Node entity is loaded or updated, the value of the icon property is set to the

value of the icon property of the assigned NodeType. This is handy as the icon of the node

type can be changed without having to update all nodes assigned to that node type.

The generated database schema for Node looks like this:

84 CREATE TABLE `node` (

85 `id` varchar(36) COLLATE utf8_unicode_ci NOT NULL,

86 `owner_id` varchar(36) COLLATE utf8_unicode_ci DEFAULT NULL,

87 `nodetype_id` varchar(36) COLLATE utf8_unicode_ci DEFAULT NULL,

88 `created` datetime NOT NULL,

89 `modified` datetime NOT NULL,

90 `discr` varchar(255) COLLATE utf8_unicode_ci NOT NULL,

91 PRIMARY KEY (`id`),

92 KEY `IDX_857FE8457E3C61F9` (`owner_id`),

93 KEY `IDX_857FE845886D7EB5` (`nodetype_id`),

94 CONSTRAINT `FK_857FE845886D7EB5` FOREIGN KEY (`nodetype_id`)

REFERENCES `nodetype` (`id`),

95 CONSTRAINT `FK_857FE8457E3C61F9` FOREIGN KEY (`owner_id`)

REFERENCES `user` (`id`)

96) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci;

Listing 10: Database schema for Node

4.2.4 DynamicNodeType Entity

The entity DynamicNodeType is the one that is used as node type for dynamic nodes. Its main

purpose is to store the field configuration for the dynamic nodes assigned to that type. The

configuration is provided by the user of the API and is flexible in its length and content,

therefore it is not normalized in the database but stored as an array. Whenever the value is

written to the database, Doctrine serializes the array to write it to the database. Upon retrieval,

Doctrine converts the value back to an array by un-serializing it.

4 Relator API

24

97 /**

98 * @ORM\Entity

99 */

100 class DynamicNodeType extends NodeType

101 {

102 /**

103 * @ORM\Column(type="array")

104 * @Assert\Type(

105 * type="array",

106 * message="{{ value }} is not a valid {{ type }}."

107 *)

108 */

109 private $configuration;

110

111 // Getter and setter

112 }

Listing 11: Simplified version of the DynamicNodeType entity

The DynamicNodeType, like all other node types, extends the abstract entity NodeType. It

inherits all properties and methods of its parent and has the possibility to override them.

The annotation @ORM\Column(type="array") tells Doctrine to automatically serialize and

un-serialize the property upon saving and retrieval.

Symfony provides a set of @Assert annotations. These annotations can be used for validation

purpose. In Listing 11, we see that the property configuration is decorated by the

@Assert\Type annotation. When this class is used as a base class for a form and the value

for configuration is not of type array, the form validation engine will print the validation error

message defined in the annotation.

4.2.5 DynamicNode Entity

The entity DynamicNode is presented as an example for all the nodes of the Relator API. The

purpose of the DynamicNode entity is to store data based on the configuration of the

DynamicNodeType that needs to be assigned and to store the associations to the assigned

Person entities.

4 Relator API

25

113 /**

114 * @ORM\Entity

115 */

116 class DynamicNode extends Node

117 {

118 /**

119 * @ORM\Column(type="array")

120 */

121 private $data;

122

123 /**

124 * @ORM\ManyToMany(targetEntity="Person",

 inversedBy="dynamicNodes")

125 * @ORM\JoinTable(

126 * name="dynamicnode_person",

127 * joinColumns={

128 * @ORM\JoinColumn(name="dynamicnode_id",

 referencedColumnName="id")

129 * },

130 * inverseJoinColumns={

131 * @ORM\JoinColumn(name="person_id",

 referencedColumnName="id")

132 * }

133 *)

134 */

135 private $attachedPersons;

136

137 // Getters and setters

138 }

Listing 12: Simplified version of the DynamicNode entity

The data property of the dynamic node is kept as an array and persisted as a serialized array.

The property attachedPersons is a many-to-many association to the Person entity. This

can be achieved by using the @ORM\ManyToMany annotation with the attribute

targetEntity="Person". The attribute inversedBy="dynamicNodes" defines the

association as bidirectional and tells Doctrine what property to use on the Person entity to

access the assigned DynamicNode entities. As many-to-many associations need a join table,

Doctrine expects some configuration provided in the @ORM\JoinTable annotation.

4.3 Endpoints

The Relator API provides the endpoints listed in Table 1.

