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Abstract

Since its beginning in the late 80’s, the Web has evolved from a simple infrastructure
built to serve files from remote machines to a participatory Web, where clients (people
and machines) actively participate to create the content of web sites. About the same
time, the Internet of Things took its first steps at the Auto ID Center. In parallel
the automobile industry started tagging components in their assembly lines with QR
codes for quality control. Adding tags to parts allows them to be directly identifiable
by a machine. Since then, the Internet of Things has evolved to integrate smart devices
(sensors and actuators) in pervasive systems able to sense the environment or to act on it.
Finally, the adoption of HTTP as a fully-fledged application protocol for the Internet of
Things led to the Web of Things. This thesis pushes the research on in three directions:
(1) an extension of the Web of Things, (2) a meta-model and (3) a component based
methodology.
First, the xWoT is an extension of the classic Web of Things. As many applications built
on top of the Web of Things depend on additional services and algorithms, the xWoT
considers physical devices, virtual services and algorithms as first class citizens. From
a client’s perspective, it is impossible to tell virtual and physical services apart, which
supports this vision.
Second, a meta-model tailored for the xWoT (extended WoT) formally defines the dif-
ferent actors and their relationships. It considers the aspects related to smart devices
and those important for creating services. The meta-model also takes care of an event
mechanism so that applications can build on notifications to launch specific actions.
Third, instead of thinking of how to create mashup applications, this thesis takes a
step back and defines a methodology based on components to create new smart devices.
The methodology is based on the meta-model and supported by specialized tools for
translating models into code skeletons.
To conclude, in our vision we consider such a component based approach leading to
reusable pieces of soft and hardware as the first step towards a world where it is easy to
develop new smart devices, and where creating mashup applications tailored to a given
situation become technically feasible for the average user.
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Kurzfassung

Seit den Anfängen des Webs in den achtziger Jahren hat es sich stark verändert. War
es zu Beginn nur eine einfache Infrastruktur welche Klienten Dokumente auf Servern zur
Verfügung zu stellen, sind die Klienten (Personen und Maschinen) heute die Hauptakteure
im Web und stellen selbst Inhalte zur Verfügung. Ungefähr zur selben Zeit entstand das
Internet der Dinge am Auto ID Zentrum. Parallel dazu, entwickelte die Autoindustrie QR
codes. Diese wurden dann auf alle Autoteile angebracht und erlaubten die Einführung
einer einfachen Qualitätskontrolle direkt auf den Produktionslinien. Das Internet der
Dinge hat sich seither weiter entwickelt und umfasst heute auch intelligente Objekte (Ak-
tuatoren und Sensoren) welche in pervasiven Systemen die Umwelt erfassen und verän-
dern. Die Kombination von HTTP mit dem Internet der Dinge führte schlussendlich zum
Web der Dinge. Diese Doktorarbeit fokussiert sich auf die drei Folgenden Ziele: (1) eine
Erweiterung des Web der Dinge, (2) ein Meta-Model und (3) ein Komponentenbasierte
Methodik.
Das xWoT is eine Erweiterung des Web der Dinge. Viele Applikationen welche auf dem
Web der Dinge aufbauen hängen von zusätzlichen Services and Algorithmen ab. Deshalb
behandelt das extended WoT nicht nur intelligente Objekte sondern auch rein virtuelle
Objekte und Algorithmen as Bürger erster Klasse. Aus der Perspektive eines Benutzers
besteht zwischen diesen Kategorien sowieso kein Unterschied. Deshalb macht es Sinn,
alle gleich zu behandeln.
Ein auf das extended WoT zugeschnittenes Meta-Model bennent und definiert die ver-
schiedenen Akteure und ihre Relationen. Dazu betrachtet das Meta-Model Aspekte
welche für intelligente Objekte wichtig sind aber auch solche welche für rein virtuelle
Objekte ein Interesse darstellen. Das Meta-Model bildet zusätzliche ein Infrastruktur ab
um Informationen von intelligenten Objekten zurück zum Kunden zu schieben. Diese
Benachrichtigungen erlauben es dem Kuden bestimmte Aktionen in Abhängigkeit der
empfangenen Nachricht auszuführen.
Statt, wie viele andere Arbeiten, sich mit der Umsetzung von Mashup Applikationen zu
befassen, konzentriert sich diese Doktorarbeit auf Struktur der Komponenten auf welchen
solche Mashups aufbauen. Dazu wird eine Komponentenbasierte Methodik eingeführt
welche auf dem Meta-Model basiert und zu neuen intelligenten Objekten führt. Die
Methodik wird dabei von einer Anzahl Hilfsprogrammen unterstützt welche Instanzen
des Meta-Models in Code Artefakte umwandeln.
Wir glauben dass solch eine Kompontenbasierte Methodik der erste Schritt in Rich-
tung von wiederverwendbaren intelligenten Objekten ist. Diese führt einerseits zu einem
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schnelleren Entwicklungszyklus für intelligente Objekte und macht andererseits die Her-
stellung und Anpassung von Mashup Applikationen einem breiteren Publikum zugänglich

Keywords: Web of Things, REST, Meta-Model, Model-Driven, Software Component,
Internet of Things,
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1.1. Motivation

Following Moore’s law [55], the transistor count per square inch doubles each year. As
a side effect, costs of a given device (like a CPU) become cheaper each year, even if the
decrease in price is not as much as the increase in transistors. These two factors lead
to the appearance of low-cost hardware with limited communication capabilities. The
Internet of Things is an Internet where the participants are Things [42]. A Thing is
mainly a piece of hardware, like a sensor, with some communication capabilities. Thus,
Moore’s law is an enabling factor for the Internet of Things (IoT). Technological advances
over the past decade have lead to really cheap devices, full of sensors, having reasonable
autonomy and connectivity like the Arduino boards [WEB5], the Sun SPOT [WEB58] or
more recently the UDOO [WEB66].
Over the past few years, researchers have shown great interest in connected Things.
Projects like Cooltown [39] have emerged. All these research efforts have led to different
approaches on how to build smart devices, the foundation of the IoT. More recently,
the Web of Things (WoT) appeared [19]. The WoT stands on top of the IoT by adding
a standardized layer, connecting individual smart devices together. Instead of defining
new architectures for each scenario, which leads to a fragmented IoT, it uses the web as
a fully fledged application protocol. An enabling architecture consists of using RESTful
web services. Indeed, on the one hand they present several advantages over their WS-
* counterparts [20] and, on the other hand, they represent today an acceptable way of
designing architectures for smart things [19, 27]. Another trend to take into consideration
is the shift from using single raw services towards integrating them with computationally
complex processes [50, 70]. This shift is motivated by the observation that the number of
Thing participants in the Web will exceed that of human ones by a wide margin [WEB63].
These Things will produce a quantity of information impossible to treat directly. To
manage this flood of information, it needs to be aggregated and “distilled” somehow.

1



2 1.2. Contribution

Producing smart devices is a necessity to build the IoT. Today, producers of smart
devices find themselves in a similar situation to software architects and engineers in the
past. For each new smart device that hits the market, the producers start from scratch,
designing the hardware part, and later, add on an arbitrary Application Programming
Interface (API). Whereas the dark period of software engineering was called the software
crisis, the situation faced today could be termed the things crisis. Each vendors
creates his own eco system, most of which are incompatible with each other. Back in
the 80’s Cox [46] and others proposed a component based approach to solve the problem
of software. Instead of starting over and over again, software engineers need to produce
reusable and deployable components. The same pragmatic approach could be the solution
to the things crisis. Visions like smart homes and smart environments only have
a chance of becoming true if their complexity is broken down into components, thus
giving the user the chance to build an environment based on blocks coming from different
vendors.

1.2. Contribution

Section 1.1 introduced and discussed the enabling factors of the IoT. One of the problems
identified is the things crisis faced today. Although media claims that the year 2015
will be the year of the IoT [WEB60], this will only come true if vendors manage to escape
the things crisis. Implementing closed environments in which proprietary smart objects
from only one vendor can evolve will definitely lead to failure. In order to avoid failure,
this thesis suggests an approach which will avoid this situation. Given this foundation,
several open questions can be identified. The following issues will be addressed in this
thesis and present its main contribution.

• This thesis proposes an extension of the Web of Things to take into consideration
how the generated data can be distilled so that clients can use it. This extension
revolves around two main factors: (1) With the predicted increase of non-human
participants in the Web, approaches like combining data from different sensors,
actuators and tags into a nice application will not be sufficient anymore. Such
combinations, also called mashup applications, will overwhelm the user with the
quantity of information they deliver. Instead, information needs to be filtered,
distilled and aggregated to suit a user needs. This thesis presents an integrated
approach where Things, aggregations and other sorts of algorithms are all equivalent
and treated as first class citizens. (2) Following a given Thing, is just as realistic as
following a blog or a Twitter feed today. However, due to its underlying architecture,
the web was not intended to push information from servers to client. This thesis
exposes a novel way for information to be pushed from a Thing to a client, without
violating the fundamental principles of the Web of Things (WoT). Adding these
two factors to the WoT leads to an extension of the latter, that we shall refer to as
extended WoT (xWoT).

• Today, the WoT lacks a clear vocabulary and structure. This shortcoming is prob-
lematic when different people with different horizons try to team up. It also makes
it difficult to provide recipes for how to build applications embedded in the Web
of Things. To overcome these limitations, a meta-model for the WoT is discussed
in detail. Together with the meta-model comes a tool set composed of an IDE
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integrating the meta-model and tools to compile models into code. The IDE gives
developers the possibility to create instances of this meta-model. These instances
can later be translated into executable code.

• Whereas researchers have already spend a lot of time investigating how to build
mashup applications [23, 5, 76], less work has been undertaken to define the build-
ing blocks of the latter. In order to overcome this gap, this thesis proposes a
component oriented approach to structure the building blocks of mashup applica-
tions. These blocks have a well defined outer interface exploited by the various
mashup application but also a clearly defined inner structure. Together with the
meta-model defining the inner guts of these components, a model-driven compo-
nent generation approach is sketched out. This approach helps developers to start
new applications by giving them conventions to follow and the necessary tools to
support these conventions.

1.3. Organization

This thesis has three parts. Part I outlines the historical background of the key architec-
tures used throughout this thesis. These include the evolution of the web in Chapter 2,
the evolution of web-services in Chapter 3 and the evolution of Things in Chapter 4.
These chapters provide an understanding of the beginnings and development approaches
in the domain of the Web of Things.
Part II introduces the theoretical background necessary for the remainder of the thesis.
In order to come up with computer assisted WoT (Web of Things) compliant component
generation, a few theoretical foundations are necessary. Chapter 5 defines the concept of
Representational State Transfer, RESTful web services and Resource Oriented Architec-
ture. It also includes a discussion of HTTP, which is fundamental to REST and Resource
Oriented Architecture. Chapter 6 introduces the notion of software component, a ready
to use piece of code which can be deployed in a container. Although this is quite an old
principle, it is still widely used in computer science and also applies to the WoT. Chap-
ter 7 explains how meta modeling works and its usages. With the aid of a simple example,
this chapter illustrates how meta-models are created and used to create instances.
Finally, Part III contains the main contribution of this thesis. The extended WoT is
defined as an extension of the WoT and Chapter 8 formally introduces it. Chapter 9
contains the xWoT meta model and a discussion of how it is applied to structure the
xWoT and create ready to deploy xWoT components. Finally, Section 10 closes Part III
with a few example use cases to showcase different aspects of the xWoT meta model
and how it can be applied in different situations to semi automatically build xWoT
components.

1.4. Notations and Conventions

• Formatting conventions:
– Abbreviations and acronyms are as follows:
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⇤ When an acronym in common use appears for the first time, its full un-
abbreviated form follows in brackets, as in IBM (International Business
Machines Corporation).

⇤ If both, the acronym and the full name are equally common, when it is
used for the first time, it is written, for example: Java Persistence API
(JPI)

⇤ For all subsequent references, only the acronym is used: JPA
– http://localhost:9090/eHealthServer is used for web addresses;
– Code is formatted as follows:
1 public double division(int _x, int _y) {
2 double result;
3 result = _x / _y;
4 return result;
5 }

• This work is divided into eleven chapters, each with sections and subsections. Every
section or subsection is organized into paragraphs signaling topic changes.

• Fig.s, Tab.s and List.s are numbered with the initial digit of the chapter. For
example, a reference to Fig. j of Chapter i will be labeled Fig. i.j.

• While aware of gender concerns, I systematically use the masculine form for sim-
plicity to refer to both genders.

• If figures are not the authors work, or if a figure is highly inspired by some other fig-
ure, the reference is given in the caption but not in the List of Figures. Furthermore,
the following convention holds for these citations:

– Figures copied from other sources have a caption like:
Decorator Pattern (from [B6, p. 177])

– Adapted figures where the original one is clearly identifiable have a caption
like:
The Semiotic Triangle merged with the Seidewitz’ terminology (after [B10,
p. 4])

– Figures modified from an original figure have a caption like:
Another view on meta-models (modified from [B9, p. 28])

http://localhost:9090/eHealthServer


Part I.

Historical Background
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Foreword

In order to understand where we go we need to understand where we come from or as
George Santayana put it: — „Those who are unaware of history are destined to repeat
it.“
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2.1. Introduction

The Web of Things (WoT) is highly dependent on the web, the concept of services and
smart objects. Therefore, to define the WoT, its supporting architectures, concepts and
technologies have to be discussed first. As the name says, the Web of Things is related
to the Web, but also to Things. So, what exactly does the Web mean, what Web the
acronym references and what are these Things?
Through the following three sections, this chapter lays the foundation for giving a clear
definition of the Web of Things. To do this, Section 2 first discusses the Web, the types
of web, and their evolution. Section 4 defines Things and thus the WoT after Section 3
has formally introduced web services, characterized the different types of web services
and outlined their differences.
The web as we know it today has a long history. The problem is, that unlike other
technologies which have revolutionized modern life, the Internet has no inventor. This
makes it more difficult to trace its evolution from the early beginnings to modern times.
Historically, networks like phone lines, tend to be circuit-switched. Yet, in the early 60’s,
several technological innovations started to change the way telephone land-lines worked.
Packet-switched lines have several advantages over the circuit-switched “pendant”. This is
one of the big inventions supporting the Internet [B12, 40, B2] and has many advantages
over circuit switching. Not only can one line be used by several users simultaneously,
the system is also more robust. If one link breaks, the packets can be rerouted over

9



10 2.1. Introduction

another link and still reach their destination. This approach proved to be successful,
since modern networks still use it for routing their traffic between peers. The research
around this topic has been quite robust: besides the PhD. thesis of Kleinrock [40], and
Paul Baran’s work On Distributed Communication [B2], several other researchers around
the world have worked on this topic. One of them was Donald W. Davies at the National
Physical Laboratory in London. Since he only got funding for one node but needed several
to do his research, he connected a handful of terminals to the latter, thus creating the
first Local Area Network (LAN).

The military founded the ARPA (Advanced Research Projects Agency, which later be-
came DARPA) in the late 1950’s with the goal of ensuring the U.S military’s technology
was more sophisticated than the enemies’. Nonetheless, this goal rapidly began to push
the frontiers of science and technology beyond military requirements. Ten years later,
in the late 60’s, the ARPANET (Advanced Research Projects Agency Network) was
funded by the ARPA. It became one of the first working packet-switched networks. The
motivation for the development of a robust communication system can clearly be found
in the cold war between the U.S and Russia. When Paul Baran, one of the inventors of
the modern Internet, designed a packet-switched network for voice, his aim was to give
it the capacity to continue working in case a node disappeared through a nuclear strike.

At first the Advanced Research Projects Agency Network (ARPANET) only had four
participants through the Interface Message Processor (IMP). These four research insti-
tutes were: Stanford, Utah, California (UCLA) and Santa Barbara (UCSB). Eventually,
in 1972, ARPANET reached a stable and usable state. Rapidly the ARPANET gained
momentum and ten years later, in the early 80’s, the number of connected nodes was al-
ready over 200. However, development did not stop with the success of that system. Bob
Kahn, another father of the Internet was visionary in many ways. He had the idea that
the Internet was not one big network but merely connections between several corporate
networks. This vision, opened new perspectives and challenges like addressing networks
and individual machines within those networks. Furthermore, he identified the problem
of reliable connections with unreliable hardware. The outcome of Kahn’s research, in the
mid 70’s, is the TCP/IP stack, which took several years and many iterations to develop.
By the mid 80’s, the stack was sufficiently stable to be an enabling factor of the future
Internet revolution.

The Internet as it is known and used today is not an invention which can be precisely
dated in history. It is more of a continuous development and research process over 20
years involving some of the best computer scientists around the world. More histori-
cal background about ARPANET and the beginning of the modern Internet era can be
found in [B3] and [74]. The TCP/IP stack ushered in a new era in computer science.
Soon ARPANET was replaced by the National Science Foundation Network (NSFNet)
and eventually shut down in 1989. By this time, Tim Berners-Lee was working at CERN
(Conseil Européen pour la Recherche Nucléaire) in Geneva. In an effort to rapidly ex-
change research results between different offices around the world, Tim Berners-Lee and
his colleague, Robert Cailliau, invented, in 1989, the World Wide Web (WWW), also
called the Web. Their idea was that machines can serve documents containing hyperlinks
to other documents, possibly hosted on other machines. Such documents are formatted
in HTML (Hypertext Markup Language) [rfc1866]. In order to connect with a server,
a client needs a web-browser capable of requesting and interpreting Hypertext Markup
Language (HTML) documents. HTML as well as the first web-browser and, of course, the
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first web-server were all developed by Tim Berners-Lee. Often the Web and the Internet
are used to designate the same thing which, of course, is not true. While the Internet
is a network architecture, the Web is a set of protocols using the Internet to transport
packets. However, the Web is not the only protocol using the Internet as its underlying
infrastructure; protocols like Internet Relay Chat (IRC) and email existed well before the
invention of the Web.
Yet, the WWW (World Wide Web) is not the first attempt to create a document oriented
network. At almost the same time, the university of Minnesota developed the Gopher
protocol [rfc1436]. It aimed to replace the rather fussy to use FTP by a more elegant way
of browsing documents. Yet another approach is HyperCard developed by Apple. Neither
system had the success of the Web for two reasons: (1) The Web allows unidirectional
links between documents [WEB21] and (2) the Web is a royalty free protocol. Everybody
can read the specification and write clients for this protocol. An example is in 1992
when Marc Andreessen presented his web-browser Mosaic for X (which later evolved
into Netscape). Both, Gopher and HyperCard have a licensed model for commercial
usages which limits their application. For non-technical users, the Web made the Internet
available to the masses. The increasing density of nodes connected to the Internet, the
advent of commercial Internet Service Providers (ISPs) and the availability of a modern
web-browser like Netscape, allowed users for the first time to take advantage of this
technology. As will be discussed in the remainder of this section, the Web has steadily
evolved from its protype to its current version. Yet, at its basis it still shares some
important aspects with the Web of 1991. This shows that the choices made in the early
version proved to be sound and the different iterations are merely evolutions rather than
revolutions.
When Tim Berners-Lee makes the first public demonstration of the WWW, he envisaged
of a document oriented network for researchers. Along with HTML to mark up the
published documents, he also presented a new protocol allowing documents to be browsed:
the Hypertext Transfer Protocol (HTTP) [rfc1945]. It is simple to implement in browsers
and servers, yet sufficiently powerful for the intended purpose. Twenty years later, it is
still the standard for the Web and beyond. In fact, many use the protocol to provide
services of all kinds. The most prominent example is RESTful web services which use
HTTP as a fully fledged application protocol to provide a service over the web. By
proposing a way to execute the four standard CRUD (Create, Read, Update, Delete)
operations, the protocol is also available for service delivery.

2.2. Web 1.0

Back in 1991, when Tim Berners-Lee and Robert Cailliau presented to the public the first
version of a working World Wide Web, it was only composed of static documents and
hyperlinks pointing to other, possibly related, locations or documents. Its purpose was to
transmit static content over a network. Documents were formatted using an early version
of HTML. The concept was to annotate the text with tags. These tags are defined as
SGML and mostly used in pairs, surrounding portions of text. All HTML documents
share a common structure shown in Listing 2.1. Therefore, a valid HTML document
is made of three major elements: the document type declaration in line 1, the header
containing meta-information about the current document, shown between lines 3 and 6
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and finally the body containing the visible elements later presented in a web-browser from
line 7 to 11.

1 <!DOCTYPE html PUBLIC "-//IETF//DTD HTML 2.0//EN">
2 <html>
3 <head>
4 <title>World Wide Web</title>
5 ...
6 </head>
7 <body>
8 ...
9 <em>Here goes the content<em>

10 ....
11 </body>
12 </html>

List. 2.1: Structure of an HTML Document

Besides HTML, HTTP (Hypertext Transfer Protocol) and HTTPS (Hypertext Transfer
Protocol Secure) are two enabling factors for the birth of the Web. Figure 2.1 show the
first document published on the WWW. CERN displayed it again on the occasion of the
20th anniversary of the Web. These technologies made information exchange, browsing
and reading much easier than before, nonetheless the Web 1.0 was invented by researchers
and targeted scientists. The available content envisaged a research community. This fact
however quickly changed so changing our daily lives.

Fig. 2.1.: First Web-Site hosted at CERN

Since this early version of the Web, many things have changed and evolved to allow for a
more modern Web. Changes were made to all aspects of the Web. Whereas, there were
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only a few iterations of HTTP, the HTML standard drastically evolved from its primary
(numberless) version to HTML5 by adopting different intermediary steps like the advent of
XHTML where, instead of the antique SGML (Standard Generalized Markup Language)
, the newer XML is used as the underlying document type definition [WEB2].

2.3. Web 1.5

The Web 1.5 is not a revolution from the previous version; it is merely a small evolution.
The content has evolved from static HTML pages to dynamic ones. This means the
content can change for each request, or it can adapt to other events (dates etc.). Whereas,
until then, the administrator of a weather-related website had to manually adapt the
HTML coding of the web-page to reflect changes, he could now achieve the same result
dynamically, for example by using a database. This dynamic content approach was
quickly picked up by the first search engines. Since HTML pages were no longer statically
defined, the results of a search were now presented individually without having to multiply
the number of HTML pages. Figure 2.2 shows the web-site of one of the first search
companies altavista.com back on May 9th 1997.

Fig. 2.2.: Web-page using some scripting

Two major steps leading towards the web as we know it today were already observable in
the screenshot of the Alta Vista web-site back in 1997: (1) the introduction of advertising,
although not overwhelming and (2) the availability of business logic behind a website. In
the case of altavista.com, this business logic is some kind of search algorithm. But for
other websites, this could be something else. The introduction of forms in HTML2 [3] is
key to the success of Web 1.5. Forms provide a convenient way for users to input data,
which is then processed by the web-server. Yet, on their own, they cannot make work
Web 1.5. Even though form data arrive on the server side, they have to be processed
somehow. To do this, Web 1.5 introduced the Common Gateway Interface (CGI). This
technology allows communication between a web-server and some third-party script or
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application. Such applications are independent of the service and can be written in any
language supported by the operating system running the web-server. The best known
implementation of such a CGI binding is probably PHP (Hypertext Processor, formerly
known as Personal Home Page Tools). Whereas in the early days it was just meant as a
replacement for a bunch of Perl scripts, it quickly becomes popular among professionals
and amateurs alike to create personal homepages. It became so popular that modern
web-servers like Apache directly integrate a dedicated PHP bridge and so eliminate the
need for a classical CGI binding. Today, PHP is still popular for creating web-sites, be
they personal web-sites, business presentations sites, online shopping sites etc. According
to w3tech.com 81.2% of the sites for which the server side language is known are based
on PHP. Knowing this, many popular CMS (Content Management System) 1 use PHP
as their foundation framework, which is not surprising.
Another technology which contributed to this change, is Javascript, released in 1996.
Although this was not the first client side scripting language, it is the first that was
adopted by all major players. Javascript was born of the alliance between Netscape
and Sun Microsystems. At that time, Netscape’s browser Navigator already supported
the LiveScript language. With LiveScript being a de facto standard, Sun Microsystems
could not ignore it, thus, they developed an API (Application Programming Interface)
to connect LiveScript with Java objects and called it Javascript.

2.4. Web 2.0

Whereas the Web 1.5 was merely a technical evolution of the initial Web, Web 2.0 is
a cultural evolution. The underlying frameworks, protocols and technologies have not
changed much. Everything was already out there to support this new era of the Web.
The Web supports forms to capture inputs generated by users. Additionally, it is possible
to process data using several server-side programming languages and databases as storage.
Finally, Javascript enhanced with some powerful libraries like JQuery allows for rich user
interfaces, making web-sites resemble fully fledged desktop applications.
What is changing, are the users. Whereas users were condemned to play a passive role
and only consume content made available by the administrators, they can now play an
active role and contribute their own content. This also involves a shift from “content-
generating” web-masters to platform providers, where the users can express themselves.
Maybe one of the most successful concepts arising out of this shift, are blogs (aka. web-
log), which are literally diaries for the World Wide Web. There are blogs targeting almost
every aspect of life, be it cooking (http://notwithoutsalt.com/), music (http://www.
symphonicandgothicmetal.net/), technology (http://www.engadget.com/), personal
blogs (https://myspace.com/) or fully customized and self-hosted ones (http://modx.
com/). Users become eager to participate and create content. This openness also leads
to another type of user-generated content, the social platform. Whereas in blogs and
forums, people interact around a given topic, on social platforms, they share aspects of
their own social lives. Today, social media platforms are part of our lives to the point
where even international companies and institutions like CERN can no longer ignore them.
Instead, they hire specialists to post content on these platforms to collect the maximum
number of followers (which in turn can generate some financial benefits). Figure 2.3

1
Wordpress, Joomla, Drupal and ModX to cite a few of the more popular ones.

http://notwithoutsalt.com/
http://www.symphonicandgothicmetal.net/
http://www.symphonicandgothicmetal.net/
http://www.engadget.com/
https://myspace.com/
http://modx.com/
http://modx.com/
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(a) Twitter (b) Youtube

(c) Facebook

Fig. 2.3.: CERN and Social Media
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shows CERN’s presence on the most popular (according to various sources [WEB73])
social-media websites today: Twitter 2.3a, Facebook 2.3c and Youtube 2.3b.
Besides social-media platforms, where users contribute by sharing details of their pri-
vate lives, other popular platforms depending on user-contributed content have emerged.
What started back in 2000, as a side project to Nupedia, a free encyclopedia whose ar-
ticles were written by experts and reviewed like journal articles, is today the biggest
freely available encyclopedia. It seems that many people like to share their knowledge
in a particular domain with others. This has lead to a new type of platform which is
neither a blog nor a social media one: Wikipedia is its most prominent example. To a
certain degree, this phenomenon can also be observed on other social-media platforms
like Youtube, where numerous contributors propose video tutorials on various topics.

2.5. Web 3.0

To roughly date the evolution of the Web, we would say that Web 1 and 1.5 appeared
before Youtube, Wikipedia, Facebook and Twitter, while Web 2.0 came after and the Web
3.0 is in the future. After the success of the Web 2.0, its evolution forked into several
directions. One is the semantic web. Web 1.0 and 1.5 brought the necessary underlying
technologies, the Web 2.0 tied the users as a source of information to the web, but there
remains at least one considerable problem: searching the web. As the Web grows, it
also becomes more difficult to find the information we need. Companies like Google try
hard to invent and develop increasingly complex algorithms allowing them to classify,
order and tag content on the Web. Whereas this seems to work well in most situations,
sometimes the Web is just unable to find what a user is looking for.
Here, semantics could greatly enhance the search results. Semantics allow words to be
interpreted and give them a meaning beyond the simple order of the letters composing
a word. As such, semantics allow a machine to understand queries like “Will it rain
tomorrow in my hometown?” More and more products are taking advantage of semantics
to enhance the user experience. Siri2 and Google Now3 for example both propose an
intuitive way to communicate with a digital personal assistant through natural speech.
Search engines are also interested in this new approach. Some have already adopted some
kind of semantics like Wolfram Alpha. Figure 2.4 shows the results after asking Wolfram
Alpha for the weather in my hometown 2.4a and after asking about the weather for New
York 2.4b.
Yet, the semantic web is only one fork of the current Web. Another trend is the Internet
of Things. Integrating sensors as content providers has become more and more common.
Projects like the various “Smart Grids” in different countries, try to lower our energy
consumption and produce it in smarter ways. This is only possible through real time
consumption statistics. At this point sensors become content providers for the Web.
Section 4 will give a more in-depth review of the evolution of smart objects in the Internet
and the Web.
Only the future will tell what Web 3.0 will be like. The IoT can only benefit from
advances in the semantic web. Bringing semantics to the IoT allows for a new range of

2http://support.apple.com/kb/HT4992
3http://www.google.com/landing/now/
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(a) My City (b) New York

Fig. 2.4.: Wolfram Alpha giving the weather for different (fuzzy) locations

scenarios when combining different sensors and actuators to mashup applications. Instead
of binding them during the programming of such a mashup, the necessary smart devices
could be found on the fly. The reverse is also true. The semantic web benefits from the
IoT. Today working examples are mostly of an academic nature like Wolfram Alpha.
Furthermore, semantics is often used and cited in the context of smart homes and other
ubiquitous applications. These scenario depend on the advances of the IoT to be realized
as facts and pass from laboratory essays to commercial products. At this point, there is
insufficient experience to decide whether something like Web 3.0 will come into being or
what it will be like.

2.6. Key Concepts introduced in this Chapter

This chapter retraced the history of the Web from its beginning, where only primitive
exchanges were possible, to a participatory web as we know and use it today. Although,
the Web has not changed that much during the past few years, its popularity has greatly
increased. Every year fewer households remain without an Internet connection and the
rise of mobile devices like smart phones and tablets have participated in this success story.
The key concepts of this chapters are the evolution of the Web from its early beginnings
to its actual state. Even though it has become more and more ubiquitous [WEB14]
it is still a building block for many modern data exchanges. Whereas for most of its
existence, content on the web has been consumed with a browser, more and more clients
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prefer native applications built for one content provider (NZZ4 website as opposed to NZZ
applications on Android and iOS). Nonetheless, these applications need some way to bring
the data from the service provider to the application running on the clients smart phones.
Although, developers have a choice between many different approaches, (see Chapter 3
for an overview of different approaches), one particular approach is becoming more and
more popular: REST and RESTful web services - see the market shares of different web
service technologies/architectures in Figure 3.4, REST takes the ingredients of the Web
and translates them into web services. Additionally, there are other arguments in favor
of REST [64].
Since REST architectural style is an abstraction of the Web as we know it, understanding
HTTP is a prerequisite to fully understanding REST. REST as an architectural style is
not a technology and R. Fielding in his doctoral thesis. [14] only describes its architec-
tural properties, not any concrete implementation. Nonetheless, HTTP remains its most
prominent implementation. The fact that Fielding was also actively participating in the
development of the HTTP/1.1 standard helps explain why the Web is so important for
REST.
Although, there has been a shift from web-pages to mobile applications, the Web will not
become obsolete in the near future. Instead, with the growth of ubiquitous computing and
more precisely, the massive forthcoming of the WoT will make it more popular [WEB60].

4http://nzz.ch



3
Evolution of Web Services

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2. DCOM, Services over a LAN . . . . . . . . . . . . . . . . . . . 20

3.3. Middlewares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4. RPC and the first Services over the Internet . . . . . . . . . . 23

3.5. Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6. Key Concepts introduced in this Chapter . . . . . . . . . . . . 28

3.1. Introduction

Chapter 2 discussed the evolution of the web and how it changed the way we use it. The
web was certainly made for humans. Yet, since the early days of computing, processes
and later machines have also needed to communicate in order to complete some tasks.
Figure 3.1a shows the situation in the early days of computing. On a given machine there
are two processes which need to exchange data. The most simple form of data exchange
would be a situation where the output of the first process is the input of the second.
Such situations are still very common. For example, how can the number of words in
the main.tex file of the present thesis be counted. Listing 3.1 shows that this task can
easily be achieved using two separate applications, where the output of the first is used
as input for the second. In fact, the word counting process (wc) needs a document on
which to operate as input. On the other hand, cat outputs a given file on the command
line. Thus, to achieve the desired effect, it is sufficient to send the output of cat as
input to wc. Passing the output from one process as input for another is solved by pipes.
Listing 3.1 uses an anonymous pipe to achieve the desired effect. Whereas pipes are still
common today, other approaches to sharing common information between processes are
less used nowadays. Among them, shared memory, where process A writes somewhere in
the memory space also accessible to process B. Later, when process B is launched, the
memory space contains all the necessary information for process B to run. Yet another
approach having multiple processes running on the same machine to communicate with
each other is COM1 developed by Microsoft. The advantage of this approach is the

1http://www.microsoft.com/com/default.mspx (last visited 28 oct. 2013)
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1 ruppena@tungdil:~$ Thesis: cat main.tex |wc -w
2 755

List. 3.1: Unix Pipes in Application

company behind and supporting it. Microsoft, by delivering simultaneously an operating
system and the COM (Component Object Model) interface, can implement this interface
in all major parts of the OS (Operating System). This allows developers to quickly join
two processes together without struggling with incompatibilities or strange APIs.

Process A

CPU

Process B

CPU

(a) Process Pipes

Machine A

Machine B

LAN

(b) Over a LAN

Fig. 3.1.: From Processes to distributed Machines

3.2. DCOM, Services over a LAN

The increasing number of machines connected to a LAN has lead to new ways on how
they process data. Previously, only processes running on the same physical machine
could coordinate. However, once several machines are connected over a LAN, tasks can
be distributed over several machines. This vision is the foundation of any modern n-
tier architecture. Microsoft has proposed a standard for how distributed processes should
communicate over a LAN. Of course, their approach is based on the inter-process commu-
nication interface, Component Object Model (COM), and is called DCOM (Distributed
Component Object Model). Yet, many other approaches have arisen, like Remote Proce-
dure Call (RPC). These approaches are the first web services in that they deliver some
functionality, that is, process some input and return some output over a network.
Although the concept sounds simple and not very far away from what inter process com-
munication looks like on the same machine, distributed processes bring new challenges.
The biggest is the problem of different OSs hosting the different processes. This leads to
interpretation problems when reading the messages sent from one processes to another.
Whereas, for example, the first process might use big endian to encode values, the second
process might work with little endian encoding and interprets the received messages as
such, leading to erroneous computations. To overcome this problem, Sun Microsystems
together with a handful of other companies defined the XDR (External Data Represen-
tation) communication standard [rfc1014]. It is the first OS-independent communication
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standard. External Data Representation (XDR) defines the most common datatypes like
Integer, String, Float and Array. However, the developers are still responsible for dealing
with network related tasks, like sockets and protocols, to make the two processes com-
municate. For each new project, a new communication layer connecting the machines
involved is developed. Besides being error prone, this task is also time-consuming and,
as a result, projects get more expensive. Yet, since all these implementations share some
common structures, rapidly middlewares taking care of the underlying network aspects
became popular.

3.3. Middlewares

The simplest way to send information from a process running on machine A to another
process sitting on machine B is to open a socket on each machine [rfc147]. This approach
is straightforward and very easy to implement. However, as simple as it might seem at first
glance, writing such code is complex and leads to all sorts of problems for developer to deal
with. One of these problems is the port number on which the service will run. Different
developers naturally choose different ports when they are tasked with implementing the
same service. Therefore, collisions in port number attribution are programmed. From
the large quantity of Request for Comments (RFC), it seems obvious that a considerable
effort has been made to standardize port number usage [rfc617, rfc204, rfc433, rfc349,
rfc503], to cite only the attempts made in the early 70s. Once the port number to use
has been decided and fixed, and the channel opened, the developer needs to worry about
how to use this channel. Therefore, he needs to choose a suitable protocol or, if none
is found, develop one. Developing such a protocol implies writing code taking care to
anticipate the various errors which might occur during a session, like erroneous message
or lost messages and so on. Up to this point, not one line of the final application and of
its business logic is written. Only the underlying base structure has been implemented
so far.

Application Layer

Presentation 
Layer

Session Layer

Transport Layer

Network Layer

Datalink Layer

Physical Layer

RPC                     

   
                     RMI

       

TCP          UDP

IP

PPP

LAN        WLAN
WAN

Fig. 3.2.: RPC in the OSI Stack (modified from [B21])
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Most of these problems can be avoided when using a middleware. The middleware takes
care of defining sockets, protocols and message formats. Additionally, the middleware is
responsible for handling protocol and network related errors, shielding them by the final
application from the underlying transport layer. They do this by providing the devel-
opers with a simple generic Application Programming Interface (API). This approach
follows the recommendations of the OSI (Open Systems Interconnection) model [B21,
36]. Figure 3.2 shows where to place service-oriented middlewares with regard to the
Open Systems Interconnection (OSI) model. By placing the middleware just above the
transport layer, it is responsible for all connection related work letting the developer
concentrate on the application.

Over time, several middlewares were developed. Alonso et al. [B1] classify them into
the following six categories: RPC-based systems, TP monitors, Object brokers, Object
monitors, message-oriented middlewares and message brokers.

• RPC -style middlewares are the most basic type. They aim to convert a procedure
call into a Remote Procedure Call to take care of how the necessary information is
transported to the remote procedure provider and the generated outputs back to
the client. Many modern middlewares use RPC as their foundation. Clearly, imple-
mentations like Java RMI and SOAP, can be identified as RPC-style middlewares.

• TP monitors are the oldest type of middleware. Roughly, TP monitors are RPC like
systems with transactions. For this reason they are often used to provide databases
with RPC query interfaces.

