
Secure P2P data transfer

Using WebRTC

B AC H E L O R T H E S I S

GUILLAUME BONVIN

December 2020

Th esis su per visors :

Prof. Dr. Jacques PASQUIER–ROCHA

Software Engineering Group

Graduate assistant Arnaud DURAND

Software Engineering Group

Software Engineering Group

Department of Informatics

University of Fribourg

(Switzerland)

Preamble

iii

Preamble

Acknowledgements

I want to express my special thanks to Arnaud Durand for his continuous support throughout

this project and the many help he provided me during our discussions.

I also want to thank Prof. Dr. Jacques Pasquier for the supervision of this thesis as well as the

numerous skills he has passed on to me through the various courses he gave since I joined the

university.

Notations and Conventions

Throughout this document, the same example of file transfer will be used. By convention, the

sender will be called Alice and the receiver Bob. Their actions on the different figures will

always be coloured blue for Alice and pink for Bob. The steps requiring a Signaling server will

be displayed in yellow.

All code-related vocabulary like variable names, object types, file names, functions or methods,

fields and so on will be displayed in bold.

This document comports a lot of references to STUN servers, TURN servers, and Signaling

server. From an architectural point of view, those are normally separated. In this project though,

they all run on the same VPS and should therefore rather be considered as distinct services

offered by the same server, even though they will be referred as servers in this document.

Table of Contents

iv

Table of Contents

1 Introduction 1

1.1 Project description ... 1

1.2 Use case and demonstration ... 1

1.2.1 Sender side ... 2

1.2.2 Receiver side .. 3

1.3 Thesis outline ... 4

2 WebRTC Architecture 5

2.1 WebRTC overview .. 6

2.2 Protocol stack ... 7

2.3 Introduction to the Web API .. 8

2.4 Overview of the components ... 9

2.4.1 SDP ... 9

2.4.2 ICE protocol ... 10

2.4.3 STUN / TURN servers ... 10

2.4.4 Signaling Server ... 11

3 Implementation 13

3.1 Go language ... 13

3.1.1 Why Go? .. 14

3.1.2 Environment setup .. 14

3.2 External Components ... 15

3.2.1 TURN ... 15

3.2.2 Signaling Server ... 17

3.3 Application structure ... 18

3.3.1 Design choices .. 18

3.3.2 Process .. 18

3.4 Code overview ... 21

3.4.1 Main ... 22

3.4.2 Sender ... 23

3.4.3 Receiver .. 31

3.4.4 Server ... 35

3.4.5 Internal directory .. 39

3.5 Conclusion ... 40

Table of Contents

v

4 Security 41

4.1 Mutual authentication problem .. 41

4.2 Certificate and fingerprint .. 42

4.3 Fingerprint extraction .. 44

4.4 Passphrase derivation ... 45

4.4.1 Simplifying the fingerprint ... 45

4.4.2 Derivation algorithm .. 46

4.4.3 Information loss .. 47

4.5 Use in signaling protocol ... 48

4.5.1 As a login system ... 48

4.5.2 For authenticity check .. 48

4.5.3 Complete protocol .. 50

5 Conclusion 51

5.1 Issues and further improvement ... 51

5.2 Personal conclusion ... 52

Referenced Web Resources 53

List of Figures

vi

List of Figures

Figure 1: Alice - role picking ... 2

Figure 2: Alice - remote passphrase input .. 2

Figure 3: Alice - file selection .. 2

Figure 4: Alice - file successfully sent ... 2

Figure 5: Alice - integrity confirmed ... 2

Figure 6: Bob - role picking and remote passphrase input ... 3

Figure 7: Bob - file offer accepted ... 3

Figure 8: Bob - file received and integrity confirmed .. 3

Figure 9: WebRTC overall architecture ... 6

Figure 10: WebRTC protocol stack ... 7

Figure 11: WebRTC architecture ... 9

Figure 12: STUN server ... 10

Figure 13: TURN server ... 11

Figure 14: type A DNS records for STUN/TURN ... 16

Figure 15: TrickleICE testing results ... 16

Figure 16: Type A DNS record for signaling ... 17

Figure 17: Application architecture and interactions ... 19

Figure 18: Simplified Signaling Protocol... 20

Figure 19: File Exchange Protocol ... 20

Figure 20: Application source files .. 21

Figure 21: SDP decomposition .. 44

Figure 22: Converting a fingerprint to a passphrase .. 45

Figure 23: Base change pseudocode .. 46

Figure 24: Alice's login name .. 48

Figure 25: Bob's login name .. 48

Figure 26: Full Signaling Protocol ... 50

List of Tables

vii

List of Tables

Table 1: sender.go - signaling messages Types ... 26

Table 2: sender.go - file exchange messages Types ... 29

Table 3: receiver.go - signaling messages Types ... 31

Table 4: receiver.go - file exchange messages Types .. 34

Table 5: server.js - incoming messages Types ... 36

Table 6: fingerprint.go methods ... 39

Table 7: hash.go methods ... 39

Table 8: json_encoding.go methods ... 40

Table 9: min.go method ... 40

Table 10: offer SPD example ... 42

Table 11: answer SDP example ... 43

List of Source Code

viii

List of Source Code

Code 1: main.go ... 23

Code 2: sender.go - WebRTC initialization ... 24

Code 3: sender.go - signaling - struct definition .. 25

Code 4: sender.go - signaling - remote passphrase input ... 25

Code 5: sender.go - signaling - WebSocket connection ... 25

Code 6: sender.go - signaling - onConnected .. 25

Code 7: sender.go - signaling - onTextMessage .. 26

Code 8: sender.go - signaling - linked and offer generation .. 27

Code 9: sender.go - signaling - answer received .. 28

Code 10: sender.go - file exchange - struct defintion .. 28

Code 11: sender.go - file exchange - onOpen .. 28

Code 12: sender.go - file exchange - onMessage ... 29

Code 13: sender.go - file exchange - "accept" case ... 30

Code 14: receiver.go - signaling – “offer” case ... 32

Code 15: receiver.go - file exchange - onOpen .. 33

Code 16: receiver.go - file exchange - "fileInfo" case ... 35

Code 17: server.js - WebSocket initialisation .. 35

Code 18: server.js - user login and incoming message handling ... 36

Code 19: server.js - "login" case .. 37

Code 20: server.js - default case ... 38

Code 21: server.js - connection closed handler ... 38

Code 22: own fingerprint extraction .. 44

Code 23: remote fingerprint extraction .. 44

Code 24: internal.fingerprint.go - passphrase derivation ... 47

Code 25: authenticity check on sender's side ... 49

List of Source Code

ix

1 Introduction

1

 1

Introduction

1.1 Project description 1

1.2 Use case and demonstration 1

1.2.1 Sender side ... 2

1.2.2 Receiver side .. 3

1.3 Thesis outline 4

1.1 Project description

The goal of this project is to create a simple command-line application which allows for two

users to safely exchange files of any kind or size. The final program is launched from any

operating system through its command-line interface. It follows a rather intuitive and interactive

style, asking the user for input such as the name of the file or its location, guiding him through

all the steps in a verbose and accessible way.

Unlike classical file exchange services like Dropbox or Google Drive, this application uses no

relay server to get the files to the recipient. Instead of a classical upload-download scheme, data

will be sent over via a direct channel to the receiver’s computer. Such channel creation can be

achieved using the WebRTC technology.

A big part of the project is the focus on security. All files are exchanged over a direct channel

between the users, going through no third-party in-between, taking down the risk of a man-in-

the-middle attack. The critical part here is the mutual authentication between sender and

receiver needed to initialise the connection. As soon as both users can authenticate each other,

the resulting channel is considered safe.

1.2 Use case and demonstration

To get a good grasp at the application features and usability, let us set a basic scenario where

Alice wants to send a picture to Bob. The complete protocol is discussed in the third chapter,

about the application structure.

1 Introduction Use case and demonstration

2

1.2.1 Sender side

From Alice’s perspective, she first launches the program and indicates she wants to send a file.

Figure 1: Alice - role picking

She is now given a passphrase and asked for the receiver’s passphrase.

Figure 2: Alice - remote passphrase input

Once the remote user is found, she can indicate her file name ad location.

Figure 3: Alice - file selection

The transfer begins as soon as Bob accepts the file offer.

Figure 4: Alice - file successfully sent

Once the file is properly received, Alice gets a confirmation and is then given the possibility to

send another file.

Figure 5: Alice - integrity confirmed

1 Introduction Use case and demonstration

3

1.2.2 Receiver side

From Bob’s perspective, the process is similar, he first choses to be receiver, and enters Alice’s

passphrase.

Figure 6: Bob - role picking and remote passphrase input

When the file offer is received, he gets a quick look at the file info and is given the choice to

accept or reject it.

Figure 7: Bob - file offer accepted

Soon as the file is received, and its integrity is confirmed, it is saved in Bob’s default output

directory and a confirmation is sent to Alice. Bob is now waiting for another file offer.

Figure 8: Bob - file received and integrity confirmed

We notice both users are given a passphrase and asked for the remote one. This is used to

mutually authenticate each other and will be discussed in detail in the security chapter (4.1).

1 Introduction Thesis outline

4

1.3 Thesis outline

This document has the purpose of describing the needed steps and the different challenges we

can meet while implementing such an application.

We will follow a guideline using this logic: starting from an overall view of the technologies

involved and going progressively into the actual implementation of the different aspects, only

to conclude on the real concrete and precise problem of mutual authentication between the

peers.

The next chapter, WebRTC Architecture, has the purpose of getting an overall look at the

technology, the base block of this project. We will see the logic behind RTC, the protocols

involved as well as the components we need to setup.

In chapter 3, Implementation, we will get closer to the actual code by first introducing Go, the

programming language mostly used throughout this application and the corresponding library

used for WebRTC. The deployment of the external components will be explained before

jumping to the application structure, its main features, the protocols we defined as well as their

implementation.

Finally, having a good understanding of the inner workings of the program, we will focus on a

crucial part of the project: Security. This last chapter will describe the signaling process, and

how to deal with the problematic of mutual authentication using certificates and passphrases.

2 WebRTC Architecture

5

 2

WebRTC Architecture

2.1 WebRTC overview 6

2.2 Protocol stack 7

2.3 Introduction to the Web API 8

2.4 Overview of the components 9

2.4.1 SDP .. 9

2.4.2 ICE protocol ... 10

2.4.3 STUN / TURN servers ... 10

2.4.4 Signaling Server ... 11

2 WebRTC Architecture WebRTC overview

6

2.1 WebRTC overview

WebRTC, which stands for Real Time Communication (RTC) is a set of standardized

technology setup by the IETF (Internet Engineering Task Force). It offers web application

developers a way to implement high quality real-time multimedia applications without the need

for any external plugin. This technology is open source and does not need any third-party

software. The source code can be found for free at http://www.webrtc.org/.

WebRTC performs especially well when it comes to media capture, video encoding and

decoding as well as transport layer and session management. All these features allow for an

easy way to setup a live video and chat webapp. You can try it out yourself on the following

demo site: https://apprtc.appspot.com/.

The latest published version is described at https://www.w3.org/TR/webrtc/.

Figure 9: WebRTC overall architecture1

This diagram (see Fig. 9) shows us the two distinct layers WebRTC offers.

On one side, the C++ API is aimed at web browsers developers. Using this API and its different

hooks like media capture and render, each browser has developed its own implementation of

WebRTC. Nowadays, most desktop web browsers do fully support this technology.

On the other side, the part we are interested in is the Web API. This JavaScript API is developed

by W3C. The various objects it offers will be seen in section 2.3: Introduction to the Web API.