Path Supported methods Requires authentication

/v1/dynamic-node-types GET, POST Yes

/v1/dynamic-node-types/{id} GET, PUT, DELETE Yes

/v1/dynamic-node-types/{id}/nodes GET Yes

/v1/dynamic-nodes GET, POST Yes

/v1/dynamic-nodes/{id} GET, PUT, DELETE Yes

/v1/groups GET, POST Yes

4 Relator API

26

/v1/groups/{id} GET, PUT, DELETE Yes

/v1/node-types GET Yes

/v1/nodes GET Yes

/v1/persons GET, POST Yes

/v1/persons/{id} GET, PUT, DELETE Yes

/v1/persons/{id}/dynamic-nodes GET Yes

/v1/persons/{id}/relations GET Yes

/v1/relation-types GET, POST Yes

/v1/relation-types/{id} GET, PUT, DELETE Yes

/v1/relations GET, POST Yes

/v1/relations/{id} GET, PUT, DELETE Yes

/v1/user/register POST No

/v1/user/token POST No

Table 1: Endpoints of the Relator API

All the endpoints are documented in the interactive Swagger documentation that can be found

on https://docs.relator.ch or in the project files presented in appendix A. In this

report, I describe four important endpoints.

4.3.1 Register a New User

All endpoints of the Relator API require authentication except for the endpoint to register a

new user and the endpoint to generate an access token.

Registering a new user can be achieved by sending a POST request to /v1/user/register.

The Relator API accepts only the JSON format, so the request should have a Content-Type

header set to application/json. Even if the header is not set, the API tries to interpret the

payload as JSON data.

The endpoint expects the payload to match the schema presented in Listing 13.

139 {

140 "email": "mail@domain.tld",

141 "username": "username",

142 "plainPassword": {

143 "first": "password",

144 "second": "password"

145 },

146 "invitation": "12345678"

147 }

Listing 13: Example payload to create a new user

The property email is required, has to be a valid email address and has to be unique. The

property username is required and has to be unique. The properties first and second of the

object plainPassword are required. There’s two password properties to implement a

«Repeat password» field. The values of first and second have to match. The property

invitation is required and has to match the code property of an existing Invitation

https://docs.relator.ch/

4 Relator API

27

record. This mechanism is implemented to restrict the public access to the Relator API. Only

people with a valid invitation code can register.

If one of the properties is not valid, the API responds with the status code 400 which means

Bad request and explains the error(s) in the body of the response:

148 {

149 "errors": {

150 "invitation": [

151 "Your invitation code is not valid"

152]

153 },

154 "status": 400,

155 "type": "validation_error",

156 "title": "There was a validation error"

157 }

Listing 14: Response to an invalid request

Whenever an error occurs, the API responds with an ApiProblem that has four properties. The

property status contains the HTTP status code. Possible codes are 400 for a validation error,

401 for an unauthorized request or 404 if a resource cannot be found. The property type

contains a technical label for the error such as validation_error, unauthorized or

bad_request. The property title contains a human readable error message. The property

errors is an array and in case of a validation error, it contains all the validation error

messages grouped by property. In a graphical user interface (GUI), these messages can be

presented to the user.

If all properties are valid, the response to the request will contain a token that can be used to

access the endpoints that require authentication. The same response is generated for

successful requests to /v1/user/token that can be used to authenticate an existing user.

158 {

159 "token": "eyJhbGciOiJSUzI1NiJ9.eyJyb2xlcyI6WyJST0xFX1VTS..."

160 }

Listing 15: Response to a successful registration or token request

To send requests to endpoints that require authentication, the access token presented in

Listing 15 has to be provided in every request header in the following format:

Authorization: Bearer eyJhbGciOiJSUzI1NiJ9.eyJyb2xlcyI6WyJST0xFX1VTS...

The Relator API uses JSON Web Tokens [10] for authentication.

4.3.2 Fetching a Collection of Dynamic Node Types

To fetch a collection of dynamic node types, the endpoint /v1/dynamic-node-types can be

used. As this endpoint requires authentication, the Authorization header has to be set as

explained in the previous section.

The response to such a request looks like this:

4 Relator API

28

161 {

162 "page": 1,

163 "limit": 100,

164 "pages": 1,

165 "total": 3,

166 "_links": {

167 "self": {

168 "href": "https://api.relator.ch/v1/dynamic-node-

types?page=1&limit=100"

169 },

170 "first": {

171 "href": "https://api.relator.ch/v1/dynamic-node-

types?page=1&limit=100"

172 },

173 "last": {

174 "href": "https://api.relator.ch/v1/dynamic-node-

types?page=1&limit=100"

175 }

176 },

177 "_embedded": {

178 "items": [

179 [...]

180]

181 }

182 }

Listing 16: Response to a GET request to an endpoint returning a collection of resources

Every response to a GET request to an endpoint which returns a collection of resources is

structured like to one presented in Listing 16. The property page contains the index of the

current page. The property limit contains the number of resources that the request is limited

to. The property pages contains to total number of pages available. The property total

contains the number of resources that are available in total. All these properties are used for

pagination which is explained in section 4.4.3.