• Object Brokers. With the generalization of object-oriented paradigms and the wide
adoption of object oriented programming languages, developers asked for RPC-like
middlewares capable of handling objects instead of raw procedure calls. The most
prominent implementation of such an Object Broker middleware is CORBA.

• Object monitors are the convergence of TP monitors and Object brokers. Soon
it became apparent that TP monitor functionality, originally only developed for
procedural language, also needed to cover object-oriented languages. On the other
hand, it also became apparent that object brokers needed the functionality provided
by TP monitors.

• Message-oriented middleware takes special care of message queues. Developers
rapidly saw that some exchanges are not necessary synchronous and added support
for asynchronous interactions to RPC. This approach was also ported to TP mon-
itors. However, developers rapidly discovered the usefulness of message queues as
middlewares themselves. Thus, message-oriented middlewares provide transactional
access to message queues.

• Message brokers have the ability to transform the messages in the queue before they
are forwarded to the real business logic for further processing.

Although they are all different, most middleware are based on RPC and add more func-
tionality to it, be they transactions, asynchronous interactions or the smart handling of
message queues.
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3.4. RPC and the first Services over the Internet

Thus far, processes were either running on the same physical machine and exchanged
information using approaches like shared memory or pipes, or they were deployed on dif-
ferent machines sitting on the same LAN. Whereas approaches like DCOM worked quite
well for processes sitting either on the same machine or at least the same LAN, it seemed
that this approach did not work anymore when service components are deployed on ma-
chines reachable over the Internet. This merely comes from the fact, that services then
had to address firewall issues, NATs (Network Address Translations) and other network
critical hardware and protocols not necessarily present in a LAN. Thus, traversing the In-
ternet instead of a LAN (Local Area Network) increases the complexity of the connection
layer. As discussed in Section 3.3, middlewares have to handle such aspects and provide
developers with a nice, and easy to use interface. This section describes such middlewares
and how they overcome the limits of LAN to deliver services over the Internet.

Client Server

Registry

rebindlookup

method call

method answer

12

3

4

Fig. 3.3.: RMI function call (after [WEB50])

One of the most successful middlewares is Remote Procedure Call (RPC), developed in
the 1980s by Birell and Nelson [4]. At that time, most programming languages were
procedural (see Andrew Freguson [WEB1] and as pointed out by him, Wikipedia 2 for
a more recent list) and so is RPC. RPC allows developers to call procedures located on
physically separated machines, just as if they were local. By that, RPC makes calls to
distant procedures transparent to developers (it is controversial whether such middlewares
should be transparent to the developer or not) and lets them work with them as they
would work with any other procedure. Having processes running on different machines
communicating with each other is a requirement for n-tier applications. Thus, RPC is
an enabling factor for the first 2-tier systems. Additionally, RPC defines concepts still
used in any remote service environment like the Interface Definition Language (IDL),

2http://en.wikipedia.org/wiki/History_of_programming_languages (last accessed Feb 4, 2015)

http://en.wikipedia.org/wiki/History_of_programming_languages
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a directory and a naming service to find appropriate services available on the Internet;
dynamic binding, which allows for selecting a concrete service only at runtime. Figure 3.3
shows the necessary elements for calling a procedure on a remote machine. Even though
the figure shows the implicated elements in a RMI method call, the sequence is similar
in any RPC-based system. First, the service provider registers itself to some directory
service (called registry in the case of RMI). From this point on clients can find this service
by issuing look-up commands to the registry. Once a suitable service is found, client and
service provider can exchange directly.
RPC was very popular and is still widely used, for many reasons. It is built for distributed
architectures, that is, it allows projects to embrace such architectures without any hassle.
Further, it is built to handle all network related tasks and does so transparently with the
help of an IDL leaving the developers with just the core business logic to take care of. In
their utilisation, remote procedures are no different from local ones, therefore, developers
don’t have to learn new programming paradigms, they can continue to write applications
as they would normally write them. Another success factor of RPC is its availability
for many programming languages. For example, Java calls its RPC implementation Java
RMI. Since Java is an object oriented language, calls to methods, whether they are local
method or distant ones are handled in an object oriented way. Thus, RMI does a little
more than bare RPC but, basically, both are very similar.

3.5. Web Services

The W3C describes a Web service as [WEB71]:
“A Web service is a software system designed to support interoperable machine-
to-machine interaction over a network.”

Thus, all the required elements to create web services are in place: different processes run
on separate machines, allowing for machine-to-machine communication. Furthermore,
these machines are connected to some network, which might just be a LAN or equally
the Internet. Additionally, some middleware like RPC (Remote Procedure Call) handles
the communication between them. Lastly, standards like XDR in the past and eXtensible
Markup Language (XML) for modern web services guarantee their interoperability. To
fulfill these requirements, middlewares need to introduce some standards to define pro-
tocols and select sockets and port numbers, thus increasing the interoperability between
services issued from different sources.
At roughly the same time as Java proposed RMI as the solution to remote calls, the OMG
introduced its own solution, Common Object Request Broker Architecture (CORBA).
Yet, neither of these two approaches could win the competition and a third approach
became the standard for web services. The W3C definition of a web service also reflects
this situation [WEB71]:

“A Web service is a software system designed to support interoperable machine-
to-machine interaction over a network. It has an interface described in a
machine-processable format (specifically WSDL). Other systems interact with
the Web service in a manner prescribed by its description using SOAP mes-
sages, typically conveyed using HTTP with an XML serialization in conjunc-
tion with other Web-related standards.”
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Therefore, a web service has to describe its interface in WSDL (Web Service Description
Language) and exchange XML serialized SOAP (Simple Object Access Protocol) messages
over HTTP. Clearly, the major components of RPC have influenced this definition. Web
Service Description Language (WSDL) is the chosen IDL for web services, UDDI for the
directory and naming service and SOAP for the message format. Additionally, SOAP
web services can be bound dynamically. This feature is heavily used in business processes
and exploited by BPM.

Fig. 3.4.: Market-Share of different web service technologies

For a long time this was the only definition of a web service. Whereas it has the merit
of being very precise, it also excludes all other architectures from being called a web
service. However, today, several approaches to delivering services over the Internet can
be identified. Figure 3.4 shows the evolution of the market-share of selected web services
technologies over twelve months [WEB48]. Clearly, the two main competitors in this
domain are SOAP and RESTful web services. All others are either derivates of these two
or have a negligible market share. RESTful and SOAP in top position is not surprising,
and whether REST or SOAP takes the first place depends on the source. Whereas, the
programmableweb gives a detailed overview of the current landscape of web services, it
only takes into account publicly available services. However, the strength of SOAP web
services are business environments where many business process frameworks strongly
depend on them. Yet, the programmableweb does not take into consideration private
and enterprise web services. Nonetheless, whether private and enterprise web services
are considered or not does not change the fact that SOAP and REST are the two most
popular families of web services. At least in the public domain, it seems that RESTfull
web services are the most popular architecture for designing web services. Over more
than a twelve month period, its market-share was always more than 60%. Going back
to 2011, its market share was even of 73%. The second biggest family of web services is
SOAP [17].
Today, according to programmableweb [WEB48], most web services belong to one of
the two big families of web services: (1) WS-* services, following the W3C s definition
and (2) RESTful and RESTlike web services. However, plenty of other families exist
like XML/JSON-RPC or Javascript. All come with their own architecture, tools and
conventions. Therefore, a more suitable definition of a web service would be:
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Definition 1 (Web Service)
A web service is a software component supporting interoperable machine-to-machine

interactions over a network. Each component is deployed in a supporting container,
giving it a life-cycle and ensuring communication with the outer world. It has a well
defined API and produces and consumes standardized messages over a well defined
protocol.

While this definition is less specific than the W3C one, it has the merit of not favoring
any particular technology or architecture. However, it still outlines the 4 most important
principles a service must fulfill to be a web services: (1) Addressability and Connectivity,
(2) a lifecycle bound to a container, (3) a well defined API and (4) a standardized protocol.
The above definition furthermore introduces the concept of components and containers,
which will be discussed later (see Section 6). The next two sections illustrate how these
principles are applied in the two biggest families of web services.

WS-*

The WS-* family of web services consists of several technologies and architectures to
provide a service layer over the Internet, targeted for machine-to-machine communication.
In the late 90’s, the computer science world was enthusiastic about the web and the
new possibilities regarding how to structure applications and provide machine-to-machine
services. Since Microsoft’s DCOM only worked well in LAN environments, but not the
Internet, a new way of delivering services needed to be found.
Dave Winter, developed at that time the XML-RPC (Extensible Markup Language Re-
mote Procedure Call) specification, a new way to refer to methods living on other ma-
chines over a network. One of the strengths of Extensible Markup Language Remote
Procedure Call (XML-RPC) is the independence of programming languages and operat-
ing systems. The specification allows for easy implementation in various programming
languages. Over the years, this specification evolved and finally became the WS-* services
based on SOAP.
SOAP web services are still widely used principally in enterprise environments and ESB
(Enterprise Service Bus). The architectures and the tools evolving in this universe have
become so specialized over the past decade that they only understand SOAP. This is, for
example, the case of BPM (Business Process Modeling) where the specification (although
not explicitly) foresees that a service call is automatically a SOAP call.
Regarding Definition 1, SOAP web services fulfill all four principles. A SOAP web ser-
vice is addressable. Generally, each SOAP web service has one URL (Uniform Resource
Locator) serving as entry point. This URL holds the web service description file (WSDL)
and also serves as the target URL for client requests. Since these web services generally
don’t depend (at least externally) on other web services, their connectivity is very weak.
At most, since the WSDL contains links to each available method, this can be interpreted
as some sort of connectivity. SOAP web services are generally deployed in a container,
for example, services written with Java and C#. Each container has its own method of
component deployment and the steps necessary from uploading a component to having
the application server routing requests to this component. These steps are commonly
called lifecycle and depend on the application server but also on the component to de-
ploy. WSDL ensures that each SOAP service has a well-defined, documented API. This
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Fig. 3.5.: SOAP in the OSI Stack (modified form [B21])

documentation is sufficient to build simple clients automatically (using SOAP UI, for
example). Since this description file is the result of a compilation, it is always up-to-date
and reflects the current state of the API. Lastly, SOAP web services use a well-defined
protocol to consume web services, called SOAP [17] . This protocol lies on top of HTTP
and uses the latter as a transport protocol. It is also this point that most people criticize.
In fact, SOAP is an application protocol sitting on top of the protocols composing the
application layer (see Figure 3.5), which clearly violates the OSI stack. Additionally,
SOAP web services use other protocols for secondary tasks. For example, the web service
discovery is handled by UDDI (Universal Description Discovery and Integration) [8].

REST

The second largest family of web services is Representational State Transfer (REST).
However, unlike RPC, REST is an architecture not a technology nor an implementation.
Its foundations goes back to Roy Fielding’s thesis in 2000 [14] where he describes an archi-
tectural approach to delivering services over the web. During his Ph.D. studies, he worked
together with Tim Berners-Lee and a few other researchers on the HTTP/1.1 [rfc2616]
specification. The architectural implications of this specification and a few more reflec-
tions are the basis of Fielding’s doctorate. The four necessary principles according to
Definition 1 are all verified by the architectural constraints enumerated by Fielding. The
ins and outs of RESTful web services are an important point in this thesis and discussed
in detail in Chapter 5.
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3.6. Key Concepts introduced in this Chapter

Connecting multiple computers together was the next logical step. These networks, be
they ARPANET, the Internet, a LAN or any other network of machines, opened new
perspectives. Whereas one of the first needs is personal communication (email, IRC ),
remote computation quickly becomes just as important. Today there are many different
types of services delivered over a web. The most prominent ones are based on the WS-*
stack and RESTful (and also RESTlike) services.
Both have their advantages and disadvantages, Pautasso et al. [64] compared lightweight
REST services with their big counterpart WS-* and concluded that there is no winner.
The best approach to choose should be use-case dependent. Unfortunately, big companies
tend to choose “big web services” without asking if there might be a better approach.
RESTful web services are a key architecture for the WoT and the xWoT as will be
introduced in Section 8.2. The reasons for useing REST as a requirement for the WoT
are manifold. Usually the smart devices composing the WoT are quite simple and don’t
have much CPU (Central Processing Unit) power, therefore, they usually can’t run fully
blown WS-* services. Additionally, REST web services are loosely coupled in many
aspects [63] and in general, loose coupling is a positive aspect of any architecture and
software. REST web services always perform better in terms of coupling, whether in the
discovery, the model or the generated code. Finally, REST is built on the success of
widely accepted and used standards. The Web became popular because of its properties
and the same applies to web services. Whereas many are afraid of consuming a WS-*
service and non tech-savvy users are unable to exploit them, everybody can consume a
RESTful web service.
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4.1. Introduction

Chapters 2 and 3 describe how the Web evolved through its iteration from the very simple
HTTP 0.9 to today. Furthermore, the notion of services over a network and the different
approaches to delivering them have been outlined. This chapter focuses on a special kind
of service: services for physical objects.
In most offices the digital revolution has already taken place. Writing reports on a
computer using a text processing engine, making online searches or simply writing emails
to inform co-workers about a new youtube film about cats has become the standard. The
digital revolution has also modified large parts of people’s lives outside the offices. Today,
it is almost more common to communicate over some messaging application (facebook
chat, Hangouts, XMPP, Whatsapp to name a few) than telephoning somebody directly.
Comparing prices and reading through reviews before buying a new product is normal.
Booking flights, hotels and cars online is no longer a dream but a reality [WEB70]. This
means that large parts of our lives are already virtual.
However, there is still a big gap between the virtual and the physical world when it comes
to everyday duties like shopping, home automation and so on. This gap is mainly due to
the simple fact that shopping does not easily translate into a virtual action. The same
holds true for home automation. Whereas opening the roller blind might be an easy
task for most humans, it is quite complicated to have this task executed by a device.
Complicated does not necessary mean that the electronics composing such a device is
complicated; it can also mean there is an excessive cost to install a suitable device or
designate a noticeable amount of knowledge to use the device.
The smart fridge is maybe the most prominent example of a simple task difficult to carry
out in the virtual world. For years, vendors have tried to build a self-refilling fridge based
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Fig. 4.1.: The world is composed of the Internet plus everything else. Yet, both are
disconnected

on several facts like the actual content, user preferences, personalized shopping lists etc.
So far, none of the presented systems is really viable to install in a house. The problem
here is less the fridge than its surrounding. Shopping centers, for example, would need to
provide some sort of communication interface through which this fridge could order new
food. Hence, as long as these external dependencies are not met, the fridge will never
really work. Figure 4.1 describes this situation: the INTERNET island is where services
live and can communicate. In this part of the world, everything is connected and can
interact with everything else. However, the parts not living on this island are excluded
from this communication. There is simply no way of having these things talk to each
other
The domain of ubiquitous computing tries to find novel approaches on how to make the
computer disappear from everyday life and bring such objects to virtual life. In the past,
we shifted from one computer for a city, to one computer for a person (the Personal
Computer) to many computers (for a person). Although this last pragma can already
be considered true through the abundance of smart phones, tablets, phablets and other
portable devices, they are usually not ubiquitous and not specialized for one task. The
industry proposes specialized hardware for home automation systems. However, today
these systems often evolve in a closed ecosystem making it impossible to integrate new or
already established devices into them. This plus the high price tag reserve these systems
to only a handful of persons in the world.
The Internet of Things and the Web of Things are trying to come up with new solutions to
such problems. To achieve this goal, they take a radically different approach. Instead of
focusing on the process (like home automation systems) or one particular object (like the
fridge), they enhance any object living in the physical world with a virtual representation
which a user can interact with in the virtual world. The physical and virtual world are
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linked together so that a change in the physical world is reflected on the virtual side and
vice-versa. Following this paradigm still does not solve the smart fridge problem discussed
earlier but it allows the building of millions of smart devices delivering information to the
world. Therefore the IoT and the WoT is a twofold vision where things not only have a
physical manifestation but also an equivalent virtual one.
Definition 2 (IoT - WoT )

The IoT and the WoT both enhance physical objects by adding a virtual counterpart.
These enhanced objects become smart objects and are also called Things. From this
point on, it does not matter whether the Thing is manipulated physically or virtually,
both have the same result.

In the vision of the IoT and WoT, millions of smart devices enhance physical objects and
make them available to the virtual world. It it is then possible to take advantage of the
delivered capabilities to build novel applications at almost no cost. Already today many
offices have electronic roller blinds. However, implementing a mechanism where they open
and close depending on several factors like the ambient luminosity outdoors, date and
time, weather and so on, would be quite cumbersome and very expensive. Additionally, it
would be quite challenging to adapt such a system to changing needs. Here the IoT/WoT
can help out. Instead of building custom software and closed systems, each thing in the
physical world becomes smart. Implementing the automatic roller blinds can then be
done with only a few web services calls.
Several sources state that the number of smart phones outnumber humans [WEB35,
WEB63, WEB62]. The same statement will become true in a not too distant future
for smart devices taking an active part in the web and exchanging data. Most of the
time, these smart devices have only limited capabilities (be they battery life, bandwidth,
CPU cycles etc. . . ) influencing their implementation and behaviour. Regardless of these
limitations, smart devices need to be small and robust. Whereas this is quite easily
achieved for the electronic part, it is already more difficult for the API they are providing.
This chapter discusses two approaches to building smart devices. The first one, the IoT is
historically interesting as it is the foundation of any smart device. The second approach,
the WoT is interesting for the scope of this thesis.

4.2. The Internet of Things

As the name suggests and as discussed in the introduction, the Internet of Things is an
Internet where Things play a major role. However, this does not indicate which internet
is meant nor which objects can participate. Commonly, it is agreed that although there
are several separate networks, sometimes joined together, by Internet we always mean
the “Network of Networks”. Therefore, the IoT is the same Internet as the one we use
every day to write emails and book flights. The Things in IoT designate any physical
manifestation. Therefore, anything can be a Thing, a book, a chair, a car, the weather,
the temperature, etc. The aim of the IoT is to provide these Things living in the physical
world with a virtual counterpart and thus embed them into the virtual world.
Back in 1999, Kevin Ashton mentioned the term Internet of Things for the first time in
a presentation about supply chain management at P&G [WEB59]. At that time, tagging
objects and following them through a whole process was a brand new approach in supply
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chain management. The automobile industry in Japan, for example, invented Quick-
Response codes and attached them to each part of a car. These allowed machines to assist
the workers during the assembly of cars and also introduced some sort of quality control to
ensure that all the required parts are attached together. Another fundamental technology
to support this vision of supply chain management is RFID tags. These passive electronic
circuits can store a few bytes (usually an ID, but it might be any string, like an URI).
With the emitted energy of the reader, the RFID tag has sufficient energy to send back
the content it holds. Whereas both approaches are still used today, QR (Quick-Response)
codes have gained momentum over the past few years, principally through mobile phones,
where they are a convenient way of sharing information. In the consumer world, RFID
tags are almost non-existent. Their fabrication, and also the necessary infrastructure to
read them, is simply too expensive. Another similar technology gained popularity in the
consumer world: Near Field Communication (NFC). Nonetheless, RFID is still widely
used (for example, in the clothing industry to prevent theft and identify counterfeits).

Fig. 4.2.: The IoT world, where everything is connected

These RFID tags, QR-codes, NFC (Near Field Communication) tags and the underlying
idea of identifying objects are the foundation of the IoT as we know it today. Based on
the work presented at P&G, Kevin Ashton founded the Auto-ID center at MIT (Mas-
sachusetts Institute of Technology) in 1999, later renamed the Auto-ID labs, and now has
6 labs around the world. This also marked the birth of the IoT. In the beginning, the
Auto-ID center researched the implications of technologies like RFID and objects tag-
ging for supply chain management. The goal was to propose a standard for how objects
should be tagged. The Electronic Product Code (EPC) and its supporting infrastructure
EPCIS (Electronics Product Code Information Services) , later ratified by the GS11, a
non-profit organization active in supply chain management, is the result of these efforts.
EPC (Electronic Product Code) and the EPCIS are also the most notable outcomes of

1http://www.gs1.org/
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the early period of the Auto-ID center. By adding a tag to an object, it is possible to
identify it. In its simplest form, the tag only contains a unique identification. Upon
entering this ID into a system, the user can gain some (virtual) information about the
physical product. This is also the approach chosen by the EPC systems. Whenever a
tagged product enters or leaves a control point in the supply chain, a reader scans it and
saves this event in the global EPC database. In the end, when the client finally holds the
product in his hands, he can check where in the world this product has been simply by
scanning its tag.
Since that time, the Auto-ID labs have evolved and are now an active promoter of the
IoT. Amongst others, the Auto-ID labs organises a bi-annual gathering for researchers
interested in this topic. Yet, the IoT has never managed to lose this image of RFID
tracking architecture. Still, this early tracking did introduce the notion of sensing and
opened the door to other applications. Instead of just identifying objects and tracking
them, the sensor itself can be of interest. In the case of a temperature sensor, the same
reasoning applies to actuators enabling devices to act on their physical environment.
Enabling things to sense and manipulate their environment is the first step to building
smart devices. According to Gérald Santucci [35], such smart devices are not only meant
to interact with humans but also — and more likely — to interact with each other. The
IoT is a prolific research topic of research around the world. Europe is interested in
the IoT and has started several extensive research projects like IoT-A [WEB23] . The
European project “Internet of Things Initiative” has released, in the form of a comic book,
a collection of example use cases which could benefit from smart devices and the IoT.

Internet of Things

Fig. 4.3.: Different commercial IoT products

Today there is already a large palette of IoT consumer products and there will be even
more in 2015. The IoT was one of the hot topics of this year’s CES edition in Las
Vegas [WEB60]. Many vendors presented their solutions and products for the IoT. Home
automation seems one pushing factor for the IoT. Google has its Nest2, Apple has
HomeKit3, Samsung has tried to start their eco-systems with smart TVs and so on.
Regarding the number of available products, connected light bulbs seem to be for many
companies the entry point to the IoT universe. Philips, for example, proposed with
Hue, a whole ecosystems of connected lamps, light bulbs and televisions. Whereas this

2https://nest.com/
3https://developer.apple.com/homekit/
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trend is not new, what has changed from previous years is the openness of the presented
solutions. Vendors understand that the DIY (Do-it-yourself) community can make a
product a success. Therefore, vendors have shifted from a closed ecosystem to an open
one, giving the users the power to adapt and tweak the system.
The IoT is similar to the way the Internet works; the difference lies in the participants.
Whereas the participants of the classic Internet are humans, participants of the IoT are
smart devices, also called Things. Regarding the way two parties communicate, the
IoT does not give any guidelines, so, two participants can use just any communication
protocol. Being indifferent to the way a smart device communicates allows users to
choose the most suitable one for each situation. If power consumption, for example, is
a considerable problem, adapted protocols like ZigBee, 6LoWPAN [34, 7] or CoAP [75,
rfc7252] can be used. On the one hand, this approach allows a maximum of flexibility and
also opens the door for WSN (Wireless Sensor Networks). On the other hand, it leads to
the fragmentation of the different participants and incompatibilities between them.

Fig. 4.4.: Fragmentation as a result of the no standards approach

Figures 4.4 and 4.3 illustrate the biggest problem of the IoT. Each vendor mandates his
own approach on how smart devices are connected and communicate with each other.
Each approach considered in complete isolation seems to work will, although some ap-
proaches work better than others. However, on a global, vendor independent scale, the
problem becomes clear: smart devices from vendor A are not compatible with smart
devices from vendor B. This leads to several disconnected islands and many frustrated
consumers. Such a fragmented situation is not new in computer science (see wireless
charging standards for example) but fragmentation is also a challenge for vendors of home
automation boxes (like those from Vera [WEB68]). It is almost impossible to create a box
that is compatible with 99% of smart devices at an attractive price. Additionally, these
boxes rapidly become obsolete since they would need additional or upgraded hardware
to keep up with new products hitting the market. Generally, such fragmented situations
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are bad and consumer are not willing to invest in one system or another due to concerns
about making a bad choice.

4.3. The Web of Things

The WoT is similar to the IoT in the sense that both deal with connected smart devices.
In the news media, these terms are many times mixed up and references to the IoT
often mean the WoT. This is understandable, as the differences between the two might
seem small at first glance. Yet, their implications are big enough to allow the WoT and
the IoT to be told apart. Compared to the latter, the WoT takes a radically different
approach how devices communicate with each other and imposes some standards. These
constraints are necessary to address and solve the problems facing the IoT. In order to
allow the disconnected islands of Figure 4.4 to communicate, the Web of Things mandates
for RESTful web services. This means that regardless of the kind of smart device or its
physical limitations, to participate in the WoT it has to offer its API over a RESTful web
service. This new situation is depicted in Figure 4.5 where the different smart devices of
Figure 4.4 are now able to communicate.
Definition 3 (WoT )

The WoT enhances physical objects with a virtual counterpart representing the latter
in the virtual world. In contrast with the IoT, the WoT mandates the strict application
of RESTful principles to its APIs.

Fig. 4.5.: Heterogeneous interactions in the Web of Things

The obvious advantage of this approach is that WoT smart devices are embedded into
the Web like any other webpage, therefore, they benefit from the information and services
already available on the Web. When a user browses the Web he is unable to tell whether
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the current response comes from a smart device or an ordinary webpage. Although
different in their inner guts, they appear the same to the user. As a side effect, this
also brings devices from different vendors to a common denominator and allows them
to seamlessly exchange information. Since the whole Web content is accessible to smart
devices, having a connected toaster posting messages on twitter whenever the toast is
done becomes an easy task. Almost no special knowledge is needed to create such mashup
applications. Pautasso et al. [64] discuss the advantages of RESTful web services over the
traditional WS-* and conclude that both have their advantages. However, in the field of
constrained smart devices, REST is certainly the better choice of two.
Mashup is the art of mixing different sources together to create new content. Mashups
exists in the music and video industry but also for books, as they do in the digital world.
Yahoo released the Pipes4 editor, a graphical frontend to blend information from different
sources in 2007, as explained in Figure 4.6. The underlying idea is to allow users to create
websites tailored to their interests by mixing the content of different RSS (Really Simple
Syndication) feeds. This idea is still valid for the WoT. Although, raw sensors and
actuators are the building blocks of the WoT, taken in isolation they don’t bring any real
added value for customers expect in combination with some logic do they create appealing
scenarios. A weather forecast service mashed up with a smart alarm clock, for example,
can wake the user up 10 minutes earlier if the temperature is below 0� C. Although, such
scenarios appeal to clients, the real added value of the WoT lies not in the scenario but
in the ease of creating and adapting them to the needs of every customer.

Fig. 4.6.: Yahoo Pipes example flow

The ecosystem of Philips Hue smart lightbulbs is also a great success story of the WoT.
Although the individual smart lightbulb communicates over a non-disclosed ZigBee pro-
tocol and is therefore outside the scope of the WoT, Philips was smart enough to provide
a gateway offering a RESTful façade to communicate with the lightbulbs. This makes
the product very appealing to users and many projects are built on top of Philips Hue.

4http://pipes.yahoo.com
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These projects range from alarm clocks simulating the sunrise [WEB46] to immersive
multimedia systems [WEB45]. These projects show that: (1) there is a huge interest in
smart devices and (2) users are not necessarily power-users. The WoT also allows new
players to enter the game. The Koubachi plant sensor [WEB29] for example, started
as a research project at the ETH Zürich and is now an internal company selling WoT
compliant plant sensor. Although, it is not always advertised, vendors of smart device
solutions have seized the advantages offered by RESTful APIs and often provide such an
interface for their products.

Considering the reference implementation of REST for Java, JAX-RS [WEB26], it is quite
easy to create RESTful APIs. Take the example of a smart thermometer. On the physical
side, the thermometer is composed of a thermistor sensor like a DHT11 measuring the
ambient temperature but also the humidity. Furthermore, assuming that there is a class
Thermistor.java responsible for talking to the raw hardware, then it is just a matter of
having one other Java class to create a RESTful interface and embed this thermometer
into the WoT. Listing 4.1 shows that it is a matter of a few Java functions, each one
handling one type of HTTP request. Additionally, the listing shows three defined REST
resources: the first hvac represents the smart thermometer (lines 8 and 12-22), whereas
the second and the third represent the temperature (lines 24-30) and the humidity (lines
32-38) readings respectively.

1 package ch.unifr.diuf.hvac.service;

3 import javax.ws.rs.GET;
4 import javax.ws.rs.Path;
5 import javax.ws.rs.Produces;
6 import javax.ws.rs.core.Response;

8 @Path("hvac")
9 public class ThermistorResource {

10 private static Thermistor dht = new Thermistor();

12 @GET
13 @Produces({"application/xml", "application/json", "text/xml"})
14 public Response getHVACInformation() {
15 ...
16 }

18 @GET
19 @Produces({"text/html"})
20 public Response getHVACInformationHTML() {
21 ....
22 }

24 @Path("temperature")
25 @GET
26 @Produces({"application/xml", "application/json", "text/xml"})
27 public Response getTemperature() {
28 int temperature = dht.getTemperature();
29 ...
30 }

32 @Path("humidity")
33 @GET
34 @Produces({"application/xml", "application/json", "text/xml"})
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35 public Response getHumidity() {
36 int humidity = dht.getHumidity();
37 ....
38 }
39 }

List. 4.1: RESTful interface for a smart thermometer

What is true for the creation of RESTful web services is also true for their consumption.
Whereas for any other type of service, the corresponding client infrastructure is necessary
to use it, users already have the necessary tools to consume RESTful web services installed
on almost any modern computer (PC, smartphones, tablets etc.). The easiest way to
consume a RESTful web service, and thus communicate with WoT smart devices, is by
using a browser. For most gadgets living in the WoT, almost any browser will fit as long
as it supports HTTP/1.1. Figure 4.7 shows what a response from the code snippet of
Listing 4.1 could look like. Upon requesting the top level resource, the user gets a nice
looking HTML page containing some information about the smart device including the
sensor readings. This shows that browsing smart devices is roughly the same as browsing
any other web-page and therefore easy. However, since smart devices are often built for
machine-to-machine interactions, the results can vary. Often, a smart device just sends
back some raw XML or JSON data and no fancy HTML form to manipulate the device.
Additionally, these interactions are mostly limited to GET information.

Fig. 4.7.: Browsing the smart thermometer with Google Chrome

To send information back to the server with a browser (for example, to change the state
of an actuator), the requested HTML pages have to include forms. Whether this is the
case or not, depends on the actual smart device. Yet, the HTML representations are often
quite basic and don’t include any fancy parts like HTML forms. One way to overcome this
limitation is to use browser plugins like Advanced REST client for the Google Chrome
browser or to rely on common command line tools cURL. These tools are available on
most platforms and have been around for a long time (1997 for cURL). Choosing one
over the other is often a question of personal taste (see emacs vs. vi). Whereas the
Advanced REST client comes as a nice looking GUI (Graphical User Interface) with many
features, cURL is only a command line tool. Both have their advantages and depending
on the situation, one tool might be easier to use than the other. Listing 4.2 shows on
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lines 1 and 2 a GET request to retrieve the same resource as on Figure 4.7. The only
difference lies in the fact that cURL retrieves a JSON representation instead of a HTML
webpage. Additionally, in lines 3 and 4, Listing 4.2 also shows an example of an actuator
manipulation. With a PUT, request a smart socket is switched off. In both cases, the
server responds with a representation of the requested/modified resource. Furthermore,
the reader can note that the command issued on line 3 has an effect on the smart device
and therefore also on the representation. Whereas on line 2, the electricity attribute
is 1, meaning that the socket is switched on, the same attribute is 0 on line 4 after the
PUT request.

1 ruppena@tungdil:~: curl -H "Accept: application/json" http://192.168.1.10:9000/hvac/
2 {"temperature": {"@units": "celsisus","@precision": "2","#text": "21.70"},"humidity":

,! {"@units": "celsisus","@precision": "2","#text": "49.70"}, "electricity":"1", "
,! timestamp": "1420793672"}

3 ruppena@tungdil:~: curl -H "Accept: application/json" -H "Content-Type: application/
,! json" -X PUT -d ’{"electricity":"0"}’ http://192.168.1.10:9000/hvac/

4 {"temperature": {"@units": "celsisus","@precision": "2","#text": "21.70"},"humidity":
,! {"@units": "celsisus","@precision": "2","#text": "49.50"}, "electricity":"0", "
,! timestamp": "1420793751"}

List. 4.2: Using cURL to interact with a REST service

4.4. Key Concepts introduced in this Chapter

The evolution of objects towards smart objects is a reality. Ubiquitous systems, home
automation, self-driving cars are only a few examples where the technological advances
have been huge in the past few years. However, these technologies remain expensive and
not ready for mass consumption. Although many car vendors have a working prototype
for a self-driving car (Google is still a pioneer in this domain), none are generally avail-
able. The same applies to home automation and other ubiquitous systems. They are
often monolithic and need to be permanently installed by professionals. This is definitely
only an option for (rich) property owners. Yet, the IoT and the WoT make these fields
accessible for the masses. The WoT, in particular with its mandate for a RESTful inter-
face makes it very easy to combine smart devices from different sources and vendors and
create novel and innovative applications.
Whereas in the beginning the IoT was more about supply chain management and tagging
objects with RFID tags or QR codes, it has since evolved and its primary application
is today in the field of actuators and sensors making ordinary objects smart. From this
perspective, the WoT diverged from the IoT and imposed its own standards, which are
adopted here for the remainder of this thesis. Nowadays, even big companies introduce
products ready for the WoT (Philips Hue [WEB44], Koubachi Plant Sensor [WEB29],
Apple’s HomeKit [WEB20]) and use it as a marketing tool.
Platforms like Arduino [WEB5], the Raspberry Pi [WEB49] and their corresponding
community websites offer the necessary tools and knowledge for advanced users to build
their own smart devices and thus their own vision of the WoT. Sometimes, prototype
projects based on these platforms can succeed through fundraising to develop a mass-
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market ready product. It seems this is just the beginning; 2015 will be the year of the
IoT, where everything will be connected (even pacifiers can become smart [WEB41]).
Although the WoT and RESTful web services simplify the integration of smart devices
issued from different sources, vendors are still challenged when it comes to designing such
smart devices. Compared to the IoT, the WoT already restricts certain design choices,
but there is still a high degree of flexibility when it comes to design a smart device’s
RESTful API. One of the core contributions of this thesis is a meta-model to help
smart device creators design these APIs. In comparison with other models and reference
architectures for smart devices, the xWoT meta-model can work in a very efficient way
since its outcome is a REST hierarchy representing the physical device.
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Foreword

The aim of this thesis is to propose a way to automatically generate WoT components
living in the Internet with a RESTful interface.
Model Driven Architecture is a popular approach in software engineering to automatically
generate code from models. Starting with a model, generators are able to create project
skeletons which can already implement some core functionality or at least presenting
the core structure. However, these generators are not transcendent; they can only work
with a given number or a family of models. A common way to create models respecting
guidelines and sharing some properties is meta-modeling. Therefore, to accomplish the
goal of automatically generating WoT components it is necessary to introduce a meta-
model for the latter (and more precisely, for the xWoT as mentioned in Chapter 8). This
meta-model guides the creation of models for any imaginable scenario within the scope
of the xWoT.
The WoT, although homogeneous regarding the outer interface (REST) is heterogeneous
regarding the deployment of the different parts composing it. Introducing a component-
based architecture gives these different parts a common structure. Additionally, this
component structure later allow different basic components to combine and form new and
bigger components. Thus, a scenario managing all smart light bulbs in a house can be
built on top of a scenario for one particular light bulb. This visions, introduces the notion
of deployable and reusable components which can be combined into new components.
The outer interface of any of these components is RESTful. This is a requirement of the
WoT and at the same time greatly simplifies the semi-automatic component generation
from xWoT models. Yet, to define the common structures of this outer interface in
the meta-model and to accurately translate into code in a later step requires a deep
understanding of the underlying principles is necessary.
This part covers the three above mentioned points and discusses them in detail. Chap-
ter 5 introduces the concepts of REST, RESTful architectures and Resource Oriented
Architectures (ROAs). Chapter 6 introduces the notion of software component as defined
in the literature. The work presented in this chapter serves as a basis for the xWoT com-
ponents. Finally, Chapter 7 formally introduces meta-models and meta-modeling from
two different approaches: 1. with the semiotic triangle and 2. with languages.
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5.1. Introduction

In contrast to the IoT, the Web of Things imposes REST as an architectural style for
all smart devices. According to Guinard [19] this permits the easy combination of smart
devices produced by different vendors. Thus, designing WoT compatible smart devices
always requires a deep understanding of REST and the underlying HTTP. REST is a
successful choice when designing new interfaces. Yet, not all interfaces that claim to be
REST are truly REST. This merely comes from the fact that not all agree on the scope
of terms like REST, RESTful and ROA.
This chapter introduces each of these terms accurately and within their contexts. The
first part, discusses HTTP, its evolution and how it works. This also covers a brief
introduction to the different authentication mechanisms. In the second part, this chapter
then defines a RESTful architecture according to R. Fielding. Based on these definitions,
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this section also gives some insights into how others interpret the REST architectural
style. Finally, the third part introduces Resource Oriented Architecture, Richardson and
Ruby’s view of the REST architectural style applied as to services.