1 Figure taken from https://webrtc.github.io/webrtc-org/architecture/

http://www.webrtc.org/
https://apprtc.appspot.com/
https://www.w3.org/TR/webrtc/
https://webrtc.github.io/webrtc-org/architecture/

2 WebRTC Architecture Protocol stack

7

2.2 Protocol stack

Figure 10: WebRTC protocol stack2

This graph (see Fig. 10) is a view of the protocol stack for web Real-Time Communication.

RTCPeerConnection and DataChannel are two APIs used by browsers to transmit their user’s

media, and respectively custom data. Medias are sent through Secure Real-Time Transfer

Protocol (SRTP), while data are sent through Stream Control Transfer Protocol (SCTP).

Secure transaction between the peers comes with the underlying layer, Datagram Transport

Layer Security (DTLS), a protocol based on TLS and responsible for the data encryption.

The next layer, Interactive Connectivity Establishment (ICE) is a protocol used to allow for

user to establish a connection while being connected to the internet behind firewalls and

Network Address Translators (NAT). More about ICE and STUN/TURN services is detailed in

section 2.4.2: ICE protocol

Finally, WebRTC being aimed at real-time media exchange, and thus latency being more

important than reliability, it relies on User Datagram Protocol (UDP) as the transport layer.

2 Figure taken from https://www.mdpi.com/2079-9292/9/3/462/htm

https://www.mdpi.com/2079-9292/9/3/462/htm

2 WebRTC Architecture Introduction to the Web API

8

2.3 Introduction to the Web API

The WebRTC JavaScript API is the part we will use in this project. It is made of several objects

which help us establish real time connection between web browsers without having to deal with

classical issues such as packet loss or temporary connection drop.

In this project, the API is used for its ability to create and handle peer-to-peer data channels.

These channels let us send any kind of data outside of audio and video stream in a fast and

secure way.

The main interfaces we will use are the following:

• RTCPeerConnection

o It represents a connection between two peers. This will be used by the browser

to transmit acquired audio and video from MediaStream or custom data from the

RTCDataChannel

o It is used with the dictionary RTCConfiguration, which provides options for

configuring the PeerConnection, such as using a specific certificate.

• RTCSessionDescription

o RTCSessionDescription is attached to the PeerConnection to represent its

parameters. It consists of the description type, which indicates the side of the

negociation process between offer and answer as well as a Session Description

Protocol (SDP) containing all metadata about the client’s media.

• RTCDataChannel

o Once a PeerConnection is established, we can attach it this bidirectional channel

to communicate any wanted data.

2 WebRTC Architecture Overview of the components

9

2.4 Overview of the components

WebRTC has a great level of complexity. In this chapter, we will look at the essential

components needed for this project.

Figure 11: WebRTC architecture

The goal is to open a Data Channel between the peers, linking them directly without the need

of any third-party. Information about the hardware as well as network information are needed

for both clients to find each other and to know how to communicate together.

To first exchange these data, we will use a signaling server. Its role is to allow for two clients

to exchange their SDP and ICE candidates. The SDP, standing for Session Description Protocol,

contains all media specifications like resolution, codec, encryption, etc. The ICE candidates are

information about the network connection. These candidates are gathered by each user by

connecting to a STUN or TURN server.

Once all this data is acquired and exchanged via the signaling server, both clients can disconnect

and communicate directly on their newly opened DataChannel.

We will now take a more detailed look at these components.

2.4.1 SDP

The Session Description Protocol takes a crucial part in this project. Not only does it contain

metadata about the client’s media, but it also contains a self-signed certificate, which we will

use later on for the mutual authentication (4.1).

The following is the JSON ‘SDP’ field extracted from a PeerConnection offer.

2 WebRTC Architecture Overview of the components

10

v=0

o=- 1130848905439104866 1619480298 IN IP4 0.0.0.0

s=-

t=0 0

a=fingerprint:sha-256

BB:53:EA:A3:F6:66:90:CD:0E:80:2D:D3:9D:E9:3D:64:3A:0B:93:7F:E4:83:E0:1

7:89:76:8A:71:CC:98:46:9A

a=group:BUNDLE 0

m=application 9 DTLS/SCTP 5000

c=IN IP4 0.0.0.0

a=setup:actpass

a=mid:0

a=sendrecv

a=sctpmap:5000 webrtc-datachannel 1024

a=ice-ufrag:mQMPdwCzntgwSNjU

a=ice-pwd:QOKKNwfvqlBegNKkEPJMiElHCxJextFP

Complete and more detailed tables of SDP offer and answer can be found in section 4.2:

Certificate and fingerprint

2.4.2 ICE protocol

The Interactive Connectivity Establishment is a protocol used to avoid the issues we could get

while connecting two web browsers. It gives a way to work around firewalls, give public IPs

when necessary or use an external server when the router does not allow direct connections.

2.4.3 STUN / TURN servers

STUN stands for Session Traversal Utilities for NAT. This protocol allows for a client to know

its public address and to know about all the possible router restrictions which could make a

direct connection impossible.

A client requesting a STUN server receives back its public address and its accessibility behind

a NAT router.

Figure 12: STUN server3

3 Figure taken from https://developer.mozilla.org/fr/docs/Web/Guide/API/WebRTC/WebRTC_architecture

http://fr.wikipedia.org/wiki/Simple_Traversal_of_UDP_through_NATs
https://developer.mozilla.org/fr/docs/Web/Guide/API/WebRTC/WebRTC_architecture

2 WebRTC Architecture Overview of the components

11

When a symmetric NAT restriction is used by a router, only known addresses will be allowed

for a connection. To work around this restriction, we can use a TURN server (Traversal Using

Relays around NAT). Its job is to act as a relay server between the peers, by transferring all

data between two clients. This server defeats the base purpose of WebRTC and is used only

when no alternative is possible.

Figure 13: TURN server4

2.4.4 Signaling Server

To open a PeerConnection, all information mentioned before must be exchanged by the clients

by using a signaling server. Its role is to match the users and allow them to exchange their offer

and answer in a classical way. There is no predefined way to implement the signaling protocol

as it solely depends on the application’s purpose.

In this project, our signaling server does the following job: it registers all logged in users and

checks for their respective sender or receiver. Once a match is made, it only acts as a relay

server, transferring all messages between the peers. These messages contain the offer – made

essentially from the SDP and the ICE candidates – and its corresponding answer, built the same

way. As soon as all information is exchanged, both peers disconnect from the signaling server.

4 Figure taken from https://developer.mozilla.org/fr/docs/Web/Guide/API/WebRTC/WebRTC_architecture

http://en.wikipedia.org/wiki/TURN
http://en.wikipedia.org/wiki/TURN
https://developer.mozilla.org/fr/docs/Web/Guide/API/WebRTC/WebRTC_architecture

2 WebRTC Architecture Overview of the components

12

3 Implementation Go language

13

 3

Implementation

3.1 Go language 13

3.1.1 Why Go? .. 14

3.1.2 Environment setup ... 14

3.2 External Components 15

3.2.1 TURN .. 15

3.2.2 Signaling Server ... 17

3.3 Application structure 18

3.3.1 Design choices ... 18

3.3.2 Process ... 18

3.4 Code overview 21

3.4.1 Main ... 22

3.4.2 Sender .. 23

3.4.3 Receiver ... 31

3.4.4 Server ... 35

3.4.5 Internal directory ... 39

3.5 Conclusion 40

3.1 Go language

All code written for the application itself is done using Go, often referred as Golang, due to the

website name. Go is an open-source coding language developed by Google and continuously

improved by the open-source community contributors.

Currently in its 1.15 version, its first release happened in March 2012, making it a fairly recent

language.

Go can be described as a simplified version of C. It is a high-performance compiled language

aimed at simplicity and designed for its ease of readability and understandability, making it

friendly and efficient to learn for newcomers.

3 Implementation Go language

14

3.1.1 Why Go?

Using Go comes with many advantages. In our case, the first thing is the availability of the Pion

WebRTC API5. This library gives us all the needed tools to work with WebRTC technology

within Go through a wide set of objects like RTCPeerConnection, DataChannel,

ICEConnection handler and even cryptography tools like fingerprint reader, certificate

generator and cyphering. Those last elements will play a huge role in the security part we will

describe later, which is a central point in our project.

Among the many benefits of using Go, its cross-platform hallmarks allow for easy code porting

and this might be its greatest advantages. Building Go executables for multiple platforms can

even be done without having access to the specific OS6. A wide range of OS and architectures

are available for native application building.

Go comes with many other significant advantages. Here are some:

• Instant compilation to machine code

• Statically typed

• Efficient at concurrent and parallel processing

• Excellent cloud compatibility

• Built-in infrastructure to support testing

Overall, Go is a fast high-performance professional language with a clean syntax aimed at

simplicity and used in a wide variety of projects.

3.1.2 Environment setup

To setup a Go environment, all we need is a text editor and the Go compiler. In our case, we

additionally used JetBrains’ GoLand IDE7, which allows us to work in a more efficient way.

The IDE helps with code writing trough auto-completion, errors highlight, testing, modules

management, and way more. It makes for a faster way to cycle through the editing, compiling

and testing loop, as all code can be executed and debugged separately from within the IDE.

Initially, Go had to be installed and worked with in a specific location designated by the

GOPATH environment variable8. The code, for example hello.go, is compiled using

go build hello.go

which will create an executable file. The run command makes it easier and faster by directly

compiling and executing the code, leaving no executable file afterward:

6 [24]‘How To Build Go Executables for Multiple Platforms on Ubuntu 16.04’. n.d. DigitalOcean. Accessed 12

February 2021. https://www.digitalocean.com/community/tutorials/how-to-build-go-executables-for-multiple-

platforms-on-ubuntu-16-04.
7 IDE available on https://www.jetbrains.com/go/
8 [17]‘Go - Environment Setup - Tutorialspoint’. n.d. Accessed 12 February 2021.

https://www.tutorialspoint.com/go/go_environment.htm.

3 Implementation External Components

15

go run hello.go

Since 2018 though, we can now use Go Modules to manage our environment9.

go mod init

will generate a go.mod file. Placed at the root of our program tree, it tells Go to consider all

files within the hierarchy as a module that can be run on its own. Obviously, all dependencies

can stay outside the module as they are specifically listed in the go.mod file.

3.2 External Components

Before jumping to the actual application code, we still need to define how our signaling and

TURN services are deployed and how they can be reached.

In this section, we will have a brief look at these external component’s implementation. The

signaling server as well as STUN and TURN servers all run on the same VPS and can be

reached at flying-dut.ch.

3.2.1 TURN

While some free STUN servers are available online, it is much harder to find TURN servers

because of the potential large amount of data they may have to deal with. For this reason, we

chose to deploy a TURN service in our own Linux server, using Coturn. Coturn project is a free

open-source implementation of a STUN/TURN server. Originally from the Google Code

archive10, it has since moved to GitHub11 and its development is still going on as Coturn

Project12.

The first step is to configure a base Ubuntu 18.04 server. The OS is installed on our personal

VPS, at vps718907.ovh.net. To secure the access, an SSH key authentication is set.

The configuration is relatively simple. For this project, the whole process was done following

an article from ourcodeworld.com13. We first install Coturn using:

sudo apt-get install coturn

To enable the TURN server, we modify the configuration file located in etc/default/coturn by

adding the following line:

9 [19]‘Go - How Do I Configure Goland to Recognize “mod” Packages?’ n.d. Stack Overflow. Accessed 2

September 2020. https://stackoverflow.com/questions/51910862/how-do-i-configure-goland-to-recognize-mod-

packages.
10 [21]‘Google Code Archive - Long-Term Storage for Google Code Project Hosting.’ n.d. Accessed 30 December

2020. https://code.google.com/archive/p/rfc5766-turn-server/.
11 [7]Coturn/Coturn. (2015) 2020. C. coturn. https://github.com/coturn/coturn.
12 [8]Coturn/Rfc5766-Turn-Server. (2015) 2020. C. coturn. https://github.com/coturn/rfc5766-turn-server.
13 [25]‘How to Create and Configure Your Own STUN/TURN Server with Coturn in Ubuntu 18.04 | Our Code

World’. n.d. Accessed 2 September 2020. https://ourcodeworld.com/articles/read/1175/how-to-create-and-

configure-your-own-stun-turn-server-with-coturn-in-ubuntu-18-04.