The object _links contains properties that are relevant for the current state. Possible

properties are self for the current representation, first for the first page of resources,

previous or next for the previous or next page of resources (if multiple pages are available)

and last for the last page of resources.

The property _embedded is an object which contains all the requested resources in a property

called items.

In case of dynamic node types, such an item looks like this:

4 Relator API

29

183 {

184 "id": "fd7c5b2c-81d9-11e7-be10-d077e30d96ca",

185 "title": "Meeting",

186 "icon": "icon-node",

187 "created": "2017-08-15T18:51:31+02:00",

188 "modified": "2017-08-15T18:51:31+02:00",

189 "configuration": {

190 "fields": [

191 {

192 "name": "topic",

193 "label": "Topic",

194 "type": "TextField",

195 "options": {

196 "required": true

197 }

198 },

199 {

200 "name": "date",

201 "label": "Date",

202 "type": "DateField",

203 "options": {

204 "required": true

205 }

206 },

207 {

208 "name": "notes",

209 "label": "Notes",

210 "type": "TextareaField",

211 "options": {

212 "required": true

213 }

214 }

215]

216 },

217 "discr": "dynamic",

218 "_links": {

219 "self": {

220 "href": "http://api.relator.dev/v1/dynamic-node-

types/fd7c5b2c-81d9-11e7-be10-d077e30d96ca"

221 }

222 }

223 }

Listing 17: One item of the collection returned by GET /v1/dynamic-node-types

The item presented in Listing 17 is a JSON representation of the entity DynamicNodeType.

Representations can look different based on their contexts. This is explained in section 4.4.1.

The interesting part is the property configuration. It contains the configuration for the data

structure of dynamic nodes using this dynamic node type. It contains a property called

fields. Every object in the fields array represents one property that the dynamic node can

or has to have, depending on the sub-property options.required being true or false. The

structure of the fields object is explained in detail in the next section.

4 Relator API

30

4.3.3 Creating a Dynamic Node Type

To create a new dynamic node type, a POST request with a valid Authorization header can

be sent to /v1/dynamic-node-types. The payload should look as presented in Listing 18.

224 {

225 "title": "Custom dynamic node type",

226 "icon": "icon-node",

227 "configuration": {

228 "fields": [

229 {

230 "name": "title",

231 "label": "The title of the dynamic node",

232 "type": "TextField",

233 "options": {

234 "required": 1

235 }

236 },

237 {

238 "name": "brand",

239 "label": "A brand for the dynamic node",

240 "type": "SelectField",

241 "options": {

242 "required": 1,

243 "options": ["Armani", "Burberry", "Hugo Boss"]

244 }

245 }

246]

247 }

248 }

Listing 18: Payload to create a new dynamic node type

The property title is used as the title for the dynamic node type. The property icon contains

an identifier for an icon that can be used to represent this type. The property configuration

contains the configuration for the fields.

Every object in the fields array defines one property for the dynamic nodes assigned to this

dynamic node type. Table 2 explains the available properties.

Property Explanation

name The name to use for the property on the dynamic node. This name should not

contain special chars.

label The user readable label for the field. In a GUI, this can be used as label for the

form field.

type The type of the field to use for this property.

The following types are available:

TextField for single-line text

TextareaField for multi-line text

DateField for a date

SelectField for the choice of predefined values provided in the options

property of the options object

4 Relator API

31

options The options property is an object and knows these sub-properties:

required: Defines if a property is mandatory or optional

options: This property is only used for the type SelectField. As options, you

can provide an array of strings to make them available as choices.

Table 2: Available properties for the field configuration of a dynamic node type

If all properties are valid, the API will respond with the status code 201 which means

Created. A JSON representation of the newly created resource can be found in the response

body. Additionally, the response contains a Location header with the URI of the newly

created resource. The JSON representation looks like the one described in Listing 17, it

contains the properties id, created, modified and _links added by the server.

4.3.4 Creating a Dynamic Node

To demonstrate how dynamic nodes can be created based on a dynamic node type, let’s create

a dynamic node based on the dynamic node type created in the previous section.

To create a dynamic node, we send a POST request to /v1/dynamic-nodes with a valid

Authorization header.

The example payload presented in Listing 19 demonstrates a valid representation:

249 {

250 "data": {

251 "title": "The title of the dynamic node",

252 "brand": "Hugo Boss"

253 },

254 "attachedPersons": [

255 "id-of-first-person-to-attach",

256 "id-of-second-person-to-attach"

257],

258 "nodeType": "id-of-dynamic-node-type"

259 }

Listing 19: Payload to create a new dynamic node

The property data is an object and expects data based on the dynamic node type. Each

property name of the data object has to match with the name property of a field configured

on the dynamic node type. If the data object contains a property that is not defined in the

dynamic node type configuration, the API will respond with a HTTP status 400 and a

validation error message. The same applies if the data object doesn’t contain a property that

is defined as required or a property of type SelectField has a value which is not defined in

the options array of the options object.