5.2. HTTP

HTTP (Hypertext Transfer Protocol) is a protocol to exchange data over the Internet.
It is based on a client-server architecture, where the client requests content and the
server delivers it. This is also called the request/response paradigm. Commonly, the
combination of the Internet with the HTTP protocol is called the Web. The term Web
is commonly used to designate that something uses HTTP as a fully fledged application
protocol as is the case for the WoT, which makes it different from the IoT. Whereas
the latter connects Things over the Internet without imposing any protocols, the former
imposes HTTP as its underlying application protocol. HTTP is mostly used by web-
browsers to fetch content (mostly HTML, CSS (Cascading Style Sheet) , Javascript and
Images) from remote servers and display it. With respect to the OSI network layers [B21,
36], HTTP sits in the top-most layer and so, is considered as an application, although
some applications miss-use it as a simple transport protocol (see Section 3.5).
By its nature, HTTP is a stateless protocol. If an application on top of HTTP needs to
track a state, like that of a shopping cart in e-commerce applications, then it needs to
implement its own state tracking mechanism. Today this is commonly done by storing
a long unique identifier as a cookie in the browser identifying a session on the server.
Using this mechanism, the application logic can uniquely assign each request to a session.
Nonetheless, sessions greatly increase the complexity of applications and the supporting
infrastructure. Whereas simple HTTP applications do scale up well, load-balancers need
additional application-level logic when the applications implement some (application)-
state (see also Section 5.4.2).

5.2.1. Evolution of HTTP

HTTP/0.9

HTTP was first introduced by Tim Berners-Lee, Roy Fielding and other researchers at
CERN in 1991 as set of protocols for the WWW (World Wide Web) project started
two years earlier. This set of protocols also contained the first version of HTML and is
known as HTTP/0.9. In the beginning, only simple text documents could be transmitted
since any other content would have taken too much time to transmit. Additionally, the
only implemented action is GET, allowing a client to retrieve documents from a server.
To request a document, the client first opens a connection with the server. For now it
does not matter whether this connection is Transmission Control Protocol (TCP) or User
Datagram Protocol (UDP). HTTP/0.9 is so simple it can handle both types of protocol.
Once the connection is open (line 1 to 3 of Listing 5.1), the client sends a document like
the one in Listing 5.1 (lines 5 to 6). The document contains the keyword GET followed
by the URI (Unified Resource Identifier) of the requested document. The server responds
by sending back the requested document (line 7).
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1 ruppena@tungdil:~$ telnet www.example.com 80
2 Trying XXX.XXX.XXX.XX...
3 Connected to www.example.com.
4 Escape character is ’^]’.
5 GET www.example.com

7 Hello World!

List. 5.1: HTTP/0.9 GET request

Since GET is the only valid method, it is also used to send data to the server. Listing 5.2
shows an example where the string "Andreas" is assigned to the variable "name" and
sent to the server. Parameters are sent as key-value pairs appended to the URI.

1 ruppena@tungdil:~$ telnet www.example.com 80
2 Trying XXX.XXX.XXX.XX...
3 Connected to www.example.com.
4 Escape character is ’^]’.
5 GET www.example.com/hello_world.txt?name=Andreas

7 Hello Andreas

List. 5.2: HTTP/0.9 GET request sending data

Such key-value pairs are separated from the rest of the URI by the ? sign. Even though
this approach is not suitable for sending large amounts of data to the server, it is still
widely used to further specify what a client is interested in. Therefore, this approach is
often used for pagination mechanisms, where the client specifies which page he needs. In
addition, some web-sites, like Google, use it to submit the user input in the search form
which, makes it possible to bookmark and share given requests. Figure 5.1 shows the key
elements of an URI as defined in [rfc3986] where these key-value pairs are called query.
This key-value approach is still valid today.

foo://example.com:8042/over/there?name=ferret#nose
\_/ \______________/\_________/ \_________/ \__/
| | | | |

scheme authority path query fragment
| _____________________|__

/ \ / \
urn:example:animal:ferret:nose

Fig. 5.1.: URI definition (after [rfc3986, p. 15])

HTTP/1.0

After the publication of HTTP/0.9, five more years and several long discussions passed
before HTTP/1.0 [rfc1945] was completed and released in 1996. It is also the first officially
released version of HTTP and HTTP/0.9 got its version number only after the 1.0 version
was released. HTTP/1.0 is a big improvement over its predecessor. Whereas HTTP/0.9
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was merely a proof-of-concept implementation, its successor, HTTP/1.0, could already
implement all the basic properties of the Web as we know it today. The biggest difference
between the two is how documents are requested from the server. For HTTP/0.9 it is
sufficient to open a connection with the server and send a one line statement to the latter,
which then responds accordingly (see Listing 5.1). HTTP/1.0 keeps the same mechanism,
however, the request contains more detail.
Listing 5.3 shows how a user requests a document. The first line still starts with a verb
indicating what action a client intends to execute. However, instead of only accepting
GET requests, HTTP/1.0 introduces two additional methods. The POST request indicates
that the request contains a body which is to be saved by the server, and the HEAD request
asks for the retrieval of meta-information about the document, which the server delivers
without retrieving the actual document. Additionally, this first line is terminated with the
string HTTP/1.0 to distinguish between the old HTTP/0.9 style requests and the newer
ones. Furthermore, the request contains an optional header section where the client can
specify preferences regarding server behavior. It is important to note that this section is
optional and that, even when specified, a server does not have to follow these preferences
and can just ignore them.

1 ruppena@tungdil:~$ telnet www.example.com 80
2 Trying XXX.XXX.XXX.XX...
3 Connected to www.example.com.
4 Escape character is ’^]’.
5 GET hello.txt HTTP/1.0
6 User-Agent: Mozilla/3.0 (X11; I; AIX 2)

8 HTTP/1.0 200 OK
9 Date: Thu, 14 Nov 2013 14:27:56 GMT

10 Server: CERN/3.0 libwww/2.17
11 Content-Type: text/html; charset=ISO-8859-1

13 Hello World!

List. 5.3: HTTP/1.0 GET request

Compared to HTTP/0.9, the server’s response also contains more information. Instead
of sending back the raw document, the response first contains the string HTTP/1.0 plus
a status code. The string is interpreted by browsers to identify the protocol version used
by the server. The status code indicates whether or not a problem has occurred during
the request. After this first line, the server sends its response-headers (lines 9 to 11).
They contain information about the server and information about the content to follow.
Lastly, the server sends the requested document (line 13), which is then interpreted by
the client.

HTTP/1.1

In 1999, after another 3 years of successful HTTP usage, the research group around
Roy Fielding and Tim Berners-Lee, released the HTTP/1.1 specification [rfc2616]. This
signaled another milestone in the success story of the protocol. Whereas HTTP/0.9 was
merely a draft and HTTP/1.0 the first really usable version, with HTTP/1.1, the protocol
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was ready for modern web applications. HTTP/1.1 still uses the same mechanism for
requesting a document: after a connection is established between the client and the
server, the client tells the server which document he is interested in and further specifies
some headers. In the same way, the server sends back some headers containing meta-
information about the exchange and documents before sending back the latter.
Listing 5.4 shows what a full HTTP/1.1 request looks like. Again, a handful of new
headers were introduced, compared to the previous version of the protocol. For example,
the 6th line of Listing 5.4 shows the new Host header telling the server on which host
the requested document is available. With the growth of the web, the number of services
has exploded. Not every service requires a full server on its own; several applications can
share the same physical machine. This implies that they also share the same IP address.
Thus, web-servers need a mechanism beyond IP addresses to decide to which application
a given request is to be routed.

1 ruppena@tungdil:~$ telnet www.example.com 80
2 Trying XXX.XXX.XXX.XX...
3 Connected to www.example.com.
4 Escape character is ’^]’.
5 GET / HTTP/1.1
6 Host: www.example.com
7 User-Agent: Mozilla/5.0 (X11; Linux x86_64)

9 HTTP/1.1 200 OK
10 Date: Wed, 20 Nov 2013 14:08:02 GMT
11 Server: Apache/2.2.22 (Ubuntu)
12 Last-Modified: Tue, 29 Jan 2013 11:54:41 GMT
13 ETag: "141e70-b1-4d46c0f0f31a2"
14 Accept-Ranges: bytes
15 Content-Length: 177
16 Vary: Accept-Encoding
17 Content-Type: text/html

19 <html><body><h1>It works!</h1>
20 <p>This is the default web page for this server.</p>
21 <p>The web server software is running but no content has been added, yet.</p>
22 </body></html>

List. 5.4: HTTP/1.1 GET request

Most of the other new headers control the cache behavior of the client. Listing 5.4 contains
the request-headers on lines 6 and 7 and the server headers on lines 10 to 18. Whereas
HTTP/1.0 defines a cache as either valid or not, with HTTP/1.1 it can be fresh or stale.
When a cached value reaches its end-of-life, it no longer needs to be discarded. Instead,
it can be refreshed from the server and become fresh again. Additionally, clients can
override this rule and still use stale values. Another mechanisms to further improve cache
utilization is the server header ETag combined with the request header If-None-Match.
If the client already has a copy of a document, but is not sure whether it was modified
since his last visit he can ask the server to respond with the document only if it has been
modified. In earlier versions of HTTP, the only means to achieve the same effect was by
using the If-Modified-Since header. Whereas this works reliably, handling timestamps is
not very user friendly. First, clients have to remember the time at which the document was
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requested and second, all the clocks needs to be completely synchronized. To circumvent
these problems, HTTP/1.1 introduced the If-None-Match header as shown in line 7 of
Listing 5.5. Upon requesting a document, one of the server headers is the ETag (visible in
Listing 5.4 on line 13). This tag identifies the current version of the document. A client
can use this information when requesting the same document again. If he specifies the If-
None-Match header with the value contained in the ETag of a previous request (Listin 5.4
line 13) then, the server will only send back the document if it has been modified since. In
this case, the document was not modified and thus, as depicted in Listing 5.5, the server
does not send back the document. Additionally, HTTP/1.1 introduced some new headers
to facilitate content negotiation regarding a client’s preferred languages, encodings etc
(accept-language, accept-encoding, accept-* ).

1 ruppena@tungdil:~$ telnet www.example.com 80
2 Trying XXX.XXX.XXX.XX...
3 Connected to www.example.com.
4 Escape character is ’^]’.
5 GET / HTTP/1.1
6 Host: www.example.com
7 If-None-Match: "141e70-b1-4d46c0f0f31a2"

9 HTTP/1.1 304 Not Modified
10 Date: Wed, 20 Nov 2013 14:10:37 GMT
11 Server: Apache/2.2.22 (Ubuntu)
12 ETag: "141e70-b1-4d46c0f0f31a2"
13 Vary: Accept-Encoding

List. 5.5: HTTP/1.1 ETag usage

Another big improvement over its predecessors is the re-use of an open TCP (Transmis-
sion Control Protocol) connection. In previous versions, the connection was closed at the
end of each request meaning, that before each request, a new connection needed to be es-
tablished. This was appropriate in the early days when the web was only used to transmit
small, static text documents. However, web-pages became bigger and started to include
images, javascripts and other embedded content included by links to the corresponding
source, meaning that a client could fetch them by issuing a GET request. Therefore, if
a web-page has a lot of embedded content, before HTTP/1.1 the client had to open a
new TCP connection for each element. HTTP/1.1 allows the re-use of an open TCP
connection, which drastically improves the overall performance.

Already HTTP/1.0 had defined more methods than its predecessor. This is also true, of
HTTP/1.1. Whereas, the motivation to introduce the POST method in HTTP/1.0 was
the lack of a proper definition of how to send data from a client to the server, HTTP/1.1
introduced a real discussion about what types of exchange are possible and how they
should be handled. The methods are classified into safe and idempotent methods and
each gets a clearly defined semantics. From this point onwards, there were 8 methods,
the most common being GET, PUT, POST and DELETE.

Since all client-server interactions follow a clearly defined semantics, 25 new status codes
were introduced with HTTP/1.1, raising the total to 40 possible status codes. In addition,
a new authentication scheme, Digest auth, was added to replace the un-secure Basic
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authentication. Yet, history shows that Basic authentication is still popular, mainly due
to its easy setup compared to other authentication mechanisms.

5.2.2. HTTP Components

Chapter 5.2.1 discussed some key elements of the HTTP protocol and how they have
evolved together with the HTTP standard. This chapter discusses its four key elements
more in depth: (1) Headers and how they work, (2) Status Codes, (3) Methods and
their semantics and (4) URIs

Headers

Both, the client and the server exchange meta-information before transmitting the real
content. This meta-information is called the header and is formed of multiple lines of key-
value pairs separated by a comma. Headers are sent before the entity but after the status
line for responses and after the request line for requests. They have existed since version
1.0 of HTTP and their aim is to influence the behavior of the server/client. Although most
headers are not mandatory or strictly applied, they greatly improve the web-experience.
For example, in a situation where a web-page is available in several languages, it would
be great if the server could choose the right language for each client without having to
ask first. Here, the header information can help to select the best matching web-page for
each client. However, headers are not only intended for servers but also for clients.
Client-headers can influence the behavior of the server. For example, the cache mechanism
introduced with HTTP/1.0, allows a user to specify the If-Modified-Since header. If set,
this header tells the server to respond with the document only if its content has changed
since the specified date. In a similar way, the server can send meta-information back to
the client. On example would be the ETag, which later allows a client to ask the server
whether or not it has a new version of a document, in which case it should be delivered.
Thus, client- and server headers go hand-in-hand. Globally, all these headers can be
grouped into four categories:

• Generic-headers are of general interest to the request. Both clients and servers use
these headers since they are not related to the transferred entity. The Date header
is an example of a generic-header.

• Request-headers further specify what the client is requesting, so they can be seen as
modifiers, tweaking the request. For example, the User-Agent header, also visible
in Listing 5.3 and the Accept-* headers are in this category.

• Response-headers are used by the server to send additional information back to the
client. They contain information about the server and about later access. One
example of such a header is ETag.

• Entity-headers further describe the entity. Clients and servers can send entities, if
not restricted by either the request method or one of the other headers. As such,
these headers can be interpreted as meta-information associated with the entity.
This includes information about the size (content-length:), the type (content-type)
and the encoding (content-encoding) of the document.
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According to both, [rfc1945] and [rfc2616], unrecognized headers are treated as Entity-
headers. As such they are forwarded by proxies and will probably be ignored by the
receiver.

Status Codes

Another key element of HTTP is status codes. These codes are like signals sent from the
server back to the client. Through them, a client can easily discover what happened on
the server side; a client can see whether everything went smoothly or whether an error
occurred during the treatment of the request, and if so, what type of error.
Status codes have two parts: a numerical part and a reason-phrase, where the numerical
part is made up of a 3 digit number and the reason-phrase is a string. Both parts can be
taken independently and have the same meaning. Hence, the numerical status code 404
has the same meaning as the reason-phrase "Not Found". The status line of each request
always contains both. The numerical part is intended for web-browser or similar software
whereas the reason-phrase is intended for human users.
Since not all outcomes are always covered by a concrete status code, they are divided
into five categories, each representing one family of possible outcomes:

• 1xx: denotes general information like 101 Continue.
• 2xx: denotes accepted and successfully executed requests.
• 3xx: denotes all types of redirections. To fulfill the request, the client has to take

further actions.
• 4xx: denotes client errors like missing privileges or erroneous URIs.
• 5xx: denotes server errors. They have more symbolic value and the client has often

no influence on them and must abandon.
Just as for the headers, the number of available status codes has grown with each major
version of HTTP. While the first version, HTTP/0.9, had no status code at all, the latest
version HTTP/1.1 has 40 and 25 were introduced with HTTP/1.1, all defined in [rfc2616].
However, protocols extending [rfc2616] may add new status codes. This is the case of the
TLS (Transport Layer Security) extension of HTTP defined in [rfc2817, p. 2] adding a
new status code 426 Upgrade Required. Other protocol extensions defining additional
status codes are: [rfc2616, rfc2518, rfc2817, rfc2518].

Methods

HTTP/1.1 defines a set of 8 methods and their respective semantics regarding client-
server interactions. Of course, this set includes methods for the four CRUD operations
but also some targeted at debugging a connection or identifying a server’s capabilities.
The first four methods in Table 5.1 implement the CRUD interactions with a web-server,
allowing it to create, read, modify and delete content. The other methods are less used
and more intended for debugging.
Further methods exist for derived protocols like WebDAV [rfc2518]. Although WebDAV
relies on HTTP as its underlying protocol, it extends the latter with additional capabilities
to allow direct file manipulation. To achieve this goal, the WebDAV protocol needs a
few additional methods like MKCOL to create a new collection on the server side. Of
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Method Description
POST Creates a new sub-element.
GET Requests a document.
PUT Modifies a given element. If the element at the specified

URI does not exist, it is created.
DELETE Deletes the element at the specified URI.
HEAD Requests a document. The server only sends back the

associated header information without the actual con-
tent.

OPTIONS Checks the server communication options. In the case
of a RESTful service the server should answer with the
WADL (Web Application Description Language) file,
describing its resources.

TRACE Is mainly used to debug client-server interactions. It
allows a client to see what the server on the other side
is receiving.

CONNECT Is used for dynamically switching to a tunneled connec-
tion.

Tab. 5.1.: Available HTTP methods

course, most of these new methods require additional status codes and also supplementary
headers.

5.2.3. URI: Uniform Resource Identifier

In order to request documents from a server, the client needs to uniquely identify the
latter. One way to address a computer on the web is to use its IP address. IP (Internet
Protocol) addresses are dot separated triples each made of digits. As such, one of Google’s
IP addresses is 173.194.40.83. Remembering such complicated numbers is not only
cumbersome but also has other drawbacks: (1) Often, one physical server hosts more
than one service or more than one domain, so the server needs a mean to know which
domain a client’s request needs to be forwarded to. If the only information provided by
the client is the server’s IP address it would be impossible to route the traffic to the
right virtual host, since they all share the same public IP. Besides, humans are very
bad at remembering numbers. This gets worse as the numbers get bigger. Additionally,
the IP address space is divided into separated groups, each managed by a registrar,
which in turn allocates sub-groups to providers. Thus, if a server changes its provider,
it also changes its IP address, which needs to be communicated to all past and future
clients. (2) Additionally, the quantity of devices connected to the Internet has steadily
grown over the past decades to a point where almost no more IPv4 [rfc791] addresses
are available. Of course the solution to this problem is to extend the address space by
making them longer. This is called IPv6 [rfc2460] imposing 32-bit addresses formatted
like fd7b:50c8:4645::c12:c5af:2a53:29be. The IPv6 address space is so huge that
in a foreseeable time-frame there will be more than enough addresses. Yet, this new
abundance of addresses raises other questions like the privacy of users. However, these
topics are outside the scope of this thesis. Yet, IP addresses are only half of the solution.
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foo://usrname:passwd@example.com:8080/folder/index.html?name=andy#bar
\_/ \_____________/ \_________/ \__/ \_______/ \__/
| | | | | |
| userinfo hostname port query fragment
| \_____________________________/ \______________/
| | |

scheme authority path

Fig. 5.2.: Full URI definition (after [rfc3986, rfc1738])

Whereas the second problem is solved with the upcoming IPv6, the first one remains open,
also for IPv6 addresses. To overcome these limitations, the Internet has an abstraction
layer above IP addresses, called the URI. Basically, a URI is just a string standing for
a server. Thus, it can be seen as a name for servers on the web, each server with its
own name. Figure 5.2 gives an overview of the main elements of a URI. The left part,
separated from the rest by :// is called the scheme and identifies the protocol used.
Commonly, http is used here, however, other schemes are also possible like ftp, dav, smb
or nfs. More recently these schemes are also used to call different handlers on a browser.
The ubuntuusers.de wiki, for example, uses the apt scheme to launch APT (Advanced
Packaging Tool) which handles the installation of new software in Debian based systems.

To reach the server, the URI still needs to be translated into an IP address, which is the
only means to address a server. This translation, however, is transparent to the client
and handled by the DNS (Domain Name System).

5.2.4. User Authentication

Identifying users not only opens new perspectives regarding the kind of content delivered
to a given client but also allows building applications where privacy and security are a
fundamental requirement like e-Banking and e-Commerce applications. Automatic iden-
tification goes from cookies to more sophisticated stochastic analyses based on fused infor-
mation which can be gathered from the client (like browser history, user-agent, preferred
language, operating system). Even though such approaches can more or less successfully
identify a given user, they have some serious drawbacks regarding security. The informa-
tion on which the analysis is based is public and so can be gathered by anyone. Later, the
gathered information can be used to fake someone’s identity. Cookie stealing is a popular
technique to impersonate a user [WEB10, WEB9, WEB55]. Therefore, identifying a user
is not enough to ensure that only a particular user has access to certain information.
Instead, the server needs to truly authenticate him. The client needs to present some
token that only he and the server knows. The server then decides whether this token
is valid or not and by that, whether the user can enter the protected area or not. The
holy grail for authentication would be zero knowledge proofs and more precisely, zero
knowledge password proof. Yet, for now this remains in the domain of science-fiction,
so this subsection focuses on the most common authentication systems used on the Web
today.
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Basic Authentication

The simplest and also the oldest way to authenticate clients is called Basic Authentication.
It has been part of the HTTP standard since version 1.0 and defined in [rfc2617]. To
be authenticated, a user has to: (1) identify himself and (2) present a token. The
identification is usually done through a username, unique per authentication domain
(basically for each domain). This allows matching the client to a given user account where
some client-related information is stored. The authentication is a simple token which only
one client should know. All this information is sent in the Authorization client-header
introduced for this purpose with HTTP/1.0. Its value is defined as the base64 encoded
string composed of the username, the ":" character followed by the password. Listing 5.6
shows an authenticated GET request for the user foo with the password bar. Line 7 shows
the Authorization with the base64 encoded authorisation string. In addition, the server
may ask a client to authenticate with the WWW-Authenticate header.

1 ruppena@tungdil:~ telnet www.example.com 80
2 Trying XXX.XXX.XXX.XX...
3 Connected to www.example.com.
4 Escape character is ’^]’.
5 GET hello.txt HTTP/1.0
6 User-Agent: Mozilla/3.0 (X11; I; AIX 2)
7 Authorization: Basic Zm9vOmJhcg==

9 HTTP/1.0 200 OK
10 Date: Thu, 29 Nov 2013 13:58:34 GMT
11 Server: CERN/3.0 libwww/2.17
12 Content-Type: text/html; charset=ISO-8859-1

14 Hello World!

List. 5.6: Basic authenticated GET request

Although basic auth is the oldest authentication mechanism, it is still widely used due to
its simplicity of implementation on both the server and the client side. However, basic
auth also has some severe drawbacks, the biggest being security considerations. If the
connection between the client and the server is not secured by additional means (like SSL
or TLS) an attacker can easily sniff the traffic and save the Authorization header for
later use.

Digest Authentication

To overcome the limitations of basic auth, a new authentication scheme was introduced
with HTTP/1.1, called Digest Authentication and specified in [rfc2617]. This protocol is
similar to the Message Authentication Code principle. Instead of sending a static string,
upon the first request, the server sends back a nonce. The client uses this information to
compute a hash based on the nonce, the username, the password and the requested URI.
This hash is then sent back to the server to authenticate the user. According to [rfc2069,
pp. 5,6] The computation of this final hash is done in three steps:

1. HA1 = md5(username : realm : password)
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2. HA2 = md5(HTTPMethod : URI )

3. response = md5(HA1 : NONCE : HA2 )

Listing 5.7 shows in lines 4-9 the necessary HTTP header to successfully authenticate.
From the enumeration above and the description of the client header in Listing 5.7, it
seems that this authentication scheme is much more complicated to implement, on both
the server and the client sides. This mainly comes from the fact that digest auth is
a compromise between insecure basic auth and the very secure public key or Kerberos
authentication.

1 GET / HTTP/1.1
2 Host: www.example.com
3 User-Agent: Mozilla/5.0 (X11; Linux x86_64)
4 Authorization: Digest username="foo"
5 realm=security@example.com
6 nonce= dcd98b7102dd2f0e8b11d0f600bfb0c093
7 uri="/"
8 response="9d078500e404d2789620909c56c26497"
9 opaque="5ccc069c403ebaf9f0171e9517f40e41"

10 HTTP/1.1 200 OK
11 Date: Wed, 20 Nov 2013 14:08:02 GMT
12 Server: Apache/2.2.22 (Ubuntu)
13 Last-Modified: Tue, 29 Jan 2013 11:54:41 GMT
14 ETag: "141e70-b1-4d46c0f0f31a2"
15 Accept-Ranges: bytes
16 Content-Length: 177
17 Vary: Accept-Encoding
18 Content-Type: text/html

20 <html><body><h1>It works!</h1>
21 <p>This is the default web page for this server.</p>
22 <p>The web server software is running but no content has been added, yet.</p>
23 </body></html>

List. 5.7: Digest authenticated GET request

The introduction of the nonce disarms many attack vectors known to work for basic
auth. As such, an attacker cannot compute the username and password, since the user
never sends them directly, only combined with other, context dependent information.
Although [rfc2617] does not specify how the server has to compute the nonce, nor impose
a given generator algorithm, it gives some wise advise about what a good generator
algorithm should be based on. Server time is one factor as it can allow disarming replay
attacks, where an attacker saves a message for later replay. Since the nonce is based,
among other things, on a time construct, the server can judge whether the given nonce
is a valid one, and based on that, reject a message, even though the authentication
header is correct. Later, the standard was slightly modified and adapted to introduce a
few security extensions. However, they remain optional and basically introduce a client-
generated nonce, called cnone to complete the server generated one.
Today, one of the biggest weaknesses of digest auth is password storage. To compute
the hash, the client needs the password to compute part HA1 of the hash. However,
the server also needs the clear-text password to make the exact same computation server
side. Therefore, the passwords need to be stored in a recoverable format on the server
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side. As learned from recent break-ins1, storing passwords in a secure way is just as
important as protecting the authentication [56]. Additionally, md5 is considered to have
been broken in recent years. Soon after the introduction of md5 in 1991, some researches
proved that collisions were possible to create. In recent years, this has proved more and
more to be true, and with tools like the rainbow tables developed by Philippe Oechslin at
EPFL (École Polytechnique Fédérale de Lausanne) or the availability of GPU calculus,
has become a real problem. However, it is believed that these attacks do not harm md5,
since the clear-text password is never known.

OAuth

Although OAuth is not part of the HTTP authentication family like basic or digest
auth, it has some irrefutable advantages over the other authentication schemes. Services
like Twitter have greatly pushed the deployment of OAuth over the past few years to a
point where their APIs are only accessible over OAuth. This is also true for many other
RESTful applications, where OAuth is widely used 2.
Compared to other authentication schemes, OAuth is quite young since it was first pre-
sented back in 2007 as an alternative to the OpenID initiative started by Twitter. The
challenges remain the same as for other authentication schemes: identifying a user with-
out revealing credentials to a possible attacker. OAuth even goes further, once authorized,
different applications are mutually authorized and can exchange data without knowing
the user’s username and password. OAuth does this by generating an application token
which authorizes a given application, or the user himself. However, OAuth does not
really improve the security of the first login or authorization process. Whereas OpenID
is all about the Question "Is this really Mister X ", and how to prevent attacks on the
account of Mister X, OAuth answers another question: "Is application X allowed to talk
to application Y ?". This is also the reason OAuth is so popular in RESTful applications:
it allows authorizing a given application to use the content of a different one.
In short, OAuth defines four roles:

1. The Resource Owner : is the entity which decides whether access to a protected
resource is granted or not. If the resource owner is a human, this is the user.

2. The Resource Server hosts the protected resources.
3. The Client is an application requesting a protected resource on behalf of the Re-

source owner.
4. The Authorization Server issues an access token to the client if the resource owner

is successfully authenticated.
Based on these four roles, to consume a protected resource, the Client first needs to
ask the Resource Owner for an authorization (A). With the authorization granted, the
client authenticates with the Authorization Server (C). If both, the authentication and
the authorization grant from (B) are valid, the Authorization Server issues an access
token. In the final step, the client can access the protected resource by presenting the
access token issued in (D). Discussing the details of OAuth is outside the scope of this
thesis however, Figure 5.3 gives a rough overview of the main participants in an OAuth

1Adobe, juste to cite the last incident
2Twitter, Facebook, Dropbox, Flickr, Google to cite a few popular examples

www.twitter.com
www.facebook.com
www.dropbox.com
www.flickr.com
www.google.com


58 5.3. REST: Representational State Transfer

+--------+ +---------------+
| |--(A)- Authorization Request ->| Resource |
| | | Owner |
| |<-(B)-- Authorization Grant ---| |
| | +---------------+
| |
| | +---------------+
| |--(C)-- Authorization Grant -->| Authorization |
| Client | | Server |
| |<-(D)----- Access Token -------| |
| | +---------------+
| |
| | +---------------+
| |--(E)----- Access Token ------>| Resource |
| | | Server |
| |<-(F)--- Protected Resource ---| |
+--------+ +---------------+

Fig. 5.3.: OAuth information flow (after [rfc6749, p. 6])

authorization. The OAuth specification [rfc6749] on its own is double the size of the
specifications of basic and digest auth together.

5.3. REST: Representational State Transfer

Section 3.5 briefly discussed RESTful web services comparing them to classical WS-
* services and showing their differences. This chapter introduces the architectural style
behind this type of web service and its implications as a basis for Section 5.4 where REST
architectures are applied to realize RESTful web services. For a better understanding the
first part of this chapter introduces the concepts of REST and RESTful and also how they
differ. In the second half, Roy Fieldings criteria for a REST architecture are discussed.

5.3.1. REST vs RESTful

Roy Fielding introduced back in 2000 the term REST(Representational State Transfer)
as an architectural style. His PhD thesis [14] and in particular, REST architectural style,
are the outcomes of his contribution to HTTP/1.1 and various concepts strongly cou-
pled with it, like URI design. Roy Fielding is also a contributor to many RFC (Request
for Comments) in the domain of web architectures [rfc2616, rfc1945, rfc2396, rfc1808].
While all these contributions are of a concrete nature and they all have concrete imple-
mentations, his thesis resumes all these efforts in a common architecture. According to
Fielding [14, p. 86]:

The Representational State Transfer (REST) style is an abstraction of the
architectural elements within a distributed hypermedia system

According to this, REST is not bound to the web nor to HTTP or any other protocol.
In his thesis, Roy Fieldings keeps the discussion at an abstract level. Today, this is
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maybe the most noticeable facet of his work. Whereas HTTP/1.1 might be outdated one
day and be replaced by its successor, the concepts behind it remain valid and so does
Roy Fieldings’ thesis. REST architectural style imposes a clear separation of concerns
as outlined in Subsection 5.2.1, about the Data Elements. Fielding clearly separates the
resources from their representation and from their URIs. Furthermore, the way a client
communicates with a server is standardized and remains the same throughout all the
different realizations of this architectural style.

The architectural style as described by Roy Fielding in his Ph.D. is called REST; referring
to it implies the compliance with the 5 concepts discussed in Subsection 5.3.2. As a
consequence of REST, several researchers have defined sets of criteria a web service has
to fulfill to be compliant with REST. Web Services falling into this category are called
RESTful web services [B18, B5] — a web service is called RESTful if it complies with all
REST concepts [B5, p. 4].

5.3.2. Roy Fielding’s REST Principles

After deep reflection about HTTP/1.1 and the release of the associated specification [rfc2616]
in 1999, Roy Fielding was ready to publish his Ph.D. describing the underlying architec-
tures of systems like HTTP/1.1 insofar as HTTP as a reference implementation of the
concepts outlined in his thesis. The core of this work is presented in [Ch 5 14, pp. 76-85].
The following discussion covers each of the five criteria and their impact on the system.
Fielding starts with a Null Style hypothesis. At the beginning the system already con-
tained all it needs, but had no structure at all. Through an iterative process, boundaries
were defined and the system becames more and more structured.

Web

Fig. 5.4.: Situation before adding constraints: The Null Style.

Figure 5.4 shows the WWW before adding any constraints. Although the system worked
and all components were there, they were indistinguishable at that time. Only by adding
one or more constraints did they become visible. Defining these components, the bound-
aries between them and how they interact with each other is the aim of any architectural
style.
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Client-Server

The first constraint is the Client-Server architecture. Figure 5.5 shows the new state of
the system after adding this constraint. Already some components have become visible
and identifiable. The user-interface is separated from any data-storage and processing.
This separation of concerns allows each tier to evolve independently. Such an evolution
does not only concern implementation and features but also scalability and portability.
Another benefit of this architecture is that several clients can use the same server.

Web

Request

Response

Fig. 5.5.: Client Server Interactions

Along with P2P (Peer-to-Peer) architectures, Client-Server is the most common network
architecture. A client makes a request to a server, the server then decides whether it will
execute the request or not. In any case the server responds to the client either with the
answer to the request or by indicating that it has refused to execute the request.

Stateless

The second constraint added to the system is statelessness client-server communication.
This means that a server will not recognize a recurring client, nor can it derive a client’s
state based on its former requests. A client must send all the necessary information upon
each request. In that way, the session’s state is no longer kept on the server side, but
the client side. The statelessness constraint induces three properties: (1) Visibility,
(2) Reliability and (3) Scalability. Visibility means that the service does not need to wait
for additional data sent by the client to execute the request. All the necessary information
is contained in the request. Reliability allows recovery from failures with ease. Since no
client related data is tracked on the service side, recovery is done by re-executing the
request. Scalability allows adding more servers and load balance between them without a
complicated session handling or some means of sharing space. Additionally, no memory
is occupied on the server beyond the request, which makes the server working more
efficiently.
This constraint also induces some drawbacks, the biggest one being the increase in network
traffic. Since the client is responsible for session tracking, this piece of information needs
to be sent together with each request, thus increasing the amount of packets sent over the
network. Another drawback is the loss of application control. The server has no control
over the session state of any client and therefore cannot influence it. The server has no



5.3.2. Roy Fielding’s REST Principles 61

means to correct faulty client session handling. A direct consequence is the increased
engineering necessary for each client implementation.

Cache

The third constraint is the addition of a client side cache system. Content served by
servers does not always change between requests. Therefore, for some content, it makes
sense to keep a local copy for further consultation. Yet, the client still has to ask the
server if the content has changed since the last visit, and if so, the server will send back the
new document and the final cost, measured in bandwidth, is the same as without a cache
system. However, if the cached copy is still the latest version of the document, the server
does not need to send a new copy of the document to the client, thus greatly improving
bandwidth consumption and also speed. Consequently, adding a cache improves the
average latency of the interactions. While the notion of a caching system had been around
since HTTP/1.0, it was greatly improved with the introduction of the ETag header in
HTTP/1.1. Moreover, such a cache can also sit somewhere in between the client and the
server on a proxy. The role of the proxy is then to decide whether the request needs to be
forwarded to the server or if it can reply with a cached copy of the requested document.

Uniform Interface

The fourth constraint consists of the language used by clients and servers. REST ar-
chitectural style imposes the use of a Uniform Interface. Compared to other means of
delivering services over a network, the constraint of a uniform interface for REST archi-
tectural style is a remarkable choice. It applies the principle of generality [B7, p. 52] to
the component interface. This greatly simplifies the architecture and increases visibility.
Furthermore, it eases the integration of different services. Imposing a uniform interface
also makes a separation of concerns; each component is responsible for doing its own
business. Yet, the service interface of all these components is the same. Therefore, REST
architectural style combines two powerful software engineering principles: the separation
of concerns and the principle of generality. However, this choice induces some inefficien-
cies. A generic interface, although applicable to various situations will always perform
worse than an interface developed for a specific purpose. This difference can be clearly
identified when comparing RESTful web services with their WS-* counterpart [64].
The demand for a uniform interface implies the introduction of some further constraints
on the components: (1) Each resource can be uniquely identified. (2) A resource
can be manipulated through its representations. (3) Messages are self-descriptive and
(4) Hypermedia as the Engine of Application State (HATEOAS). According to Fielding,
these four constraints are the architectural elements necessary to define a concrete uniform
interface. However, they are not part of the 5 basic constraints of REST architectural
style.

Layered System

The fifth constraint imposes a Layered System to REST style architectures. Layered com-
munication protocols have been well known since the beginning of computers. The most
prominent example of a layered communication system is the OSI model for the TCP/IP
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stack. Layered systems reduce the complexity of monolithic systems by separating and
encapsulating functionality into different concerns. Each layer is closed (self-contained)
and provides some services to the layer above. A layer does not need to know the in-
ner guts of the layer below, which allows changing the implementation of a given layer
without breaking the system. Although the separation of concerns introduces a small
overhead, perceived as latency by the user, approaches like caching compensate for this
drawback.
Layered systems, introduce proxys and gateways. For a client it does not matter whether
a response comes directly from a server or whether it comes from an instance between
him and the server; proxys and gateways are transparent to the user. As such a proxy
can be seen as a shared server for many clients with responsibility for forwarding the
incoming requests to the right service. In extension, layered system allow for 2-tier, 3-tier
and N-tier architectures. Whereas proxies are transparent to the client, gateways appear
as normal servers. Yet, they don’t contain the requested resource but can transform
incoming requests, forward them to a suitable server, and translate outgoing responses.
These gateways are by far the most common application of the layered system constraint
for REST style architectures.

Code-On-Demand

The sixth constraint allows a client to download pieces of code and execute them locally.
Unlike the five other constraints, Code-On-Demand is optional. Downloading pieces of
code implementing client-specific behavior allows the speeding up of the design and im-
plementation of different clients. Yet, code-on-demand reduces considerable the visibility
of a service. Whereas the uniform interface constraint together with the four derived con-
straints clearly describe any interaction, code-on-demand introduces a level of obscurity
into the system. At a given point, the result of a request will be some further requests
executed by code downloaded in the first step. Moreover, due to the limitations of fire-
walls and network policies, a server cannot be sure a given code has successfully been
downloaded and deployed for the client. Making this constraint optional has advantages
in situations where firewall problems, not available client execution environments etc. can
be excluded without suffering from any drawbacks.