3 Implementation External Components

16

TURNSERVER_ENABLED=1

The configuration is done in etc/turnserver.conf file. Here, we define the following parameters:

• Listening port (UDP and TCP)

• TLS listening port

• Server name and realm

• Guest username and password

• SSL certificate and private key location

To make the servers reachable from an URL, the domain flying-dut.ch is acquired from

Infomaniak.ch and the STUN and TURN services are linked by setting type A records from the

DNS manager.

Figure 14: type A DNS records for STUN/TURN

STUN and TURN can now be reached via their respective subdomains: stun.flying-dut.ch and

turn.flying-dut.ch.

The service is finally enabled with the following command:

systemctl start coturn

To test it, we use TrickleICE14, an online tool which initiate a RTCPeerConnection with the

given ICE server. By specifying our URI and credentials, the page initiate an ICE candidate

gathering and displays all results.

Figure 15: TrickleICE testing results

14 [56]‘Trickle ICE’. n.d. Accessed 2 September 2020.

https://webrtc.github.io/samples/src/content/peerconnection/trickle-ice/.

3 Implementation External Components

17

This table (see Fig. 15) shows the result of testing both our services at once. A srflx type

candidate means our STUN service is working, while a relay type candidate indicates a working

TURN.

3.2.2 Signaling Server

The signaling server is the last external part we need for our application to work. Its role is to

allow for two users to exchange the necessary information to establish a secure direct

connection.

Each client will communicate with the server trough a WebSocket connection and all

exchanged messages will have the JSON format. The service itself is setup using NodeJS15 and

its ws npm package16.

Setting up this signaling service on our remote VPS is straightforward. NodeJS is installed via

command-line, as well as the ws package both locally and on the remote server. For comfort

reason, the actual code for the signaling protocol is written in the server.js file, which is

frequently modified and tested locally, and uploaded onto the actual remote server using a basic

SCP command. Locally, the service is run directly trough the GoLand IDE. On the remote

machine, it is run with the following command:

node server

Just like for our STUN and TURN services, this signaling server must be reachable trough an

address, which is why we setup another A record from our DNS manager, giving it the

signal.flying-dut.ch subdomain.

Figure 16: Type A DNS record for signaling

The last thing we need is to setup a port. Within the server.js code, we optionally specify that

we want the service to be run on port 9090.

var wss = new WebSocketServer({port: 9090});

The service can now be reached by the application with the following address:

ws://flying-dut.ch:9090

15 [40]Node.js. n.d. ‘Download’. Node.Js. Accessed 10 February 2021. https://nodejs.org/en/download/.
16 [62]‘Ws’. n.d. Npm. Accessed 10 February 2021. https://www.npmjs.com/package/ws.

3 Implementation Application structure

18

3.3 Application structure

3.3.1 Design choices

We saw it in the use case, the application is highly interactive and guided. It follows a straight

path, giving the user simple choices throughout the process. This design makes for a great ease

of use, but it comes with its counterparts. For the client, easy does not always mean efficient

and some users may prefer a less intuitive single command program using flags for example.

For us, this design means more ways for the user to input incorrect information, and a wider

range of potential error situations that must all be considered and handled properly.

One of the crucial choices in the application design is the clear distinction between sender and

receiver. This state is defined at the very start of the process and is kept for one exchange cycle

at least. At this point of development, roles between the two users cannot be exchanged without

going through the signaling process again. This clear distinction makes the code easier to read

and edit, and the signaling and file exchange protocols way clearer. In its current state,

impossibility to switch between roles decreases user efficiency and further development is

needed to skip the signaling step in case of bidirectional file exchange.

3.3.2 Process

To make the individual code parts easier to understand, we first need to have a look at how the

whole structure is behaving.

The following model (see Fig. 17) is a simplified representation of how the four main code files

interact with each other during one complete file exchange cycle.

3 Implementation Application structure

19

Figure 17: Application architecture and interactions

From top to bottom, we can decompose this process major steps:

• Each user picks a role in main.go and is redirected to the corresponding Go file.

• Each user gathers the required information needed for the signaling step. This includes

peerConnection configuration, certificate generation, fingerprint extraction and

passphrase exchange.

• The WebRTC SDP and ICE candidates are exchanges over the signaling server via a

WebSocket connection.

• A DataChannel is opened.

• The file transfer protocol is done over the newly created DataChannel.

3 Implementation Application structure

20

Signaling protocol

Figure 18: Simplified Signaling Protocol

By taking a closer look at the signaling protocol (see Fig. 18), we can see that the server only

interacts during the login phase. Once a match is made between two users, it only acts as a relay

point for all following messages.

File exchange protocol

Figure 19: File Exchange Protocol

The file exchange protocol (see Fig. 19) is rather classical. First, the sender makes an offer and

waits for confirmation. The file is then sliced into multiple chunks and sent to the receiver.

Once the file successfully recomposed, a confirmation is sent by the receiver.

3 Implementation Code overview

21

3.4 Code overview

The program starts execution at main.go. This part redirects the user to either sender.go or

receiver.go. Those two last files have the exact same structure and everything from generating

certificate, exchanging SDPs, establishing connection, and transferring files is done inside of

them. Both files can be decomposed in three distinct sections.

• WebRTC initialization

• WebRTC file exchange

• WebSocket Signaling

The catch to understand these files is that even though the file exchange protocol is written first,

in reality, the signaling step has to be done beforehand. This is made possible by the fact that

the whole file exchange is event-based, and its trigger is the opening of a WebRTC

DataChannel, which is our last signaling step.

To sum it up, the time-based execution goes WebRTC initialization first, WebSocket Signaling

and finally WebRTC file exchange.

The whole code package looks the following (see Fig. 20):

Figure 20: Application source files

We will look at the main features of each Go file. The whole source code can be found at

https://github.com/TheWarWolf/FlyingDutchman.

https://github.com/TheWarWolf/FlyingDutchman

3 Implementation Code overview

22

3.4.1 Main

Like in many other languages, this is where our execution will begin. The role of this file is to

orient the user on the sender or receiver path.

It is basically composed of a user input receiver and a switch-case condition to orient the

execution to the right Go file.

package main

import (

 "fmt"

 "log"

 "syscall"

)

var keepExe = true

func recoverMain() {

 if r := recover(); r != nil {

 log.Println("An error occured!\nRecovered from ", r)

 keepExe = true

 }

}

func choseState() {

 defer recoverMain()

 fmt.Println("\nWelcome aboard, cabin boy !")

 var userResponse string

 var userStateDefined = false

 var userIsDone = false

 for !userStateDefined && !userIsDone {

 fmt.Println("Are you sender or receiver of the file? ('s'/'r')\nYou

can stop the program by typing quit ('q')")

 fmt.Scanln(&userResponse)

 switch userResponse {

 case "s", "send":

 userStateDefined = true

 fmt.Println("Preparing to send...")

 Sender()

 userIsDone = true

 case "r", "receive":

 userStateDefined = true

 fmt.Println("Preparing to receive...")

 Receiver()

 userIsDone = true

 case "q", "quit":

 userStateDefined = true

 userIsDone = true

 syscall.Exit(0)

 default:

 fmt.Printf("Sorry, \"%s\" is not a functionnal command, please try

again:\n", userResponse)

3 Implementation Code overview

23

 }

 }

 fmt.Println("The glowing boat disappeared in the mist...")

}

func main() {

 for keepExe {

 keepExe = true

 choseState()

 }

}

Code 1: main.go

Execution starts at func main() and the recoverMain() function is a way to catch at top-level

all eventual unhandled errors that might occur. This prevents a total application crash and

returns a friendlier error message to the user. It also resets the execution and keeps the program

ready for a second run.

The choseState() function listens for a user input and redirects to sender.go for an “s” or

“sender” input, respectively to receiver.go for “r” or “receiver”. Application can also be closed

by typing “quit”. Any other input will just result in the user given the choice to re-enter a

command.

3.4.2 Sender

The sender.go file is where everything takes place on the sending user side. The code is

separated into three distinct sections: the WebRTC base configuration, the WebRTC file

exchange part and the WebSocket Signaling part.

WebRTC initialization – sender’s side

func Sender() {

 // Prepare the configuration

 config := webrtc.Configuration{

 ICEServers: []webrtc.ICEServer{

 {

 URLs: []string{"turn:turn.flying-dut.ch:3478",

"stun:stun.flying-dut.ch:3478"},

 Username: "captain",

 Credential: "Axp2oSr56d5"},

 },

 }

 // Create a new RTCPeerConnection

 peerConnection, err := webrtc.NewPeerConnection(config)

 if err != nil {

 panic(err)

 }

 // Generate your personal certificate passphrase

 tlsFingerprints, err :=

peerConnection.GetConfiguration().Certificates[0].GetFingerprints()

 fingerprint := internal.FingerprintToString(tlsFingerprints[0])

 localPassphrase := internal.FingerprintToPhrase(fingerprint)

 fmt.Println("Your passphrase is: " + localPassphrase)

3 Implementation Code overview

24

 // Create a datachannel with label 'data'

 dataChannel, err := peerConnection.CreateDataChannel("data", nil)

 if err != nil {

 panic(err)

 }

 // Set the handler for ICE connection state

 // This will notify you when the peer has connected/disconnected

 peerConnection.OnICEConnectionStateChange(func(connectionState

webrtc.ICEConnectionState) {

 log.Printf("ICE Connection State has changed: %s\n",

connectionState.String())

 if connectionState.String() == "disconnected" {

 fmt.Println("Remote user disconnected: Taking you back to main

menu.")

 peerConnection.Close()

 main()

 }

 })

Code 2: sender.go - WebRTC initialization

In this code extract, all the WebRTC configuration takes place. No link is established at this

point, we only generate all needed information for the next part: the signaling step.

The first thing we need is to set our webrtc.Configuration variable. It contains the URLs of our

STUN/TURN server as well as required credentials. We can now initiate an

RTCPeerConnection object. At this point, a self-signed certificate is automatically generated

and will be used in the TLS connection.

The signaling part will be done on each side by logging in with a passphrase. These passphrases

are obtained by a derivation of the fingerprint we extract from the generated certificates. This

whole process is done by the FingerprintToPhrase() function, which we will see later.

The last step is to create our dataChannel using the CreateDataChannel() function and setup

an ICE handler which notifies the user for every change of ICE connection state, as well as

redirecting the user to main() in case the remote user disconnects.

WebSocket signaling – sender’s side

Assuming the user properly got the receiver’s passphrase via some other channel, i.e.

WhatsApp, we now have every bit of information needed to find this remote user. The whole

point of the signaling step is to exchange these data through a classic offer-answer protocol

over our signaling server to open a secure DataChannel and start sending files.

3 Implementation Code overview

25

type Message struct {

 Type string

 Success bool

 Offer string

 Answer string

 Name string

 Sender string

}

Code 3: sender.go - signaling - struct definition

All WebSocket transactions with the server are done using JSON messages. For this reason, we

initiate a struct with all possible fields used during the exchange process.

var remote string

// ask user for remote passphrase

fmt.Println("Enter your receiver's passphrase:")

fmt.Scanln(&remote)

Code 4: sender.go - signaling - remote passphrase input

The user is now asked for the remote passphrase. The value is stored under the “remote” var.