4.4 Implementation Specifics

A lot of code was written to implement the Relator API. In this section, I explain three

important parts.

4 Relator API

32

4.4.1 Transforming Entities to Representations

In section 2.2.3 we learned about the representation oriented principle of REST. Big APIs

allow the client to request different formats of representations such as JSON or XML. The

Relator API supports only the JSON format.

Internally, the entities are stored in a relational MySQL database. Doctrine fetches that data

and maps it to entity objects. To respond to a request, the entities have to be transformed into

a JSON representation. This transformation is performed by the serializer of the

JMSSerializerBundle [11].

The JMSSerializerBundle allows to transform Doctrine entities and other objects into JSON

representations based on a simple configuration.

260 Relator\ApiBundle\Entity\Nodes\DynamicNode:

261 exclusion_policy: ALL

262

263 properties:

264 data:

265 expose: true

266 attachedPersons:

267 expose: true

Listing 20: Basic serializer configuration

The configuration in Listing 20 presents a basic configuration for the DynamicNode entity in

the YAML format. The property exclusion_policy can be used to define if by default all

properties should be exposed or not. For security reasons, the Relator API excludes all

properties by default. When a new property is added to an entity, it won’t be exposed to the

public until the configuration for the property is set to expose: true as set for the properties

data and attachedPersons.

A big advantage of using the JMSSerializerBundle is the possibility to use virtual properties.

The bundle allows you to define methods that are executed on serialization and the return

values of the methods is added to the representation as if it were part of the resource.

268 Relator\ApiBundle\Entity\Nodes\DynamicNode:

269 virtual_properties:

270 getDynamicNodeConfiguration:

271 serialized_name: configuration

Listing 21: Virtual properties in the serializer configuration

Listing 21 presents a virtual property defined in the serializer configuration of DynamicNode.

When a DynamicNode entity is serialized, the method getDynamicNodeConfiguration() is

executed and the return value of that method is added to the representation as property

configuration. The Relator API uses this method to provide the configuration of the

DynamicNodeType as a property on the DynamicNode.

Different representations based on the context

Sometimes you need to expose properties based on the current context. Imagine you have an

entity with a lot of properties. Some of them might be very important so they always have to

4 Relator API

33

be part of the representations. Other might be less relevant and should only be exposed when

the resource is requested directly but not when the resource is embedded in a collection of

resources. This can be handled by defining different serialization groups.

Let’s have a look at an excerpt of the serializer configuration of Person:

272 Relator\ApiBundle\Entity\Nodes\Person:

273 properties:

274 familyName:

275 expose: true

276 groups: [list, detail]

277 nickname:

278 expose: true

279 groups: [detail]

Listing 22: Excerpt of the serializer configuration of Person

Every property in the serializer configuration has defined an array of groups. The property

familyName is key for a person so it is added to the groups list and detail. The property

nickname is less important so it is added only to the group detail. When a collection of

persons is requested by sending a GET request to /v1/persons, the ApiController will call

the serializer and tell him to include only properties of the group list. In this case, the

property nickname will not be included in the representation. When a single resource is

requested by sending a GET request to /v1/persons/{id}, the ApiController will call the

serializer and tell him to include all properties of the group detail. In this case, both

properties familyName and nickname will be included.

4.4.2 Adding Links to Representations

In section 2.2.5 we learned about HATEOAS and the importance of linking resources based

on the context. The Relator API generates context dependant links based on the

BazingaHateoasBundle [12].

The links can be configured in the same way as the serializer configuration described in the

previous section.

4 Relator API

34

280 Relator\ApiBundle\Entity\Nodes\Person:

281 relations:

282 -

283 rel: relations

284 href:

285 route: relator_api_persons_list_relations

286 absolute: true

287 parameters:

288 id: expr(object.getId())

289

290 -

291 rel: dynamic-nodes

292 href:

293 route: relator_api_persons_list_dynamicnodes

294 absolute: true

295 parameters:

296 id: expr(object.getId())

Listing 23: Excerpt of HATEOAS configuration of the Person entity

The links for an entity can be configured in the relations section. Every relation requires the

two properties rel and href. The property rel defines the property name that is used in the

_links section of the representation and the property href defines the URI. Relator uses the

Symfony built-in routing component to generate URIs.

When a representation of a Person entity is requested, the links are available in the _links

object of the response body:

297 {

298 [...]