5.4. ROA: Resource Oriented Architectures

Fielding presents in his PhD five criteria, resumed in Chapter 5.3, that an architecture
needs to fulfill to be considered a REST style architecture. Although the architectural
style is the result of work on HTTP, the thesis does not discuss any particular implemen-
tation. Fielding takes a formal approach. Starting with a null hypothesis, he constructs
an architecture by adding constraints and observing the consequences.
Richardson & Ruby, Bill Burke and others have spotted the potential of REST architec-
tural style and have applied it to web services. Thus, the term RESTful is a classification
of web services, where a web service is said to be RESTful if it satisfies the REST architec-
tural style criteria, as discussed in Section 5.3. Yet, the concept of RESTful does not help
architects to design web services respecting REST style architecture. REST criteria are
abstract, like mathematical axioms, so they are not a big help when designing RESTful
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web services. Richardson & Ruby compare REST and RESTful to object-oriented pro-
gramming. They state that using an object-oriented programming language does not
make the program itself object-oriented [B18, p. 12]. To overcome this limitation, both
Richardson, Burke and many others, have defined a set of concepts and properties to
create RESTful web services. Richardson in his book RESTful web services called the
resulting architecture ROA(Resource Oriented Architecture).
As an architecture rather than an architectural style, it is concrete and contains at the
same time a recipe for how to implement such an architecture. Depending on the litera-
ture (Richardson, Ruby [B18], Burke [B5], Wilde [79], Pautasso [64]) the exact concepts
and properties differ but remain the same in essence. As such, Burke [B5, p. 21] defines
5 properties a web service needs to satisfy to be RESTful. It has to have: (1) Address-
able Resources and (2) A uniform, constrained interface, (3) be Representation-oriented,
(4) Statelessness communication and (5) use Hypermedia as the Engine of Application
State. In [64], Pautasso et al. argue that representation-orientation can be left out, leav-
ing only four principles. Erik Wilde further reduces the set of properties a RESTful web
services has to satisfy and only keeps two criteria, mainly (1) Statelessness communica-
tions and (2) Addressable Resources [79].
This large palette of interpretations shows that REST architectural style is popular but,
Fielding’s definition leaves space for a lot of interpretation. The remainder of this Chapter
discusses the definition given by Leonard Richardson and Sam Ruby, as this is the most
complete one. Moreover, they not only define RESTful architectures but also give a
methodology. As such, Richardson’s approach is similar to what is called a proof by
construction in mathematics.

5.4.1. Concepts

In Chapter 4 of RESTful web services, p. 171 Richardson and Ruby wrap up ROA
(Resource Oriented Architecture). Accordingly, an architecture has to follow the 4 con-
cepts presented in this Chapter plus the 4 properties of Subsection 5.4.2.

Resources

The term ROA refers to both Resource and to Architecture. Whereas the term Architec-
ture is clearly defined, the interpretation of Resource varies, depending on the context.
A resource in ROA and in Business Processes do not share the same definition. Even
worse, they are two disjointed, unrelated concepts. According to [B18, p. 136]:

A resource is anything that’s important enough to be referenced as a thing in
itself.

Although this definition seems vague at a first glance, it boils it down to its simplest
form. By that, a resource might be:

• A bird,
• The wikipedia article about Douglas Adams3,
• The temperature in my office,
• A cup of coffee,

3http://en.wikipedia.org/wiki/Douglas_Adams

http://en.wikipedia.org/wiki/Douglas_Adams
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• The next Java release,
• A list of todos,
• The research budget of the university for the current year.

Therefore, a Resource is anything a user might refer or link to. In this term, Richardson
et al. do not differentiate between a resource with a physical manifestation or a purely
virtual. Although, he states that representations of physical objects „. . . are bound to be
disappointing“ he does not further investigate this problem at first.
Richardson et al. integrate resources like a bird for example, into the system by the
convention that a user never accesses a resource directly. He interacts with it through
representations (see Subsection 5.4.1 for more details about representations.) In order to
interact with a resource, the user has to address it somehow. In RESTful systems, URIs
are used to identify a resource (see Subsection 5.4.1).

URIs

Each resource needs a least one URI through which a user can talk to the resource. This
can be seen, like the address of the resource, and where users have to look for it. The
concept of resource is highly coupled to that of URIs. If something is not identifiable
via a URI it is not a resource. Richardson et al. use the URIs as defined by Tim B. Lee
in [rfc1630].
URIs are highly coupled to the Web since they have managed, for the first time in the
history of computer networks, to provide a simple yet powerful way to combine protocols
and contents in a usable manner. With URIs it is possible to tag content on the web, to
share it or save it for later consultation. Therefore, URIs play an important role in the
development of the web and since RESTful web services are based on the building blocks
of the web, they do the same for RESTful web services.
The biggest problem with URIs is how they are structured. Opinions on this topic vary.
The supporters of Roy Fielding claim that „A REST API must not define fixed resource
names or hierarchies (an obvious coupling of client and server).“4. They argue that REST
uses a uniform interface which induces HATEOAS (see Subsection 5.3.2) consequently,
a client only knows one entry point and discovers related resources from this. Others,
like Richardson et al. argue that URI design is important to support meaningful URIs.
Both approaches are defensible; Fieldings’ point of view has the advantage that clients
and server are always loosely coupled. Even if the set of resources changes, the client
will still work properly. On the other hand, Richardson’s approach has the merit that
clients can browse faster to find a given resource. For example, when a client is looking
at a financial report for the year 2013, he can easily guess the URI for the same report
as the previous year (given that this report exists). Following Fieldings’ approach, such
an induction would be impossible since URIs are not predictable.
Yet, introducing semantically meaningful and predictable URIs introduces another prob-
lem. When asking two different people on how they would name a given resource, chances
are high they offer different answers. Consequently, these edge cases need some special
attention. One such edge case is whether one resource can have two or more URIs
pointing to it. For example the URI http://example.com/shoes/drmartens/1460 and

4http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven (last retrieved December 8,
2013)

http://example.com/shoes/drmartens/1460
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
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http://example.com/shoes/product_of_month might point to the same type of shoes.
Whereas this does not cause any trouble regarding the definition of URIs, Richardson et
al. propose to chose one of the URIs as the canonical one (which should respond with the
status code 200 when a client requests it) and all others should be pointers to the former
(respond with a 303 plus the canonical URI). The second edge case to consider is what
happens when one URI points to two or more different resources. Reading through the
specification for a URI, this is clearly not allowed and would break the whole concept of
URIs. Therefore, this case does not need special care.
In sum, using semantically meaningful URIs for RESTful applications, while not a great
advantage for non-human clients because of their loose-coupling, greatly improves the
user experience for humans.

Representations

Each application is composed of several resources. They represent the view of the devel-
oper of the structure of the application data. A resource is more an idea or a concept than
something real. To access the information held by a given resource, the client needs to
know, or to discover its associated URI through which the client can request the resource.
A web-server cannot send back a concept, but a representation of it. A resource is com-
posed of data about something and has several representations associated with it, through
which clients interact with the resource. For instance, if a client requests a resource, the
server sends back an adequate representation of it. On the other hand, a client can also
send a representation in the body of the request, which is then used by the server to either
create a new or update an existing resource associated with the requested URI. Figure 5.6
depicts this situation. Figures 5.6a, 5.6b and 5.6c show three different representations
of the same resource. The information contained in these representations is always the
same, the only difference being how the information is presented. Figure 5.6a is a JSON
representation of the resource. This content-type is meant for machine-to-machine inter-
action and web service consumption by programs. Figure 5.6b is an XML representation
of the same resource. Whereas it is widely used for machine-to-machine interactions, it is
also quite easy for people to read. Finally, Figure 5.6c is the HTML representation and
is mainly intended for human users.
If a resource holds several representations, the client needs to choose the right one some-
how. The traditional approach is to rely on HTTP and its content negotiation capabilities;
based on the header sent by the client, the server can make an educated guess about which
representation will be the most suitable for this client. Since representations of a same
resource not only differ in their content-type but also in other aspects like the language,
the server can base its choice on several headers. For an English speaking client preferring
HTML representations, the server will try to send back an English HTML page of the
requested resource.
Richardson et al. advocate another approach, stating that it is useful to introduce a
new URI for each representation. The canonical representation is accessible through a
canonical URI and other representations are available under the URI with an according
suffix. This approach also has its advantages. The URI contains all the information sent
to the server by a client. By bookmarking this URI a client will always get the same
result, assuming the resource has not changed. This behavior would not necessarily be

http://example.com/shoes/product_of_month
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(a) JSON RepresentationLAN (b) XML Representation

(c) HTML Representation

Fig. 5.6.: Several Representations of the same Resource

true if the information guiding the selection of an appropriated representation were based
on headers sent together with each request.
Whereas Richardson et al.’s argument is a question of taste, there is another reason
to prefer different URIs for different representations: if the client is non-human, it is
important that for each request, the same representation is sent, otherwise, the client
will have difficulty interpreting the received bytes. This is more difficult if the server
makes this decision for the client. The unpredictability comes from the fact that the
interpretation of these client-headers is not mandatory. The server is free to ignore
these headers. Whether one approach is preferred over another often depends on the
programming language used to implement the RESTful service.
So far, two types of resources have been discussed; those representing data, for example,
the actual weather in Fribourg and those representing physical objects like a light bulb.
Since the representation is the only bit of information a client can see of a resource, it
should be related to it and be useful for the client. It is rather easy to define repre-
sentation in the first category: data is best represented by data. However, what is a
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representation for a physical object? Since a web-server can only send bytes, the object
itself cannot be a representation. However, meta-data about the object is a good repre-
sentation. Since meta-data is also data, it is the closest we can get in terms of data for
a physical object. For the light bulb, its actual state would be meta-data. Fortunately,
this information represents a smart light bulb quite well. Of course, this smart light bulb
can be characterized through additional meta-data like its color temperature, its socket,
its wattage etc. It is up to the developer to chose the right set of meta-data to represent
the physical object.

Links between Resources

RESTful web services encourage linking different resources together. The representation
of a resources should, if possible, contain links to related resources. This is a key difference
between an RPC-style service and a truly REST-ful service.
Links are one of the big concepts of the web and are responsible for the success of the
web. Humans don’t browse the web by entering different URIs; instead, starting from
one point — the Google search results page, for example — they explore the web by
following links. REST advocates this principle also for the non-human web as well. The
main argument for introducing links between resources is the loose coupling of client(s)
and server(s). If the client discovers related resources by parsing the representation it
can handle situations where new resources appear or old ones disappear. A hard coded
client would not be able to manage such a situation and would break.

5.4.2. Properties

Besides the 4 concepts of Subsection 5.4.1, a Resource Oriented Architecture also adopts
the 4 properties presented in this chapter. The properties are derived from the above
concepts so that they complement them and make the definition of ROA more precise.

Addressability

A RESTful web service breaks the available information down into resources, each one
representing one piece of information. Subsection 5.4.1 explained that each part of interest
should have an associated resource. If the space of available information is divided into
resources, a user can request and manipulate them; an application is said to be addressable
if it exposes its pieces of information over resources. Since each resource has an associated
URI, the application is addressable if it has many (and potentially infinite) URIs.
Addressability is one of the key differences between ROA and WS-* like architectures.
This also explains why there is so much confusion between REST and many RESTlike
or REST-RPC services. The latter combine the advantage of addressability with the
programmatic approach of remote procedures. This also seems to be the most important
property of a RESTful web service for a human user. For many other problems, a user
will find a way to work around them or accept the imposed way. Thus, if a piece of
information cannot be addressed, it will be difficult to work with.
Moreover, URIs can be chained. This, for example, makes it possible to have Google
Translate translates a whole web-page by passing its address as a parameter. If the web-
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page to be translated is not addressable, the only means of specifying the input for Google
Translate would be to copy the text.

Statelessness

Statelessness is the second property of ROA. Richardson et al.’s definition is the same
as Fielding’s. A set of interactions is stateless if all requests of a set can be carried out
in complete isolation. As a direct consequence, the server does not recognize a returning
client; instead, he needs to send all the necessary information together with each request.
This means that a client will never have to first bring the server into a given state before
executing some request.
Yet, statelessness does not completely rules out states. A client can have a state and track
its path through the resources. A resource can also have a state as addressability means
that every interesting piece of information has to be exposed as a resource. Thus, if the
state of a resource is important, it is exposed as a resource and the client can interact
with it. However, the interaction between a client and a server is always stateless.
Searching Amazon for Jellyfish, for example, the client either uses the provided form or he
accesses the URI http://www.amazon.de/s/ref=sr_pg_2?keywords=jellyfish. The
resulting web-page contains links to articles related to Jellyfish but also links to further
results. In the first place the user is interested in the resource all Jellfish related articles.
The server answers with a partial list and links to further results. Yet all theses further
results pages have unique URIs and can also be addressed directly. Therefore, if the
client is interested in the third results page of the Jellyfish search, he can directly access
it through its address http://www.amazon.de/s/ref=sr_pg_2?keywords=jellyfish&
page=3. Thus, the interaction between the client and the server remains stateless.

Connectedness

Connectedness is highly coupled with the concept of Links between Resources (5.4.1). The
human web is popular because resources are well linked together and allow a seamless
browsing experience. Google also uses this property to judge a website’s quality. Highly
connected web-sites were more highly ranked than web-sites without any links [WEB42].
Google not only applies these principles for judging scanned web-sites but also integrates
them into their own products. For example, the representation of a Google search contains
a list of links to other resources. These resources are associated with the search query and
the query resource is linked to related result resources. The representation also contains
more links: navigation, translation, cached copies etc. Richardson et al. call them levers
of state. They indicate to the client how to get from one page (current state) to the next
page (future state). Listing 5.8 shows the XML representation of a simple door containing
no links at all. Such a resource is not connected and therefore is not allowed in a RESTful
web service. However, it is simple to make this resource connected. Listing 5.9 shows on
line 6, that it is sufficient to add a link pointing to a related resource, indicating whether
the door is open or closed.

1 <door>
2 <id>496</id>
3 <color>brown</color>
4 <height units="cm">195</height>

http://www.amazon.de/s/ref=sr_pg_2?keywords=jellyfish
http://www.amazon.de/s/ref=sr_pg_2?keywords=jellyfish&page=3
http://www.amazon.de/s/ref=sr_pg_2?keywords=jellyfish&page=3
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5 <width units="cm">110</width>
6 </door>

List. 5.8: RPC Resource

1 <door>
2 <id>496</id>
3 <color>brown</color>
4 <height units="cm">195</height>
5 <width units="cm">110</width>
6 <ref name="locked">http://example.com/door/496/locked/</ref>
7 </door>

List. 5.9: REST Resource

If a resource is linked to many other resources and contains a collection of links allowing
a user to walk on a path from one resource to the next, it is said to be connected. Thus,
connectedness is a measure of how much a resource is connected. Since these connections
represent the choice a client has to make to go from one state to another, they can be seen
as a tree in through which the client will choose a path. For this reason Richardson et al.
argue that Hypermedia as the Engine of Application State (HATEOAS) is a synonym of
connectedness. According to Richardson et al. HATEOAS can be defined in the following
way [B18, p. 159]:

The current state of an HTTP "session" is not stored on the server as a
resource, but tracked by the client as an application state, and created by the
path the client takes through the Web.

Therefore, the connectedness is a mandatory property for HATEOAS. If a resource has
no links to others, a user cannot navigate from it to some other resource.

A Uniform Interface

A Resource Oriented Architecture must adopt a uniform interface, as described by Field-
ing and discussed in Section 5.3.2. Although HTTP is the most prominent implementa-
tion of a uniform interface for REST operations, Fielding does not impose any concrete
implementation. Richardson et al. take a more practical approach, and adopt HTTP as
their uniform interface.
According to Richardson et al. six of the eight HTTP methods are of interest for ROA: 4
are used to construct the constraints of the uniform interface and 2 offer some interesting
capabilities on top of the 4 base methods but are not necessary to construct a uniform
interface. To manipulate data, or in this case, resources, an interface needs at least four
methods, one corresponding to each CRUD action. GET is used to retrieve resources,
mainly done as shown in the various examples in Section 5.2 as in Listing 5.4, where the
resource at www.example.com is retrieved. On the other hand, DELETE is used to destroy
a resource. The body of the response to a DELETE request may either contain a status
messages or nothing at all.
Modification is done with PUT. However, depending on whether a resource already exists
at the supplied URI or not, PUT acts as a modifier or creator. Given a URI which already
exists, a PUT request updates this resource with the new representation sent together
with the PUT request. If, on the other hand, no resources exists at the supplied URI,

www.example.com
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a PUT request will create a new resource according to the representation sent with the
request. PUT used for updating and/or creating can be quite confusing. However, it is
fully compatible with any CRUD approach. Since the user specifies the URI of a concrete
resource, he wants to modify exactly this element. The creation of a new element under
this URI is just a special case of modification where the initial state is NULL and the final
state is a resource. One can argue that the resource already existed but without any
content.
New resources are created with a POST request to the parent URI of the future resource.
Unlike PUT, which sometime creates and sometimes modifies a resource, POST is only used
for resource creation. The user supplies together with the request, a representation of
the resource. Whereas the definition of this method is somewhat fuzzy concerning how
POST behaves: „. . .The actual function performed by the POST method is determined by
the server . . . “ and „. . .The action performed by the POST method might not result in
a resource that can be identified by a URI. . . “ [rfc2616, p. 53], in the context of REST
and ROA its behavior is well defined. Upon sending a POST request together with a
representation, the server will create a new resource with the supplied representation
having an address that is a sub-URI of the requested one.

5.5. Key Concepts introduced in this Chapter

This chapter introduced the notion of REST architectures, of RESTful web services and
Resource Oriented Architectures. These three concepts play a major role in building the
xWoT. Like the WoT, the extended WoT uses RESTful web services to connect smart
devices with the virtual world. Understanding the implications of REST architectural
style, the underlining HTTP protocol and ROA (Resource Oriented Architecture) are
key elements in defining a correct meta-model for the xWoT.
Fielding’s principles offer the most complete description of a REST architecture but as
discussed, also the most abstract one. Richardson and Ruby who translated the REST
requirements to web services, formulate a slightly different set of constraints and introduce
ROA. Although, the xWoT components generated from xWoT models which are derived
from the xWoT meta-model are more concerned with ROA then REST, it is still necessary
to take into consideration the basic REST constraints as introduced in Fielding’s work
to build a viable meta-model.
Obviously, resources are of central interest to the meta-model and its associated method-
ology. Starting with an observable entity, the first step in the methodology is to break
down the entity into resources and define their mutual dependencies in the form of a tree
hierarchy. Tied to the concept of resources are also its various representations, like JSON,
XML or HTML and the contained information. Addressability and naming conventions are
another hot topic for the xWoT meta-model and some conventions are already given by
the meta-model and therefore applied to each concrete model.
The concept of links between different resources and the property of connectedness are,
although slightly different coupled. But, what is true for the web should also be true
for the xWoT. Instead of knowing all available resources, users should discover them
by browsing. As mandated by REST architectures xWoT components have a uniform
interface. For now, HTTP is used as the interface but, the metal-model being protocol
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agnostic, it is just a matter of changing or extending the generator to incorporate another
protocol like CoAP [rfc7252].
Considering the duality of an xWoT component with a visible outer interface over which
it is connected to the Web plus a hidden inner structure, this chapter forms the founda-
tion of this outer interface and influences how the meta-model represent it. The xWoT
adopts Richardson and Ruby’s point of view and definition of RESTful web services. Ad-
ditionally, the xWoT mandates for meaningful resource names, facilitating browsing for
human users.
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6.1. Introduction

Today, software components are a common approach when designing new software. The
principles of independent and reusable software coupled with the power of object-oriented
programming languages avoids the software crisis. Components can be seen as the next
logical step after classes and objects.
This chapter is divided into three parts. The first lays the foundation of software compo-
nents from procedural languages over object-oriented languages to finally coming up with
truly reusable pieces of code, the software components. The second part mathematically
introduces interfaces. With the help of Hoare triples basic requirements for any interface
can be formulated. The third and last part, introduces a component’s life-cycle. Starting
with a real world example, the notion of lifecycle is translated to software components
and will later be applied to xWoT components.

6.2. Foundations

Over the past few decades, hardware capabilities and available computing power has
steadily increased. In the early days, the complexity of computer programs was highly
coupled with this increase in power. This situation leads to what is known today as the
Software Crisis. Not only did the quantity of code grow but this growth went along with
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a number of failed and abandoned projects. Software became unmanageable, unverifiable
and incomprehensible. On the other hand, the increase in computing power allowed the
creation of re-usable software. In the past, CPU cycles were expensive and programs
could not afford to waste too much of them. As a result, each piece of software was
highly optimized in terms of CPU cycles, memory and so on. At this time, it was
cheaper to optimize code than to waste CPU cycles. Nowadays, the situation has changed.
Computers have enough power and adding more is less expensive than optimizing and
personalizing each piece of code.
As software projects got bigger, they needed more time to complete and were thus more
likely to have their requirements changed. If the development could not handle these
changes, the final solution would not meet the client’s expectations. Ledbetter and Cox
discussed these problems in 1985 in their article "Software-ICs" published in BYTE mag-
azine [46]. They compared software with hardware to make analogies. Integrated Circuits
are one of the successes of modern hardware. Instead of starting over with completely
new designs for each type of hardware, vendors use integrated circuits. They come pack-
aged with a fixed interface which allows for their easy integration into many different
hardware systems. Introducing a similar mechanism for software is the only way to avoid
the software crisis.
According to Ledbetter et al., systems must be built capable of withstanding change. A
key concept in building robust software is encapsulation. Message/object technology is
the most suited to support this approach. As long as calls are optimized to limit the waste
in CPU cycles, the how is the most important question. Yet in a message/object system,
messages should specify the what and leave the details of how this is implemented hidden
from the user. The specification of what corresponds to the interface of the software,
i.e. the publicly exposed part. The how depends on multiple factors and is hidden from
clients. Another key element for reusable software is inheritance. When a hardware
manufacturer produces a new version of a circuit he takes the current version as the base
and adapts the design according to the new requirements. The same is true for software.
To implement a solution for a given task, a developer should not start with an empty
program but rather look for already existing solutions for problems close to the current
one. If such a program exists, the developer can inherit all the parts which do not need
to change and concentrate his efforts on the parts which are different.
Today, in a service oriented world, components are a key element. The evolution of remote
procedure calls, web services and, in general n-tier architectures is unthinkable without
the foundations of software components and component architectures. According to C.
Szyperski [B20, p. 3] „Components are for composition“. They support the principle of
reusable software and Software-ICs.

6.2.1. Modules and Classes

The terms, class, object, module and component are often used in conjunction as by their
nature, they all describe different aspects and/or abstractions of the same system. Pascal,
as a purely procedural language has no concept of clearly defined interfaces. Listing 6.1
shows an example implementation of a coffee data type. The program defines that a
coffee has two properties, coffeetype and size. Additionally, a coffee has a cost, which
is a function of its size. Although Pascal can reflect this approach as shown in lines 1
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to 11 of Listing 6.1, it is not able to clearly separate the definition of the coffee from its
usage in lines 14 to 16.

1 program Coffee
2 var coffeetype : string;
3 var size : integer;

5 function getCost(): integer;
6 var
7 cost: integer;
8 begin
9 cost = size*;

10 getCost := cost;
11 end

13 begin
14 coffeetype = ’Dark Roast’;
15 size = 3;
16 getCost();
17 end

List. 6.1: Coffee with Pascal

In the 1980s, Niklaus Wirth, the father of Modula, added the concept of MODULE
which, following the software design principles, allows the clear separation of concerns.
Each module is a unit of compilation and can therefore be converted into byte code
independently. Listing 6.2 is again an implementation of a coffee, this time in Modula-
2. Compared to the implementation in Pascal, the code is bigger. This comes mainly
from the strict separation of concerns. To reproduce similar functionality to Listing 6.1
with Modula-2, three modules are needed. The first, a definition module, only contains
the contract offered by the future module. This definition module is then used by an
implementation module containing concrete implementations for each defined procedure.
Finally, this module can be imported into the usage module. From this point on, the
Coffee definition is available and its function can be called.

1 (* Definition of Coffee *)
2 DEFINITION MODULE Coffee;
3 PROCEDURE getCost(size : INTEGER) : INTEGER;
4 VAR coffeetype : ARRAY [0..0] OF CHAR;
5 END Coffee.

8 (* Implementation of Coffee *)
9 IMPLEMENTATION MODULE Coffee;

10 PROCEDURE getCost(size : INTEGER) : INTEGER;
11 BEGIN
12 RETURN(size*3);
13 END;
14 BEGIN
15 END Coffee.

18 (* Usage of Coffee *)
19 MODULE CoffeeShop;
20 FROM Coffee IMPORT getCost;
21 VAR mysize : INTEGER;
22 BEGIN
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23 coffeetype := "Dark Roast"
24 mysize := 3;
25 getCost(mysize)
26 END Coffee.

List. 6.2: Coffee with Modula-2

Bertrand Meyer merely speaks of modules rather than components [B16]. When he
introduced the Eiffel programming language [B15], Meyer claimed that “a class is a better
module” [B17, p. 170]. This is not surprising since Eiffel is an object oriented programming
language whereas Modula is not. He stated that software needs to be structured into units
to allow: Reusability, Extensibility and Modularity. Meyer motivates these principles
through the example of an ADT (Abstract Data Type). The ADT can be any abstract
representation of real data, but Meyer’s most prominent example is a LIFO (Last-in,
First-out) stack as shown on Figure 6.1. A user can put elements in the stack, one at a
time and later remove these elements, one at a time, starting with the topmost. Suppose
that initially, the stack is already populated with two elements, a triangle and a circle.
If a user then puts another element, a square in the stack, this element becomes the
topmost, as shown in Figure 6.1b. Elements are removed from the stack starting with the
topmost. In the case of this small example, the new situation is depicted in Figure 6.1c.
The stack again contains the triangle and the circle. Thus, if the user now asks for the
topmost element, without removing it, the stack will reply with a circle (Figure 6.1d).
This example illustrates well the Information Hiding principle. Whereas the client of the
ADT only sees the public available methods to put and remove elements, he has no idea
how the stack is implemented. It may be done with an array list, a circular buffer, a linked
list etc. The biggest part of the implementation is hidden from the user and changing
it will not break compatibility with clients as long as the public part remains stable. It
is important to note that no client can see or access this hidden part of the module,
only the public part is visible and known to clients. This fact is underlined by the Open-
Closed principle. According to B. Meyer, a module should be open for extensions through
inheritance but closed and ready to use for clients. Additionally, B. Meyer supports the
concept of (de)-composability. Decomposition is widely used for algorithms (divide and
conquer). The same should be true for any component. Through decomposition a complex
problem can be split up into several smaller parts. In a module, functions should be used
to achieve such decomposition. Instead of having one big function solving the problem,
the function can rely on sub-routines. Composability on the other hand, emphasizes
the principle of reusability. New modules can be generated by combining already existing
ones. According to B. Meyer ADT are realized through classes, in modern object-oriented
programming languages [B17, p. 23].
Classes and the fundamental software engineering principles, as formulated by Meyer
allow for clean software design. Mainly through the mechanism of inheritance, it is
possible to write frameworks where a user only fills in the gaps to have a fully running
system. Erich Gamma et al. examined how the mechanisms of modern programming lan-
guages help to achieve Reusability, Extensibility and Modularity. In their book „Design
Patterns“ [B6], the Gang of Four (Gamma, Helm, Johnson and Vlissides) offer detailed
recipes for standard designs, applicable to many real-life situations. Such recipes are
called Design Patterns and one of them, the decorator pattern, is shown in Figure 6.2.
Each pattern uses a unique structure of different classes and a sophisticated collabora-
tion of these to achieve the pattern’s goal. Design patterns are the next logical step to
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PUT Remove Item

Fig. 6.1.: Abstract Data Type — A LIFO Stack

modules and classes. By combining classes into new structures they form another type
of conglomerate. Although patterns neither enhance nor reduce the concept of a unit of
compilation, they help to organize them.
Programming languages like Java or C# use yet another mechanism to group classes
together, called packages. A package contains a number of different classes evolving in
the same universe. In this sense, packages are a kind of module. The classes in Figure 6.2
for example, would all be grouped together into one package. Yet, the notion of module
here is somewhat weakened. In contrast to the initial meaning of compilation unit,
packages are merely used as a way to separate and control the different namespaces of an
application.

Fig. 6.2.: Decorator Pattern (from [B6, p. 177])

6.2.2. Objects and Prototypes

Besides classes, object-oriented programming languages also introduce objects. Whereas a
class is an abstract description, like the ADT (Abstract Data Type) , objects are concrete
realizations. Classes come to life only through instances of them. A class formulates an
abstract plan of how such realizations should be created or instantiated. On the other
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hand, if no such abstract plan exists but there is a base-object from which all others
are cloned, it is referred to as a prototype object. Javascript, for example, uses both
approaches to create objects. Classes are primarily used to create instances of them,
prototype objects to modify objects. Listing 6.3 shows how prototype objects are used
in Javascript. In lines 11 and 12, two Coffee objects are instantiated. These objects
contain all defined fields and methods from the Coffee class. Line 14 adds a new field
to the coffee1 object, milk and sets it to be true. From this moment on, coffee1 has one
more field than coffee2. This mechanism for modifying objects relies on the prototype
object. The reader should note that the class definition uses the prototype approach
to define the getCost method (lines 7 to 9). Listing 6.3 shows only one way in which
objects can be constructed with Javascript. A good overview of best practices regarding
prototype objects in Javascript can be found as an ebook online [WEB34]. Although
Javascript is the best known prototype-based programming language, it is not the only
one following this paradigm. The Smalltalk inspired Self programming language [WEB56]
and io [WEB24] are also prototype based.

1 // Define the class
2 function Coffee(_type, _size){
3 this.type = _type;
4 this.size = _size;
5 }
6 // Add a method
7 Coffee.prototype.getCost(){
8 return this.size*3;
9 }

10 // Instantiate two object
11 var coffee1 = new Coffee(’Dark Roast’, 3);
12 var coffee2 = new Coffee(’Espresso’, 1);
13 // Only this coffee object has the milk property
14 coffee1.milk=True;

List. 6.3: Coffee with Javascript

Listing 6.3 shows a class definition with an additional function defined externally. Whereas,
this is the agreed way of defining objects in Javascript, it is also possible to embed the
function definition within the class. Listing 6.4 shows the same Coffee class as in List-
ing 6.3 with the difference that the getCost method is this time embedded. As a conse-
quence, each new instance of this class will hold a copy of the function getCost. Yet,
possessing copies of a class function’s is only required in rare use-cases.

1 function Coffee(_type, _size){
2 this.type = _type;
3 this.size = _size;
4 this.getCost = function(){
5 return this.size*3;
6 }
7 }

List. 6.4: Internally defined methods in Javascript

Since an object is an instance of a class, it represents an image of something concrete.
While classes are immutable, with no starting or end point, objects have a life-cycle.
They come to life through their instantiation by a constructor. Through this creation,
some memory space is allocated to the objects and its fields are initialized with default
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values. From this point on, clients can manipulate the object. During its lifespan, the
content an object holds can evolve and adapt to new situations. Imagine a Counter
class. The class holds a number, the counter and a public method increasing the counter
upon each call. Listing 6.5 shows a primitive implementation of this Counter class. To
increase readability, the class is instantiated and called from the main method. Line 14
instantiates a new Counter object with a value of 0. This line start the life-cycle of this
object. The next two lines, 15 and 16 both call the increaseCounter() function which
acts on the counter field of the class thus, changing its actual state. Finally, in line 17,
the program terminates and the counter object is garbage collected.

1 public class Counter
2 {
3 private int counter = 0;

5 public Counter(int _counter){
6 counter = _counter;
7 }

9 public void increaseCounter(){
10 counter = counter + 1;
11 }

13 public void main(String args[]){
14 mycounter = new Counter(0);
15 mycounter.increaseCounter();
16 mycounter.increaseCounter();
17 }
18 }

List. 6.5: Simple Counter Class

6.2.3. Components

Depending on the domain of application, the definition of a component varies. A simple
query for components on Google returns over 150Mio results. For example, components
denote the two chemicals in a two component adhesive. In the video world, component is a
kind of video input and output connection. Java defines a component as “an object having
a graphical representation that can be displayed on the screen and that can interact with
the user.”1 In electronics, a component is a part of an electrical circuit. For mathematics,
component also has a handful of different definitions and meanings mainly dealing with
groups and topologies. Also in computer science, these terms are sometimes misused as
in the component object2 [B20, p. 29].
Definition 4 (Software Components (from [B20]))

A software component is a unit of composition with contractually specified interfaces
and explicit context dependencies only. A software component can be deployed inde-
pendently and is subject to composition by third parties. (Szyperski [B20, p. 34])

Generally speaking, a component is a part of some larger system. Although, it seems evi-
dent that the most general definitions of a component also apply to the field of computer

1http://docs.oracle.com/javase/7/docs/api/java/awt/Component.html
2An enumeration object having a unique instance in windows

http://docs.oracle.com/javase/7/docs/api/java/awt/Component.html
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science a more precise one is necessary. Szyperski proposed in [B20] a well accepted defi-
nition (over 500 citations, according to ACM Digital Library) of a component in software
engineering.
This definition of a component encompasses four concepts:

• Interfaces: each component has a well-defined and stable interface, an API over
which it can communicate with other components or pieces of software. This in-
terfaces allows the decoupling of the client and the component. As a side effect, a
component can be re-used for other clients. Additionally, as long as the interface
does not change, the inner guts of a component may change, generally without
affecting the clients.

• Explicit Context dependencies: a component needs to explicitly define its re-
quirements for a suitable deployment environment. These needs are a component’s
context. Although the provided interfaces are generally well documented, this is
not the case for the component’s context. Even today this is not true for all major
components. Java components living in a Java application server have no means to
specify their needs. Developers have to thoroughly document their components in
terms of needed databases, security containers etc.

• Reusability: Cox et al. mandate since the mid 80’s for re-usable software, called
Software-ICs [9, 46]. By comparing software developers with hardware vendors they
concluded that the only way to avoid a Software Crisis is to build reusable software.
Obviously the best component is the one with no context dependencies and provides
the most suitable service. But this would defeat the component approach. On the
other hand, the more a component is based on reusable software, the more context
dependencies it needs. Since all these dependencies evolve separately, this lowers
the components robustness. Figure 6.3 described this situation. Finding the right
balance between robustness and dependencies always relates to the use-case.

• Lifecycle: Each component has a lifecyle. Depending on the current state, a
component may not have its full capacity. The lifecycle is generally provided and
supported by the container running the component.
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Fig. 6.3.: Robustness vs. Size of Component
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The remainder of this chapter focuses on two properties: (1) Interfaces and (2) Lifecycle,
which are both of special interest for Part III of this thesis.

6.3. Interfaces

Interfaces are part of the specification of a component. In Bertrand Meyers ADT, they
represent the visible part of the iceberg (Figure 6.4). Therefore, the interface can be
seen as a contract. For components, this contract binds two parties: the component as
service provider and the client as service consumer. Such an interface contains the set
of operations which can be called by the client. Additionally, each operation depends
on a set of pre-conditions and implies a set of post-conditions. The client is in charge
to prepare the system so that it fully complies with the set of pre-conditions. On the
other hand, the component responds with a result plus some post-conditions. Usually, the
pre-conditions are established before the operation starts and the post-conditions become
true before the program returns, if it returns at all. Hoare’s logic [32] proposes a formal
way to prove the correctness of computer programs. This logic also allows the expressing
of interfaces through Hoare triples in the form of

{P}S{Q} (6.1)

Where {P} is the set of pre-conditions which have to be true before the execution of
the statements S. If the execution of S terminates, then the set of post-conditions {Q}
becomes true. These triples ensure partial correctness. Partial since they do not ensure
that the execution of S terminates. If S eventually terminates, then this would even lead
to total correctness. However, to prove termination of S additional proofs are required.
Equation 6.2 shows a few Hoare Triples as defined in Equation 6.1

Definition 5 (Predicate)
Given the function P defined as P : x ! {true, false} 8x then, P is called a predicate.

Definition 6 (Hoare Triple)
If P and Q are two predicates, then the equation {P}S{Q} holds. Therefore, if in the
beginning P is true then, after the execution of S, Q is also true.

One can now easily understand that the following triples are Hoare Triples. The first
example states that if the variable x evaluates to 10 and if the variable y evaluates to 2
then, after the execution of the statement z := x/y, the variable z evaluates to 5. In this
case the assignment z := x/y evaluates to z := 10/2 and thus sets the variable z to 5.
Therefore, the set of post-conditions is true and the logic holds. The same reasoning can
be applied to the two other examples.

{x = 10 && y = 2} z := x/y {z = 5}
{true} a := 1 {a = 1}

{y! = 0} z := x/y {z = x/y}
(6.2)
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Regarding interfaces, the set {P} represents the pre-conditions established by the client
before calling the interface. Although this set can be any predicate usually, for an inter-
face, this means that all the needed input parameters are ready and respect the interface
needs. For example, for an integer division the definition of the interface would look like:

1 /**
2 * Integer division function. The functions takes two integers,
3 * numerator and the divisor and return the result of the integer
4 * division of the two numbers.
5 *
6 * @params _numerator any integer value.
7 * @params _divisor any non-zero integer value.
8 * @throws An IllegalArgumentException is thrown if the divisor is zero.
9 * @returns result of the integer division of the arguments.