// define websocket connection to signaling server

socket := gowebsocket.New("ws://signal.flying-dut.ch:9090")

Code 5: sender.go - signaling - WebSocket connection

A WS connection is initialized with our server. For testing purposes, the server can be run

locally and reached with “ws://127.0.0.1:9090”.

// on connection: send login info to signaling server

socket.OnConnected = func(socket gowebsocket.Socket) {

 log.Println("Connected to server")

 ans := Message{Type: "login", Name: localPassphrase + remote}

 b, err := json.Marshal(ans)

 if err != nil {

 panic(err)

 }

 socket.SendBinary(b)

}

Code 6: sender.go - signaling - onConnected

OnConnected is triggered by a successful connection notification sent by the server. From this

point on, our signaling protocol starts. The first message we send is aimed at the server itself

and will be used for login and matching the remote user. The name used for the login is our

local passphrase concatenated with the remote passphrase. This is used for matching purpose

and will be explained in detail in the security chapter (4.5).

3 Implementation Code overview

26

// on text message: read its content and switch between cases

socket.OnTextMessage = func(message string, socket gowebsocket.Socket) {

 var m Message

 err := json.Unmarshal([]byte(message), &m)

 if err != nil {

 panic(err)

 }

 switch m.Type {

Code 7: sender.go - signaling - onTextMessage

All incoming messages from the server are now treated the following way: the message Type

field is read, and a switch-case loop is used to take the corresponding action.

The following Types can be received:

Type Signification Resulting action

“login” Message sent by the server to

confirm login success or fail

For a successful login, notifies the user, and

wait for a “linked” Type message

“linked” Sent by the server for matching

the remote user

Initiate the SDP exchange by sending an

“offer” Type message to the remote user

“nomatch”

or

“rejected”

Sent by the server if no match is

found or sent by the remote user

for a rejected offer

Notifies the user and asks for a new

passphrase to regenerate an offer.

“answer” Sent by the remote user after

accepting the offer

Check for remote user’s certificate validity,

notifies user, initiates DataChannel, send a

“leave” Type message and close WebSocket

connection

“leave” Sent by server upon linked

user’s disconnection

Notifies the user and closes the WebSocket

connection

Table 1: sender.go - signaling messages Types

The offer-answer exchange is the central part of this signaling process. Here is the detail of its

workings.

case "linked":

 log.Println("Linked !")

 // create a new peerConnection offer

 offer, err := peerConnection.CreateOffer(nil)

 // gather candidates

 gatherComplete := webrtc.GatheringCompletePromise(peerConnection)

 err = peerConnection.SetLocalDescription(offer)

 if err != nil {

 panic(err)

 }

 // Block until ICE Gathering is complete, disabling trickle ICE

 // we do this because we only can exchange one signaling message

 <-gatherComplete

3 Implementation Code overview

27

 // output the answer in base64 so we can send it

 encodedOffer := internal.Encode(*peerConnection.LocalDescription())

 // send offer to remote user connected with given passphrase

 ans := Message{Type: "offer", Name: remote, Offer: encodedOffer, Sender:

localPassphrase}

 b, err := json.Marshal(ans)

 if err != nil {

 panic(err)

 }

 socket.SendBinary(b)

 log.Println("Sending offer to " + remote)

Code 8: sender.go - signaling - linked and offer generation

The offer is generated upon a “linked” Type message reception. Using our peerConnection

object, we can store its generated answer under the “offer” var using the CreateOffer()

function. We now need to assign this offer to our peerConnection using

SetLocalDescription().

Because we only make one signaling exchange, candidates can all be gathered directly with

GatheringCompletePromise() function. What it does is gather all ICE candidates and add

them to our peerConnection object.

The actual offer we want to send is extracted from our now completed peerConnection object

by using LocalDescription().

The last step is to encode this description to JSON format and send it under an “offer” Type

message.

case "answer":

 log.Println("Received answer from " + remote)

 var encodedAnswer = m.Answer

 answer := webrtc.SessionDescription{}

 internal.Decode(encodedAnswer, &answer)

 // Checking remote certificate's fingerprint matches given passphrase

 parsed := &sdp.SessionDescription{}

 if err := parsed.Unmarshal([]byte(answer.SDP)); err != nil {

 panic(err)

 }

 fingerprint := internal.ExtractFingerprint(parsed)

 remotePassphrase := internal.FingerprintToPhrase(fingerprint)

 // If certificate matches, set as remote description

 if remotePassphrase == remote {

 fmt.Println("Receiver identity confirmed!")

 err = peerConnection.SetRemoteDescription(answer)

 if err != nil {

 panic(err)

 }

 } else {

 fmt.Println("Receiver's certificate is not matching")

 break

 }

3 Implementation Code overview

28

 // notify and close connection

 msg := Message{Type: "leave", Name: remote}

 c, err := json.Marshal(msg)

 if err != nil {

 panic(err)

 }

 socket.SendBinary(c)

 socket.Close()

 return

Code 9: sender.go - signaling - answer received

Assuming the remote user accepted our offer, he added it to its local description and generated

its answer in the same way. Its answer is received under an “answer” Type message. Before

adding the answer as our remote description, we check for the authenticity of the certificate.

This is done by extracting the certificate’s fingerprint, converting it to a passphrase and

comparing it to the remote passphrase we are expecting. All these steps were also done on the

receiver’s side when receiving our offer.

If the extracted passphrase matches, we can safely set the answer to our peerConnection object

with SetRemoteDescription(). From this point on, the WebRTC is all setup, and we can

disconnect from the signaling server.

To make sure the other user also disconnects, a Type “leave” message is sent before the

WebSocket connection is closed using Close().

WebRTC file exchange – sender’s side

The signaling part being completed, it is finally time to send files over our newly opened

DataChannel. The workings of this part are exactly like for the signaling, an exchange of JSON

messages having different Type fields, only this time we use our WebRTC connection to

communicate directly with the remote user.

type Exchange struct {

 Type string

 FileName string

 FileSize int64

 Hash []byte

 Data []byte

}

Code 10: sender.go - file exchange - struct defintion

We define a new struct called Exchange which contains all the required fields we will need.

// Register channel opening handling

dataChannel.OnOpen(func() {

 log.Printf("Data channel '%s'-'%d' open.\n", dataChannel.Label(),

dataChannel.ID())

})

Code 11: sender.go - file exchange - onOpen

3 Implementation Code overview

29

On the sender’s side, the opening of the channel only triggers a notification to the user. The

first action will be taken on the remote user’s side, which will send a “ready” Type message.

// Register text message handling

dataChannel.OnMessage(func(msg webrtc.DataChannelMessage) {

 var m Exchange

 err := json.Unmarshal(msg.Data, &m)

 if err != nil {

 panic(err)

 }

 switch m.Type {

Code 12: sender.go - file exchange - onMessage

The same switch-case condition is used to take the appropriate action, in regards of the

incoming message Type.

Here is a table of the possible incoming messages:

Type Signification Resulting action

“ready” DataChannel is setup and the

receiver is ready to receive a

file offer

The user is asked for a filepath, the file

info are extracted and an “offer” Type

message is sent to the receiver

“accept” Receiver accepted our offer,

the file can be sent

Proceed to slice the file into chunks and

sent them over through multiple

“fileChunks” Type messages

A “fileComplete” message is sent when all

chunks have been uploaded

“received” Receiver has successfully

received all file chunks, has

recomposed the file and

confirmed its integrity

User is now asked to send another file

offer or exit the transaction.

“reject” Receiver rejected the file offer User is given the choice to retry, chose

another file path or go back to main()

“transferfailed” An error occurred during the

transfer

User is now asked to retry with another file

offer or exit the transaction.

Table 2: sender.go - file exchange messages Types

The crucial part in this process is the actual file slicing17 and sending which happens on an

“accept” message reception.

17 [1]262588213843476. n.d. ‘Golang Split Byte Slice in Chunks Sized by Limit’. Gist. Accessed 2 September

2020. https://gist.github.com/xlab/6e204ef96b4433a697b3.

3 Implementation Code overview

30

case "accept":

 fmt.Println("File offer accepted! Your file is being sent...")

 log.Println("Uploading")

 // sends selected file chunk by chunk

 limit := 45000

 for i := 0; i < len(file); i += limit {

 batch := file[i:internal.Min(i+limit, len(file))]

 msg := Exchange{Type: "fileChunk", Data: batch}

 m, err := json.Marshal(msg)

 if err != nil {

 panic(err)

 }

 sendErr := dataChannel.Send(m)

 if sendErr != nil {

 panic(sendErr)

 }

 chunks := len(file) / limit

 if chunks < 100 {

 chunks = 100

 }

 // each 1%, send a notification message

 if (i/limit)%(chunks/100) == 0 && i != 0 {

 fmt.Print("|")

 msg := Exchange{Type: "mega"}

 m, err := json.Marshal(msg)

 if err != nil {

 panic(err)

 }

 sendErr := dataChannel.Send(m)

 if sendErr != nil {

 panic(sendErr)

 }

 }

 }

 fmt.Println(" -->Upload done\nWaiting for confirmation...")

 msg := Exchange{Type: "fileComplete"}

 m, err := json.Marshal(msg)

 if err != nil {

 panic(err)

 }

 sendErr := dataChannel.Send(m)

 if sendErr != nil {

 panic(sendErr)

 }

Code 13: sender.go - file exchange - "accept" case

The size limit of each chunk is set to be as close as the maximal limit of a WebRTC

DataChannel message, increasing transfer speed drastically. Each pass in the for-loop saves the

next chunk of our binary file under the “batch” variable, which is then sent over through a

“fileChunk” Type message.

Each 1% of the chunks being sent, a “mega” Type message is sent in order to get a visual

feedback of the transfer’s progress on the receiver’s side.

3 Implementation Code overview

31

Once the upload done, a “fileComplete” message is sent, for the receiver to start recomposing

the file and check its integrity. The sender is now waiting for confirmation.

3.4.3 Receiver

The receiver.go file is extremely close to sender.go. It is composed of the exact same three

distinct parts.

The WebRTC initialization having no significant difference with the sender’s side, we will look

at the differences in both the signaling step and the file exchange step.

WebSocket signaling – receiver’s side

On the receiver’s side, all messages are also treated in a switch-case condition, here are the

different possible incoming message Types for the signaling step:

Type Signification Resulting action

“login” Message sent by the server to

confirm login success or fail

For a successful login, notifies the user, and

wait for a “linked” Type message

“linked” Sent by the server for matching

the remote user

Notifies the user and wait for an offer

“offer” Sent by the remote user after

accepting the offer

Check for remote user’s certificate validity,

notifies user, set offer as remote description,

build the answer, and send it to remote user

as an “answer” Type message

“leave” Sent by server upon linked

user’s disconnection

Notifies the user and closes the WebSocket

connection

Table 3: receiver.go - signaling messages Types

3 Implementation Code overview

32

The most important step here is the offer case.

case "offer":

 log.Println("Received offer from " + m.Name)

 var encodedOffer = m.Offer

 offer := webrtc.SessionDescription{}

 internal.Decode(encodedOffer, &offer)

 // Checking remote certificate's fingerprint matches given passphrase

 parsed := &sdp.SessionDescription{}

 if err := parsed.Unmarshal([]byte(offer.SDP)); err != nil {

 panic(err)

 }

 fingerprint := internal.ExtractFingerprint(parsed)

 remotePassphrase := internal.FingerprintToPhrase(fingerprint)

 // If certificate matches, set as remote description

 if remotePassphrase == remote {

 fmt.Println("Receiver identity confirmed!")

 err = peerConnection.SetRemoteDescription(offer)

 if err != nil {

 panic(err)

 }

 } else {

 fmt.Println("Receiver's certificate is not matching")

 break

 }

 // Create an answer

 answer, err := peerConnection.CreateAnswer(nil)

 if err != nil {

 panic(err)

 }

 // Create channel that is blocked until ICE Gathering is complete

 gatherComplete := webrtc.GatheringCompletePromise(peerConnection)

 // Sets the LocalDescription, and starts our UDP listeners

 err = peerConnection.SetLocalDescription(answer)

 if err != nil {

 panic(err)

 }

 // Block until ICE Gathering is complete, disabling trickle ICE

 // we do this because we only can exchange one signaling message

 <-gatherComplete

 encodedAnswer := internal.Encode(*peerConnection.LocalDescription())

 ans := Message{Type: "answer", Name: remote, Answer: encodedAnswer}

 b, err := json.Marshal(ans)

 if err != nil {

 panic(err)

 }

 socket.SendBinary(b)

 log.Println("Sending answer to " + remote)

Code 14: receiver.go - signaling – “offer” case

3 Implementation Code overview

33

The same steps as the one on the sender’s side are executed. We first extract the fingerprint

from the received certificate and convert it to a passphrase using FingerprintToPhrase(). If

the obtained passphrase matches the expected one, the offer can safely be added as the

peerConnection’s remote description.