299 "_links": {

300 "relations": {

301 "href": "http://api.relator.dev/v1/persons/fd7f2410-

81d9-11e7-be10-d077e30d96ca/relations"

302 },

303 "dynamic-nodes": {

304 "href": "http://api.relator.dev/v1/persons/fd7f2410-

81d9-11e7-be10-d077e30d96ca/dynamic-nodes"

305 }

306 }

307 }

Listing 24: Example HATEOAS links of a Person representation

These links can be used to get further information about the person like the relations or the

dynamic nodes attached to that person.

4.4.3 Collections

If a response contains more than one resource in the response body, that group of resources is

called a collection. For collections, some special rules apply.

Pagination

All collections of the Relator API use pagination. The pagination works by using two

parameters, page and limit. The limit parameter defines, how many resources to return on

4 Relator API

35

one page and the page parameter defines the index of the page to return. By default, the

limit is set to 100.

https://api.relator.ch/v1/api/persons?limit=20&page=2

This URI returns 20 Person resources with an offset of 20, meaning that the second 20

Person resources are returned.

If there is a total of 35 resources and a consumer requests page=3, the API will respond with

an exception saying that the page does not exist.

Sorting

By default, collections are ordered by modification date in descending order. The consumer of

the API can change the order property and the order direction by adding a sorting parameter.

https://api.relator.ch/v1/api/persons?sorting=familyName

This URI will return a collection of resources sorted by familyName in ascending order. To

change the order direction, you can set the order direction by adding a colon after the sorting

property and the desired order direction:

https://api.relator.ch/v1/api/persons?sorting=familyName:desc

This URI will return a collection of Person resources sorted by familyName in descending

order.

It is also possible to sort by multiple properties by defining a comma separated list:

https://api.relator.ch/v1/api/persons?sorting=familyName,givenName:desc

By default, every entity can be sorted by the properties icon, created and modified. For

entities extending NodeType, an additional property title is available.

For every entity it is defined, which of its properties are sortable by implementing a static

method getSortableProperties().

308 public static function getSortableProperties() {

309 $defaultFields = parent::getSortableProperties();

310 return array_merge([

311 'start',

312 'end'

313], $defaultFields);

314 }

Listing 25: Definition of sortable fields of an entity

Listing 25 shows the implementation of getSortableProperties() of the entity Relation.

This entity can be sorted by the default properties of a node which are defined on the node

itself and can be accessed by calling parent::getSortableProperties(). Additionally, the

two properties start and end are added.

4 Relator API

36

Filtering

The endpoint /v1/persons allows filtering of the Person resources by adding a search

parameter. This feature can be used for auto-completion.

The searchable properties are defined on the Person entity, the same way as the sortable

properties are defined, and can be accessed by calling the static method

getSearchableProperties().

315 public static function getSearchableProperties() {

316 $defaultFields = parent::getSearchableProperties();

317 return array_merge([

318 'givenName',

319 'familyName'

320], $defaultFields);

321 }

Listing 26: Definition of searchable fields of an entity

The person entity allows to search in the properties givenName and familyName.

https://api.relator.ch/v1/api/persons?search=mike

This URI returns a collection of Person resources where every person’s givenName or

familyName property contains the term «mike».

https://api.relator.ch/v1/api/persons?search=mike

5 Relator GUI

37

 5 Relator GUI

5.1 User Guide 37

5.2 Advanced Options 46

The Relator GUI is implemented based on Angular in version 4.2. As the GUI is primarily a

proof-of-concept prototype, I won’t go much into implementation details but present the GUI

as a user guide.

5.1 User Guide

The Relator GUI can be accessed by navigation to https://app.relator.ch. As you

need to authenticate to use the application, the first screen you see is the login screen.

Figure 4: The login screen

If you already have a user account, you can log in with your access credentials. If you don’t

have a user account, you can create one by clicking on the «Register» button.

https://app.relator.ch/

5 Relator GUI

38

Figure 5: The register screen

The register form uses both client-side validation and server-side validation. If you provide

for example a wrong email address, the GUI will tell you so. If you choose a username that is

already take, the GUI will tell you so, too upon clicking the «Register» button.

When you provide valid access credentials and a valid invitation code which is available on

request, the register action can be completed successfully and the application will redirect you

to the dashboard.

Figure 6: The dashboard

5 Relator GUI

39

As soon as you see the dashboard, you’re logged in successfully. The black bar on the top is

the toolbar. On the right side of the toolbar you find the logout button. The blue bar on the left

is the navigation bar. It allows you to navigate between the different modules. Those elements

are available on every view.

The dashboard provides an overview of the nodes that were created or modified recently. The

data for the overview is fetched by sending a GET request to the endpoint /v1/nodes.