10 **/
11 public int divide(int _numerator, int _divisor) throws IllegalArgumentException;

From this listing, a client can conclude several facts, the most obvious being, there ex-
ists a function called divide which divides two integers, returns another integer and
sometimes throws an exception. Most programming languages don’t allow any further
specification of pre- and post-conditions. Java circumvents this limitation with javadoc
annotations to each function and class. Unlike normal comments, javadoc introduces
special documentation fields which can be used to signal pre- and post-conditions of a
method. The @params annotation describes the input parameters, @returns describes
the return value of the function. Although this is not a formal description, a client can
deduce the corresponding Hoare Triple. For the divide function this would be:

{numerator 2 Z ^ divisor 2 Z\{0}} divide {true} (6.3)

Looking at a typical implementation of an integer division as given in Listing 6.6, proves
that the Hoare triple as deduced in Equation 6.3 is correct. The function accepts all
integers and produces an error if the divisor is zero. Furthermore, the function has no
post-conditions.

1 public int divide(int _numerator, int _divisor) throws IllegalArgumentException
2 {
3 if(_divisor == 0)
4 {
5 trows new IllegalArgumentException("Cannot divide by 0");
6 }
7 return _numerator/_divisor;
8 }

List. 6.6: Integer division implementation

The interface as a contract between a service and its clients implies that it should not
change over time. If the interface changes, some clients may stop working. However,
it is unlikely that a component will stop evolving once it has been published and used
by some clients. Similarly, it is unlikely that all clients will adopt a new version of
a component the day it is published. To overcome this limitation, the contract can
introduce versions. Prefixing the contract with a version number allows different versions
of the same component to run in parallel. As already discussed in Subsection 6.2.1, one
way to introduce versioning is packages. Packages provide a sort of namespace for the
classes they contain. Accordingly, it is possible to define a class Shapes in the package
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ch.unifr.softeng.v1 and another, newer version in the package ch.unifr.softeng.v2.
A client can then choose which version to use and old clients can continue to use old
versions.

Fig. 6.4.: Visible and Hidden part of Software

Even if changes introduced with the new release of a component do not modify the
interface, clients can still break. This can be the case if an algorithm needs more time to
complete or if a stream has increased capacity. In the first case, clients could interpret
the increased waiting time as time-out and abort the operation. In the second case, slow
clients can be overwhelmed with the quantity of information delivered by the service.
Therefore, it is good practice to split the evolution of a component into versions.
So far, only functional requirements have been discussed and how they are translated into
the interface of a component. Yet, most software also comes with some non-functional
requirements. These range from security requirements to pricing models or QoS (Quality
of Service) restrictions. Although the topic is not new, today there exist still no standard
for how such constraints can be defined in the interface. In [37] the authors propose to
standardize the way Quality of Service (QoS) related aspects should be integrated into
UDDI and SOAP(Simple Object Access Protocol) messages. This suggestion is partially
based on work done by Ran Shuping [67]. With the introduction of web services, these
non-functional requirements gained in momentum. Mani and Nagarajan, two software
engineers at IBM had already hunted down the problematic of QoS for web services back
in 2002 and identified the fundamental requirements for supporting QoS [WEB67].

6.4. Life Cycle

The definition of a component given in Subsection 6.2.3 pointed out four concepts, among
them, the concept of a component’s lifecycle. This is not only true for components but for
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any product. Clothes have a lifecycle, fruit and vegetables follow one, software products
also are supported by a lifecycle. They all have in common that a lifecycle is an ordered
sequence of transitional states. Some lifecycle are true cycles, whereas others go from
an initial state to a final one, traversing several intermediate states. Generally, we can
identify at least one initial state. The transitions between the different states are triggered
by events. Depending on the event, the next state might not always be the same. A simple
example is the lifecycle of a bottle of wine. First, the grapes are picked and delivered to
a winery. There the grapes are sorted, washed and destemmed. The fruit is then pressed
and the juice (for white wine) is stored in large barrels where it goes through primary
fermentation. After this first process, the juice is generally transferred to new barrels
where a secondary fermentation process starts. Depending on the kind of wine, after
the second fermentation it has to stay in barrels (sometimes wooden) to mature. Before
the wine is put into bottles it is sometimes refined by mixing different wines together.
This process is called blending and ensures that the wine tastes as expected and small
inconsistencies in taste can be corrected at this stage. Finally, the wine is bottled and
ready for consumption. Figure 6.5 shows this lifecycle and the related states from harvest
(initial state) to consumption (final state).

Harvesting

Destemming

Pressing

First Fermentation

Second Fermentation

Ageing, Blending

Bottling

Consuming

Fig. 6.5.: Vinification lifecycle
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In a similar manner, software has a lifecycle. In its simplest form, it may be development
— operation — end-of-life. Yet, when studying the software development process, it
appears that it is much more complicated than just development. The same applies to
operation. Services don’t simply run; but they have a well defined lifecycle. Services at
most times need some supporting infrastructure and this infrastructure also dictates the
lifecycle of the supported content. This is already true for very simple services. A small
webpage containing only HTML code already needs some infrastructure to allow clients
to browse it. A server like Apache [WEB3] provides simple HTTP interactions and acts
as a mediator between the managed pages and clients wanting to access to this content.
The growth in complexity of the provided service is directly coupled with the increase
in complexity of the supporting infrastructure. This raised complexity also introduces
bigger lifecycles.
According to Definition 4 components are deployed in a context and have a lifecycle
which not only depends on the components, but also on the context they are deployed
in. Nonetheless, the differences between different contexts are small. In the Java world,
the Jetty server is an example of such a container. But, there are a number of others,
providing different levels of functionality. As such, Glassfish or JBoss are fully blown
application servers whereas Jetty or Tomcat are generally called web-containers. It is
however amusing to note that fully blown application servers like Glassfish rely on the
smaller web-containers to provide web functionality. Thus, in the end their lifecycle will
be quite similar.
Writing Servlets is one way to exploit the capabilities of an application server. A servlet is
a Java class implementing either directly or through heritage the javax.servlet.Servlet
class. The best known implementing classes of the Servlet interface is HTTPServlet,
which already provides methods to handle the standard HTTP calls and the GenericServlet
which serves as a skeleton for protocol-independent servlets. By implementing the Servlet
interface, each class also inherits the servlet lifecycle.
Parts of a servlet’s lifecycle are imposed by the supporting application server and parts
by the servlet technology. The first step in this lifecycle is to deploy the compiled package
to the application server. Through this process the application is configured and enabled.
For this to happen, the application is bundled with a descriptor containing instructions
for the application server about needed resources like a database connection or a security
framework. If the application passes this stage it can be started. During the starting
phase, the container initializes the servlet. This involves the injection of needed depen-
dencies and the creation of a new instance. After the successful creation, the servlet is
said to be ready to serve incoming requests dispatched by the container. If at some point,
the servlet is shut down, the container calls up the servlet’s destroy method. The servlet
is then ready to either be started again or to be undeployed.
Such a container cannot only deploy simple servlets but full components. In the Java
world, these components are called Beans. Generally speaking, a servlet is just a simple
controller. Incoming requests are dispatched from the container to the servlet which then
decides what to do with the request and what response to send back. Beans, on the other
hand, contain reusable parts of software and are also deployed in some container. There
are several types of beans, stateless-session beans, stateful-session beans, message beans
and singleton-session beans. All have slightly different lifecycles due to their nature. The
lifecycle of a stateful session bean is a good example of all types of Java beans. Figure 6.6
gives a rough overview of its lifecycle. In the beginning, the bean does not exist. The
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Does not exist

Ready

Passive

Create

Passivate

Destroy

Activate

Fig. 6.6.: Lifecycle of a Stateful Session Bean

application server is then responsible for injecting the needed dependencies and creating
a new instance by calling the bean’s init method. After a successful creation, the beans
is ready to receive calls. However, the application server may decide at any time that
the bean is currently not needed and put it into a passive state and call the bean’s
@PrePassivate method to move it from memory to storage. As soon as a client invokes
any method on the bean, the container wakes the bean up by calling its @PostActivate
method. In the end, if the bean is not used anymore, it can be disposed of. To do this,
the container calls the @Remove and the @PreDestroy methods. Through this last action,
the component is again in its initial state Does not exist.
Different types of beans have slightly different lifecycles but, the main part of the lifecycle
is enforced by the supporting container. This also means that a given container may not
be adapted to every sort of component. Some, may require other lifecycles and therefore
other containers. It is, however, important to note that the lifecycle is always the result
of a component’s requirements plus a container’s capability.

6.5. Key Concepts introduced in this Chapter

This chapter introduced the notion of software components. The need for components is
motivated by the Software Crisis. Starting with languages like Pascal which are unable
to separate the definition from its implementation and its use, the evolution to modules
as defined by Modula and finally real objects as we know them from modern languages
like Java was illustrated.
Upon its introduction, Pascal was quite popular and was even forked into the commercial
Borland / Turbo Pascal. At this time there was no need for re-usable software. Each piece
of code was self-contained. Soon, industry realized that this approach was not viable.
The need for reusable software or at least in part, was realized. Modula introduced a few
novel concepts allowing the separation of concerns. Interface definitions were separated
from their implementation and from their usage. However, this was still not enough to
solve the software crisis. Although, Modula isolates definitions from their implementation
and usage, this mechanism is more like a namespace, far away from real objects and
classes. Finally, object-oriented languages like Eiffel opened the door to real software
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components. Objects and classes, as introduced by Meyer, are open for extension and
closed for modification. Therefore, they form compilable units, ready to be used by
clients.
Today a similar situation exists for the IoT, where no standards are imposed, neither
regarding the outer interface of a smart device nor its inner structure. Although the
WoT mandates the use of RESTful interfaces, it also faces the same problems. Each
smart device is unique in its inner and outer structure making it difficult to deploy
hundreds or thousands of units and use them in different scenarios. Additionally, there
are no guidelines on how to structure an entity, making it quite difficult to re-use an
already deployed smart device in a different scenario. This leaves a situation where smart
devices are closed for modification (at least partly) but, definitely not open for extension.
The aim of the xWoT meta-model is to help developers create well-structured, deploy-
able and easily reusable components. Having a component based approach for the xWoT
leads to such independently deployable units as mandated by Definition 4. Our xWoT
components have a well-defined interface supported by RESTful web services plus some
additional semantics, presented in Part III. This makes them ready to use in many sce-
narios. Coming back to Meyer’s point of view, these modules are closed for modification.
On the other hand, by adopting the structure imposed by the meta-model, they become
open for extension. Although not specified explicitly, adopting REST as the outer inter-
face makes the Web a context dependency of smart devices and serves as a deployment
environment. The web also imposes its lifecycle, at least partly, on xWoT components.
Moreover, with the aid of the meta-model introduced in Part III, these components be-
come easily reusable.
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7.1. Introduction

Components are one key factor for successful software engineering. They allow for a
great re-usability of code. Yet, to maximize the usability and also the re-usability of
such components, they need to be built carefully. Models and modeling tools support
the developers during the planning phase and greatly impact on the quality of the final
product. Furthermore, developers, business analysts and clients need some communica-
tion interface over which they can share specifications and requirements in a standardized
way.
The first part of this chapter discusses the key elements involved in modeling from a
software engineering point of view. This encompasses the four layers involved, starting
with endeavors and going through models and meta-models. The last layer, meta-meta-
modeling, is outside the scope of this thesis and is therefore simply ignored. The second
part introduces some tools supporting the creation and utilization of meta-models with
eclipse. Based on the first two parts, the last part fully develops a simple example to
show the application of models and meta-models in a concrete situation.

7.2. Definitions and Vocabulary

Modeling is commonly used to capture requirements before a project starts. It is also
often used to document the current state of a project. Furthermore, models serve as
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decision-base and common language between developers, requirements engineers and the
client. To reach this level of abstraction and platform independence, models need a
common, well-defined language. This is what meta-models are about. They define how
the elements of models are named, how they are structured and what relationships they
share.

In the field of software engineering, software development methodologies is a big field of
interest with a long history. Since the early beginnings, best practices exist for different
situations to guide the developers through the process of development. The gang of four,
proposed a collection of models, called design patterns, tailored for a variety of common
situations in software engineering. It is common sense that these models together define
a methodology in this context. In fact,

• WordNet defines a methodology as „the system of methods followed in a partic-
ular discipline“ or as „the branch of philosophy that analyzes the principles and
procedures of inquiry in a particular discipline“ [WEB47].

• Dictionary.com gives three meanings for methodology: The first is „a set or system
of methods, principles, and rules for regulating a given discipline, as in the arts or
science“ [WEB12]. The second definition applies to philosophy whereas the last is
about education.

• The Encyclopedia Britanica gives yet another definition. Accordingly, a methodol-
ogy is either „a body of methods, rules and postulates employed by a discipline“ or
„the analysis of the principles or procedures of inquiry in a particular field“ [WEB33].

From these definitions two main streams can clearly be identified. On the one hand, a
methodology is a collection of methods for a given field of interest. This is how most people
would probably define methodology. The methods describe how something can be done.
Like this, the collection is source of information. On the other hand, a methodology can
describe the study of procedures applied in a given discipline. Etymologically, the second
definition is more accurate as it is directly be derived from the Greek word metodologia
(µ✏✓o�o�o�◆↵) which in turn is derived from the two ancient Greek words methodos
(µ✏✓o�o�) and logos (�o�o�). Therefore, the etymological meaning is study of knowledge.
Whereas the first definition is rather passive and a methodology is characterized as a
tool, the second one implies a mental activity. The dictionaries and encyclopedia cited
above agree that this second definition is mostly used in philosophy and philosophical
reasoning. Although, in the field of software engineering, the process of modeling implies
cognitive skills, its meaning is closer to the first definition. Consequently, this thesis
adopts the definition given by Gonzalez-Perez et al. in their book Metamodeling for
Software Engineering [B9].

Definition 7 (Methodology (from [B9]))
A methodology is a systematic way of doing things in a particular discipline [B9, p. 3].

Additionally, method is just a synonym of methodology. Definition 7 contains 4 concepts:

1. It is a way of doing something; a methodology is not a goal but its application leads
to an end. A methodology is a tool.

2. The application of a methodology is systematic. This ensures that results are pre-
dictable and most importantly, repeatable.
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3. It is about how things are done. This means that a methodology transform things.
The state before applying the methodology is not the same as the state after.

4. It applies to a particular domain. Methodologies are not general truths instead, they
are tailored for a precise domain. In this case, the domain is software engineering
and, as depicted in Section 8.2, the Web of Things.

Methodologies are not transcendental; humans define them specific to a domain of ap-
plication. There are two major approaches to how new methodologies can be created:
(1) Tailoring is a widely used approach in software engineering, mainly through the mech-
anisms of inheritance supported in various programming languages. An already existing
generic methodology is customized to the current needs. To adapt a methodology to new
and changing situations, some ancestor methodology needs to exist. Since this ancestor
serves as a basis for new methodologies, it is composed of two parts: a fixed and a vari-
able. The fixed part remains unchanged during adaptations whereas the variable part
changes with each new methodology. This duality is not without some problems. The
creator of the a-priori methodology has to decide which parts are fixed and which variable.
Nonetheless, finding the line between the two is a difficult task. If the methodology has
too many fixed parts it can only serve as a-priori methodology for a very restricted num-
ber of situations. If on the other hand, the a-priori methodology only contains variable
parts, it will not be a good ancestor for any new methodology. (2) Method engineering
on the other hand dynamically composes new methodologies out of existing ones, and is
proven to be useful and stable. There is no generic template as for the tailoring approach.
Instead, methodologies are built onto what already exists. This approach highly supports
the re-usability of methods. Additionally, method engineering has the advantage that no-
body has to decide about a static part. If a method component is useful, it is taken as it
and embedded with other method components. It is important to note that this second
approach asks for a new kind of engineer, a method engineer. Someone has to build these
method components and make them available from a repository. Starting from a given
problem, these people browse such a repository and if no adapted methodology is found,
create one adapted to their current endeavor. Subsequently, software developers build on
top of these methodologies. They use them to create new software. Thus, methodologies
are a common playground for both, method- and software engineers. Hence, both should
be able to read, write and interpret methodologies.
Whether tailoring or model engineering is used to create new models, they need to be
expressed somehow and for this, they need a representation. One could imagine that a
metamodel is a kind of special model and indeed, the "meta" of metamodel means beyond
in Greek (µ✏⌧↵). More usually, the prefix "meta" is used in philosophy to indicate that
something is about its own category. Therefore, a metamodel is a model about mod-
els. This is also the definition found in the glossary of the MDA Guide [54]. Although
simplistic, this interpretation is already quite close to what metamodeling is about. Def-
inition 7 states that a methodology is a model, therefore, the process of creating models
is called modeling. By extension, the process of creating the language supporting the
process of modeling is called metamodeling. Definition 8 gives a formal definition of the
term metamodel as it will be use throughout the rest of this thesis.
Definition 8 (Metamodel (from [B9]))

A metamodel is a domain-specific language oriented towards the representation of
software development methodologies and endeavors [B9, p. 18].
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7.2.1. Endeavors and Systems under Study

The definition of a metamodel (see Definition 8) introduces the term endeavor. Modeling
is the task of describing with a given language parts of reality. For the model, this part
of the reality is called the System under Study (SUS) or endeavor. Basically, anything
can be a SUS (System under Study) , a tree, the weather or software. As long as it
is observable, it can be a SUS. The same reasoning applies to models: when building
models of a SUS, they become real and part of a reality. Models become observable and
can therefore turn into a SUS.

Moreover, Definition 8 explicitly asks for a language describing the model. The semiotic
triangle [58] (also called Ullmann’s Triangle [B22]) summarized by Guizzardi [26] on Fig-
ure 7.1 resumes the relationship between SUS and models. The cognitive model abstracts
a SUS. Although, details of the SUS get lost through the process of abstraction, the key
properties remain. This new, simpler form of the initial SUS facilitates reasoning. Such
an abstraction can be expressed with a function ↵ mapping one representation (the SUS)
into a new one (the cognitive model). Let ↵ be a mapping from the set S of SUS into
the set M of cognitive models

↵ : S ! M (7.1)

then, the following relation 7.2 holds.

9 SUS1, SUS2 2 S|↵(SUS1) = ↵(SUS2) 6=) SUS1 = SUS2 (7.2)

Basically, the function ↵ is a one-to-many mapping. Each model can have several con-
crete realizations (SUS). Yet, the set M does not contain real models which can be
communicated to others; it merely consists of visualizations of SUS as the person creat-
ing models imagines a SUS. To communicate these visualizations with others, they need
to be expressed in some common language. The model, by using such a language, reifies
the cognitive model into a model (also called communicated model). This relationship is
expressed with �, a mapping between the model and the cognitive model. It is important
to note that there is no direct connection between the SUS and the model. Although the
model represents the SUS, they are only linked through the cognitive model of the cre-
ator, albeit, the relation µ between a model and a SUS is the composition of the relation
↵ and � (µ = ↵ � �) in software engineering µ is often equated with ↵.

7.2.2. Models

Although, model and SUS are not directly connected in the semiotic triangle (see Fig-
ure 7.1), one can still generalize that a model is an abstraction of an endeavor. Gonzalez-
Perez formulates three criteria such a model must meet:

1. Abstraction: the model is a simpler form of the SUS, sharing the essential parts
but lacking the complexity of the SUS. Accordingly, a model can stand for several
endeavors.

2. Homomorphism: any operation on the SUS is also possible on the model. Therefore,
to solve the SUS, it is sufficient to solve the model.

3. Purpose: A model represent its endeavors and acts on behalf of them.
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Cognitive Model

Model SUS
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represents
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μ

Fig. 7.1.: The Semiotic Triangle merged with the Seidewitz’ terminology (after [B10,
p. 4])

To fulfill these requirements, a model always needs to be connected to some SUS. It
cannot stand for itself alone and is useless without any endeavor. Gonzalez calls this link
from the model to the SUS interpretive mapping. He means that any entity of the model
can be mapped to an equivalent entity of the SUS. However, these mappings are not
always one-to-one and depend on the characteristics of the entity. A car for example, can
be represented with a model. The latter, although a simplified version, contains all the
important parts, like wheels, the engine, headlamps etc. Indeed, if the model contains
a steering wheel, there is a one-to-one mapping to a steering wheel of a real car. A bag
in the cargo bay of the model, on the other hand, is a one-to-many mapping. It is only
in the model to illustrate that bags can be stored in the cargo bay. But, it does not
map any particular real bag. Instead, different ones can be represented by this model
bag. Therefore, interpretive mappings can be off two different types: one-to-one and
one-to-many. Gonzalez-Perez enumerates three categories of interpretive mapping. The
one-to-many mappings can be of two different types: examples and property sets. This
leaves the following types of interpretive mapping:

Window

Model SUS

Fig. 7.2.: Different types of mappings. In red, an Isotypcial mapping, in green a Proto-
typcial mapping and in blue a Metatypical mapping.
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1. Isotypcial mappings are one-to-one. Each model entity maps directly to a SUS
entity.

2. Prototypical mappings map one model entity to many SUS entities. The model
entity is expressed as an example which stands for a whole category of entities.

3. Metatypical mappings are also one-to-many. However, instead of specifying the
category of entities through an example, it is specified declaratively. The model
entity contains a set of properties which must be true for any mapped entity of
SUS.

The car example has already used two of these categories: first, the steering wheel is an
isotypical mapping between the model and the SUS and for each steering wheel in the
model, there is exactly one steering wheel in the car; second, the bag model in the cargo
bay is an example of a prototypical mapping standing for different realizations of a bag
in reality and the class of real bags is specified through an example bag. Metatypical
mappings, the third type, can be found in UML (Unified Modeling Language) class di-
agrams. Each class definition stands for a collection of objects in the system. In UML
these objects are represented through one class with a set of properties in the form of
field and function definitions.

Window

Model SUS

Window

ModelSUS

(a)

(b)

t

Fig. 7.3.: Temporal relationship between models and SUS. The situation (a) shows an
analysis whereas (b) depicts a specification.

Along with the type of mapping between a model and its associated endeavors, there are
different types of model. Depending on the situation, a model can exist either after the
SUS or before the SUS. The first is useful to abstract from a concrete situation and to
reason about a given problem. The latter is merely used in computer science to specify
how a system should work before actually implementing it. Depending on the author,
a more or less fine-grained partitioning of models is given. Yet, all agree on these two
categories. Gonzalez-Perez calls them backward-looking if the model exists after the SUS
and forward-looking otherwise [B9, p. 23]. Henderson-Sellers merely speaks of analysis
and specification model [B10, p. 39] and others ([68, p. 13], [30, p. 389]) talk about
descriptive and prescriptive ones.
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7.2.3. Meta-Models

Everything discussed so far also applies to meta-models. As models are an abstract view of
an endeavor, meta-model are an abstract view of models. Hence, the semiotic triangle [58]
can be applied to models. Whereas, in its original form, an endeavor is the SUS, now
the model becomes the SUS through a process of abstraction; somebody can create the
equivalent of a cognitive model. Henderson-Sellers calls this a meta-conceptualization. As
in the semiotic triangle, this is just a theoretical representation of the models. To share
this illustration with the world with the help of a language, a meta-model is reified from
this meta-conceptualization. Figure 7.4 resumes this situation. Again, three mappings
are used to transform real world models into meta-conceptualizations and finally, meta-
models.

Meta Conceptualization

Meta-Model Model

abstractsrefies

represents

α’!’

μ’

Fig. 7.4.: Semiotic triangle applied to meta-models (after [B10, p. 4])

As for the relation between SUS and models, there is no direct relation between models
and meta-models. The latter only exist through a meta-conceptualization expressed in
some language. Therefore, the represents relation can be expressed as follows:

µ0 = ↵0 � �0 (7.3)

In software engineering however, the relation �0 is most times ignored, defining µ0 as:

µ0 = ↵0 (7.4)

This defines the meta-model as an abstraction of the model. In Equation 7.1 of Chap-
ter 7.2.1 the abstraction function ↵ is defined as a mapping from a set S of SUS into a
set M of models. The model abstraction function ↵0 is defined in a similar manner:

↵0 : M ! MM (7.5)
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where M is the set of models and MM is the set of meta-models. Since, meta-models
are an abstraction of models the following equation also holds:

9 m1,m2 2 M |↵0(m1) = ↵0(m2) 6=) m1 = m2 (7.6)

Meta-models and their models need to be homomorphic. All important structures of the
model are also present in the meta-model, allowing reasoning about the model with the
meta-model. Mathematically, a homomorphism is a relation between two groups

Definition 9 (Homomorphism)
Let A and B be two groups, and f a map from A to B. Then f is said to be a

homomorphism of A into B if the following property holds for all x

8x, y 2 A, f(xy) = f(x)f(y)

Based on this definition we can introduce the following theorem
Theorem 7.1

Let f : A ! A0 and g : A0 ! A00 be two homomorphisms. Then the composite map
f � g is a homomorphism from A into A00.

The proof holds on a few lines. The interested reader can find them in Lang’s Undergrad-
uate Algebra [B13, p. 34]. Theorem 7.1 applied to SUS, models and meta-models leads
to

↵ : S ! M, and ↵0 : M ! MM ) ↵ � ↵0 : S ! MM

Through this relation, a meta-model, although abstract, still shares — to some extent
— important aspects of the endeavors of a given domain. Therefore, as discussed in
Definition 8, a meta-model is always domain specific.
This approach gives a three layered hierarchy where the endeavors sit on the bottom
layer. Subsection 7.2.2 showed that endeavors are created from models and methodologies.
For this reason, it makes sense to define models as the next layer, sitting on top of
endeavors. This produces a hierarchy where models serve as templates for endeavors.
From the beginning of Subsection 7.2.3 and from Equation (7.5) models are derived from
methodologies. Accordingly, they should form the next layer. Following the semantics of
this hierarchy, it defines methodologies as descendants of meta-models which is compatible
with Equation (7.5).
Yet, this reasoning does not explain how meta-models are generated. Following the same
approach, there must be an additional layer serving as template for creating new meta-
models. Figure 7.5 shows that the OMG (Object Management Group) introduced such a
fourth layer called the meta-meta-model in their hierarchy [59, p. 35]. Furthermore, the
OMG defines the relation between a layer and its parent layer as type instance-of. This
means that objects living in the endeavor layer are instances-of the model layer. The
OMG calls this architecture Meta Object Facility (MOF) with a meta-meta-model in its
center. In addition to the four layers of Figure 7.5, MOF (Meta Object Facility) also
defines some standards for how to handle models. Of them, the XMI (XML Metadata
Interchange) format is used to exchange metadata. Besides the MOF architecture, the
OMG also proposes a smaller one, EMOF (Essential MOF) as a subset of MOF. EMOF
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Meta Meta Models

Meta Models

Models

Endeavours

instance-of

instance-of

instance-of

Fig. 7.5.: The OMG four layer approach to meta-modeling

is an important subset of MOF in the sense that it is fully compatible with Ecore, the
core of the Eclipse Modeling Framework (EMF).
Based on these considerations and analogous to the definitions of ↵ and ↵0 in Equa-
tions (7.1) and (7.5), we can define another map ↵00 as

↵00 : MM ! MMM (7.7)

Applying Theorem 7.1 once again, to the maps ↵, ↵0 and ↵00 as defined previously results
in the following equation:

Given ↵ : S ! M, and ↵0 : M ! MM, and ↵00 : MM ! MMM (7.8)
) ↵ � ↵0 � ↵00 : S ! MMM

On a more abstract level, the OMG calls these layers M0 to M3, M0 representing the
endeavors layer and M3 the meta-meta-models layer. Given these notations, the Equa-
tions (7.1), (7.5) and (7.7) can be rewritten as follows:

↵ : M0 ! M1

↵0 : M1 ! M2

↵00 : M2 ! M3

In Metamodelling for software engineering, Gonzalez-Perez presented yet another view
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of meta-models. According to Gonzalez-Perez, the building blocks of models are model
units, the smallest and indivisible parts of a model. Each model unit stands for one major
characteristic present in the SUS. As explained, there is a homomorphism ↵ between a
SUS and its model. Model units form the basic elements this map is working on. Consider
the car example introduced in Subsection 7.2.2; the steering wheel, brakes, engine and
doors would be model units to model cars. Sometimes, a model is composed of several
similar model units. A car, for example has three or five doors, each being a model unit.
Although each door is different in the model (it is impossible to exchange the driver’s
door with the rear door), they all share certain properties. If several model units share a
set of properties, they are of the same model unit kind. Both, the driver’s door and the
rear door are doors which can be opened and closed.

Model Unit Kind

Model Unit

Language

Model Kind

Model
composed of

composed ofuses

ofof

*

1

*

1 *

*

1

*1 *

Fig. 7.6.: Another view of meta-models (modified from [B9, p. 28]).

Models, on the other hand, are specific for to a given domain. Consequently, each model
is of a given model kind. For example, with the example model units, steering wheel,
breaks, engine etc. it is possible to model cars, trucks, buses, tractors etc. All these
models share, that they represent some type of automobile. Accordingly, their model
kind would be the automobile. Just as models use a set of model units, a model kind
uses a set of model unit kinds. Since a model unit kind is, although abstract, related to
a domain, this set only contains model units kinds with some relationship. To continue
with the car example, it would not make any sense for a model kind to use the class or
attribute model unit kind. These ordered sets of model unit kinds, can be grouped into
a language. It is important to note that such a language is just a structured collection
of model unit kinds; it does not contain or define any notation. If one is needed, it has
to be defined alongside the language. Since, the objects of such a collection have some
relationship, model unit kinds are not defined independently but rather as a meta-model.

7.3. Example

Based on the definitions and conventions introduced in the previous section, let us look at
a concrete example of meta-modeling. As before, cars can serve as an example use-case to
show through a concrete example, what a SUS, a model and a meta-model would look like.
Implementing a complete meta-model for the automobile industry is clearly outside the
scope of this thesis. Instead, the example focuses on the important concepts presented
in the previous chapters. According to Subsection 7.2.2, there are two approaches for
creating models and meta-models: forward and backward looking approaches. The former
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creates the meta-model before having any concrete models and creates models before
knowing any concrete SUS. The latter takes the opposite approach.

Fig. 7.7.: Example Model Unit Kinds forming an automobile Language

As usual in the automobile industry, this example takes a forward-looking approach.
This means, starting with a meta-model for the automobile industry, the designers first
create a model of a new car and after some iterations and refinements, a concrete car is
build. Usually, when designers start to build a new car, they don’t reinvent the wheel
each time. An automobile is always based on the same set of parts for instance, wheels,
doors, steering wheel, lights, engine, seats and HVAC (Heating, Ventilation and Air
Conditioning). Although there are differences between wheels, they all serve the same
purpose, as the contact point between the automobile and the ground and can therefore
be clearly identified as wheels. Compared to the definitions introduced in the previous
chapter, each element of this set represents a model unit kind. This set would then be the
language for the automobile industry. Figure 7.7 shows some elements of this set. It is
important to note that all the elements relate to the automobile industry, so a language for
this domain would include them. According to the nomenclature introduced previously,
this set is the meta-model for automobiles. In addition to the individual model unit
kinds, the meta-model also introduces some structure within these elements. There is for
example, a relationship between the steering wheel and the wheels. Common sense also
dictates that doors are used by passengers to board and get out of a car and therefore
need to be accessible to the latter.
Between different models — and sometimes also between different brands — a consider-
able amount of parts remain the same (Skoda and VW for example share large parts of
the cockpit). This limits the number of available parts for a given section of a car. In
terms of the previous chapter, these parts are the model units, the atomic components
of every car model. One such model unit would be the front shield of Tesla’s Model X.
All concrete Model Xs manufactured by Tesla will share the same front shield, thus they
share the same model unit. However, a Bentley Continental has a different front shield.
This leads to two different model units available for car models. Still, both models of
front shield are of the same model unit kind. Starting with these model units, designers
create a model for a new car. Although different models use the same model units, they
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Fig. 7.8.: A model for a Skoda Octavia (from [WEB57])

do not necessarily look the same. Aspects like shape, size, placement of different model
units etc. are only defined in a concrete model. Figure 7.8 shows part of such a model for
a Skoda Octavia. One can identify the important parts of this car and their relationship
to each other. From this point on, all concrete Skoda Octavia, like the one shown on
Figure 7.9, will be instances of this model with slight variations due to different extras.

Fig. 7.9.: Concrete Skoda Octavia (from [WEB57])

7.4. Modelling with Eclipse

The first part of this chapter formally introduced the concept of meta-models and related
terms leading to two visions of meta-models, one based on the four-layered model of the
OMG and the other based on the concept of language and model unit kinds presented
in [B9]. The second step was to show the application of these concepts to a real world
example, the automobile industry. While the example gives a rough feeling about meta-
models and the related concepts, it does not explain how meta-models are built and how
they are finally used to create instances of concrete models. This section shows, with the
help of a simple example, how to create a fully functional meta-model. The modeling
tools bundled with recent Eclipse versions assist during the process of creating new meta-
models but, also support instance creations of these meta-models. Indeed, it is possible
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to add new meta-models to eclipse’s modeling environment from which new instances
can be derived. The advantage of these tools is the way they visualize the information.
Actually, meta-models are represented like UML class diagrams. Since meta-models are
a combination of terms forming a language plus some relations between the individual
terms (see Subsection 7.2.3), visualizing the structure of a meta-model greatly helps to
understand it.
Eclipse’s modeling capabilities are supported by the core EMF including a meta-model
called Ecore. Besides supporting the creation of models, it also provides runtime support
for the created models. Regarding the OMG notation, Ecore is not only capable of
generating models sitting on the M2-layer but can also create instances of the M1-layer.
To support this task, Ecore provides a set of primitives. Among them, the EClass which
represents one model unit kind. As with each UML class, the EClass can be further
specified with EAttributes and EOperations. At the very end, this chapter develops a
small example with EMF (Eclipse Modeling Framework) . To keep the example simple,
a meta-model representing people and families is used instead of the car example, as
its associated meta-model would not be suitable to show some important properties like
inclusion and extension. Listing 7.1 shows the most important model unit kind when
talking about families, a Person. Moreover, the listing shows that a person has a few
attributes like a first and a last name or height. Defining the Person model unit kind is
straight forward and the final code is very similar to Java code. The Person class is made
up of a number of attributes, most of which are of a simple type. However, the eyeColor
and gender attributes both have an enum type. Enum types have the same meaning as
in Java, they implement a fixed list of choices for a given attribute, so gender can either
be MALE or FEMALE. Each instance of Person has to choose one of these two values
for the gender attribute.

1 class Person{
2 attr String firstname;
3 attr String lastname;
4 attr Integer size;
5 attr Integer weight;
6 attr Colors eyeColor;
7 attr Gender gender;
8 }

10 enum Gender{
11 MALE;
12 FEMALE;
13 }
14 enum Colors{
15 BROWN;
16 BLUE;
17 GREEN;
18 }

List. 7.1: Person model unit kind expressed in Emfatic

Although, a real person has many more attributes, those defined in Listing 7.1 are suffi-
cient to illustrate the use-case. Yet, the concept of family encompasses some more model
unit kinds at least — a family is made of parents and children. To keep the use case
simple, a family with zero children is also allowed. This description directly translates to
the Emfatic code of Listing 7.2. Since its first 19 lines are identical with Listing 7.1 and
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to augment readability, they are stripped from Listing 7.2. Two new model unit kinds are
introduced: Parent and Child. Although the Child model unit kind does not add any
other attributes to Person it is still important to define it. Giving children an own class,
allows them to be identified later and also permits the introduction of relations, where at
one end, a Child is needed (is-parent-of relation for example). A Parent is also some
kind of Person. Unlike the Child class, it adds another field yielding to its children. The
multiplicity implies that a parent has zero or more children of type Child. In addition,
Listing 7.2 shows two relations types available in Emfatic. The first, a containment ref-
erence is introduced with the children field in the Parent class. Through this definition,
the Parent class contains a reference to the Child class. The second, inheritance, is used
by both, the Parent and the Child class and shows how a model unit kind can be a
specialization of another model unit kind.

20 class Child extends Person {

22 }

24 class Parent extends Person{
25 val Child[*] children;
26 }

List. 7.2: A simple family model expressed in Emfatic

The situation depicted on Listing 7.2 can be improved. Commonly when speaking about
families, the role of a father, a mother and their children can be identified. All of them
are still persons but the situation can be further refined. Additionally, mother and father
are commonly seen as parents. Thus starting with Listing 7.2, the Parent class can serve
as a basis for the Mother and the Father class. Furthermore, a child has exactly one
mother and one father, reflected in lines 33 and 34 in Listing 7.3. The Child class defines
one containment reference to its Father and another containment reference to its mother.
Since Father and Mother are the only two possible types of Parent, it is also a good idea
to forbid the instantiation of other types of parents. This is achieved in the meta-model
on line 20. By defining the Parent class abstract, instantiation is forbidden, yet, it still
serves to define common properties for Parents, for example, the case of the children
attribute in line 21. Accordingly, the Father and the Mother classes are both inherited
from the Parent class. Here it would be nice to already fix the gender feature to MALE
for the Father class and FEMALE for the Mother class. However, Emfatic and Ecore do
not support overriding features in sub-classes. Again Listing 7.3 is not complete. Its first
part is exactly the same as discussed in Listing 7.1 and has therefore been truncated here.