From this point on, we generate an answer, set it as local description, gather the ICE candidates,

and send over an “answer” Type message, containing our peerConnection’s local description.

WebRTC file exchange – receiver’s side

Once the DataChannel opens, the receiver is the one to initiate the message exchange.

// Register channel opening handling

dataChannel.OnOpen(func() {

 log.Printf("Data channel '%s'-'%dataChannel' open.\n",

dataChannel.Label(), dataChannel.ID())

 // Notify sender we are ready to receive a file offer

 msg := Exchange{Type: "ready"}

 m, err := json.Marshal(msg)

 if err != nil {

 panic(err)

 }

 sendErr := dataChannel.Send(m)

 if sendErr != nil {

 panic(sendErr)

 }

})

Code 15: receiver.go - file exchange - onOpen

A “ready” Type is sent to the remote user to let him know the channel is up and working.

3 Implementation Code overview

34

From this point on, all incoming messages and respective actions taken are again handled

through a switch-case condition. The following Types can be received:

Type Signification Resulting action

“fileInfo” The sender is making a file

offer

All received info about the file offer are

displayed, such as name, type and size

The user is asked to accept or deny the

offer, a resulting “accept” or “reject”

message is sent

“fileChunk” The sender For each chunk message received, its data

field is appended to the “rebuiltFile”

object

“mega” 1 more percent of the chunks

has been sent

Displays a | char to track download

progress.

“fileComplete” All file chunks have been sent The “rebuiltFile” object is now completed

and its hash is calculated and compared to

the one we received from the “fileInfo”

message to confirm integrity

If the integrity is confirmed, the file is

rebuilt and saved in the default /out output

folder.

“newFile” The sender wants to make

another file offer

User is now asked to continue receiving

files or exit the program

Table 4: receiver.go - file exchange messages Types

An incoming “fileInfo” offer is handled the following way:

case "fileInfo":

 // display received file

 fmt.Printf("Received a file offer:\nName: %s\nSize: %d byte\n",

m.FileName, m.FileSize)

 var userResponse string

 fmt.Println("Type 'yes' to accept offer:")

 fmt.Scanln(&userResponse)

 switch userResponse {

 case "yes", "y":

 log.Println("downloading")

 outputPath = "out/" + m.FileName

 fileHash = m.Hash

 msg := Exchange{Type: "accept"}

 m, err := json.Marshal(msg)

 if err != nil {

 panic(err)

 }

 sendErr := dataChannel.Send(m)

 if sendErr != nil {

 panic(sendErr)

 }

3 Implementation Code overview

35

 case "n", "no":

 msg := Exchange{Type: "reject"}

 m, err := json.Marshal(msg)

 if err != nil {

 panic(err)

 }

 sendErr := dataChannel.Send(m)

 if sendErr != nil {

 panic(sendErr)

 }

 default:

 fmt.Println("Unknown command, please try again:")

 }

Code 16: receiver.go - file exchange - "fileInfo" case

File name and size are displayed to the user so he can make a decision on whether accepting or

rejecting the offer. If the offer is accepted, the file hash is saved for later integrity check, the

output path is set to “out/FileName” and an “accept” Type message is sent. Otherwise, an

“reject” message is sent.

3.4.4 Server

We had a look at the signaling step from both perspectives and we will now see how the

signaling server handle these communications in-between.

//require our websocket library

var WebSocketServer = require('ws').Server;

//creating a websocket server at port 9090

var wss = new WebSocketServer({port: 9090});

//all connected to the server users

var users = {};

Code 17: server.js - WebSocket initialisation

3 Implementation Code overview

36

This is the initiation of our server, it starts a WebSocket on port 9090 and initiates an empty

users array.

//when a user connects to our sever

wss.on('connection', function (connection) {

 console.log("User connected");

 //when server gets a message from a connected user

 connection.on('message', function (message) {

 var data;

 //accepting only JSON messages

 try {

 data = JSON.parse(message);

 } catch (e) {

 console.log("Invalid JSON");

 data = {};

 }

 //switching type of the user message

 switch (data.Type) {

Code 18: server.js - user login and incoming message handling

The server deals with incoming messages the exact same way sender and receiver do. The Type

field of each new JSON message is read and corresponding actions are taken using a switch-

case condition.

Only the “login” Type is fully read by the server, all other messages are directly transferred to

the remote user:

Type Signification Resulting action

“login” New user wants to login Check if username is already registered: if

not, add to users array and send a login Type

message with Success = “true”.

Send a message with Success = “false”

otherwise.

On each new login, check if remote user is

already connected: if it is, link them together

and send them both a “linked” Type message.

default All other messages of the

signaling protocol

For any other types of messages, all the

server does is transfer it to the linked user.

Table 5: server.js - incoming messages Types

3 Implementation Code overview

37

Here is how this first case works:

case "login":

 console.log("User logged", data.Name);

 //if anyone is logged in with this username then refuse

 if (users[data.Name]) {

 sendTo(connection, {

 Type: "login",

 Success: false

 });

 } else {

 //save user connection on the server

 users[(data.Name)] = connection;

 connection.Name = data.Name;

 sendTo(connection, {

 Type: "login",

 Success: true

 });

 //if UserB exists then link connections A and B

 var conn = users[reverseString(data.Name)];

 if (conn != null) {

 //setting that UserA connected with UserB

 connection.otherName = reverseString(data.Name);

 conn.otherName = data.Name;

 console.log("Users linked", connection.Name +

connection.otherName);

 sendTo(conn, {

 Type: "linked",

 Offer: data.Offer,

 Name: data.Sender

 });

 sendTo(connection, {

 Type: "linked",

 Offer: data.Offer,

 Name: data.Sender

 });

 }

 }

 break;

Code 19: server.js - "login" case

The match is done by searching for a user in the “users” array which has the exact reverse string

as login name18. If someone is found, the “connection” object, which is our current user, the

one which just logged in, is set as conn.otherName and “conn”, representing the matched user

is added to connection.otherName. Each user now has an “otherName” attribute, which will

be used for any following message transfer.

18 This procedure of logging in with reversed usernames is explained in the security chapter

3 Implementation Code overview

38

default:

 //any message sent by A is transferred to B

 var conn = users[connection.otherName];

 sendTo(conn, data);

 console.log("Sending message to: ", conn.Name);

 break;

Code 20: server.js - default case

The last part of the signaling server is about handling a linked user disconnection at any point

in the transaction.

connection.on("close", function () {

 if (connection.Name) {

 delete users[connection.Name];

 console.log("Disconnecting from ", connection.Name);

 if (connection.otherName) {

 console.log("Notifying linked user");

 var conn = users[connection.otherName];

 conn.otherName = null;

 if (conn != null) {

 sendTo(conn, {

 Type: "leave"

 });

 }

 }

 }

});

Code 21: server.js - connection closed handler

This allows for any side of the exchange to be notified to leave whenever the linked user lost

the WebSocket connection before sending himself the “leave” Type message.

3 Implementation Code overview

39

3.4.5 Internal directory

The internal package is made of four Go files each containing various methods used by the

previously seen files.

The main file, fingerprint.go, holds the following functions:

func input output use

ExtractFingerprint() Sdp.sessionDescription string Extracts the fingerprint

attribute contained in the

remote received SDP and

convert it to a string.

FingerprintToString() webrtc.DTLSFingerprint string Extracts the fingerprint from

our own generated certificate.

FingerprintToPhrase() string string Converts a given string

fingerprint into a passphrase of

5 words taken from a

dictionary.

readLines() string []string Converts a text document

located at the given string path

into an array of strings

representing each new line.

This is used to read the

dictionary file.

Reverse()19 string string Outputs the mirrored version

of a given string (first char

becomes last char).

Used to reverse passphrases in

the signaling step.

Table 6: fingerprint.go methods

The hash.go file contains the CreateHash() function. It is used during the file transfer protocol

for the receiver to confirm integrity.

func input output use

CreateHash() []byte []byte Outputs the sha-1 hash of any

given byte array.

Table 7: hash.go methods

19 This method is also used within the signaling server code and is therefore defined there as well.

3 Implementation Conclusion

40

The json_encoding.go file contains encoding and decoding methods for JSON. Both are used

respectively on the offer and answer during the signaling step.

func input output use

Encode() interface{} string Encodes the input in base 64

Decode() String, interface{} Decodes from base 64

Table 8: json_encoding.go methods

The last file min.go only has a Min() function returning the minimal value between two

integers. This simple method is used during the decomposition of a file into chunks.

func input output use

Min() int, int int Returns the smaller of the two

given integers

Table 9: min.go method

3.5 Conclusion

This chapter gave us a good glance at the overall design choices and the execution of one

complete file exchange. We went over the main functionalities of the major files and the

different methods they use to accomplish their respective tasks.

We have seen how the different protocols were defined and executed, but we are missing the

reason for such design choices. Why is the code separated in two distinct roles or why are the

login and matching done with passphrases are questions we will answer in the next chapter (4)

about a major aspect of this project: security.

4 Security

41

 4

Security

4.1 Mutual authentication problem 41

4.2 Certificate and fingerprint 42

4.3 Fingerprint extraction 44

4.4 Passphrase derivation 45

4.4.1 Simplifying the fingerprint .. 45

4.4.2 Derivation algorithm .. 46

4.4.3 Information loss ... 47

4.5 Use in signaling protocol 48

4.5.1 As a login system ... 48

4.5.2 For authenticity check .. 48

4.5.3 Complete protocol ... 50

4.1 Mutual authentication problem

To make the exchange safe, the first thing to do is to clearly define where the flaws in our

program are. Which transaction are secured, and which are not?

The first assumption we make is that once the DataChannel is opened, all transactions on this

medium are secured. This can be said in our project for two reasons:

• The use of a peer-to-peer connection:

o this one-to-one simplistic model let us use all WebRTC features and make the

resulting DTLS connection end-to-end encrypted. This could not be the case in

a multiple users’ scenario, where media servers would be needed in-between.

• The use of DataChannel

o DataChannel in one of the possible channels that can be used in a

peerConnection. Its encryption can easily be done, which would not be the case

with other channels. For instance, real time video feed encryption is still one of

the main challenges in security today.

4 Security Certificate and fingerprint

42

The challenge therefore lays before the opening of the channel, during the signaling step.

Precisely, the real issue is to prove the authenticity of the remote user while exchanging SDP

and ICE Candidates.

Furthermore, the signaling server must be considered untrusted. For this reason, we need a way

to safely recognize the incoming WebRTC offers and answers as being the one expected.

4.2 Certificate and fingerprint

The solution to this problem lays into the certificates used inside the SDP.