The first module in the navigation bar is the dashboard. It is active after you log in. The

second module in the navigation bar is the persons module. Activate it by clicking on the

icon.

Figure 7: The persons module

When you navigate to the person module, you see a list of all persons you already created on

the left side next to the navigation bar. This area is called the list view. On top of that list,

there’s a button to create a new person.

Click on the name of a person to navigate to the detail view of that person.

5 Relator GUI

40

Figure 8: Detail view of a person

In the content area, you can see the gray header bar with the name and the image of the

person. The inline navigation below the name allows you to switch between the general

information, the relations and the dynamic nodes of a person. On the right side, you find

buttons to edit and to delete the person.

Below the header bar you see general information of this person.

Click the button «Add person» on top of the list view to navigate to a form to create a new

person.

5 Relator GUI

41

Figure 9: Form to add a new person

The form fields make it very comfortable to add a new person. When you activate a required

field and then activate another field without providing a value for the first field, the label and

the border of the field will turn red so you see that the field is required and the value is

missing.

When you load the form, the add button is disabled. It will be enabled once all required form

fields are properly filled. When you hit the «Add» button, the new person will be created and

you’ll see the detail view of that newly created person.

Let’s have a look at the third module, the dynamic nodes module. Navigate to that module by

clicking the third icon in the navigation bar.

Figure 10: The dynamic nodes module

This module presents all existing dynamic node types in the list view. The button on top of

the list view reloads the list. This is useful because the application does not provide a form to

create and edit dynamic node types. You can find out how to create and edit them by using

the API directly as explained in the next section. When you create or edit a dynamic node

type externally, hit the «Reload types» button to refresh the list.

When you click on a dynamic node type in the list view, the dynamic nodes of the selected

type are shown in the content area.

5 Relator GUI

42

Figure 11: Dynamic nodes of a selected dynamic node type

The header bar shows the title of the dynamic node type selected and a button to create a new

dynamic node based on this type. The content are lists the dynamic nodes of the selected type

in descending order. The newest dynamic node is always on top. Each dynamic node has

buttons to edit or delete it.

A click on the plus button navigates to a form to create a new dynamic node.

Figure 12: Form to add a new dynamic node

5 Relator GUI

43

The form fields you see in Figure 12 are dynamically generated based on the configuration

property of the assigned dynamic node type.

The last field allows you to attach the dynamic node to multiple persons. Activate the field

and start typing a name. The field will suggest you persons based on your input.

Let’s have a look at the fourth module, the relation types module. Navigate to that module by

clicking the fourth icon.

Figure 13: The relations types module

This module allows you to create and edit relation types. You can assign these relation types

in the persons module later.

The list view lists all existing relation types. The button on top of that list allows you to create

new relation types.

Click on the name of a relation type to navigate to the detail view of a relation type.

5 Relator GUI

44

Figure 14: Detail view of a relation type

In the header bar, you see the name of the selected relation type and the buttons to edit and

delete it. In the content area, you see the configuration of the relation type. If a relation type is

non-bidirectional, a link to the opposite relation type is presented.

Create, edit or remove relation types in this module according to your needs. Please mind that

when you remove a relation type, all relations based on that type will be removed as well.

Once you created the needed relation types, navigate to the person module, select the person

you want to add a relation to and choose «Relations» from the inline navigation.

5 Relator GUI

45

Figure 15: List of relations of a person

The content area presents all relations that were already created grouped by the relation type.

Every relation offers buttons to edit or remove the relation.

Click the «Add» button in the top right corner of the content area to add a new relation.

Figure 16: Add new relation to a person

The form to create a new relation lets you choose a relation type, the related person and

optionally, the start and the end date of the relation. The owning person is already preselected,

it’s the person whose detail view was active when you clicked the «Add» button.

If you want to see what dynamic nodes are attached to a certain person, navigate to the detail

view of that person and choose «Dynamic nodes» from the inline navigation.

5 Relator GUI

46

Figure 17: List of dynamic nodes attached to a selected person

This view lists all dynamic nodes that are attached to the currently selected person. Every

dynamic node has buttons to edit and remove that node.

5.2 Advanced Options

The Relator GUI doesn’t provide an interface to create dynamic node types. To create and

edit dynamic node types, a client has to access the API directly. Also, all actions that can be

performed by using the Relator GUI can be performed by accessing the API directly.

A simple tool to interact with REST APIs is Postman [13]. Postman is a cross-platform tool

available for free as a standalone version or as an extension for the browser Chrome. It makes

it very easy to interact with APIs even if they require authentication.

How to use Postman and the Relator API

After setting up the application, Postman asks you to create an account. This account is very

handy as it stores your recent requests and you can create collections of requests that are

synchronized to all of your devices.