20 abstract class Parent extends Person{
21 val Child[*] children;
22 }

24 class Father extends Parent{

26 }

28 class Mother extends Parent{

30 }

32 class Child extends Person {
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33 val Father[1] father;
34 val Mother[1] mother;
35 }

List. 7.3: A more complete family model expressed in Emfatic

This model could be further refined by defining the Person class as interface or by defining
other model unit kinds common in families (like uncle or aunt). Once the meta-model is
fully described in Emfatic, it can be transformed into Ecore and also an Ecore diagram.
The result of this process is shown in Figure 7.10. Once the meta-model is transformed
into Ecore, it can be installed into Eclipse making it available as a prototype for new
models. Therefore, it would be possible to create the instance Fam. Hofstadter with
Father Leonard Hofstadter, Mother Penny Hofstadter and two Children Howard and
Sheldon.

Fig. 7.10.: Meta-Model of a family in EMF

7.5. Key Concepts introduced in this Chapter

The conclusion of Chapter 6 showed that a component based architecture can only work,
if all the components are well structured. Additionally, all developers should agree on
some naming convention, or at least, the terminology chosen should be very clear. Fur-
thermore, as noted, a meta-model is the suitable approach to define the inherent structure
of the WoT components. To come up with a suitable meta-model this chapter introduced
the notion of meta-models and the foundations of meta-modeling. In the literature,
there are two major approaches to meta-modeling. The first is based on the Semiotic
triangle (see 7.1) and defines the relationship between System under Study and models
(respectively between models and meta-models). The second approach is based on work
of Gonzalez-Perez [B9] where a language (a set of model unit kinds) is used to describe
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models. Both approaches become at some point philosophical. The semiotic triangle
underlines the difference between a cognitive model and a model, although in computer
science, they are, most of the time considered as the same. The important relation for
this thesis is given in Equation 7.8 describing the relationship between a SUS and the
meta-model it is derived from. Since the relation between a SUS and its model is a homo-
morphism and the relation between a model and its meta-model is also an homomorphism,
there is a relationship between a SUS and its ancestor meta-model.
The Semiotic triangle introduces the relation between a SUS and the associated model.
Yet, it does not specify whether the model existed first (forward looking) or whether
it is derived from the SUS (backward looking). When smart devices are created, the
usual approach is to take something that already exists in the physical world, like a
light bulb, and make it smart by adding a virtual representation and a communication
API (REST in this case). Therefore, a developer starts with the physical light bulb and
describes its properties. In the second step the physical object is divided into resources
with their hierarchical dependencies. Therefore, the process of creating new models of
smart devices will often be backward looking (also called analysis). This seems obvious as
the main task is to re-create in the virtual world what already exists in the physical world.
On the other hand, these model comply to the xWoT meta-model. Clearly, the meta-
model existed before all these models and serves as the ancestor of them. Therefore, the
relationship between xWoT models and the xWoT meta-model is forward looking (also
called specification). This remains true even though the meta-model itself was derived
from SUSs at some point. Thus, the task of creating new smart devices is at the same
time an analysis (of the physical world) but also a specification (of the RESTful interface).
This discussion appears to be turning philosophical. For this thesis, it is enough to state
that models are inspired by reality and they comply to the xWoT meta-model. Gonzalez-
Perez prevented this situation by defining the meta-model as the language constructed
out of model unit kinds. Models can then be build by picking and combining items out
of this set. Additionally, Gonzalez-Perez introduced another interesting concept with
this approach, both of which have importance for the xWoT meta-model. The creation
of such a language means its model unit kinds have to be named, introducing concrete
terminology which can then be used in models to express different SUS. Additionally,
the language contains information about the relationship between the different model
unit kinds. This is also important for the xWoT meta-model. The example presented in
Section 7.4 shows that using the modeling tools bundled with Eclipse can express both
terminology and structure in an EMF meta-model.
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Section 4.3 introduced the Web of Things and traced its history from its beginnings to
the current state of the art. The WoT is now at a stage where it is mature. The tech-
nologies and architectures involved have proven to be successful in many applications
and consumer products. As for RESTful architectures, they are by far the preferred way
for creating publicly available APIs nowadays (see Figure 3.4). Of course, this success is
only partly due to the WoT. Another success factor is due to mobile phones and mobile
applications where REST-like services provide an easy way to connect the front-end ap-
plication running on a mobile device with the back-end data available on some servers.
On the other hand, consumer products like the Koubachi plant care platform [WEB29]
(1000 - 5000 downloads of the Android application accompanying the sensor) or the
various fitness trackers (fitbit [WEB18], Nike+ [WEB36], Jawbone [WEB27] etc.) have
successfully laid the foundation for the IoT. Through platforms like Arduino [WEB5],
SunSpot [WEB58], openPicus [WEB38] and many more, developers have all the necessary
tools to build numerous WoT applications.
This chapter will introduce our vision of an extended version of the Web of Things, the
xWoT, embracing not only smart devices but also virtual only services. Furthermore,
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the xWoT can iron out some shortcomings of the actual WoT and serves as a basis for
the meta-model introduced in the next chapter. This chapter is divided into 4 sections.
The first one identifies the limitations of the current WoT. The second section addresses
two of these limitations by classifying the different types of client-server interactions and
discussing various approaches to push information from servers back to clients. The third
section introduces the extended WoT (xWoT) and defines its building blocks. Finally,
the fourth section applies the introduced concepts to a concrete use-case and shows the
applicability of the xWoT, as foreseen by the author.

8.1. Weaknesses of the actual WoT solutions

At a very early stage, D. Guinard et al. promoted the usage of a resource-oriented
approach to build upon already established technologies [24]. The idea of creating appli-
cations out of what was already available on the Web (in this case the Things) evolved
and finally became a central part of the work of D. Guinard [21, 23, 24, 25, 19]. The fast
growing WoT community rapidly picked up this idea and multiple applications and even
some commercial products emerged [WEB29]. The core idea is to promote smart objects
or Things to first class citizens on the Web, making them directly usable and browsable
like any other resource on the Web, which has made the WoT a success story. Although
there were other, similar ideas for the IoT [42] the WoT also offered a way to achieve this
goal giving it a huge advantage over the IoT. Today, the WoT has proven its viability
but still has some important shortcomings, of which three are:

1. Data integration. Since the WoT is a web of Things, they are the main source of
information. Past experience has shown that interesting applications however com-
bine data from the WoT with data from purely virtual services like computational
algorithms, business processes and other services. Services with no relationship to
any physical object are outside the scope of the WoT. However, taking into consid-
eration service components is an essential requirement for the long-term success of
the WoT.

2. Events. They play an important role in any piece of software. For GUI applications
these events are the mouse and key listeners used by the application to react to user
input. Similarly, the WoT needs to integrate events to build interesting applications.
Sensors can trigger actions only if events can be pushed to clients. The WoT lacks
a common pushing infrastructure making it difficult to build applications relying
on events.

3. Building Blocks. Mashup applications are often the link between users and the
WoT and many efforts have been spent on either creating mashup editors or dedi-
cated mashup applications. Although smart devices are the building blocks of these
mashup applications, they are mostly ignored and treated like a black box. Mashup
creators simply presume the existence of the necessary smart devices. Today, there
are no guidelines on how to create these building blocks

8.1.1. Data Integration

Another point mostly ignored is how the WoT deals with data. By definition, the WoT is
the Web where Things are first class citizens, a Web, where the participants are Things.
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Although such a simple definition might look easy to understand at first glance, problems
already start from the definition itself. Whereas, it seems clear that a door can be
turned into a smart door by adding an actuator capable of opening and closing the
door combined with a sensor monitoring its state, it is less obvious how a book can
be turned into such a smart device. Intuitively, the book exists on the web as text
and an Radio Frequency Identification (RFID) tag closes the gap between the physical
object and its virtual representation. This shows that the notion of smart device is
fuzzy. The physical book does not really become smart through an attached device.
Flipping pages in the virtual book does not flip pages in the real book. Therefore, the
coupling between the physical and the virtual world is not always as tight as one might
think at first. The WoT does not define how much coupling is needed to take part in
the WoT. Besides, mashups not only consider information provided by smart devices,
but often also integrate information from traditional web sources. Twitter, Facebook
and Google Maps are certainly the most popular in all sorts of mashup applications.
Under the same conditions as for the book example above, it is arguable that Twitter
and Facebook are virtual representations of a person and hence fully embedded into the
WoT. Furthermore, Google Maps can thus be interpreted as one possible representation
of a resource. However, such arguments cannot be found for every service of interest for
the WoT.
The status of purely virtual services or algorithms in the WoT is an open question. In [50]
Mayer et al. suggest the need for purely virtual goods because in a near future, smart
devices will create such a huge amount of data that some strong filtering and aggregation
mechanisms will be needed before data can be made available to the final user. In their
paper, the authors introduce a market place for computational algorithms respecting the
HATEOAS (Hypermedia as the Engine of Application State) principle. Upon requesting
an algorithm, the response contains a certain number of forward paths which the client
can choose from to continue. Furthermore, the authors provide a proof-of-concept imple-
mentation of such a marketplace. They address issues like discovery, security and billing.
In [2] Alarcon et al. the authors introduce the Resource Linking Language based on Petri
Net models using the HATEOAS principles to link resources. Such papers show that
the REST community is actively doing research on common topics related to the service
world: discovery, security, billing, late-binding etc. Most of this research is targeted at
computational services however, since the WoT uses RESTful interfaces, it should also
take into consideration service related aspects and benefit from the research already done
in this domain. As promoted by Mayer in [50], computational resources can drastically
reduce the amount of data produced by smart devices. Furthermore, such smart devices
have, in general, limited computational capabilities and tight constraints on battery con-
sumption. Therefore, most are only embedded with the bare minimum of business logic.
Yet, linking the output of smart devices to computational resources can greatly improve
their raw capabilities. Additionally, such an approach adheres to common design pat-
terns like the re-usability of code. In fact, an aggregation algorithm can be deployed on a
machine without any CPU or battery constraints. Therefore, many smart devices can use
one service. Software engineers know that such re-usability has many advantages: bugs
need only to be fixed once, new features become instantly available to all clients, devel-
opments costs are greatly reduced. Taking these observations and arguments as a basis,
we identify four categories of purely virtual services. In [71] we discuss for each category
how they can be seamlessly integrated in a RESTful architecture and thus integrated into
the WoT.
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Business Processes form one of the four categories we identified in [71]. In the world
of SOAP services and enterprise environments, business processes have become well es-
tablished. Today they are the de-facto standard when it comes to service orchestration
and composition. However, in their current state they are outside the scope of RESTful
architectures and the WoT. Some work has been done to integrate IoT specific tasks
within the BPM specification [53, 48, 52]. S. Meyer et al. analyze in their work how busi-
ness processes can take advantage of smart devices and they propose some IoT specific
extensions to the BPM meta-model. Meyer et al.’s work seems to solve this problem, at
least for the IoT. Since the WoT can be seen as a subset of the IoT, Meyer’s work can
easily be adapted to the WoT, so business processes can have access to smart devices.
With the growth in complexity of WoT scenarios, orchestration and service composition
also become important in the RESTful world. C. Pautasso et al. conducted some work
on BPM extensions and adaptions for RESTful web services [61, 62] and propsed in [61]
an extension to BPMN (Business Process Model and Notation) to deal with the specifici-
ties of REST architectures. Through this extension it is possible to model RESTful web
services with BPMN. In [62] Pautasso propose an extension to BPEL (Business Process
Execution Language ), which allows orchestrated processes based on RESTful web ser-
vices to be executed. S. Kumaran describes a business process execution engine which
is completely RESTful [43]. Instead of focusing on message flows as in traditional BPM
systems, they propose a more data-centric approach. Each piece of data represented is
business critical. Since, by definition, the base architecture is RESTful, such execution
engines are not only able to consume RESTful web services but REST client can also
consume them. However, it seems that this approach implies a fully RESTful architecture
for the whole infrastructure, thus excluding traditional business processes.

8.1.2. Events

When it comes to smart devices, pushing information is always an important aspect.
Smart devices run on limited hardware and often have very strict requirement regarding
their power consumption, therefore, they cannot afford a lot of clients constantly polling
the device for new information and thus, preventing it from switching into some low
power consumption mode. On the other hand, some scenarios have a strict requirement
to rely on events. For example, consider the following use-case: "As soon as somebody
enters the room, switch the light on if it is not already on." It is evident that this type of
scenario requires at least some sort of presence sensor to detect humans and a light switch.
The logic combining these two smart devices would then be coded into some mashup
application. Platforms like Paraimpu, Xively and others [WEB43, WEB75, WEB64] have
arisen from the necessity to push information to mashup applications. Imagine the Japan
Geigermap application [WEB25], if the application had to pull the information out of each
of the connected devices on a regular basis (once per hour or a few times per second),
not only would the performance be outstandingly bad and the network uselessly charged
with data but the Geiger counter smart devices would be unnecessary charged due to the
frequent update requests. These platforms seem to overcome such limitations by storing
the information provided by smart devices. Therefore, mashup applications do not rely
directly on the underlying smart devices any longer. Instead, they rely on middlewares.
As a consequence, the smart devices no longer offer any RESTful API. Rather, they
implement a client to the REST API offered by these middlewares. The problem with
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this approach is that the smart device is highly coupled to the middleware platform. If
this platform should disappear, what would happen to all the smart devices relying on it?
The recent history shows that such a scenario is more than some gedankenexperiment:
cosm replaced Pachube, which in turn, was replaced by Xively [WEB75].

8.1.3. Building Blocks

The Web of Things as suggested by Dominique Guinard [19] and many others [7, 18, 11,
27] foresees a Web where Things are first class citizens which clients can directly interact
with and and manipulate. Therefore, the Web of Things can be seen as some type of Web,
similar to the one we use everyday but, instead of browsing web sites, clients browse smart
devices. These smart devices are the building blocks of the WoT. By their nature, it is
possible to combine the information provided by smart devices with information from any
other source, as long as this source provides a RESTful interface. Many papers promote
the requirement for RESTful web services as architecture for the WoT arguing for their
interoperability. Having all Things speak a common language makes it easy to combine
them and build new creative applications on top of them. Commonly, these applications
are called mashups, as the one presented in [5]. Although mashup applications are not a
new concept - they existed well before the WoT - it heavily makes use of this approach.
Early services, as presented in Chapter 3, have already used some kind of information
blending as one of their objectives. If mashups were originally limited mostly to what was
available on the local machine, mixing up information rapidly gained momentum with the
coming of WS-* services. In [WEB31] S. Watt not only arguments in favor of mashups
in a SOA environment but he also advocates what he calls "situational applications",
applications which are developed for a very small target audience. While this would be
almost impossible with traditional software engineering, using web services and mashups
makes it really easy to adapt a service, delivering some basic functionality to different
situations at almost no cost. In this approach, the next logical step would be to let the
final user construct his applications himself. Building mashup applications should become
simple, so that the final user, who also knows best the business processes, can create and
adapt applications to his needs. The same argument supports the WoT: interacting with
the virtual side of a smart device should be as simple as touching and manipulating the
Thing in the real world. Thus, much effort has been invested in inventing and building
platforms allowing non-programmers to create their own small applications using their
smart devices.
Smart devices with a RESTful interface are the building blocks of the WoT, and by
combining several of them, mashup applications emerge. Creating sensor based mashup
applications has become popular. It does not matter if a mashup mixes up information
from different sources like the EPC Dashboard [57] or if it rather aggregates multiple
sensors measuring the same phenomenon like the Live Flight Tracker of Figure 8.1. They
all have in common that they treat the smart object like a black box, offering a RESTful
interface. Since mashup designers deal with creating new applications with already avail-
able components, they don’t spend much time on creating such components or designing
them. A lot of work is either spent on how to connect a smart device to a network or on
how to make mashup editors user friendly [76, 44, 33, WEB43, WEB75, 66]. Since the
WoT imposes RESTful architectures, the how is not really the question. In order to partic-
ipate, smart devices need to offer a RESTful API over which a client can interact with it.
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Fig. 8.1.: Live Flight Tracker from flightradar24.com

Although Richardson and Ruby [B18] thoroughly discuss different situations and how to
model them with a RESTful web service this aspect seems greatly neglected. Usually, this
is taken for granted and only a few thoughts are spent on what such a smart device looks
like and what services are offered. On the other hand, judging by the amount of different
consumer-ready mashup creators and platforms, it seems that they have been well stud-
ied. Xively (formerly known as cosm which was formerly known as Pachube) [WEB75],
Paraimpu [WEB43, 66], ThingSpeak [WEB64] and Open.Sen.se [WEB39] are some of
the most popular platforms dealing with smart devices. Offered features vary, depending
on the platform but their core functionality is similar. However, WoT mashups are not
restricted to specialized platforms indeed, by their nature, any mashup editor for the web
can take advantage of the information offered by smart devices living in the WoT. As
such, they all have in common that they treat smart devices like a black box. In order
to use a smart device in a mashup, it is necessary to first read through the specification
of the latter or to browse and discover the available resources and what they mean. Fur-
thermore, given two smart devices measuring or acting on the same physical phenomenon
but issued by different vendors, chances are high that the two REST APIs are completely
different. This makes the integration of different smart devices more difficult.

8.2. Services and Pushing in the WoT

Having discussed some limitations of the WoT, a closer look at the problem of data
provenience and information pushing is required. These two aspects play a central role
for the xWoT. Besides defining the components on which other applications can build
in Section 8.3, the xWoT embraces services tied to physical objects but also algorithms
and other computational resources. To come up with standard components, the xWoT
also needs a way to push information between the different participants. In the first part,
this section classifies the different types of services of interest for the xWoT and for each
class, discusses how they can be embedded in the xWoT. The second part of this sections
deals with the different solutions for pushing events generated by smart devices back to
clients.

flightradar24.com
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8.2.1. Classification of Services

Historically, the WoT started by augmenting physical devices with a virtual side in a
standardized manner. Choosing REST as an architectural style allows for the easy com-
bination of different smart devices. Although services like Facebook, Twitter, Flickr are
not related to a physical device, they become standard components of modern mashup
applications. Mayer et al. [50] recommend the introduction of a market place contain-
ing computational algorithms, which can then be linked to. Integrating such services is
straightforward. Different kinds of services ask for different types of interactions. Invok-
ing Twitter to post a new Tweet is just a matter of one request. Other services might need
more sophisticated interactions to complete. Sometimes, services can take a considerable
amount of time to complete, so they can decompose, or can only exist in a form outside
the scope of the WoT. Pautasso [61, 62], Kumaran [43] and others have investigated
how RESTful web services can be integrated into business processes and how business
processes can live in a RESTful environment. However, there is quite a gap between
services like Twitter and full business processes. Moreover, the WoT already uses many
different services today: Twitter, Facebook and Google Maps are some examples. To be
of any use for the WoT, a service needs a RESTful architecture (or at least a RESTful
façade). The integration of these types of services opens up new challenges which need
to be addressed.
From this discussion, it already seems that at least three categories of service can be
identified: (1) short services, (2) time consuming services and (3) business processes.
Additionally, two more types can be defined: (4) services with a real-time constraint
and (5) services which decompose. This brings the total of categories to five. In the
remainder of this chapter, each of the five categories is discussed.

Short Living Services

This first category encompasses the most common services used in the WoT and mashup
applications. Services living in this category are called short living. This means that they
immediately return with the desired result. It does not matter what type of computation
is carried out behind the request. The Directions API of Google is an example of such
a service. Routings are available over a RESTful API behind the resource directions.
Listing 8.1 shows the necessary query with the command line utility curl to fetch the
direction from the address Route des Fougères 1, 1700 Fribourg, Switzerland to the des-
tination Landstrasse 9, 18374 Zingst, Deutschland.

1 ruppena@tungdil:~$ curl -X GET -H "accept: application/xml" "http://maps.googleapis.
,! com/maps/api/directions/xml?origin=46.794065,7.159096&destination
,! =54.418504,12.751842"

List. 8.1: Requesting the Google Direction API

The request immediately returns with the response shown in Listing 8.2.
1 <?xml version="1.0" encoding="UTF-8"?>
2 <DirectionsResponse>
3 <status>OK</status>
4 <route>
5 <summary>A5 and A7</summary>
6 <leg>
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7 ...
8 <duration>
9 <value>39717</value>

10 <text>11 hours 2 mins</text>
11 </duration>
12 <distance>
13 <value>1187918</value>
14 <text>1,188 km</text>
15 </distance>
16 <start_location>
17 <lat>46.7941031</lat>
18 <lng>7.1591038</lng>
19 </start_location>
20 <end_location>
21 <lat>54.4184775</lat>
22 <lng>12.7518179</lng>
23 </end_location>
24 <start_address>Route des Fougeres 1, 1700 Fribourg, Switzerland</start_address>
25 <end_address>Landstrasse 9, Western Pomerania Lagoon Area National Park, 18374

,! Zingst, Germany</end_address>
26 </leg>
27 <copyrights>Map data 2014 GeoBasis-DE/BKG (2009), Google</copyrights>
28 ...
29 </route>
30 </DirectionsResponse>

List. 8.2: Truncated response of the Google Directions API

The service is requested with a GET request and all the information necessary to complete
the request is transmitted in the URL. From a user’s perspective it is impossible to tell
whether this resource serves static or dynamic content and it doesn’t matter. Services
in this category mostly behave like smart devices: a user requests information from the
resource and immediately obtains a response containing the desired data. For this reason,
short living services integrate seamlessly into the WoT and consuming such services is
mostly just a matter of one request. Furthermore, from a service perspective, services
offered by smart devices generally fall into this category. Listing 8.3 shows how a user gets
information from a smart device. Here, the smart device is a simple smart thermometer
returning the current measured temperature plus some meta-information

1 ruppena@tungdil:~$ curl -X GET -H "accept: application/xml" http://10.1.1.1:9000/temp

List. 8.3: Request to a smart thermometer

There is almost no difference between the request to Google Direction API in Listing 8.1
and the request to the smart thermometer shown in Listing 8.3. Listing 8.4 shows that
although, the XML response from the Google Direction API and that from the smart
thermometer differ in their structure, they both represent the requested resource and in
that are similar too.

1 <?xml version="1.0"?>
2 <measure>
3 <temperature units="celsisus" precision="2">28.36</temperature>
4 <timestamp> 1402927649</timestamp>
5 </measure>

List. 8.4: Response from smart thermometer
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Listings 8.1, 8.2, 8.3 and 8.4 show that a user cannot tell the difference between an invoked
service returning some values from a smart devices or an answer which is the result of a
computation. Furthermore, the WoT can already deal with services of this type without
any further modification. Therefore, short living service and WoT services should be
treated as the same.

Real-Time Services

The second category is quite similar to the first. Services which belong in this category
still respond quickly with a representation of the resource to a request. Again, from
a client’s perspective, it is impossible to tell whether the response comes from a smart
device or is the result of a computation. However, the returned representation may change
over time. For example, it is unlikely that consecutive executions of the request to the
Google Directions API of Listing 8.1 will result in different responses, but this is not true
for all representations. Going back to the smart thermometer, it is very likely that two
consecutive requests may result in two different temperature readings. In fact, chances are
high that, upon each request the returned temperature changes. The difference between
the two lie first, in the frequency such changes occur and second, whether the user is
interested in following these changes. Indeed, a user might be interested in following the
changes in temperature over a given amount of time. Therefore, he not only needs to
know the temperature at certain points in time but he also needs to know when a change
occurs.

(a) Result of first request (b) Result of second request

Fig. 8.2.: Two consecutive requests to Twitter Trends for #WorldCup2014 separated by
a few seconds
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Such services are referred to as real-time services. In computer science, the word "real-
time" commonly implies that a client is informed about an event within a given time
frame. This is also true for services within this category. As changes happen, the new in-
formation needs to be pushed to the client. While it may seem obvious that smart devices
fall (at least partly) within this category, it also includes purely virtual services. Twitter
is a good example of a real-time service. Although, Twitter offers a RESTful API, for
the sake of simplicity the discussion is based on the HTML representation of the different
resources. Figure 8.2 shows two screenshots of the #WorldCup2014 topic separated by a
few seconds. Between the two requests, the resource has already changed. This change is
reflected in Figure 8.2b, which shows three new tweets compared to Figure 8.2a. Again,
a user might be interested to know when a new tweet is posted.
Of course, real-time services can be consumed in a similar way to short living services.
A user can GET the representation of a smart device or a service at any specific moment
in time. But generally, a user is more interested in getting either continuous updates
or notifications when values change rather than requesting the resource at specific mo-
ments. How a piece of information can be pushed from a server to a client is the topic of
Subsection 8.2.2.

Delayed Services

The third category is delayed services. Unlike for the preceding categories, when a user
requests a delayed service, the server is unable to immediately reply with a representation
of the latter or within a reasonable amount of time. Reasonable is defined as the amount
of time before a connection is dropped. Usually HTTP connections have a timeout,
after which the client (or the server) closes the connection even though no response has
been sent back. If the computation on the server is long, such dropped connections
may happen. The planning of round-robin tournaments with complicated constraints
like minimizing breaks as described by Briskorn [B4], is an example of time-consuming
operation. A service offering this type of computation could not immediately respond to
a client’s request.
The combination of such computations with RESTful web services is rather delicate.
Whereas a dropped connection has not much influence on the behavior of the client
(given that it handles such situations gracefully), the consequences on the server side
are tremendous: through the initial request, the client has initiated a computation on
the server side. If the connection drops before the server can send back an answer, the
computation will still continue and eventually deliver its result to nowhere. However,
the client will try again and by doing that, launch the same computation a second, third
and fourth time. Clearly, this is a huge waste of resources. To overcome this limitation,
such scenarios could define longer HTTP timeouts. Yet, this is not a viable solution
either. During the waiting period, the client gets no feedback to inform him whether the
server has accepted the request, whether it is working or not or how it is progressing.
Even worse, a client cannot tell if there is a connection problem between him and the
server or if the process is still running on the server. Finally, augmenting the connection
time-out would lead to the same problems as already mentioned: the impatient client will
repeat the same request several times and flood the server with new computations which
will never deliver their results to the client. The fact that systems with higher HTTP
connection timeouts scale badly is another arguments against this approach. This comes
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from the fact, that for each open request, the server has to reserve some memory space.
Thus, it is in the interests of the server to keep the number of open connections as low
as possible and so leave enough free memory for new clients.
Richardson et al. [B18] propose a simple but very efficient way to handle this situation.
Instead of trying to keep the connection alive and deliver a result during this session,
the server immediately responds with a message indicating that it is taking care of the
computation and gives a URI where the client can check later for the desired result. In
RESTful words, this means that instead of issuing a GET request, the client constructs a
POST request. In response to this request, the server creates a new resource and sends
back the status code 202 Accepted, together with the URI of the newly created resource.
From this point on, the client can check the new resource for the result with a regular
GET request. Not only does the server frees up some memory, but the client can also work
with the new resource like with any other. He can share, link and bookmark it. Another
benefit of this solution is the long-term availability of a result. Considering that each
computation, and thus each result, have their own resource, a result can be looked up
several times. Since it would have been hard to compute this result, caching it for some
time surely makes sense.

Decomposable-Delayed Services

Decomposable and delayed services are an extension of delayed services. From a client’s
perspective, such services behave like delayed services: upon requesting the service, it
is unable to respond with the result. Instead, it responds with a 202 Accepted plus
some URI where the client can check the status of the computation later. Decomposable-
delayed services thus suffer from the same shortcomings as delayed services. However, the
same solution can be applied to make them truly RESTful. The difference between the
two categories lies in the type of resources created. Whereas for simple delayed services,
the server creates one resource per computation request, decomposable-delayed services
create a whole hierarchy of resources. In order to solve the problem submitted, the server
splits the initial problem into several smaller ones, each of the smaller problems eventually
produces a result worth of being addressable as a resource. This comes from the fact
that the solution to the initial problem is the concatenation of the solution of each sub-
problem. This category is not to be confused with problems, which initially decompose
into smaller problems and finally assemble again to compute the global solution like map-
reduce jobs. Such problems produce only one solution and it does not make sense to save
the intermediate results for later. Therefore, they fall into the category of delayed services.
The VRP-TW (Vehicle Routing Problem with Time-Windows) shows a problem where
the initial task decomposes into several sub-problems and each sub-problem produces an
independent part of the overall solution. It consists of finding an optimal set of routes to
be traveled by a fleet of vehicles [B8]. Solutions for this type of problem are computed in
two steps:

1. Partition the point 2 to n to visit into k subgroups and
2. For each subgroup find a shortest tour.

Clearly, the solutions would consist in combining the partitioning of the space plus the
optimal route for each partition. Accordingly, if the fleet has k vehicles, the problems
produces k+1 solutions. Additionally, accessing each sub-result presents an added value.
Let’s imagine a modern parcel delivery station where during office-hours parcels can check-
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Fig. 8.3.: Sequence for solving one instance of VRP-TW with two groups

in. Upon arrival at the parcel delivery station, each one is scanned and its destination
address fed into some system. Over night, the company’s mashup application takes this
set of destination addresses and asks the VRP-TW solver service to compute an optimal
solution. Since each computed route is accessible over its own URI, each driver can
check their delivery round in the morning and start delivering the parcels. Furthermore,
this resource can be part of another mashup application running on each driver’s smart
phone. This application tracks the progress of deliveries and guides the driver to the
next destination. Upon successful delivery, the driver marks the parcel as delivered in
his mashup application. This updates the corresponding parcel resource at the parcel
delivery station. Undelivered parcels are returned to the parcel delivery station and re-
scheduled for the following day. This happens automatically, since the VRP-TW mashup
first gets the destination addresses of all the parcels to be delivered before feeding them
into the VRP-TW solver service.

Although VRP-TWs are complicated problems, this complexity remains hidden from the
user. Figure 8.3 show a sequence diagram of a POST request to the VRP-TW solver service.
This initial request contains all the input data for a new instance of a problem. The figure
shows that the client only interacts with the Routing Service façade, the rest is handled
by the service. Upon receiving this request, the service creates a new resource and sends
back the URI with a 202 Accepted status code. At the same time, the partitioning task
is launched. As soon as it terminates, the server creates k new sub-resources, each one
representing one sub-task, and launches the k routing algorithms. The client can check
at any time the overall progress of the request by consulting the returned resource. As
soon as the server starts the k routing tasks, this resource will contain links to the newly
created subresources. From this point on, the client can also track the individual progress
of one sub-task.

The concept of task is tightly coupled with delayed and decomposable-delayed services.
When a user submits a new problem to solve, the server creates a new task. This task,
represents the user’s problem and is exposed through the returned resource. Before an-
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Fig. 8.4.: Common set of attributes of Tasks and Task lists

alyzing the inner guts of a task, exposed resources require examination. The top-most
resource of such a service is generally the list of available tasks on this service. This
list may show all the tasks, a sub-set of the available tasks or none, depending on the
defined access policy. Each element of this list represents a task. Furthermore, since a
task can decompose into several sub-tasks, it contains in turn a list of sub-tasks. Since
sub-tasks play an important role in decomposable-delayed services, each element of this
list can be addressed individually. This description infers a relational hierarchy, which
should also be reflected in the URI associated with each resource. Associating seman-
tics to URIs is a highly controversial subject in the WoT community. Opponents claim
that semantics introduce a coupling between the RESTful service and clients [WEB6].
Furthermore, they advocate that related resources should be linked to in the body of
the representation (as stated by the HATEOAS principle). We don’t think that semanti-
cally meaningful URIs increase the coupling between a service and its clients, but rather,
that semantically meaningful URIs benefit the WoT. In the past few years, the web
has shifted from random URIs to meaningful ones (also called SEO friendly). Pretty
URIs and techniques like URL rewriting transform http://.../3408ycv0acvoj/ into
http://.../blog/20140713-google-glass have become a standard on the web, so why
shouldn’t the same be true for the WoT? Semantically meaningful URIs do not violate nor
replace the HATEOAS principle, but they ease the identification of what the resource is
about. It is easy to guess that http://.../temperature is about a temperature whereas
http://.../adf43af could be anything. Furthermore, it is not forbidden to guess URIs
but a client needs to be aware of the associated risks. Finally, in RESTful architectures
HATEOAS is always the way to go to follow a given execution path. Accordingly, the
resources offered by a delayed or a decomposable-delayed service respect the following
URI pattern: http://.../tasks/<id>/<sub-id>/ where the tasks part points to the
list of tasks on this service, <id> is the placeholder for one given tasks and <sub-id> is
the placeholder identifying one sub-task of the task <id>.

From their structure, a task and a sub-task are very similar. Both represent a running
process, which eventually produces a result. Assuming that sub-tasks don’t divide recur-
sively into sub-sub-tasks, the main difference is that a task has child resources whereas
a sub-task doesn’t. From a structural point of view, this can be interpreted as a task

http://.../3408ycv0acvoj/
http://.../blog/20140713-google-glass
http://.../temperature
http://.../adf43af
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having a list of children whereas a sub-task has an empty list with no children. Under this
assumption, it appears that structurally, tasks and sub-tasks are the same. Accordingly,
the starting assumption that sub-tasks don’t further divide can be removed, allowing sub-
tasks to have sub-sub-tasks and so on. In [70, 71] we show how a task (and consequently
also a sub-task) can be structured. Although there might be minor differences from one
service to another, all concur on the proposed structure as a starting point. A task is
always defined by at least the following set of attributes:

• The id, a unique identifier for each task. This is also reflected in the URI associated
with each task.

• The userid associates each task with a user. This information has various usages
like billing or access policies.

• The result is the main interest of the user. Initially the task was created to later
retrieve the information held by this field.

• The input contains a copy of all the inputs which led to the task creation. This can
come in handy to distinguish tasks later or to recall the different input parameters.

• A status field reflects the actual status of the task. This field mainly shows whether
the service has terminated the task or not. Additionally, a user can abort a task or
a task can produce an error and quit.

• In case of errors, the errormessage field contains some hints about what went
wrong. In case of successful termination as well, this field can contain some valuable
information like the number of used CPU cycles (which in turn can be used for
billing purposes).

• The duration of a task can be computed from the starttime and endtime. Re-
turning both fields is more valuable than just the raw duration of the task. Again,
these fields are mainly used for billing purposes and statistics.

• Finally, the Tasks field contains a list of Task, each one being a sub-task of the
original problem.

Figure 8.4 summarizes this situation and shows that most attributes do not explicitly
specify their type as this typically depends on each concrete situation. One service may
prefer to identify its users through a string whereas another assigns a random number to
each client. Yet, it is important that this attribute is available. The status attribute
is somewhat special and has an associated statusType. It is quite obvious that a task
always adopts at least one of the four defined statuses. Additionally, at any given moment,
a task has exactly one status associated with it. Again, some services may need additional
status types, like a waiting status to indicate that a job, although accepted is still waiting
to be processed. Whether a service exposes all the attributes or just a subset is out of
the scope of a general discussion. For a service limiting access to tasks owned by the
requesting user, the userid field could be stripped from the representation as the user
knows who the tasks belongs to. Furthermore, the semantic of a concrete service also
decides which of these arguments are read-only and which are read-write. This reasoning
recursively applies to all available resources. Only the concrete use-case decides which
set of actions is possible on which resource.
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Business Processes

This chapter began with simple atomic services. Gradually, we added some complexity
and ended up with the decomposable-delayed services. Yet, the world of services is much
bigger than what has been discussed so far. This comes from the fact that a huge amount
of web services are deployed in enterprise environments and go far beyond a simple request
- answer interaction. Modern information systems are often based on the composition or
orchestration of a multitude of smaller services, each one responsible for carrying out one
aspect of the initial problem. In that, they are similar to decomposable-delayed services,
not only is the initial problem decomposed into several sub-problems but the resolution
of each sub-problem can take an undefined amount of time. However, they differ from
decomposable-delayed services in that for each sub-problem another web service is called
on. Holiday booking portals like ebookers.com are a good example of this category.
When a user searches for a flight and a hotel room, the website has to check what flights
and rooms are available for the selected dates. If the user then selects one offer and decides
to book it, the portal first needs the re-check with the airline to ensure that a place is still
available on the selected flight and if so to book it. Once the flight is booked, the portal
needs to do the same request with the hotel (or vice-versa). If for whatever reasons the
booking for the hotel room fails, the booking for the flight is not needed anymore and the
transaction has to be rolled back. Therefore, it is not sufficient to model this situation
with tasks as previously discussed and set the status to error or aborted instead, another
process is started to clean up behind the first one. Such problems can be categorized
under business processes.
Wikipedia defines a business process in the following way:

„A business process or business method is a collection of related, structured
activities or tasks that produce a specific service or product (serve a particular
goal) for a particular customer or customers. It can often be visualized with a
flowchart as a sequence of activities with interleaving decision points or with a
Process Matrix as a sequence of activities with relevance rules based on data
in the process.“

This perfectly fits the example above where the sequence of activities included the book-
ing of a flight and the reservation of a hotel room with the interleaving decision point
where both bookings need to succeed before they can be committed. The combination
of business processes and smart devices evokes three major questions: (1) How can
business processes take into account and benefit from the capabilities offered by smart
devices? This question is not targeted at the WoT, but on a larger scale addresses the
IoT. (2) How can RESTful web services seamlessly be integrated into BPM? Although,
talking about RESTful services in general, solutions to this question also apply to the
WoT. (3) How can existing business processes leverage their capabilities to the WoT?
There are many ways to embed business processes into information systems. Some of
them are closed source but most respect common standards like BPM and SOAP web
services. Generally, business processes are outside the scope of the IoT (and, by extension,
the WoT). This is only partly due to the fact that business processes mostly rely on
SOAP web services instead of other types, and RESTful ones in particular. The other
reason is that most business processes don’t take smart objects into account. The BPM
specification simply does not know how to represent a smart device. According to the
reference model for the IoT (IoT-A) [78, 29, 78], a smart device is roughly the composition



122 8.2. Services and Pushing in the WoT

of some hardware (e.g. sensors, actuators and tags) plus the way this hardware is exposed
over the network. In her work [53, 52, 47], S. Meyer proposed an extension to BPM which
handles smart objects and makes them addressable from within business processes. In
order to achieve this goal, she proposes some extensions to the current BPMN standard
to deal with the special properties of smart devices. One extension is a new type of
BPMN swimline representing a smart device. This extension does not ask for a specific
service architecture. Therefore, any smart device, regardless of its interface, fits into
such a swimline. Although this broadens the applicability of the extension, it hinders its
usability for the WoT.
Others [61, 62, 43] consider the question the other way around. Instead of thinking how
RESTful services and the WoT can take advantage of business processes, they propose
BPM extensions for RESTful services. Whereas the presented work is valuable in terms
of how to achieve business processes for REST and how RESTful web services can be
considered when modeling business processes, it does not answer the question of how
already existing business processes can leverage their computational power to the WoT.
In our paper [69], we describe how some types of business process can be integrated into
the WoT. The proposed architecture only applies to business processes with a clearly
defined start and end and which produce a result worth feeding back into the WoT.
Instead of creating RESTful interfaces for all the components involved, only one addi-
tional generic component is created. Similar to the solution proposed for delayed and
decomposable-delayed services, the additional RESTful service offers only one type of
resources: a Task. This task resource is a gateway to the underlying business process
execution layer. Therefore, it takes as input a model (in BPM) which is then executed by
the execution layer. The task resource represents and monitors this process in a RESTful
way. Regarding its implementation, the same principles as for delayed and decomposable-
delayed services apply. This means that the structure of a task follows that presented in
Figure 8.4. Listing 8.5 shows how a representation of a task can be retrieved from the
server and the response is shown in Listing 8.6. Since BPM files are XML files, the input
and output field are Base641 encoded.