For a P2P DataChannel, the offer and answer look the following:

Offer SDP Contents RFC#/Notes

v=0 [RFC4566]

o=- 20518 0 IN IP4 0.0.0.0 [RFC4566] - Session Origin Information

s=- [RFC4566]

t=0 0 [RFC4566]

a=group:BUNDLE data [I-D.ietf-mmusic-sdp-bundle-negotiation]

a=ice-options:trickle [I-D.ietf-mmusic-trickle-ice]

****** Application m=line ********* *****************************

m=application 54609 UDP/DTLS/SCTP webrtc-datachannel [I-D.ietf-rtcweb-data-channel]

c=IN IP4 203.0.113.141 [RFC4566]

a=mid:data [RFC5888]

a=sendrecv [RFC3264] - Alice can send and recv non-

media data

a=sctp-port:5000 [I-D.ietf-mmusic-sctp-sdp]

a=max-message-size:100000 [I-D.ietf-mmusic-sctp-sdp]

a=setup:actpass [RFC5763] - Alice can act as DTLS client

or server

a=tls-id:1 [I-D.ietf-mmusic-dtls-sdp]

a=ice-ufrag:074c6550 [RFC5245] - Session Level ICE parameter

a=ice-pwd:a28a397a4c3f31747d1ee3474af08a068 [RFC5245] - Session Level ICE parameter

a=fingerprint:sha-256

19:E2:1C:3B:4B:9F:81:E6:B8:5C:F4:A5:A8:D8:73:04

:BB:05:2F:70:9F:04:A9:0E:05:E9:26:33:E8:70:88:A2

[RFC5245] - Session DTLS Fingerprint for

SRTP

a=candidate:0 1 UDP 2113667327 192.0.2.4 61665 typ host [RFC5245]

a=candidate:1 1 UDP 1694302207 203.0.113.141 54609 typ srflx

raddr 192.0.2.4 rport 61665

[RFC5245]

a=end-of-candidates [I-D.ietf-mmusic-trickle-ice]

Table 10: offer SPD example20

20 Example taken from https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html

https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#RFC4566
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#RFC4566
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#RFC4566
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#RFC4566
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#I-D.ietf-mmusic-sdp-bundle-negotiation
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#I-D.ietf-mmusic-trickle-ice
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#I-D.ietf-rtcweb-data-channel
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#RFC4566
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#RFC5888
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#RFC3264
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#I-D.ietf-mmusic-sctp-sdp
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#I-D.ietf-mmusic-sctp-sdp
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#RFC5763
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#I-D.ietf-mmusic-dtls-sdp
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#RFC5245
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#RFC5245
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#RFC5245
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#RFC5245
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#RFC5245
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#I-D.ietf-mmusic-trickle-ice
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html

4 Security Certificate and fingerprint

43

Answer SDP Contents RFC#/Notes

v=0 [RFC4566]

o=- 16833 0 IN IP4 0.0.0.0 [RFC4566] - Session Origin

Information

s=- [RFC4566]

t=0 0 [RFC4566]

a=group:BUNDLE data [I-D.ietf-mmusic-sdp-bundle-

negotiation]

****** Application m=line ********* ****************************

*

m=application 49203 UDP/DTLS/SCTP webrtc-

datachannel

[I-D.ietf-mmusic-sctp-sdp]

c=IN IP4 203.0.113.77 [RFC4566]

a=mid:data [RFC5888]

a=sendrecv [RFC3264] - Bob can send and recv

non-media data

a=sctp-port:5000 [I-D.ietf-mmusic-sctp-sdp]

a=max-message-size:100000 [I-D.ietf-mmusic-sctp-sdp]

a=setup:active [RFC5763] - Bob is the DTLS

client

a=tls-id:1 [I-D.ietf-mmusic-dtls-sdp]

a=ice-ufrag:c300d85b [RFC5245] - Session Level ICE

username frag

a=ice-pwd:de4e99bd291c325921d5d47efbabd9a2 [RFC5245] - Session Level ICE

password

a=fingerprint:sha-256

6B:8B:F0:65:5F:78:E2:51:3B:AC:6F:F3:3F:46:1B:35

:DC:B8:5F:64:1A:24:C2:43:F0:A1:58:D0:A1:2C:19:

08

[RFC5245] - Session DTLS

Fingerprint for SRTP

a=candidate:0 1 UDP 2113667327 198.51.100.7

51556 typ host

[RFC5245]

a=candidate:1 1 UDP 1694302207 203.0.113.77

49203 typ srflx raddr 198.51.100.7 rport 51556

[RFC5245]

a=end-of-candidates [I-D.ietf-mmusic-trickle-ice]

Table 11: answer SDP example21

21 Example taken from https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html

https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#RFC4566
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#RFC4566
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#RFC4566
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#RFC4566
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#I-D.ietf-mmusic-sdp-bundle-negotiation
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#I-D.ietf-mmusic-sdp-bundle-negotiation
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#I-D.ietf-mmusic-sctp-sdp
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#RFC4566
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#RFC5888
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#RFC3264
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#I-D.ietf-mmusic-sctp-sdp
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#I-D.ietf-mmusic-sctp-sdp
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#RFC5763
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#I-D.ietf-mmusic-dtls-sdp
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#RFC5245
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#RFC5245
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#RFC5245
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#RFC5245
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#RFC5245
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html#I-D.ietf-mmusic-trickle-ice
https://tools.ietf.org/id/draft-ietf-rtcweb-sdp-08.html

4 Security Fingerprint extraction

44

The following figure (see Fig. 21), represents the content of a session description which we will

use:

Figure 21: SDP decomposition

Each SDP contains a self-signed certificate fingerprint. In our case, this certificate is

automatically generated when creating our peerConnection object.

Although we technically cannot extract the fingerprint from the DTLS connection on our

opened DataChannel, we can do it directly from the SDP before the channel is even opened.

Using this fingerprint for authentication is the best way to prove one’s identity as a false

fingerprint within an offer or answer will result in an error when setting the peerConnection.

If the remote user can communicate us its fingerprint via a secure external channel, all there is

to do left is to check whether the incoming SDP contains this exact fingerprint or not.

4.3 Fingerprint extraction

The fingerprint can be found in our SDP offer and answer both under the field a=fingerprint, as

seen in Table 10 and Table 11. Getting our own fingerprint is a slightly different and easier

process than extracting the remote one.

From the sender’s perspective, getting its own fingerprint can be done directly from the

WebRTC peerConnection object:

tlsFingerprints, err :=

peerConnection.GetConfiguration().Certificates[0].GetFingerprints()

fingerprint := internal.FingerprintToString(tlsFingerprints[0])

Code 22: own fingerprint extraction

The GetFingerprints() method returns a webrtc.DTLSFingerprint object, which we need to

convert to a simple string using the internal method FingerprintToString(). This string

conversion allows us to get the fingerprint under the exact same format as we would find it in

the SDP, meaning all capital and “:” separated.

To get the remote fingerprint now, which in this scenario means extracting from the receiver’s

answer, we defined another internal function called ExtractFingerprint().

parsed := &sdp.SessionDescription{}

if err := parsed.Unmarshal([]byte(answer.SDP)); err != nil {

 panic(err)

}

fingerprint := internal.ExtractFingerprint(parsed)

Code 23: remote fingerprint extraction

4 Security Passphrase derivation

45

This last method takes a pointer to an sdp.SessionDescription object and outputs the contained

fingerprint as a string.

At this point, we now have both our fingerprint and the one extracted from the remote user’s

answer under the following format: 6B:8B:F0:65:5F:78:E2:51:3B:AC:6F:F3:3F:46:1B:35

:DC:B8:5F:64:1A:24:C2:43:F0:A1:58:D0:A1:2C:19:08

From the receiver’s perspective, the exact same methods are applied to get respectively the self-

generated certificate fingerprint and extract the remote one from the sender’s SDP offer.

4.4 Passphrase derivation

4.4.1 Simplifying the fingerprint

We now have a way of identifying the remote user but communicating the whole fingerprint

would be a lot of trouble. Therefore, we derive it to a passphrase to get a much simpler and

friendlier code for mutual authentication.

Figure 22: Converting a fingerprint to a passphrase

Such a passphrase (see Fig. 22) can now be communicated easily and even spoken.

4 Security Passphrase derivation

46

4.4.2 Derivation algorithm

The idea for this process is to consider the whole fingerprint as a large number, perform a base

change and attribute five words taken from an English dictionary to the resulting number.

Figure 23: Base change pseudocode

This pseudocode (see Fig. 23) shows the theoretical implementation of such a base change. For

each iteration, we pick the word at the dictionary index corresponding to the fingerprint (left)

modulo the size of our dictionary (base). We then divide our fingerprint by the dictionary size

and repeat the whole process five time.

The real implementation is done this way:

func FingerprintToPhrase(fingerprint string) string {

 // get the dictionary as an array of words from a text file

 dictionary, err := readLines("ressources/dictionary.txt")

 if err != nil {

 panic(err)

 }

 // format fingerprint to hexadecimal string

 hexa := strings.ReplaceAll(fingerprint, ":", "")

 // value of fingerprint

 left := new(big.Int)

 left.SetString(hexa, 16)

 // length of dictionary

 base := new(big.Int)

 base.SetInt64(int64(len(dictionary)))

 passphrase := ""

4 Security Passphrase derivation

47

 // for five runs, picks the word at index left%base and adds it to the

passphrase

 for i := 0; i < 5; i++ {

 wordIndex := new(big.Int)

 // wordindex = left % base

 wordIndex.Rem(left, base)

 word := dictionary[wordIndex.Int64()]

 if i != 4 {

 passphrase += word + "-"

 } else {

 passphrase += word

 }

 // divides the fingerprint value by the dictionary length

 left.Div(left, base)

 }

 return passphrase

}

Code 24: internal.fingerprint.go - passphrase derivation

We first load the .txt dictionary into an array. The string fingerprint must be cleaned of all “:”

char and converted to a big.Int object. base is also defined as a big.Int set to the dictionary

length. An empty passphrase is initiated.

From this point on, the five iterations can be done, and the resulting passphrase is outputted.22

4.4.3 Information loss

Switching from a complete sha-256 fingerprint to a simple passphrase obviously represents a

loss of data. Our dictionary is 10’522 words long, making it approximately 213,3 strong. By

making the passphrase 5 words long, this brings the possibilities up to 266,5, approximating a 55

bits security keyspace. Once the derivation being done, only 266 possibilities remain from our

original 2256 combination strong fingerprint.

Although it is a gigantic reduction, it is still a safe way to identify our remote user, as finding a

certificate which matches this passphrase cannot be done in the short time interval between the

two connections.

Because of the way the signaling server is built, the time interval one would have to generate a

matching certificate is only the delay between the two users logging in, a matter of seconds.

Once a match is found, no other link can be established for any of the concerned peers. By

simply limiting the login request to one per second, we basically eliminate any possibility of a

man-in-the-middle attack.

22 Note that for readability reasons, “-“ is added between each word during the iterations.

4 Security Use in signaling protocol

48

4.5 Use in signaling protocol

4.5.1 As a login system

The protocol can be defined more formally. As we now have a way to safely authenticate the

other user through the use of passphrases, why not use them directly as login info on our

signaling server?

This way of doing the login reduces the user’s input to only one: the remote user’s passphrase.

Before even connecting to the server, both users know each other’s passphrases. From this

point, the idea is to have them both to login with the concatenation of passphrases as username.

There is a catch: one of the sides, in our case the receiver, must totally reverse the resulting

string. By doing this, users who are supposed to be matched together have the exact same login

username, only reversed.

Figure 24: Alice's login name

Figure 25: Bob's login name

Matching the users is now a straightforward task: each time a new user connects, we check for

a user having the exact opposite string.