Once your account is set up, you are ready to use Postman.

5 Relator GUI

47

Figure 18: The Postman UI

The first thing you have to do when you want to access the Relator API is to create an access

token. This can be achieved by sending a POST request to the endpoint /v1/user/token.

Figure 19: Authentication with Postman

Setup Postman as shown in Figure 19. When you hit the «Send» button, Postman will send

the request to the Relator API. If your access credentials are wrong, the response will have a

status code of 400 or 401 and the response body will contain an error message.

If your access credentials are correct, the response body will contain a property token with a

value of a long cryptic string. That string is your access token.

5 Relator GUI

48

Copy the access token and open a new tab. Setup the tab as shown in Figure 20.

Figure 20: Accessing a protected endpoint with Postman

The most important part is that you set the Authorization header in the Headers tab. Add a

key called Authorization and for the value, type «Bearer», add a space and paste in the

access token. This is required to access protected endpoints. When you hit the «Send» button,

your response will contain a collection of dynamic node types. If you didn’t create any so far,

the collection will be empty.

Figure 21: Collection of dynamic node types after successful authentication

Now you can use all the endpoints of the API described in the Swagger documentation.

6 Conclusion

49

 6 Conclusion

6.1 Lessons Learned 49

6.2 Future Improvements 49

6.3 Final Statement 50

6.1 Lessons Learned

One of the biggest lessons learned in this project is the fact that choosing the right tools to

create an application is a very important task. I chose to use a relational database system to

store my application data because I already had knowledge in how to work with this type of

databases. Later on, during the project, I was reading about graph database systems and found

out that it could have been a better choice to achieve the goals of my project. I cannot say it

would have been better for sure as I did not try it out but for me, doing research to find the

right tools and having courage to try something new is a lesson I learned.

Another lesson I learned: Think about the exact use case for your API before you start

working on it. Developer’s like to create universal things that can handle all kind of use cases

and so do I. But once I started implementing the Relator GUI, I found out that I cannot handle

certain requirements of the GUI because the API was created in a too general and too

optimized way. As an example, certain properties of the Relation entity were only exposed if

the Relation was requested directly but not when it was part of a collection. The idea was

saving bandwidth by not exposing these properties but during implementation of the Relator

GUI I found out that they were necessary.

6.2 Future Improvements

As the Relator GUI is only a prototype and does not offer a UI to manage dynamic node types

and groups, one of the first improvements would be the GUI. Besides the missing UI parts,

the user experience could be improved by adding context sensitive help and better validation

handling.

The big deal would be to improve the UI to be completely responsive so that it can be used on

smartphones. Currently it’s only possible to use the UI on tablets and on desktop devices.

Concerning the API, the next important step would be to add more field types to the dynamic

nodes. Types like email, phone, link, location etc. would make the dynamic nodes much more

powerful.

6 Conclusion

50

Another important improvement would be adding more fields to the Person entity like

addresses, phone numbers and email addresses. If the GUI would be completely responsive,

the Relator application could be used as an organizer.

6.3 Final Statement

In the introduction of this project I mentioned the importance of the world wide web and the

huge impact it has on our daily lives. After doing some research about architecture styles used

for web services, I found out that REST is very popular and that most of the services I use in

my daily live offer a RESTful API. Based on that research I’m sure that the REST

architecture style helped a lot in the evolvement of the internet and internet-based services in

the recent years and I am convinced that it will continue helping the internet to grow, to

evolve and to provide a solid and modern base for new applications and services.

Project Files

51

A

Project Files

The project files of this project are available here:

https://resources.relator.ch/project_files.zip

Directory structure

relator_api

This directory contains the source code for the Relator API.

relator_gui

This directory contains the source code for the Relator GUI.

resources

This directory contains resources like images used in this report.

static_api_documentation

This directory contains the static html version of the Swagger API documentation.

https://resources.relator.ch/project_files.zip

Domain Model

52

B

Domain Model

The schema of the full Relator domain model can be found on the next page.

Domain Model

53

References

54

References

[Fie00]

Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software

Architectures, University of California, Irvine, 2000. [Retrieved August 03, 2017 from
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding

_dissertation.pdf]

[Bur13]

Bill Burke. RESTful Java with JAX-RS 2.0, O’Reilly Media, 2013.