1 ruppena@tungdil:~$ curl -X GET -H "accept: application/xml" http://diufpc46.unifr.ch/
,! jetty/TaskExecutorServer/resources/tasks/502

List. 8.5: Request to the task executor service for Task 502

1 <?xml version="1.0" encoding="utf-8" standalone="yes"?>
2 <task xmlns="http://domain.ehealth.digsim.homelinux.org"

,! uri="http://diufpc46.unifr.ch/jetty/TaskExecutorServer/resources/tasks/502"
,! status="FINISHED">

3 <id>502</id>
4 <userid>1</userid>
5 <outputs>
6 <output>
7 <value>
8 aHR0cDovL2RpdWZwYzQ2LnVuaWZyLmNoOjgwODAvQW5hbHlza

,! XNTZXJ2ZXIvcmVzb3VyY2VzL2FuYWx5c2VzLzExMjgyOTk1MS8=
9 </value>

10 </output>
11 </outputs>
12 <input>

1http://en.wikipedia.org/wiki/Base64
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13 PCFbQ0RBVEFbDQo8P3htbCB2ZXJzaW9uPSIxLjAiIGVuY29kaW5
,! nPSJVVEYtOCI/Pg0KPGRlZmluaXRpb25zIHhtbG5zPSJodHRwOi

14 ,!.....
15 </input>
16 <startdate>2012-05-30T09:31:18+02:00</startdate>
17 <enddate>2012-05-30T09:31:48+02:00</enddate>
18 </task>

List. 8.6: Sample output when requesting the TaskExecutorService for Task 502

Listing 8.6 shows how the task specification from Figure 8.4 can be adapted to a particular
use-case. Here, the output element is slightly different from that of the specification.
Instead of producing only one output, a business process can generate several outputs
(for example each step of the instantiated business process can produce a result). Since
all these results belong to the same task, it can be split up into subtasks, each one
representing one result and so using the structure as defined in Figure 8.4. Yet, it is
up to the business process execution layer to notify the task interface about the state
of a process and possible results. Tracking sub-processes in a consistent manner would
probably be too hard. Therefore, only one resource per launched process is preferable
but with several outputs. The XML of Listing 8.6 still conforms to the specification; it
contains one element representing the outcome of the process. The only difference is that
this output elements further splits into sub-outputs. The listing shows that the outcome
of the business process is a new resource on a distant service. In fact, decoding the Base64
string of line 7 results in the URL http://diufpc46.unifr.ch:8080/AnalysisServer/
resources/analyses/112829951/
To produce the output of Listing 8.6 we imagined the following scenario and implemented
the involved components as a proof-of-concept. In a modern hospital, nurses and doctors
are supported in their tasks by many smart devices that measure and report a patient’s
condition. Such a scenario is not too far from current reality. Already today the success
of health monitoring products like Nike+ FuelBand [WEB36] or the wristbands produced
by FitBit [WEB18] prove its feasibility. During a patient’s stay in hospital, a nurse checks
his condition on a regular basis. This involves taking measurement like blood pressure,
blood oxygen and heart rate. These values are then reported in the patient’s medical
record. Furthermore, if some of the measurements are outside a given zone, which partly
depends on the patient, some action needs to be taken. For example, if a patient’s heart-
rate suddenly drops to zero, he should be resuscitated. Although it would be possible
to model such use-cases with mashups, business processes would be a more consistent
choice. Mashup application only deal with RESTful services, however, the above process
also involves humans at some stages, which are outside the scope of mashup applications.
First, each patient can be modeled as a resource. Commonly, the xWoT accepts sensors,
actuators and tagged objects. According to this, a patient would be a tagged object. The
tag can take the form of a wristband just like the one already used today. By reading
the tag, nurses and doctors can access the virtual representation of the patient. This
includes his medical record, past analyses, drugs, medical pre-conditions and so on. Since
this information is the virtual representation of a patient, it is available over a RESTful
interface. Making analyses is another important activity. In [72] we present an alert
escalation system for medical analyses. Depending on the type of analysis, its execution
can be fully automatic or require some human intervention. Still, it is possible to represent
an analysis in the virtual word, the important concepts are not the sensors and actuators

http://diufpc46.unifr.ch:8080/AnalysisServer/resources/analyses/112829951/
http://diufpc46.unifr.ch:8080/AnalysisServer/resources/analyses/112829951/
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Fig. 8.5.: XML schema for analysis

involved during the execution of the latter, but the gathered and aggregated information.
Such an analysis resource is the second pillar. Again, the system implemented makes
only few assumptions about an analysis and the proposed input and output attributes,
as shown in Figure 8.5, are reduced to a strict minimum. Figure 8.6 shows the HTML
representation for the analysis, which is the result of the task of Listing 8.6. The third
pillar is formed by an alert escalation system as we describe it in [72] and the fourth is
the task-executor as described above.

Fig. 8.6.: Result of a business process monitoring a patient’s temperature

Based on these four resources, let us consider the following scenario. The first night
after successful surgery, a patient’s vital signs need to be monitored. Often this is not



8.2.2. Server-Side Information Pushing 125

continuous monitoring but samplings at given intervals of time. Upon each execution,
each sensor has to report a few readings; these readings are stored in an analysis sheet,
which is attached to the patient’s medical record. Furthermore, the reported values are
checked against a model to determine whether the patient’s condition is good. If abnormal
values are found, an alert is created which is then handled by the alert escalation system
to ensure somebody takes care of it. Clearly, this scenario involves the four resource
presented plus a few smart devices measuring different health related aspects. Although
all the gathered information can easily be combined in a mashup application, this would
not be the right choice for this scenario unless the mashup application comes with some
type of scheduler. Hence, it is a better choice to let a business process take care of
monitoring. Pautasso [61, 62], Kumaran [43] and Meyer [52] all propose an approach
which makes it possible to model such scenarios in BPM. Finally, the last missing part is
an execution engine capable of taking advantage of one of these input formats. Currently,
such an engine is under development to support the extensions proposed by Meyer and
supported by the European IoT-A project. For the sake of this proof-of-concept, the
execution engine is only a mock-up, taking as input a BPM file, and always executes
the same process. Therefore, in this scenario, the nurse creates a new instance of the
surveillance BPM tailored to the patients. This involves changing some bindings so
that the execution engine knows which patient to monitor and which smart devices are
connected to any particular patient. The nurse then creates a new task by uploading
this BPM to the task service. Upon receiving this message the task-executor will create
a new task representing this business process. Furthermore, a new process is started
by the execution engine. Listing 8.5 shows how such a task is created and Listing 8.6
shows the corresponding response from the task-executor. Since the business process
involves monitoring a given patient, a new analysis resource is created which will hold all
observations made by the process. Finally, the resource on the task-executor representing
the business process points in its result field to the newly created resource. Additionally,
the business process takes care to deduce the patient’s medical condition and, if necessary,
launches an alert. The system works as one would expect from any business process
engine, but the generated output is fed back into the RESTful system making it available
for other applications.

8.2.2. Server-Side Information Pushing

The previous section introduced a classification for RESTful services. Only short living
services deliver their results immediately. All other types of service require the user to
check on progress regularly. If these services could inform the user about their progress,
the ergonomics would drastically improve. Repetitive checking is even more questionable
for real-time services as they need a mechanism to push new information back to their
subscribers. Regarding sensors, users are sometimes more interested in knowing that
something has just happened than in knowing what happened. The previous section solves
the WHAT problem well, but completely ignores the WHEN. This is not an architectural
fault but rather a limitation of the underlying technology stack. The web is based on the
client-server paradigm. This means that for each exchange it is possible to clearly identify
which party is the client and which the server. Furthermore, only the client can contact
the server. This limitation is only partly due to technical reasons. To overcome the
limited number of IP addresses, Internet providers introduced NAT, which allow multiple
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devices to share one IP address. The drawback of this technology is that devices sitting
behind the NAT cannot be contacted from the outside. Although this approach seems
very limiting, it also has several benefits. By shielding the internal network from the
outside, NAT provide an additional layer of security and privacy. For some time now, the
web has been switching from IPv4 to IPv6, solving the address space problem. Still, NAT
is and probably will remain part of the topology of the web, and needs to be dealt with.
This section discusses some common approaches to how this client-server limitation can
be circumvented to send events to subscribers and inform them about the WHEN.

Client Server

GET

200 OK

GET

200 OK

GET

200 OK

Event

Event

(a) Classic Polling. The client actively
polls the server for updates

Client Server

GET

200 OK

Event

Event

GET

200 OK

(b) Long Polling. The server keeps the con-
nection open and answers the request
only as soon as new data is available

Fig. 8.7.: Pushing information through polling

In client-server architectures, the client always initiates the communication. The server
has no means of contacting the client later again. Since the WoT uses RESTful architec-
tures, it is limited to client-server interactions. Based on this paradigm, several solutions
to overcome this limitation have been proposed over the years. Roughly, they can be
classified into two categories: (1) those based on polling (2) those not using polling.
Approaches using some sort of polling are easy to develop and are very robust. In their
simplest form, a client issues a GET request at regular intervals of time. Each time, the
server responds with a representation of the requested resource. As changes occur occa-
sionally, consecutive requests may result in the very same representations. Since there
will be - at most - a fixed amount of time between two requests, this approach meets
the real-time criteria. A user will, in the worst case scenario, be informed about the
change after this fixed amount of time. As simple as this approach is, it comes with
a set of drawbacks. Clearly, this approach has high bandwidth consumption. Whether
there is a change or not, the client issues a request which has to be carried out by the
server. Although, the situation can be improved by using advanced caching approaches,
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there will always be some overhead when nothing changes between consecutive requests.
Furthermore, this approach also has a cost on the server side expressed as either wasted
CPU cycles or costs in battery lifetime etc. Polling is certainly not the right approach if
the client needs to be informed about every change. However, if the client can live with
a relatively high interval between requests, it might be an acceptable solution, since no
additional component needs to be developed and/or deployed in order to make it work.

However, this is only true for classical polling, as shown on Figure 8.7a. In order to
improve the response time of classical polling, long polling was proposed. The differences
between classical polling (Fig. 8.7a) and long polling (Fig. 8.7b) are only minor. In
Figure 8.7 the difference is only visible in the amount of time between the incoming
request and the response. This is also the main difference between the two. As depicted in
Figure 8.7b, long polling involves a slightly modified timing when responding to incoming
requests. As for classical polling, the client issues a GET request to retrieve a representation
of the resource. However, instead of doing this, the server keeps this connection open and
uses it as soon as the resource changes and new information is available. Long polling
is thus more reactive than classical polling. Not only does the server already have an
open connection, but the timing is also better. Nonetheless, long polling suffers from
most of the drawbacks already discussed for classic polling. It might seem, like there is
no overhead at all when using long polling. This might be true if updates are more or
less frequent. However, as soon as updates get less frequent, either the connection drops
or the server closes it before it drops. The client then needs to open a new one. The
dropped connections introduce an overhead in bandwith and also CPU consumption. The
number of connections that drop not only depends on the frequency of updates, but also
on the client and server configuration. Additionally, long polling can block a considerable
amount of memory on the server side. For each connection, a small amount of memory
is reserved during the exchange and liberated afterwards. Thus, one long polling client
constantly occupies som ememory, which considerably limits the quantity of clients that a
server can accept. Although polling is robust and comes with no additional development
costs and always works as it is intended to, it should only be used rarely, or as a backup
solution.

ATOM [rfc5023, rfc4287] and RSS [WEB51] are other popular approaches for users to
subscribe to events. Such feeds of events are mostly used by blogging sites. Instead of
regularly checking the blog for updates, a user can subscribe to its feed and receive new
articles directly in his feed reader. Judging from the number of feed readers available for
different operating systems and mobile operating systems, such software is quite common
and seems popular. This is surely a reason why the WoT also considers feeds a valuable
way of informing clients of updates. Yet, feeds are neither a technology nor an architec-
ture; RSS is an XML dialect and ATOM is a protocol/format. When a client subscribes
to a feed, its newsreader regularly polls the feed endpoint for new entries. Therefore,
neither ATOM nor RSS can solve the information-pushing problem better than polling.

Still based on pure HTTP, most modern web-servers implement some streaming mech-
anism which allows it to push information back to clients. Several approaches exist to
achieve this goal. Most imply a special content-type header indicating that the docu-
ment is not yet fully delivered. This fools the client, which keeps the connection open
to receive the remaining part of the document. Typically the server uses the header
Transfer-Encoding: chunked and strips the Content-Length header. Therefore, a
client does not know how long the received document is and keeps the connection open
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Fig. 8.8.: Real Push

until the last part with size 0 is received. Another technique is based on the MIME type
multipart/x-mixed-replace introduced by Netscape in the 90’s and still supported by
many browsers. Based on these approaches, HTML5 introduces a streaming API which
uses Server Side Event (SSE) as a back-end driver. This approach is commonly used
in modern web-application frameworks like Ruby on Rails to create web sites which feel
more like native applications.

A completely different approach is proposed by the WebSocket specification [rfc6455].
Although WebSocket interactions do not necessarily follow RESTful principles, it is a
common protocol to push information in the WoT [WEB8]. Rather than trying to miss-
use HTTP to push information between clients and servers, WebSockets open a full-duplex
TCP connection. Looking at the timings of WebSocket communications in Figure 8.8a,
major differences appear compared to polling mechanisms. The most important one is
that the client only sends one request. Commonly, this is a special HTTP request with
the header Upgrade: websocket. The server acknowledges the request to upgrade and
both switch from HTTP to WebSockets. Once the channel is open, both parties can
send and receive messages. Additionally, messages can be broadcasted on channels to
which users can subscribe. Therefore, one message can be sent to multiple recipients at
once. Since a WebSocket is nothing more than a bare TCP connection, it is up to the
developer to specify which protocol to use. It would be possible to use HTTP over a
WebSocket (which does not make much sense). It is also possible to create completely
new protocols running over WebSocket. However, for the sake of pushing information,
there is no need for any protocol. Commonly, the WoT proposes different representation
for each resource, like JSON, XML and HTML. Since notifications for events mostly make
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sense in computer-to-computer interactions like mashup applications, it makes sense to
use one of the B2B (Business-to-Business) oriented representations like JSON. Figure 8.9
shows the typical output from a WebSocket connection. Here, the WebSocket endpoint
represents a temperature sensor.
WebSockets not only solve many problems which other approaches have, they are also
very efficient. In [B14] Lubbers et al. talk about the many advantages of WebSockets
over other pushing architectures. In their book [B14, p. 143], the authors evaluate the
performance of WebSockets compared to classical long-polling and conclude that already
for an application scenario involving 1000 users, each issuing one request per second, the
reduction in bandwidth is drastic. According to their setup, the drop in bandwidth is a
factor of 400. Of course, values are scenario-specific and vary. Yet, it remains true that
overall, WebSockets perform better than any sort of polling.

Fig. 8.9.: Pushing updates over a WebSocket connection

Through a small example of a wind sensor, Pimentel et al. [65] also show that the
WebSocket protocol has a lower latency compared to other polling mechanisms. Since
WebSockets are a raw full duplex TCP connection between two pairs (no protocol is
mandatory), it is quite normal that its performance outranges exchanges based on a
strict protocol. Furthermore, they show that long polling performs better in terms of
latency than classic polling, which feels quite natural too, since the connection is ready
to use when an event occurs.
Compared to polling mechanisms and other streaming approaches, WebSockets have a
smaller overhead. Furthermore, new events are pushed in a timely manner to a client.
Additionally, real publish-subscribe scenarios are possible and the server can inform many
clients listening for one topic. Although WebSockets seem to be the perfect match when
it comes to pushing information they also suffer from some drawbacks. If events only
happen very rarely, the open connection will drop after a defined amount of time. One
solution to prevent connection timeouts is to use some sort of heartbeat. Yet, when
connection timeouts are an issue, heartbeats often introduce a considerable amount of
overhead.
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A completely different approach is client-server interactions for events. By switching the
roles, a service-endpoint becomes a client of a resource provided by its user. Therefore,
this interaction reverses the control between its pairs. For this to work, the service has
to propose a special resource where clients can subscribe for events. Upon subscribing,
each client provides at least one URI where he can later be contacted. Generally, this
URI is linked to some simple service accepting PUT and POST requests. Each time the
server generates an event, it cycles through the list of subscribers and for each, issues
a PUT or POST request on the provided URI. In the literature, this approach is called
webhook or URL callback. [27, 60, 22, WEB72]. Figure 8.8b show the sequencing
involved in webhook publish-subscribe scenarios. Figure 8.8 shows that both approaches,
WebSocket and reverse control are efficient. Both push the information about a new event
in a timely manner to clients. Whereas WebSockets are more efficient when events occur
frequently, they lose these advantages when events only happen rarely. In this case, an
inverted client-server approach performs better. This is also true when comparing CPU
consumption. For a WebSocket, the connection is kept alive all long whereas inversed
client-server interaction only open a connection when there is data to send.
It seems clear that the best pushing infrastructure is one where the server can push
information as soon as it becomes available, where there are no communications overhead,
especially during silent times and where a communication channel is only open as long
as it is worth it. Sensors in particular, can generate a lot of events. Therefore, the
pushing infrastructure should also provide a simple means of filtering which events are
to be pushed to a given client. These remarks are valid for any pushing infrastructure,
and thus also for the xWoT. Based on this analysis, each xWoT component incorporates
WebSockets and webhooks as pushing infrastructure. WebSockets can be used to push
bursts of events to subscribed clients. This would be the case when following a rapidly
changing phenomenon over relatively short amounts of time. For WebSocket connections,
all events are pushed to all clients. There is no means of filtering the events per client. On
the other hand, webhooks are great to push information about isolated events to clients
in a timely manner. This would, for example, be the case when subscribing for events
about the open/closed state of a window. Upon subscribing, the user advises the URI of
his webhook, whether he wants PUT or POST and a short specification of which types of
events he is interested in.

8.2.3. Light Bulb Example

Through a small example scenario, this section demonstrates why the service classification
of Subsection 8.2.1 and the different information pushing mechanisms of Subsection 8.2.2
matter for an extended WoT (xWoT). Throughout the section, the example will grow
to encompass different aspects of the xWoT. To start, consider a simple light bulb. Its
main characteristic is that it can be switched on or off. This is usually done with a light
switch deployed somewhere on a wall. For now, this light bulb only exists in the physical
world. Interactions require physical cooperation and the presence of an operator (usually
a person). To embed this light bulb in the WoT, it needs a virtual side, to represent it
in the virtual world. Such a simple entity as a smart bulb can be represented through
one resource. Using this resource, a client can switch the light on or off by sending PUT
requests. The payload sent with each request is the new representation. For a smart light
bulb this could look like what is shown on Listing 8.7. Basically, there is just one piece
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of information, whether the light is on or not. This service is wired up with an actuator
sitting in the physical world and replacing the human pushing the light switch.

1 {’light’: ’on’}

List. 8.7: JSON representation of a smart light bulb

So far, the scenario is like most Things found in the WoT: an everyday object made smart
by adding some electronics and a RESTful interface over which users can interact with
the Thing. While switching the light bulb on and off over a RESTful interface is easily
achieved, interesting scenarios and mashups need a little bit more to work with. To stay
with the smart light bulb example, it would be nice to find out its current state. In the
physical world, getting a light bulb’s state is quite obvious and mostly does not require
the active interaction of a person. We call this passive observation. However, this is not
true for the virtual counterpart. A client cannot tell a light bulb’s state by gazing at its
RESTful interface. In order to make this information available to the virtual counterpart
of the light bulb, two things are needed: (1) a physical sensor, measuring the light bulb’s
state and (2) a resource exposing this sensor to the virtual world. The only action making
sense on the sensor resource is a GET returning the current state of the light bulb (as in
Listing 8.7). Table 8.1 resumes the situation and also reveals the first problem: the WoT
is made of sensors and actuators. Actuators act on a physical property and so accept
commands. Sensors, on the other hand, measure a physical property and serve the results
over their associated resource.

Resource Available Methods
Light Switch PUT
Light Sensor GET

Tab. 8.1.: Resources and methods for the smart light bulb

Smart Things such as this light switch form the most basic bricks of the WoT - just
one actuator or sensor tied to a RESTful interface. Yet, depending on the scenario, it
is possible to model more complex situations. Imagine that a motion sensor triggers the
light switch. Each time somebody enters, the light is switched on (if it is not already on).
Soldering such a device is a rather easy task. Starting with the hardware from the smart
light switch, it is sufficient to add another sensor to the board measuring human presence
(like a passive infrared sensor). On the virtual side, nothing changes for the light switch.
However, the presence sensor is represented through a new resource. Being a sensor, it
accepts GET requests. Listing 8.8 shows a typical response from the presence resource.
In this case, the sensor detects that somebody is present, which is reflected through the
true statement returned in the representation.

1 {’presence’:’true’}

List. 8.8: JSON representation of the presence sensor

In the current scenario, the light is switched on if somebody is in the room. On the
hardware side, this implies that the light switch actuator is notified about some event.
So far, the event of detecting a presence is only available to the hardware and used as
a signal between the different hardware parts. Yet, it would be useful to provide this
information on the virtual counterpart too. To push detection events to clients, any
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method discussed in Subsection 8.2.2 can be used. It is the individual use-case and the
expected frequency of the event which will determine the most suitable approach. The
new situation is resumed in Table 8.2. For the publisher, the methods are not specified
further as they typically depend on the chosen approach. Long polling would imply a
GET request, whereas WebSocket connections use the WS:// protocol. Therefore, it is left
up to the implementation to define the available methods for this resource.

Resource Available Methods
Light Switch PUT
Light Sensor GET
Presence Sensor GET
Presence Publisher various

Tab. 8.2.: Resources and methods for the smart light bulb with a presence sensor

Returning to the initial use case with a simple smart light bulb, imagine that instead
of having just one smart light bulb there are dozens of them. Each one offers the same
RESTful interface summarized in Table 8.1. This allows a client to control each light over
its own RESTful interface, each deployed on its own server. While a mashup application
could put all these services in one neat interface giving the user easy control over all the
lights in the house, it is also possible to rethink the RESTful interface and come up with
one adapted to the current use-case. This is a rather simple example task: the scenario has
individual light bulbs as described at the very beginning of this chapter. Furthermore, the
scenario implies some list of light bulbs as the main entry point. This leaves the hierarchy
depicted in Figure 8.10. The topmost resource is the list of available smart light bulbs. It
supports GET requests and returns a list of links pointing to individual smart light bulbs.
A unique identifier identifies each light bulb. These {id}s form the second level of the
RESTful interface. Again only the GET method is supported at this level. As discussed
at the beginning of this section, a smart light bulb offers two resources: the light switch
actuator and the light switch sensor.

Lightbulbs

{id}

Light Switch 
Actuator

Light Switch 
Sensor

Fig. 8.10.: RESTful hierarchy of light bulbs

Modeling the scenario as depicted in Figure 8.10 allows the user to browse all available
light bulbs without any need for an additional mashups. Nonetheless, the proposed model
does not bar the creation of such mashup applications. Everything below the layer two of
Figure 8.10 is strictly the same as summarized in Table 8.1 and can therefore be integrated
into any mashup application. As already explained in the first part of this section, a client



133

can check whether a light bulb is currently switched on or not. Therefore to know whether
there is some light in the house or not, he needs to ask all available light bulbs if they are
switched on or off. If at least one of them is on, then he can conclude that there is some
light in the house. This global state can also be exposed over the RESTful interface. It
is sufficient to add a new resource as a child to the top-level Lightbulbs resource. Unlike
the other resources, which are either lists or directly map to some hardware, this resource
maps to a virtual only good, namely an algorithm. Figure 8.11 shows this new resource
called Status, and accepting at least a GET request. Such a service perfectly fits into the
Short Living Services category.

Lightbulbs

{id}

Light Switch 
Actuator

Light Switch 
Sensor

Status

Fig. 8.11.: RESTful hierarchy of light bulbs revisited

The light bulb example and its use-cases show that the boundary between what is offered
by a RESTful interface and what is accomplished in a mashup application is fuzzy. It
seems that at least the core functionality of each use-case should be offered by the service
itself. Moreover, when discussing the meta-model for the xWoT, we will see that different
point of views lead to different RESTful APIs, even though a few components are present
in all APIs. Therefore, when creating new RESTful interfaces, one crucial question is the
point of view to adopt, as this will be directly translated into the RESTful API. This is
especially true for use-cases involving some sort of algorithm as in the third scenario of
this section.

8.3. The extended WoT

Today, the WoT encapsulates smart devices with a RESTful interface so that they can be
embedded into the web and allow clients to interact with them through their browser. On
the other hand, there is the rest of the classic Web as used by millions of people every day.
This part of the Web includes social media websites like Twitter, Facebook, Foursquare
and so on, dictionaries and encyclopedias like Wikipedia, blogs and many homepages.
Finally, the web has also come up with a number of pure services. They neither belong to
the WoT nor to social media, dictionaries or blog. Instead they are pure services. Starting
with some input, a more or less complicated computation is done, eventually leading to
a result. The website http://checkip.dyndns.com is such an example. Figure 8.12 and
Listing 8.9 show the result of a GET request to this URL. While the dyndns web site offers

http://checkip.dyndns.com
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a service in its simplest form, there are many other websites providing some sort of service:
postal zip code searching, weather etc. Additionally, some social media and dictionary
websites provide in parallel an APIs, turning their websites into fully fledged services.
Although these three types of web seem to be completely different and unrelated, they
are not. They all use the same protocol, HTTP, as a fully blown application protocol.
They are all, at least partly, embedded in the web used by humans and they all have in
common that they expose some type of information. Already today, the WoT heavily
relies on some of these parts of the web. Mashup applications like the Japan Geiger
Map [WEB25], the Live Flight Tracker (Figure 8.1), the EPCIS Mashup [57] underline
the importance of them.

Fig. 8.12.: DynDns Current IP Check

1 <html>
2 <head>
3 <title>Current IP Check</title>
4 </head>
5 <body>Current IP Address: 134.21.73.110</

,! body>
6 </html>

List. 8.9: DynDns Current IP Check HTML
code

The xWoT embraces all these different types of service and combines them together. It
does not matter if a service has a physical counterpart, if it is a social media web service
or something else. As long as it offers a RESTful API it is potentially of interest for the
xWoT. Therefore, the xWoT is a web where Things, but also purely virtual services are
treated as first class citizens. Whereas the web encompasses all available services, the
xWoT is a subset of the web only taking into consideration services related or of interest
to smart devices. Before formally introducing the xWoT, we need to define the available
bricks composing smart devices. These are mainly actuators, sensors and tags but also
virtual hubs. The remainder of this section addresses each component individually and
finally formally introduces the xWoT.

8.3.1. Sensors

A sensor measures some physical property. Generally, sensors do not act on their physical
environment (although this is sometimes controversial [WEB53, WEB54]). As such, a
sensor is a passive resource observing some phenomenon. It generates data, which is
delivered over some interface. A client can query this interface to get the latest measure.
Translating this to its corresponding RESTful interface implies that a sensor needs at
least to serve GET requests. This is also the general way clients interact with it. If the
client wants to know the temperature, he can GET this information from an available
temperature sensor (for example one of the form of Figure 8.13). Often this is the only
available action. Since a sensor cannot change or influence the phenomenon it observes it
also does not make sense for its RESTful interface to accept commands via POST, PUT or
DELETE. There is only one exception to this rule; sometimes it is possible to configure and
fine-tune a sensor. To stick with temperature sensors, temperature can be expressed in
at least three ways: Kelvin [WEB28], degree Celsius [WEB7] and Fahrenheit [WEB15].
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(a) A simple DHT11 sensor (b) Fully working temperature and humidity sensors

Fig. 8.13.: Sample Sensors

Although, according to RESTful principles, each client can request any desired format,
it is often convenient to define a default one. Such configuration tasks are generally done
with a PUT request.

From a behavioral point of view, both sensors and short living services 8.2.1 behave the
same way. Moreover, a client is unable to tell the difference between a service having a
sensor as backend and another without. For this reason, they should be treated the same
by architectural tools.

8.3.2. Actuators

An actuator can be seen as a black box which takes some input and depending on it,
executes some action. In the case of a servomotor like the one in Figure 8.14, the input
would be the incoming voltage. Depending on the applied voltage, the motor can speed
up and by turning will have an effect on its environment. Additionally, actuators have a
state. This can be as simple as a discrete binary value (on/off) or it can be a continuous
one like the voltage of a servomotor.

Translating this into RESTful terms involves each actuator being represented in the vir-
tual world through a resource. Commonly, a client sends commands to the actuator,
which will respond in an adequate manner. Furthermore, this response is twofold: the
resource sends back an HTTP response plus the actuator physically executes some ac-
tion. Therefore, the resource representing such an actuator must at least respond to PUT
requests. The payload of the request contains the commands to execute. For an actuator
with only discrete states, this would be the new state to adopt; for actuators accepting
continuous values, this would be the new value. If the state of the actuator is important,
clients can query it through GET requests. The response to a GET request is the same as
the payload of a PUT request. Therefore, the GET request can also be used to learn about
the device and learn about the accepted payload format.

Actuators do not use POST and DELETE requests. Since each actuator is anchored in the
physical world, deleting the resource would also imply deleting its physical manifestation,
which obviously doesn’t make sense. The same argument is valid for POST requests;
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Fig. 8.14.: A Brushless motor used for quad copters

creating new resources would also imply creating new physical instances, which for the
same reason is impossible.

8.3.3. Hubs vs. Mashups

Although raw sensors and actuators form the most basic elements, some use-cases depend
on more sophisticated smart devices. We have already discussed the temperature exam-
ple several times. Although it is clear that the temperature is measured by a thermistor
and virtually represented through a resource, a use-case can involve fuzzy temperature
definitions. Imagine a smart home full of sensors and actuators, including several temper-
ature sensors in all the rooms in the house. Even if it is possible to GET the temperature
reading of each individual temperature smart device, the user still would not know the
overall temperature in his house. This comes from the fact that there is no physical
device returning the overall temperature; instead this information is obtained by combin-
ing the information of different smart devices. In our scenario, this would be the mean
temperature reading of all available smart thermometers.
Definition 10 (Hub)

A hub is a virtual device which acts just like a real one. For a user, it is impossible
to distinguish between a hub aggregating several sensors and/or actuators and a raw
sensor or actuator.

Mashups or mashup applications are similar to hubs. They combine information gathered
from different sources and present them to a user in an adequate manner. Most of
the time, mashup applications come with a fancy GUI intended for users without any
programming skills. Therefore, the problem of the overall temperature could be solved
either with a mashup application or with a hub. The key difference between mashups and
hubs lies in the fact that a hub exposes some information that can be re-used by others
whereas a mashup doesn’t.
This discussion shows that the separation between algorithms (at least in the form of a
hub) and Things outside of the WoT is fuzzy. Although it is possible to separate the
web into several distinct parts for classification purposes, there is no reason to keep this
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separation for architectural concerns. All these parts rely on HTTP and REST as an
architecture. Therefore, the xWoT proposes an approach where not only smart devices
are treated as first class citizens but so are services of all kinds as long as they respect
the REST principles. From the construction of mashup applications, we have learned
that the most useful bricks come with a clean and easy to use interface. From this point
of view, it does not matter whether, upon invocation of its RESTful interface, a smart
device is performing some task or not. However, how the RESTful façade is invoked does
matter. The aim of the xWoT is to define re-usable and easily deployable components
acting as building blocks for mashup applications. This involves two aspects: (1) their
skin and (2) their inner guts.
REST architectural style already well defines how the outer interface needs to behave.
However, regarding its inner guts, there is no guidance or convention. Each developer is
free to choose (and therefore is forced to choose) its own conventions when it comes to
structuring the inner guts of a smart device or another RESTful service. What differ-
entiates smart devices from other RESTful services is their inherent structure. A smart
device lives both, in the physical and the virtual world. How the device is embedded
in the physical world also guides its virtual representation. For resources without any
physical counterpart, there is no limitation regarding their inner structure. Therefore, to
define the inner guts of components, it is first necessary to analyze the factors influencing
the latter. A smart device can either be a sensor, an actuator or a combination of both
as in Subsection 8.2.3.

8.3.4. Formal Definition of the extended WoT

The discussion of sensors, actuators and hubs, showed that although different in the
physical world, they often share a lot with their virtual only colleagues. This is also the
starting point for the extended WoT:
Definition 11 (xWoT )

The extended WoT is a web made of sensors, actuators and tags forming the classical
WoT plus services respecting RESTful principles.

It seems that Definition 11 contradicts the idea behind the WoT, Things connected to the
Web (see Section 4.3). In this perspective, there is no place for services, even RESTful
ones, not dealing with smart devices. On the other hand in [70] we have shown that
combining WoT Things with purely virtual RESTful services can be a big benefit for the
WoT. Meyer at al. discusses algorithms for the WoT too [51, 50]. Additionally, from a
consumer perspective, it is almost impossible to distinguish between services representing
a physical device and those that don’t. This is another reason to consider physical and
virtual RESTful services together. Furthermore, sharing the same meta-model between
WoT services and other RESTful services guarantees a seamless combination of them.
Clients facing such a RESTful interface will instinctively know how to exploit it, whether
it represents a smart device or not. These considerations plus Definition 11 allows the
aim of the xWoT to be defined.
Definition 12 (Aim of xWoT)

The aim of the xWoT is to introduce a standard approach on how to design the building
blocks for novel applications and mashups exploiting the capabilities offered by smart
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things and other virtual goods. To achieve this goal, the xWoT introduces a component-
based methodology which is underlined by a meta-model guiding the developers during
crucial architectural decisions. Finally, since the architecture respects the xWoT’s
meta-model, component skeletons are generated out of the specifications.

Whereas building mashup applications has been, and still is an active research topic [57,
76, 44, 33, 31, 38], the xWoT defines how the building blocks for them need to be
created and structured. It furthermore shows that mashup applications are not always
the best solution. Sometimes it is better to consider a hub which stays embedded in the
WoT. The outcomes of the xWoT are reusable and deployable software components. To
support the creation of such components, the next chapter introduces a meta-model plus
a methodology allowing to the rapid creation of xWoT compliant components.

8.4. Light Bulb Example Revisited

Subsection 8.2.3 introduced the smart light bulb as an example of a WoT application.
Starting with the last situation in Figure 8.11 several components involved are identifi-
able. Figure 8.15 resumes the involved use-cases. Clearly, some are related to the light
bulb, some to motion detection and others have no direct link to the physical world. Ad-
ditionally, the right side of Figure 8.15 shows that notifications are an important aspect
of the smart light bulb example.

Fig. 8.15.: Use-Case diagram for the smart light bulb example

Since the system involves two physical devices, a sensor and an actuator, there are also
two types of notification, one for each. Although notifications are sent from the server
back to the client, the latter also plays an active role in these use-cases - to subscribe or
unsubscribe for a given type of notification. Since the system cannot possibly know who
is interested in what type of notification, the client has to take this first step and actively
tell the system which events he would like to receive notifications of.
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Now that the use-cases have been defined, it is time to turn them into deployable and re-
usable xWoT components. If the system is one isolated light bulb, the question does not
really matter. Either way will be good enough. However, things change when multiple
light bulbs need to be made smart. Translating the requirements of Figure 8.15 into one
big RESTful interface will not work as this would lead to a situation where each smart
light bulb offers its own version of Get Global State and Modify Global State.
One can argue that it is sufficient to create small smart devices with any RESTful in-
terface and combine them with a mashup application to fit the requirements (e.g. Get
Global State or Modify Global State use-cases). Although, this works, from a soft-
ware engineering point of view, this approach is inefficient since components are not easily
reusable. A mashup application is tailored to exploit a given set of actuators and sensors.
However, its functionality cannot be re-used in any other use-case.