4.5.2 For authenticity check

Once a match has been made, the linked user is not yet reliably authenticated. At this point,

anyone could have basically just got our username and reversed it. The crucial part is to make

sure the incoming offer or answer actually contains a fingerprint which deriver to the expected

passphrase.

Before adding any incoming SDP as a remote description, we extract its fingerprint, derive it

to a passphrase and make sure it matches the one we expected.

On the sender’s side, here is how we handle incoming answers:

4 Security Use in signaling protocol

49

case "answer":

 log.Println("Received answer from " + remote)

 var encodedAnswer = m.Answer

 answer := webrtc.SessionDescription{}

 internal.Decode(encodedAnswer, &answer)

 // Checking remote certificate's fingerprint matches given passphrase

 parsed := &sdp.SessionDescription{}

 if err := parsed.Unmarshal([]byte(answer.SDP)); err != nil {

 panic(err)

 }

 fingerprint := internal.ExtractFingerprint(parsed)

 remotePassphrase := internal.FingerprintToPhrase(fingerprint)

 // If certificate matches, set as remote description

 if remotePassphrase == remote {

 fmt.Println("Receiver identity confirmed!")

 err = peerConnection.SetRemoteDescription(answer)

 if err != nil {

 panic(err)

 }

 } else {

 fmt.Println("Receiver's certificate is not matching")

 break

 }

Code 25: authenticity check on sender's side

Obviously, the same procedure is done receiver’s side upon offer reception.

4 Security Use in signaling protocol

50

4.5.3 Complete protocol

The following diagram (see Fig. 26) summarises the whole process of signaling, using inverted

passphrases as usernames and doing a passphrase check during both the offer and the answer’s

reception.

Figure 26: Full Signaling Protocol

There are various advantages of using such a protocol.

Matching inverted usernames is a guarantee of always having a peer-to-peer relation, as there

is only one possible match for each user. This also makes the signaling server’s code rather

simple and lighter. Any error or disconnection during any step of the process is easily handled,

the server only having to notify the linked user.

As for the fingerprint extraction and passphrase derivation, it makes for a perfectly secure way

of authentication. While it does theoretically not always prevent a malicious user to send us an

SDP, it will detect it as not matching the expected passphrase weather it is an offer or answer.

The only possible flaw would be for a third user to generate a certificate which, by chance,

derives to the same passphrase as our receiver within the interval of time between the sender

and receiver’s connections to the signaling server.

The resulting chances of opening a DataChannel with the wrong user is therefore brought

down to almost zero.

5 Conclusion Issues and further improvement

51

 5

Conclusion

5.1 Issues and further improvement

Throughout this document, all the principal aspects and core functionalities were discussed.

The final application does work, and the product is easily usable. However, many further

improvements can be implemented, and some small issues still need to be taken care of.

Starting with the remaining issues, we must mention the unhandled errors. Throughout the

sender.go and receiver.go different protocols, many panic(err) can still be found. Despite a

top-level error handler being implemented, and therefore dealing with any of these panic error

throwers, each case should be treated individually to get a better feedback on these errors. This

top-level handler should be considered a temporary workaround and not a definitive solution.

Another unhandled issue at the time is the possibility of being stuck at the login step, during

the signaling protocol. This happens if any side does not correctly enter the remote user’s

passphrase. The signaling server finding no match, both users are left waiting indefinitely for a

“linked” notification. This issue can be solved rather easily either by setting a timeout server’s

side, or by giving the user the possibility to exit login and type the remote passphrase again by

setting a quit/retry command.

A final point concerning the code issues is the hardcoded values used for different steps. The

critical one is the TURN server credentials, which remain plainly visible in the code. For ease

of use, other values should be left to chose by the user, such as the file output directory, currently

set to “/out/” as well as the STUN and TURN servers’ locations. Theses last points could be

handled using command line parameters.

On the improvement’s side, efficiency while using the program can still be widely increased.

The first thing to implement would be bidirectional file exchange. At this point of development,

users are stuck using precise roles, and switching from sender to receiver, though it can be done,

implies going through the whole passphrase exchange and signaling step over again. Due to the

architecture of the current code, making this role swap is a hard task and requires a lot of

changes in both the signaling and the file exchange protocol.

An easier to implement feature which would drastically increase efficiency would be the

possibility of recursive file sending. In its current state, the program only allows for one file

transfer at a time, and the ability to send multiples files or full directory hierarchies would be a

game changer in usability.

5 Conclusion Personal conclusion

52

5.2 Personal conclusion

This project has allowed me to practice and apply a lot of the knowledges I acquired during my

university path. The use of the WebRTC or Go language were totally foreign to me and getting

to know them taught me not only about them as a new skill, but also to have confidence with

starting a project which has a lot of unknown components.

A major lesson I learned doing this program is the crucial importance of planning the whole

code’s structure. If I were to redo the whole project from scratch, knowing the limitations of

my current design choices, I would go with a single class sender/receiver and use a state

mechanism to define the roles. In a professional context, the long-term cost of such bad design

choices would be huge, not to mention starting over may be the only solution for some further

features’ implementation.

Discovering the WebRTC technology really brought me a lot and I will probably use it for other

incoming projects. The same can be said about the Go programming language, and I can already

profit from this new knowledge in some of my master’s courses.

Mutual authentication, a big part of this project, was the most interesting aspect to me. Though

it was not clear at first, doing research about it has brought me to learn about a wide variety of

ways to authenticate someone and I surely will apply this knowledge further.

The final application is working and though there is still a lot of possible improvement, I am

pleased and proud of the result.

Referenced Web Resources

53

Referenced Web Resources

[1] 262588213843476. n.d. ‘Golang Split Byte Slice in Chunks Sized by Limit’. Gist.

Accessed 2 September 2020. https://gist.github.com/xlab/6e204ef96b4433a697b3.

[2] Baché, Antoine. (2019) 2020. Antonito/Gfile. Go.

https://github.com/Antonito/gfile.

[3] ‘Bienvenue sur flying-dut.ch’. n.d. Accessed 2 September 2020. http://flying-

dut.ch/index.html.

[4] Bradner, S. 1997. ‘Key Words for Use in RFCs to Indicate Requirement Levels’.

RFC2119. RFC Editor. https://doi.org/10.17487/rfc2119.

[5] ‘Convert between Byte Array/Slice and String’. n.d. Accessed 2 September 2020.

https://yourbasic.org/golang/convert-string-to-byte-slice/.

[6] Cooper, D., S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. 2008.

‘Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation

List (CRL) Profile’. RFC5280. RFC Editor. https://doi.org/10.17487/rfc5280.

[7] Coturn/Coturn. (2015) 2020. C. coturn. https://github.com/coturn/coturn.

[8] Coturn/Rfc5766-Turn-Server. (2015) 2020. C. coturn.

https://github.com/coturn/rfc5766-turn-server.

[9] Dang, Quynh H. 2015. ‘Secure Hash Standard’. NIST FIPS 180-4. National

Institute of Standards and Technology. https://doi.org/10.6028/NIST.FIPS.180-4.

[10] Dierks, T., and E. Rescorla. 2008. ‘The Transport Layer Security (TLS) Protocol

Version 1.2’. RFC5246. RFC Editor. https://doi.org/10.17487/rfc5246.

[11] Eastlake, D. 2011. ‘Transport Layer Security (TLS) Extensions: Extension

Definitions’. RFC6066. RFC Editor. https://doi.org/10.17487/rfc6066.

[12] ‘Emad-Elsaid/Inbox’. n.d. GitHub. Accessed 2 September 2020.

https://github.com/emad-elsaid/inbox.

[13] ‘Exception Handling - Catching Panics in Golang’. n.d. Stack Overflow. Accessed

15 November 2020. https://stackoverflow.com/questions/25025467/catching-

panics-in-golang.

https://gist.github.com/xlab/6e204ef96b4433a697b3
https://github.com/Antonito/gfile
http://flying-dut.ch/index.html
http://flying-dut.ch/index.html
https://doi.org/10.17487/rfc2119
https://yourbasic.org/golang/convert-string-to-byte-slice/
https://doi.org/10.17487/rfc5280
https://github.com/coturn/coturn
https://github.com/coturn/rfc5766-turn-server
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.17487/rfc5246
https://doi.org/10.17487/rfc6066
https://github.com/emad-elsaid/inbox
https://stackoverflow.com/questions/25025467/catching-panics-in-golang
https://stackoverflow.com/questions/25025467/catching-panics-in-golang

Referenced Web Resources

54

[14] Georgiev, Martin, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh,

and Vitaly Shmatikov. 2012. ‘The Most Dangerous Code in the World: Validating

SSL Certificates in Non-Browser Software’. In Proceedings of the 2012 ACM

Conference on Computer and Communications Security - CCS ’12, 38. Raleigh,

North Carolina, USA: ACM Press. https://doi.org/10.1145/2382196.2382204.

[15] ‘Get File Name, Size, Permission Bits, Mode, Modified Time in Go (Golang)’.

2020. Welcome To Golang By Example (blog). 16 April 2020.

https://golangbyexample.com/file-info-golang/.

[16] ‘Go’. n.d. GitHub. Accessed 11 March 2021. https://github.com/golang.

[17] ‘Go - Environment Setup - Tutorialspoint’. n.d. Accessed 12 February 2021.

https://www.tutorialspoint.com/go/go_environment.htm.

[18] ‘Go - Golang “Undefined” Function Declared in Another File? - Stack Overflow’.

n.d. Accessed 2 September 2020.

https://stackoverflow.com/questions/28153203/golang-undefined-function-

declared-in-another-file.

[19] ‘Go - How Do I Configure Goland to Recognize “mod” Packages?’ n.d. Stack

Overflow. Accessed 2 September 2020.

https://stackoverflow.com/questions/51910862/how-do-i-configure-goland-to-

recognize-mod-packages.

[20] ‘Golang Panic and Recover Tutorial with Examples | Golangbot.Com’. 2020. Go

Tutorial - Learn Go from the Basics with Code Examples. 8 July 2020.

https://golangbot.com/panic-and-recover/.

[21] ‘Google Code Archive - Long-Term Storage for Google Code Project Hosting.’

n.d. Accessed 30 December 2020. https://code.google.com/archive/p/rfc5766-

turn-server/.

[22] Hardt, D. 2012. ‘The OAuth 2.0 Authorization Framework’. RFC6749. RFC

Editor. https://doi.org/10.17487/rfc6749.

[23] ‘How Can I Use Go Append with Two []Byte Slices or Arrays?’ n.d. Stack

Overflow. Accessed 2 September 2020.

https://stackoverflow.com/questions/8461462/how-can-i-use-go-append-with-

two-byte-slices-or-arrays.

[24] ‘How To Build Go Executables for Multiple Platforms on Ubuntu 16.04’. n.d.

DigitalOcean. Accessed 12 February 2021.

https://www.digitalocean.com/community/tutorials/how-to-build-go-executables-

for-multiple-platforms-on-ubuntu-16-04.

https://doi.org/10.1145/2382196.2382204
https://golangbyexample.com/file-info-golang/
https://github.com/golang
https://www.tutorialspoint.com/go/go_environment.htm
https://stackoverflow.com/questions/28153203/golang-undefined-function-declared-in-another-file
https://stackoverflow.com/questions/28153203/golang-undefined-function-declared-in-another-file
https://stackoverflow.com/questions/51910862/how-do-i-configure-goland-to-recognize-mod-packages
https://stackoverflow.com/questions/51910862/how-do-i-configure-goland-to-recognize-mod-packages
https://golangbot.com/panic-and-recover/
https://code.google.com/archive/p/rfc5766-turn-server/
https://code.google.com/archive/p/rfc5766-turn-server/
https://doi.org/10.17487/rfc6749
https://stackoverflow.com/questions/8461462/how-can-i-use-go-append-with-two-byte-slices-or-arrays
https://stackoverflow.com/questions/8461462/how-can-i-use-go-append-with-two-byte-slices-or-arrays
https://www.digitalocean.com/community/tutorials/how-to-build-go-executables-for-multiple-platforms-on-ubuntu-16-04
https://www.digitalocean.com/community/tutorials/how-to-build-go-executables-for-multiple-platforms-on-ubuntu-16-04

Referenced Web Resources

55

[25] ‘How to Create and Configure Your Own STUN/TURN Server with Coturn in

Ubuntu 18.04 | Our Code World’. n.d. Accessed 2 September 2020.

https://ourcodeworld.com/articles/read/1175/how-to-create-and-configure-your-

own-stun-turn-server-with-coturn-in-ubuntu-18-04.