[Ber05]

Berners-Lee, et al. Uniform Resource Identifier (URI): Generic Syntax, Network

Working Group, 2005. [Retrieved August 04, 2017 from

https://tools.ietf.org/pdf/rfc3986.pdf]

[FR14]

Roy Thomas Fielding and Julian Reschke. Hypertext Transfer Protocol (HTTP/1.1):

Semantics and Content, IETF, 2014. [Retrieved August 03, 2017 from

https://tools.ietf.org/pdf/rfc7231.pdf]

[Lea05]

Leach, et al. A Universally Unique Identifier (UUID) URN Namespace, Network

Working Group, 2005. [Retrieved August 11, 2017 from

https://tools.ietf.org/pdf/rfc4122.pdf]

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://tools.ietf.org/pdf/rfc3986.pdf
https://tools.ietf.org/pdf/rfc7231.pdf
https://tools.ietf.org/pdf/rfc4122.pdf

Referenced Web Resources

55

Referenced Web Resources

[1] Symfony, High Performance PHP Framework for Web Development.

http://symfony.com (accessed October 12, 2016)

[2] PHPUnit.

https://phpunit.de/ (accessed December 03, 2016)

[3] Friends of Symfony: User Bundle.

https://github.com/FriendsOfSymfony/FOSUserBundle (accessed on

November 29, 2016).

[4] Doctrine: Object-relational Mapper.

http://www.doctrine-project.org/projects/orm.html (accessed on

November 29, 2016)

[5] Bitbucket. https://bitbucket.org/ (accessed on October 19, 2016)

[6] CircleCI. https://circleci.com/ (accessed on October 20, 2016)

[7] Capistrano. http://capistranorb.com/ (accessed on October 23, 2016)

[8] Swagger. https://swagger.io/ (accessed November 29, 2016)

[9] Doctrine: Inheritance mapping.
http://docs.doctrine-project.org/projects/doctrine-

orm/en/latest/reference/inheritance-mapping.html (accessed on

November 30, 2016)

[10] JSON Web Tokens. https://jwt.io/ (accessed on December 08, 2016)

[11] JMSSerializerBundle.

https://jmsyst.com/bundles/JMSSerializerBundle (accessed on

November 12, 2016)

[12] BazingaHateoasBundle.

https://github.com/willdurand/BazingaHateoasBundle (accessed on

January 12, 2017)

[13] Postman. https://www.getpostman.com/ (accessed November 12, 2016)

http://symfony.com/
https://phpunit.de/
https://github.com/FriendsOfSymfony/FOSUserBundle
http://www.doctrine-project.org/projects/orm.html
https://bitbucket.org/
https://circleci.com/
http://capistranorb.com/
https://swagger.io/
http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/inheritance-mapping.html
http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/inheritance-mapping.html
https://jwt.io/
https://jmsyst.com/bundles/JMSSerializerBundle
https://github.com/willdurand/BazingaHateoasBundle
https://www.getpostman.com/

	Relator
	A RESTful application to manage relations between persons and data based on dynamic schemas

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Motivation and Goals
	1.2 Organization
	Chapter 1: Introduction
	Chapter 2: RESTful Web Services
	Chapter 3: Relator – The Architecture
	Chapter 4: Relator API
	Chapter 5: Relator GUI
	Chapter 6: Conclusion

	1.3 Notations and Conventions

	2 RESTful Web Services
	2.1 What is REST?
	2.2 Key Principles
	2.2.1 Addressability
	2.2.2 A Uniform, Constrained Interface
	GET
	POST
	PUT
	DELETE

	2.2.3 Representation-Oriented
	2.2.4 Communicate Statelessly
	2.2.5 HATEOAS

	3 Relator – The Architecture
	3.1 Use Case and Requirements
	3.2 Architecture

	4 Relator API
	4.1 Implementation Tools and Services
	4.1.1 Symfony – A PHP Framework
	4.1.2 Doctrine – An Object-Relational Mapper
	4.1.3 Continuous Integration / Continuous Deployment
	4.1.4 Swagger – Interactive API Documentation

	4.2 Data model
	4.2.1 User Entity
	4.2.2 NodeType Entity
	4.2.3 Node Entity
	Lifecycle methods

	4.2.4 DynamicNodeType Entity
	4.2.5 DynamicNode Entity

	4.3 Endpoints
	4.3.1 Register a New User
	4.3.2 Fetching a Collection of Dynamic Node Types
	4.3.3 Creating a Dynamic Node Type
	4.3.4 Creating a Dynamic Node

	4.4 Implementation Specifics
	4.4.1 Transforming Entities to Representations
	Different representations based on the context

	4.4.2 Adding Links to Representations
	4.4.3 Collections
	Pagination
	Sorting
	Filtering

	5 Relator GUI
	5.1 User Guide
	5.2 Advanced Options
	How to use Postman and the Relator API

	6 Conclusion
	6.1 Lessons Learned
	6.2 Future Improvements
	6.3 Final Statement

	A Project Files
	Directory structure

	B Domain Model
	References
	Referenced Web Resources