[26] ‘Ioutil - The Go Programming Language’. n.d. Accessed 2 September 2020.

https://golang.org/pkg/io/ioutil/#WriteFile.

[27] Jones, M. 2015a. ‘JSON Web Algorithms (JWA)’. RFC7518. RFC Editor.

https://doi.org/10.17487/RFC7518.

[28] Jones, M., J. Bradley, and N. Sakimura. 2015. ‘JSON Web Token (JWT)’.

RFC7519. RFC Editor. https://doi.org/10.17487/RFC7519.

[29] Jones, M., J. Bradley, and H. Tschofenig. 2016. ‘Proof-of-Possession Key

Semantics for JSON Web Tokens (JWTs)’. RFC7800. RFC Editor.

https://doi.org/10.17487/RFC7800.

[30] Jones, M., and D. Hardt. 2012. ‘The OAuth 2.0 Authorization Framework: Bearer

Token Usage’. RFC6750. RFC Editor. https://doi.org/10.17487/rfc6750.

[31] Jones, M., N. Sakimura, and J. Bradley. 2018. ‘OAuth 2.0 Authorization Server

Metadata’. RFC8414. RFC Editor. https://doi.org/10.17487/RFC8414.

[32] Josefsson, S. 2006. ‘The Base16, Base32, and Base64 Data Encodings’.

RFC4648. RFC Editor. https://doi.org/10.17487/rfc4648.

[33] ‘JSON and Go - The Go Blog’. n.d. Accessed 2 September 2020.

https://blog.golang.org/json.

[34] Kawamura, S., and M. Kawashima. 2010. ‘A Recommendation for IPv6 Address

Text Representation’. RFC5952. RFC Editor. https://doi.org/10.17487/rfc5952.

[35] ‘Learn Go | Codecademy’. n.d. Accessed 2 September 2020.

https://www.codecademy.com/courses/learn-go/lessons/learn-go-fmt-

package/exercises/getting-user-input.

[36] ‘Learn to Create and Use Go Packages - Golangbot.Com’. 2020. Go Tutorial -

Learn Go from the Basics with Code Examples. 16 February 2020.

https://golangbot.com/go-packages/.

[37] Legg, S. 2006. ‘Lightweight Directory Access Protocol (LDAP): Syntaxes and

Matching Rules’. RFC4517. RFC Editor. https://doi.org/10.17487/rfc4517.

[38] Leiba, B. 2017. ‘RFC 2119 Key Words: Clarifying the Use of Capitalization’.

RFC8174. RFC Editor. https://doi.org/10.17487/RFC8174.

[39] Lodderstedt, T., S. Dronia, and M. Scurtescu. 2013. ‘OAuth 2.0 Token

Revocation’. RFC7009. RFC Editor. https://doi.org/10.17487/rfc7009.

[40] Node.js. n.d. ‘Download’. Node.Js. Accessed 10 February 2021.

https://nodejs.org/en/download/.

[41] ‘Pion’. n.d. GitHub. Accessed 2 September 2020a. https://github.com/pion.

https://ourcodeworld.com/articles/read/1175/how-to-create-and-configure-your-own-stun-turn-server-with-coturn-in-ubuntu-18-04
https://ourcodeworld.com/articles/read/1175/how-to-create-and-configure-your-own-stun-turn-server-with-coturn-in-ubuntu-18-04
https://golang.org/pkg/io/ioutil/#WriteFile
https://doi.org/10.17487/RFC7518
https://doi.org/10.17487/RFC7519
https://doi.org/10.17487/RFC7800
https://doi.org/10.17487/rfc6750
https://doi.org/10.17487/RFC8414
https://doi.org/10.17487/rfc4648
https://blog.golang.org/json
https://doi.org/10.17487/rfc5952
https://www.codecademy.com/courses/learn-go/lessons/learn-go-fmt-package/exercises/getting-user-input
https://www.codecademy.com/courses/learn-go/lessons/learn-go-fmt-package/exercises/getting-user-input
https://golangbot.com/go-packages/
https://doi.org/10.17487/rfc4517
https://doi.org/10.17487/RFC8174
https://doi.org/10.17487/rfc7009
https://nodejs.org/en/download/
https://github.com/pion

Referenced Web Resources

56

[42] Pion/Signaler. (2018) 2020. Go. Pion. https://github.com/pion/signaler.

[43] ‘Pion/Webrtc’. n.d. GitHub. Accessed 2 September 2020a.

https://github.com/pion/webrtc.

[44] Rescorla, E. 2018. ‘The Transport Layer Security (TLS) Protocol Version 1.3’.

RFC8446. RFC Editor. https://doi.org/10.17487/RFC8446.

[45] Richer, J. 2015. ‘OAuth 2.0 Token Introspection’. RFC7662. RFC Editor.

https://doi.org/10.17487/RFC7662.

[46] Richer, J., M. Jones, J. Bradley, M. Machulak, and P. Hunt. 2015. ‘OAuth 2.0

Dynamic Client Registration Protocol’. RFC7591. RFC Editor.

https://doi.org/10.17487/RFC7591.

[47] ‘RTCIceServer’. n.d. MDN Web Docs. Accessed 2 September 2020.

https://developer.mozilla.org/en-US/docs/Web/API/RTCIceServer.

[48] ‘Scp - Tranférer En SSH Des Fichiers/Répertoires Entre Des Machines -

Www.Octetmalin.Net’. n.d. Accessed 2 September 2020.

http://www.octetmalin.net/linux/tutoriels/scp-transferer-donnees-data-ssh-

envoyer-telecharger-fichiers-files-machines-serveurs-clients.php.

[49] ‘Security - WebRTC Mutual Authentication Using Certificates’. n.d. Stack

Overflow. Accessed 2 September 2020.

https://stackoverflow.com/questions/60922417/webrtc-mutual-authentication-

using-certificates.

[50] shinde, sachin. (2018) 2020. SacOO7/GoWebsocket. Go.

https://github.com/sacOO7/GoWebsocket.

[51] ‘Split/Slice an Array into Chunks (Golang) - DEV’. n.d. Accessed 2 September

2020. https://dev.to/jinagamvasubabu/split-array-into-chunks-in-golang-40n.

[52] Sufitchi, Filip. 2020. ‘Go Environment Setup in 2020: Modules!’ Medium. 25

February 2020. https://medium.com/@fsufitch/go-environment-setup-in-2020-

modules-3ed980bc287e.

[53] ‘Temasys | ICE and WebRTC: What Is This Sorcery? We Explain…’. 2016.

Temasys.Io. 19 August 2016. https://temasys.io/webrtc-ice-sorcery/.

[54] ‘The Go Playground’. n.d. Accessed 2 September 2020.

https://play.golang.org/p/Ou2UE3pApi.

[55] ‘TheWarWolf/FlyingDutchman’. n.d. GitHub. Accessed 2 September 2020.

https://github.com/TheWarWolf/FlyingDutchman.

[56] ‘Trickle ICE’. n.d. Accessed 2 September 2020.

https://webrtc.github.io/samples/src/content/peerconnection/trickle-ice/.

[57] ‘WebRTC - RTCPeerConnection APIs - Tutorialspoint’. n.d. Accessed 2

September 2020.

https://www.tutorialspoint.com/webrtc/webrtc_rtcpeerconnection_apis.htm.

https://github.com/pion/signaler
https://github.com/pion/webrtc
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC7662
https://doi.org/10.17487/RFC7591
https://developer.mozilla.org/en-US/docs/Web/API/RTCIceServer
http://www.octetmalin.net/linux/tutoriels/scp-transferer-donnees-data-ssh-envoyer-telecharger-fichiers-files-machines-serveurs-clients.php
http://www.octetmalin.net/linux/tutoriels/scp-transferer-donnees-data-ssh-envoyer-telecharger-fichiers-files-machines-serveurs-clients.php
https://stackoverflow.com/questions/60922417/webrtc-mutual-authentication-using-certificates
https://stackoverflow.com/questions/60922417/webrtc-mutual-authentication-using-certificates
https://github.com/sacOO7/GoWebsocket
https://dev.to/jinagamvasubabu/split-array-into-chunks-in-golang-40n
https://medium.com/@fsufitch/go-environment-setup-in-2020-modules-3ed980bc287e
https://medium.com/@fsufitch/go-environment-setup-in-2020-modules-3ed980bc287e
https://temasys.io/webrtc-ice-sorcery/
https://play.golang.org/p/Ou2UE3pApi
https://github.com/TheWarWolf/FlyingDutchman
https://webrtc.github.io/samples/src/content/peerconnection/trickle-ice/
https://www.tutorialspoint.com/webrtc/webrtc_rtcpeerconnection_apis.htm

Referenced Web Resources

57

[58] ‘WebRTC - Sending Messages - Tutorialspoint’. n.d. Accessed 2 September 2020.

https://www.tutorialspoint.com/webrtc/webrtc_sending_messages.htm.

[59] ‘WebRTC - Signaling - Tutorialspoint’. n.d. Accessed 2 September 2020.

https://www.tutorialspoint.com/webrtc/webrtc_signaling.htm.

[60] ‘Websocket Server in Node.Js’. n.d. Mastering JS. Accessed 10 February 2021.

https://masteringjs.io/tutorials/node/websocket-server.

[61] ‘Why Is GO111MODULE Everywhere, and Everything about Go Modules -

DEV’. n.d. Accessed 2 September 2020. https://dev.to/maelvls/why-is-

go111module-everywhere-and-everything-about-go-modules-24k#the-raw-

go111module-endraw-environment-variable.

[62] ‘Ws’. n.d. Npm. Accessed 10 February 2021.

https://www.npmjs.com/package/ws.

[63] ‘Xirsys Says…’. n.d. Accessed 2 September 2020.

https://global.xirsys.net/dashboard/signin.

[64] ‘Xirsys TURN Server Cloud - User Documentation’. n.d. Accessed 2 September

2020. https://docs.xirsys.com/?pg=api-turn.

[65] Zeilenga, K. 2006. ‘Lightweight Directory Access Protocol (LDAP): String

Representation of Distinguished Names’. RFC4514. RFC Editor.

https://doi.org/10.17487/rfc4514.

https://www.tutorialspoint.com/webrtc/webrtc_sending_messages.htm
https://www.tutorialspoint.com/webrtc/webrtc_signaling.htm
https://masteringjs.io/tutorials/node/websocket-server
https://dev.to/maelvls/why-is-go111module-everywhere-and-everything-about-go-modules-24k#the-raw-go111module-endraw-environment-variable
https://dev.to/maelvls/why-is-go111module-everywhere-and-everything-about-go-modules-24k#the-raw-go111module-endraw-environment-variable
https://dev.to/maelvls/why-is-go111module-everywhere-and-everything-about-go-modules-24k#the-raw-go111module-endraw-environment-variable
https://www.npmjs.com/package/ws
https://global.xirsys.net/dashboard/signin
https://docs.xirsys.com/?pg=api-turn
https://doi.org/10.17487/rfc4514

Referenced Web Resources

58