Fig. 8.16.: Extended use-case diagram for the smart light bulb example

Therefore, with a view to obtaining deployable reusable components, they must somehow
be grouped together. Figure 8.16 proposes a different view of these use-cases. Here, the
use-cases Switch On, Switch Off and Get State are extensions of the Light Actuator use-
case. Similarly, the Get Global State and Modify Global State are modeled as extensions of
the Algorithms use-case. The Detect Presence use-case remains the same as in Figure 8.15.
Additionally, all three main use-cases include one of the Notification use-cases. This
consideration naturally leaves three main parts: (1) one responsible for switching the
light on and off and to report its state and (2) another for taking care of sensing movements
in a given area. The last part (3) includes several algorithms foreseen by the use-case.
Besides, this partitioning also feels natural in the physical world where the light switch
is physically separated from the motions sensor. The important point is not how far
these devices are physically separated but more the consideration that both can work
individually and don’t necessarily depend upon each other.
In the initial scenario, a user could switch on and off a light either by using a switch
in the physical world or by invoking its associated RESTful façade. In this scenario,
the light will also switch on if a person is detected. This is a purely electronic action;
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the sensor detects a person and switches the light on. Although a user can GET the
state of the presence sensor, it is more efficient to subscribe to the generated sensing
events in order to be notified when somebody enters or leaves the sensing area. Here,
the client is more interested in knowing when a sensor event happens then the type of
event (leaving/entering). This makes it a perfect fit for notifications. Finally, the scenario
foresees that in a house multiple smart light bulbs together with motion sensors can be
installed. Each light can be switched on and off as explained previously. However, it is
also possible to switch on or off all the lights together or to check if any light is switched
on.

In this vision of creating independent components, clearly the light switch actuator will
be one compilation unit. The hardware responsible for switching the light on and off
is coupled with a RESTful interface exposing one resource to get and manipulate its
state plus a potential second resource responsible for notification handling. These two
resources are bundled together and form a service which is deployed on the light switch
actuator. This service together with the actuator forms the first xWoT component.
As previously discussed, the motion sensor exposes one resource returning information
about the current state (whether somebody is in the monitored area or not) plus a second
resource implementing the sensor notification. Again, the resulting RESTful service is
directly deployed on the motion sensor. Thus, the motion sensor and its associated
RESTful interface form the second xWoT component. Finally, the scenario foresees that
it is possible to find out about the overall state and switch all the light bulbs on and
off together. This task is carried out by a virtual service, implementing the necessary
business logic, hence it is composed of a single resource representing this global system
state. Since this service has no physical counterpart, it does not matter where it is
deployed.

Although this design shows a clear separation of concerns, the original use-case is not im-
plemented. Clients need to know about each deployed smart light bulb to take advantage
of it. However, there is no RESTful interface grouping all these smart light bulbs and
offering a convenient way to exploit them. Usually, an additional service, called Appli-
cation Scenario Service, plays this aggregation role. Instead of creating a fourth xWoT
component, the algorithm and application scenario service can be put together. The
third row of Table 8.3 shows that the resulting service offers at its top level an Algorithms
resource where clients can check and modify the overall system’s status (i.e. switching
off all light bulbs). Since this service is the main entry point for clients, it also has to
offer a way to access individual smart light bulbs and their associated motion sensors.
This is handled by the {id} layer where {id} is a placeholder for each individual smart
light bulb. Beyond this level, the Application Scenario Service does not re-implement
what has already been offered by the deployed smart light switches and motion sensors;
instead the service redirects the user to the desired resource. This allows one component
to represent the global scenario plus other components which some of the work is dele-
gated to. As a side effect, the Light Switch Service and the Motion Sensor Service might
be used in another similar scenario. Since they are all based on a common meta-model,
compatibility between different services is ensured.

This example shows how a complex scenario can be split down into simple, individual
components which are deployed separately and can live on their own. Additionally, the
Application Scenario Sensor is a good example of how such components can be combined
into new components. It is important to note that this approach is different from a classic
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Light Switch Service offering:
http://service1.com/light/ GET, PUT
http://service1.com/light/publisher/ various

Motion Sensor Service offering:
http://service2.com/motion/ GET
http://service2.com/motion/publisher/ various

Application Scenario Service offering:
http://service3.com/slb/ GET, PUT
http://service3.com/slb/{id}/light/ GET, PUT
http://service3.com/slb/{id}/light/publisher/ various
http://service3.com/slb/{id}/motion/ GET
http://service3.com/slb/{id}/motion/publisher/ various

Tab. 8.3.: Components and offered resources

mashup application (which would lead to a similar result). Although, a mashup also uses
the Light Switch Service and the Motion Sensor Service to offer a global view of the
system, the mashup application is not a component anymore. Since such a mashup does
not follow the xWoT meta-model nor offer any RESTful interface, other use-cases cannot
rely on it to build a novel application scenario.
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9.1. Introduction

The building blocks forming the WoT are smart devices. A smart device can roughly
be defined as a physical object to which a service interface is added. Therefore, a smart
device has two attributes: (1) it has some inner (physical) structure made of sensors, tags
and actuators and (2) it presents to the outer (virtual) world a clearly defined (RESTful)
interface. The first encompasses the device aspects (the hardware) whereas the second
takes care of the “smart” aspect.
Definition 13 (Smart Device)

A smart device is composed of a physical device and a virtual part with a service
interface. Whether the device is manipulated physically or virtually, the result remains
the same. The virtual side is connected to the physical world through sensors, actuators
and tags.

143
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The previous chapter introduced the notion of xWoT. Definition 11 specifies that it
aims to create the building blocks for mashups and other applications relying on smart
devices. These building blocks are nothing other than components in the sense defined
in Chapter 6. This implies that they have a public part, exposed to clients, and a hidden
one. Clearly the RESTful interface represents the public part of a smart device. It is the
interface over which it can communicate with either other smart devices and applications
(B2B) or with human clients. Instead of going from these components one step up to
mashup applications, it is also possible to go one step back and analyze their underlying
structure. Figure 9.1 shows a three-layered architecture where mashup applications are
represented in the topmost layer. They are based on the RESTful interfaces offered by
smart devices and in our case on RESTful services offered by components of the xWoT.
A further layer below sits the meta-model. It names the different elements making up
a component and describes their relationship. By that, the meta-model simultaneously
takes care of a component’s inner guts and its outer RESTful interface. Furthermore,
Figure 9.1 shows - on the bottom layer - that the meta-model takes into account both
types of information providers mentioned in Definition 11,

Mashup

xWoT
Component

xWoT
Component

Actuators
Sensors

Tags Algorihms

xWoT Meta Model

Fig. 9.1.: A three layered approach for xWoT Applications

A meta-model introduces formalism into a system. All models and by extension all en-
deavors which are instances of this meta-model share some common properties. Therefore,
the meta-model introduces conventions inherited by all the derived models and endeav-
ors. This chapter first discusses why building systems that respect conventions is better
than fully customized ones. Based on the insights gained in the previous chapter this first
section introduces the terminology plus a meta-model tailored to the needs of the xWoT.
A second section introduces the methodology, based on the meta-model, which supports
developers during the creation of new xWoT components. Based on this methodology,
a third section shows how almost ready to be deployed xWoT components can auto-
matically be generated. Finally, the last section discusses the influence of the Web as a
supporting infrastructure of these components.
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9.2. A Meta-Model for the xWoT

9.2.1. Convention over Configuration

Convention over configuration is a well-known software engineering paradigm and widely
used. Traditional frameworks tend to need heavy configuration to adapt them to the
current situation. On the one hand this gives the developer complete freedom regarding
aspects like project structure, naming conventions, etc. On the other hand, most devel-
opers tend to adopt some conventions (at least their own). Even though they may vary
from one developer to another at some point, each learns from experience of his own best
practice and sticks to it for all future projects. Nevertheless, each new project still needs
the same configurations over and over again. If for a given platform, all developers agree
on a set of common best practices, the platform can then integrate them as conventions
eliminating the need for repeated configurations. Besides a considerably speeding up in
the development process, conventions also improve the readability of foreign code. This
chapter first introduces the convention over configuration (also called coding by conven-
tion) paradigm and show how it helps developing applications. The second step explains
the need for such an approach for the extended WoT and roughly introduce some conven-
tions. The next chapter introduces a set of convention for the xWoT. Starting with these,
a meta-model can be derived which serves as template for all future xWoT components.
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Fig. 9.2.: Different Project Setups

The Apache ANT Project [WEB61] illustrates a situation where configuration is needed.
Originally, Ant was developed as a build tool for the Tomcat server. Its inventors quickly
discovered the power of this tool and forked Apache Ant as a standalone project in
2000. Since then, Apache Ant has been a widely used build tool for Java code just as
Makefiles in the C world are. Although these build tools know what a compilation is, they
need a configuration file to provide them with information about the project’s structure.
Figure 9.2 shows three different setups for projects. At first glance, neither seems better
than the others. Listing 9.1 shows the consequences of this situation. Although compiling
a Java application is just a matter of launching the javac binary against all *.java files,
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it needs a considerable amount of configuration in order to tell Ant where to find the
source files, where to put the binary files, where to look for compile dependencies etc.

1 <project name="HelloWorld" default="compile" basedir=".">
2 <!-- build-specific properties -->
3 <property file="build.properties" />
4 <!-- set global properties for this build -->
5 <property name="src.dir" value="src" />
6 <property name="build.dir" value="bin" />
7 <property name="dist.dir" location="dist" />
8 <property name="reports.dir" value="reports" />
9 <!-- for code reviewing reports -->

10 <property name="doc.dir" value="doc" />
11 <property name="javadoc.dir" value="${doc.dir}/javadoc" />
12 <property name="java2html_task.dir" location="${resources.dir}/java2html" />
13 <property name="sourcedoc.dir" value="${doc.dir}/source" />
14 <property name="browsable-source.dir" value="${sourcedoc.dir}/html" />
15 <property name="checkstyle_task.dir" location="${resources.dir}/checkstyle" />
16 <property name="checkstyle_report.dir" value="${reports.dir}/checkstyle" />
17 <property name="javadoc_check.dir" value="${reports.dir}/doccheck" />
18 <property name="doclets.dir" location="${resources.dir}/doclets" />
19 <!-- =================================================================== -->
20 <!-- Class paths -->
21 <!-- =================================================================== -->
22 <path id="compile.class.path">
23 </path>
24 <!-- =================================================================== -->
25 <!-- Compile: Default -->
26 <!-- =================================================================== -->
27 <target name="compile" depends="init" description="Compiles all Java sources">
28 <javac destdir="${build.dir}" classpathref="compile.class.path"

,! deprecation="on">
29 <src path="${src.dir}" />
30 <include name="**/*.java" />
31 </javac>
32 </target>

List. 9.1: ANT build File

This situation could easily be avoided if all developers agreed on the same project struc-
ture. Although this seems difficult, many frameworks rely on this mechanism. By using
a framework, a developer commits to accepting all the related conventions. Struts, a
popular MVC (Model View Controller) framework is based on this pragma. One of its
conventions is that controller classes should have a name ending with Action. As long as
a developer follows this convention, Struts will automatically discover controller classes
without any need to configure Struts. Clearly this convention restricts the developer when
choosing class names, however compared to the benefits, this restriction is bearable. Ruby
on Rails is another successful framework (a web application framework). Using it means
adopting its underlying project structure. Although, the structure seems overwhelming
at first it is very powerful, and once a developer is used to this structure and its associ-
ated rules, he can focus on his main task. There are a handful of success stories where
developers prefer to adopt conventions in exchange for getting better, faster and more
robust results.
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9.2.2. Related Work

Bringing structure to the IoT is not a new idea. Over the past few years, many attempts
have been made, some quite successful. Defining REST architectural style as the only
communication interface has made the WoT successful [22]. By adhering to RESTful
web services, the WoT structures the IoT in such a way that Things offered by different
vendors remain compatible. The adoption of REST as the architectural style is the
most remarkable advance in the structuring of the IoT. Although the WoT is a big step
forward, REST does not structure the different smart devices. Furthermore, REST is an
architectural style, how this style is applied to a given situation is left up to the developer.
This leads to the situation where the same physical device can translate into an infinite set
of possible virtual counterparts. This makes it hard for other developers to find suitable
smart devices and it is also hard for others to understand how the RESTful interface
works and which resources are available. The big advantage of the RESTful interface
is to help developers creating mashup applications. A quick search on Google reveals
the amount of work accomplished on physical mashups. Many papers are published in
this domain but also much work has been done. Between 2010 and 2013 the number
of mashup platforms like cosm and open.sen.se has grown steadily. Yet, RESTful web
services alone do not help developers when building the foundations upon which such
physical mashup applications are based.

Another successful approach is the European research project IoT-A. Back in 2010, S.
Haller presented a technical report The Things in the Internet of Things [29] where the
author presented a first sketch of a reference architecture for the IoT which later became
the reference architecture for the IoT-A project [78, 6]. Furthermore, the authors intro-
duced the terminology which shall be adopted by all major players in the IoT domain
and will facilitate the communication between the different players involved in any soft-
ware development project. This reference architecture is supported through a European
project with many well-known companies involved (Siemens, SAP, IBM etc.). Figure 9.3
shows the final reference model, which only slightly differs from its initial versions in [78,
29]. Involving all the major players of a given domain in one project has the advantage
that the result is supported by all of them. However, when that many players agree on
a common basis, often the result reflects all opinions at the same time. A rough look
at Figure 9.3 reveals that there are a lot of many-to-many connections. Additionally,
many elements are recursive structures. Although this allows the modeling of just about
any imaginable situation in any way, it has the enormous drawback that the situation is
not much improved. Furthermore, as the architecture is targeted to support the IoT, a
considerable effort has been put into modeling the interactions between the raw hardware
and the business logic behind the API. The reference architecture has at least the benefit
of introducing a clear terminology for all the involved components. However, as a model,
it is just too broad to be of a direct use.

Over time, researchers also introduced some conventions for the WoT. Particularly for
all sorts of semantics related to the IoT. This is not surprising, since semantics is often
the biggest obstacle users face when creating new mashup applications. When building
such mashups, it is usually hard to know what values a given sensor is returning, or even
to know whether a given resource is a sensor or an actuator. To overcome this problem
and also to enable M2M (machine-to-machine) communication, Kopecky et al. [41] intro-
duced hREST, a microformat to describe RESTful web services. By injecting special id
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Fig. 9.3.: IoT-A reference architecture (from [6, p. 58])
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attributes into the HTML code, the description of any REST interface gets a semantic
meaning and is thus machine-readable. Adopting the proposed microformat finally allows
RESTful services to be integrated into semantic web services through technologies like
WSMO-Lite [77] and SAWSDL [12].
Another attempt to structure RESTful web services and also the WoT are Triple Spaces [13],
a concept that goes back to space-based computing and parallel computing. Triple Space
extends classical space-based computing by adding semantics. One of its requirements
is the need for a web-like communication style. This makes REST and RESTful web
services a first-class choice for supporting triple space computing. Gomez in his work [16,
15] gives some hints about how Triple Space computing can be applied to the WoT and
its benefits for the WoT.
In their work, De et al. [10] formally introduced some fundamental IoT concepts. The
authors describe an Entity as a central piece of interest to which services, resources and
devices are related. Based on this observation, they introduced a very detailed ontology
describing the different aspects of such an entity, containing temporal, space- and domain
related features. Based on this preliminary work, the authors then defined a second
ontology taking care of the represented information, called resource. This ontology is
agnostic to the underlying architecture used to implement such a resource. For the
authors, the resource implements an interface, which can be REST, RPC or SOA (Service
Oriented Architecture). According to the authors, these semantics can be used to achieve
several goals, among them semantic reasoning and dynamic association.
When in [1] Alarcón et al. discuss how RESTful services can be crawled, they also shortly
describe a REST Service Description meta-model. The authors proposed ReLL (Resource
Linking Language) to describe a RESTful service. The presented model takes special care
of the different types of links added to each resource deployed on a RESTful service. The
core of the meta-model states that a service (REST) exposes several resources, each having
different representations. The necessary links for the ReLL to work are then added to the
different representations. Although, the meta-model presented is very precise about the
links and some related concepts, it completely misses the (hierarchical) relation between
the available resources.
In her work, Schreier concentrated on modeling RESTful applications [73]. To achieve
this goal, she proposed to capture static aspects with a structural meta-model and be-
havioral ones with a finite state machine. Having some (meta-)model representing the
inner structure feels quite natural. Application architects relying on this work need some
common structure to be captured in the structural meta-model. Yet, according to Field-
ing [14] representations are subject to change over time. These changes are captured
in a behavioral meta-model. Both, the meta-models and the finite state machine are
very complete. Going beyond resources and representation, they capture concepts like
the links between resources, attributes and parameters, media-types, methods and much
more.
Many conventions related to the WoT have in common that they try to bring semantics to
the WoT, a current research topic trend. Projects like WolframAlpha [WEB74] show the
power and benefits of semantics. Although, this is a popular topic, discussing semantics
for the WoT is outside the scope of this thesis. Instead, the remainder of this chapter
focuses on introducing a number of conventions to structure the xWoT. On the one
hand, most of these conventions are reflected in an intrinsic meta-model for the xWoT.
On the other hand, the associated methodology guides developers and system architects
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through the process of creating xWoT compatible components. The previously mentioned
conventions regarding semantics also benefit from such a structured approach since this
limits the degrees of freedom of the RESTful interface of an xWoT component and imposes
some minimal structure. Interestingly, we discovered several common points between all
these research topics and the presented meta-model. Given that they all work in connected
domains, this was not surprising, rather encouraging and validates the findings, to some
extent.

9.2.3. Terminology

Part of meta-modeling consists of naming the important elements of a system, so creat-
ing a language for the latter. Before discussing the xWoT meta-model, this subsection
introduces the terminology serving as a basis for the meta-model in the next subsection.
With respect to the terminology defined in Subsection 7.2.3 this subsection introduces
the Model Unit Kinds for the xWoT. Later, each xWoT model contains Model Units
originating from these Model Unit Kinds.
Already at a very early state of the IoT-A reference architecture, S. Haller discovered [29]
that the smart object is the centre-piece of the IoT and also the WoT. However, the terms
smart object, smart device, Thing are too vague to describe this element. It is mainly
this argument that pushed S. Haller to introduce the concept of Entity of Interest. The
term is composed of two parts: (1) Entity and (2) Interest. The word Entity means
something that exits by itself [WEB11, WEB32, WEB40] and describes something that
can exist independently without conditions. This aspect is also underlined by the word’s
etymology derived from the Latin word esse meaning “be”. Therefore, the Entity of
Interest is an abstract concept. As such, it is neither dependent on any physical object nor
any RESTful interface. According to the Oxford dictionary, the word Interest expresses
curiosity about or paying attention to something. Therefore, something is of interest if
it attracts our attention. Putting both terms together leads to a self-existing concept
of particular interest here. This is exactly what the Entity of Interest expresses, an
abstract concept about smart objects, which are the centre of interest. It is important to
understand that the Entity (of Interest) is not necessarily a smart device. Suppose that
we are interested in knowing the temperature of a given room. Then, the Entity is the
temperature. Accordingly, some hardware is needed to measure the associated physical
phenomenon. Here, the hardware is a simple thermistor sensor measuring its resistivity
(which depends on the temperature). In this case, the smart device and Entity are the
same, the temperature. However, in a more complex scenario, this can be different. If
instead of knowing the temperature, we are interested in the room itself, which happens
to have the ability to report its temperature (among other things), the Entity is no
longer the temperature but the room itself. Still, at some point, a physical device with a
RESTful interface is needed to complete the scenario, hence, the Entity corresponds to
the point of view adopted by the modeler. Entity and Entity of Interest both have the
same meaning and, although the former is adopted in the meta-model, both are used to
designate the same concept throughout this thesis.

Definition 14 (Entity )
The Entity (of Interest) reflects the point of view adopted by the architect. It represents
the core element of the current use-case. In that way, it covers both the physical and
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the virtual aspects.

Considering the concept of Entity, note that it is not necessarily a synonym for a smart
device. Therefore, a way to talk about smart devices is needed. Smart devices have
a physical side composed of sensors, actuators and tags plus a virtual side offering a
RESTful web service. Given this duality, introducing smart devices into the terminology
does not make much sense. Rather, we introduce a Physical Entity to designate the
physical manifestation of a smart device. The Physical Entity captures all the physical
aspects of an Entity. Again, since an Entity does not necessarily map to one particular
smart device, the physical aspects of an Entity are not limited to sensors, tags and
actuators. Rather, an Entity encompasses all the physical aspects of interest. In the
context of the previous examples, this means that if the Entity is the temperature, then
the Physical Entity is the sensor measuring the temperature. If on the other hand, the
Entity, is a room (containing among other things, a temperature sensor) then the Physical
Entity not only encompasses the temperature sensor but, also the room. As will be seen
later, this nuance is important in order to create accurate models. Therefore, the Physical
Entity etymologically is an entity. As the two small examples show, it deals with raw
sensors, actuators and tags as we already know them from the IoT, but it also handles
other physical objects.

Definition 15 (Physical Entity )
The Physical Entity captures all relevant physical aspects of a use-case. These aspects
not only include devices like sensors and actuators but any physical object of relevance
for the current use-case.

So far we have introduced two main terms of our meta-model - Entity (of) Interest
and Physical Entity. Furthermore, upon introducing these terms, we stumbled several
times over the words sensors, actuators, tags and devices. If the Physical Entity stands
for the physical aspects of an Entity, then it is composed of what makes a common
device smart, tags, sensors and actuators. This is also underlined by other research
like Haller [29] when he speaks about the Things in the Internet of Things. In our
meta-model, we define them in an everyday way: a Sensor is a physical component
measuring or observing a physical property. For example a thermistor is a physical
object measuring the surrounding temperature. It is a purely passive device and does not
impact on its environment (although, the observer effect shows that this point of view is
questionable [WEB37].)

Definition 16 (Sensor )
A sensor is a physical object, capable of measuring or observing a physical phenomenon.

If a Sensor is only capable of observing a physical phenomenon, in order to fully embed
the physical world into the virtual, another piece of hardware is needed, capable of acting
on the physical world. This is exactly what Actuators do. Upon receiving some input,
the Actuator starts acting and so changing the physical property it is attached to. One
very common kind of Actuators are stepper motors. Physically, they are nothing more
than a brushless motor, which divides the full rotation into a number of equal steps. The
motor is not only capable of turning a given amount of time but also a given amount of
steps. Such motors are used to open and close doors or windows.
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Definition 17 (Actuator )
An actuator is a physical object, capable of acting on another physical object.

Whereas Sensors and Actuators are mostly not necessary for the physical object to func-
tion properly, they are the extension of the virtual world into the physical. If a client
interacts with an Entity over its virtual interface, the Sensors and Actuators translate
these interactions into physical ones and vice versa. Tags on the other hand only play
a minor role in these interactions. The tag is a passive entity holding a small piece of
information. This information can be anything but it commonly contains some sort of
information like a URI where clients can find the virtual counterpart of the object. A Tag
can for example be attached to a book. A user can then either read the paper version
of the book or by scanning the Tag, access an electronic version. Whereas Sensors and
Actuators tightly couple the virtual world to the physical, Tags only loosely couple the
two.
Definition 18 (Tag )

A Tag is a passive physical attribute. It holds some information about the object it is
attached to, like a URI and serves to identify the former.

Sensors and Actuators are the connecting piece between the physical and the virtual world.
They translate physical phenomenon into virtual representations and translate virtual
actions to the physical world. Previously, we have discussed a thermistor as example
of a Sensor, and a stepper motor as an example of an Actuator. However, sometimes
scenarios require more complex setups to capture and manipulate all the physical aspects
an object offers. To build a smart door, at least one (stepper) motor is required to open
and close the door. Yet, since it is still a door, it can be opened and closed directly, thus
confusing the virtual counterpart. Therefore, to fully model such a smart door, a Sensor
measures whether the door is open or closed and to what extend. Such combinations of
Sensors and Actuators are common in the xWoT. A Device is a combination of Sensors,
Actuators and, less commonly, Tags. Such a combination only happens if the Actuators,
Sensors and Tags are related to each other. Combining the door’s stepper motor with
the room’s thermistor Sensor would usually not form a Device but rather two different
Devices each one containing a single Actuator plus a single Sensor.

Definition 19 (Device )
A device is a physical combination of several related Sensors, Actuators and/or Tags.

Since smart devices also have a virtual side, the Virtual Entity is the part of an Entity
dealing with this facet. More precisely, the Virtual Entity handles all the virtual aspects
of an Entity. It deals with its RESTful interface and the inherent structure of the latter.
As already pointed out for the Entity of Interest as well as for the Physical Entity, the
Virtual Entity is also an Entity etymologically speaking. Thus, it exists on its own
without the need for any anchor point. Again, this point is quite important for the
xWoT. According to Definition 11, the xWoT also deals with service only components.
Such service components don’t have any anchor points like a physical object; instead they
can exist on their own.
Definition 20 (Virtual Entity )

The Virtual Entity captures all relevant virtual aspects of a given Entity. This virtual
information is exposed via a RESTful interface over which clients can interact with it.
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One of the main concepts of any RESTful web services are Resources. If a user requests
or sends some information to the server, he does this by interacting with a Resource,
where each one stands for another piece of information. Tied to the term Resource
are often Representations and Methods. If a client requests a Resource the server will
send back a Representation of the latter but never the Resource itself. Additionally, to
uniquely identify each Resource, each is accessible over a different URI. Just as URIs
are hierarchical and can drill down, so can Resources. Although, some RESTifanian
mandate that URIs should not have any meaning (see Subsection 5.4.1) there is at least a
hierarchical dependency between a Resource representing a collection containing for each
item a sub Resource.
Definition 21 (Resource )

A Resource is a piece of information available over a RESTful interface. Resources
can be decomposed into sub resources and offer different representations.

9.2.4. The Meta-Model

Based on the terminology introduced above we can now define the meta-model for the
xWoT. Restricting its application to the xWoT results in a simple yet powerful meta-
model tied with a precise methodology. Consequently, the resulting meta-model is simpler
than similar approaches. Furthermore, the introduction of the meta-model allows to
automatically generate code skeletons as mandated by MDA (Model Driven Architecture)
[B19, 54].
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Fig. 9.4.: Overview of the xWoT meta-model

Figure 9.4 presents the initial meta-model containing the terms discussed plus some new
ones. As suggested previously, xWoT components have at the same time a physical and a
virtual side. This duality directly translates to the meta-model. The Entity is the central
concept. It represents the point of view adopted by the architect during the modeling
phase. Each Entity is composed of exactly one Virtual Entity and may contain a Physical
Entity. Since the xWoT also deals with service only components, it is possible that some
use-cases don’t have any physical manifestation at all and thus don’t need a Physical
Entity. This nuance also explains the difference in cardinality between a Physical and a
Virtual Entity.
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To apply the meta-model to a broad range of scenarios, the Physical Entity is composed
recursively. This allows modeling situations where an Entity is composed of more than
one Sensor, Actuator or Tag. The smart door example of the previous subsection is such a
case where a composed Physical Entity is necessary. Moreover, the different Sensors, Tags
and Actuators can be grouped into a tree-like structure. From a software designing point
of view, recursive tree structures can be modeled with a composite pattern. Applying
this pattern to the Physical Entity leaves us with a situation where the Physical Entity
becomes abstract. In terms of design patterns it becomes the component and defines the
common interface of all composites and leaves. The Device plays the role of composite. It
can either be used to attach several Sensors, Actuators and Tags to an Entity or to group
different composites. Whereas the first case is the obvious application, the second is at
least as important. If we try to model a smart room containing a smart light bulb, a smart
heater plus a smart window, then the smart light bulb, the smart heater and the smart
window each translates to a Device instance, with each grouping the necessary Sensors
and Actuators to achieve its individual requirements. The smart room itself however also
has a physical manifestation, which is of interest as the smart room as a whole translates
to a Device instance containing the other Device instances. Figure 9.5 shows an instance
of the meta-model containing the physical side only of this smart room. Whereas the
smart heater and the smart light bulb are each grouped into a Device, the smart window,
since it is only composed of an Actuator, stands for itself. Only Sensors, Actuator, Tags
and Devices can be instantiated in any model. Defining the Physical Entity as abstract
ancestor of the latter makes it possible to ensure they all look the same from the Entity
point of view and, on the other hand, guarantees that only real physical objects can be
modeled. If, by contrast the Physical Entity were concrete, it would be possible to create
models where the physical side had no Sensors, Tags or Actuators, thus removing any
coupling between the physical side and its virtual counterpart.

Fig. 9.5.: Model of the physical side of the room example

In order to be smart, the modeled entity also needs a virtual side. The Virtual Entity
captures these aspects. If the Entity is composed of a Physical Entity, then there is a
one-to-one mapping between the Physical and the Virtual Entity. Nonetheless, since the
virtual side can offer resources that do not have any physical equivalent, this mapping is
not onto and therefore not a bijection. This can be the case if the smart device, besides
offering the raw sensor readings also implements some sort of small algorithm to work
with the acquired data. The meta-model clearly reflects this in the different cardinalities
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for the Physical - and the Virtual Entity. Just like the Physical Entity, the Virtual Entity
is structured following the composite pattern. There are several reasons to adopt this
design pattern to break down the complexity of the Virtual Entity. One of these reasons
is the one-to-one mapping between the Physical and the Virtual Entity as everything
that can be modeled in the physical world can also be modeled in the virtual world.
Additionally, URIs form, by their nature, a hierarchical, tree-like structure and, since each
resource is attached to a URI, resources also form a hierarchical structure. Richardson
and Ruby [B18] also support this vision. In terms of design pattern, this means that
the Virtual Entity is the component and thus abstract and not instantiable. However,
it ensures that all concrete objects share this same interface and thus, appear to the
Entity to be like a Virtual Entity. According to Definition 21, a Resource can decompose
into several sub Resources. Unlike in the physical world, there is no anchor point where
a Resource cannot decompose any further. Therefore, Resources are not the leaves of
the pattern, but rather the composite. In its most basic form, the meta-model would not
need any leaves at all, leaving the decision about when to stop decomposing a Resource to
the architect. Nonetheless, there are other properties which allow the concept of Virtual
Entity to be further designated. The one-to-one mapping between the Physical and the
Virtual Entity induces for each component present on the Physical side an equivalent
component on the Virtual side. Putting together these considerations leads to a model
of the Virtual Entity as presented in Figure 9.6. Sensors, Actuators and Tags find their
exact equivalent on the virtual side. Each Actuator maps to an Actuator Resource, each
Sensor to a Sensor Resource and compositions are achieved through the Resource. One
would expect Tags to map to a Tag Resource. However, as discussed earlier, a tag in the
physical world is simply an identification mechanism pointing somewhere. However, the
Virtual Entity can offer resources without any physical counterpart. For these reasons,
the third leaf of the composite pattern of Figure 9.6 is called the Service Resource and
serves at the same time to model the virtual counterpart of tags and additional virtual
only goods.

Definition 22 (Actuator Resource )
An Actuator Resource stands for a physical Actuator. Similarly, it acts upon something
and thus needs some input. In terms of RESTful web services, an Actuator Resource
responds to PUT requests where the body contains the updated representation.

Virtual Entity

Resource Actuator 
Resource

Sensor 
Resource

Service 
Resource

1..*

Actuator 
Resource
Actuator 
Resource

Fig. 9.6.: Simplistic model of the Virtual Entity

Definition 23 (Sensor Resource )
A Sensor Resource represents a physical Sensor; it is a rather passive resource capable
of returning some information. Therefore, a Sensor Resource responds to GET requests
and each time returns an “up to date” representation of the resource.
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Although this model covers all aspects of the physical world and allows a seamless trans-
lation of the latter into the virtual world, there remain some issues. Sensors are data gen-
erators and thus suitable to require a pushing mechanism in the virtual world. Although
Actuators merely work the other way around, they can also need a pushing mechanism
even though this situation is less frequent. Lastly, the generic Service Resource of course
should also be able to push information. For structural reasons, it makes sense to place
the publisher resource near the device resource it is attached to. However, in the model
in Figure 9.6 this is impossible. All non-composite resources being leaves, they are not
allowed to posses children. On the other hand, the publisher is always the bottom most
element a resource can offer. Accordingly, the model needs to be adapted to reflect this
possibility. Figure 9.7 reflects these changes by redefining the leaves in Figure 9.6 as
extensions of the Resource element. Thus, Actuator Resources, Sensor Resources and
Service Resources can be composed.
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Fig. 9.7.: Less simplistic model of the Virtual Entity

Definition 24 (Service Resource )
A Service Resource is a general-purpose resource. It has no restrictions on what requests
it responds to, nor whether it contains a publisher or not. Also the Service Resource
often decomposes further into smaller Service Resources.

There are only two types of allowed compositions: (1) A Sensor Resource, an Actuator
Resource or a Service Resource containing a Publisher Resource. (2) A Resource con-
taining any combination of Sensor-, Actuator- and Service Resources. Furthermore, a
Resource can also contain other Resources as children. This allows the forming of logical
groups of sensors, tags and actuators and reflects what in the physical world would be
seen as a device. The leaves of the previous model are replaced by only one leaf, the
Publisher Resource. Whereas, for logical reasons, it does not make sense to add a Sen-
sor Resource as child to an Actuator Resource, Publisher Resources are true leaves. A
sensor in the physical world is reflected by a Sensor Resource in the virtual world and
delivers the same information as in the physical world. However, the Sensor Resource can
offer more information than its physical counterpart. This effect is achieved by adding a
Service Resource as a child to a Sensor Resource (of course, the same holds true for an
Actuator Resource).

Definition 25 (Publisher Resource )
A Publisher Resource contains a WebSocket endpoint plus a second resource allow-
ing subscribers to provide a webhook. Therefore, the Publisher Resource is more a
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publisher hierarchy than a single resource.

This last model already fits the defined needs very well. It respects the one-to-one map-
ping from the physical to the virtual side. It allows aggregating sensors and actuators
into groups, it is possible to define additional virtual only goods and finally, the model in-
tegrates a mechanism to push information. Thus, the different components of the current
model allow it to accurately translate the physical side into a virtual one. Nevertheless,
sometimes a less accurate translation is needed. Smart devices in the physical world of-
ten not only posses an actuator to modify a physical property but also a sensor knowing
the current state of the actuator. For the sake of simplicity, consider again the smart
heater of the previous smart room example. The smart heater is composed of an actuator
modifying the intensity of the heater. Since such an actuator is more than just an on/off
switch it is potentially also interesting to know to what degree the heating device is on.
On the other hand, if the state of the actuator is modified in the physical world, this
should also be reflected on the virtual side. Hence, the value returned by the sensor is
directly controlled by the property modified by the actuator. Other smart devices com-
posed of sensors and actuators do not necessarily have such a strong connection between
them. The smart light bulb is also composed of an actuator switching the light on and off
plus a sensor returning the measured intensity of the light. However, these two devices
are not as highly coupled as those from the smart heater. Besides the light bulb other
factors like date and time also influence the sensor. Additionally, the actuator only has
two states; it is either switched on or off. This makes it also less interesting to report
back the actuator’s state.
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Fig. 9.8.: Final model of the Virtual Entity

Of course, the current meta-model already allows for modeling such situations. Since
such a device is represented on the physical side as a Device containing one Sensor and
one Actuator, it would translate on the virtual side to one Resource containing a Sensor
Resource plus an Actuator Resource. Not only is this translation accurate regarding
the imposed one-to-one mapping, but it also feels natural at first glance. However, in
the context of a RESTful service, this approach quickly becomes cumbersome. In fact,
such a translation requires one REST resource, for example, a heater_actuator accepting
PUT requests, to change the current state of the smart heater plus a second resource,
heater_state accepting GET requests, to return the actual state of the smart heater. The
heater_actuator does not accept GET requests, neither does the heater_state accept PUT
requests. Therefore, in these cases, it makes sense to combine the physical sensor and
the physical actuator into one single REST resource, heater, this time accepting GET and
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PUT requests. Although, this simplification violates the request for a one-to-one mapping,
it makes the generated RESTful interface much more usable. Moreover, the one-to-one
mapping is still present but it has become a semantical one-to-one mapping between
the physical and the virtual side. As will seen later, the different tools associated with
the meta-model also integrate other simplification approaches. Their common goal is
to create the most suitable RESTful interface maintaining a strong link to the physical
world it represents. This consideration lead to the final model presented in Figure 9.8.

Definition 26 (Context Resource )
A Context Resource is syntactic sugar to combine a physical sensor and a physical
actuator into one virtual device. For this reason, a Context Resource behaves like a
Sensor Resource but, at the same time, also behaves like an Actuator Resource.

The Virtual Entity is the abstract component serving as a common interface for all other
components. The Resource class plays the role of the composite serving as patron for
all non-leaf classes. Since Resources are used to group other resources, it is concrete
and can be instantiated. The four classes Actuator Resource, Sensor Resource Service
Resource and Context Resource are also composite classes, although their composition
follows some restrictions. Finally, the Publisher Resource is the only leaf of the current
design. This class contains a whole publisher hierarchy, which is discussed later, and
therefore it cannot be broken down any further. This last approach is also the one that
made it into the final xWoT meta-model shown in Figure 9.4.

Fig. 9.9.: Model of a smart room

Now that we know how the meta-model handles the virtual side, we can further explore
example of a smart room containing a smart heater, a smart light bulb and a smart
window. The physical side has already been modeled in Figure 9.5. The correspond-
ing virtual side can be modeled taking into account the details discussed. This results
in the final model in Figure 9.9. Accordingly, each smart device has an equivalent on
the virtual side. The smart window is the most basic smart device; it is only made
of one actuator capable of opening and closing it consequently, it translates to an Ac-
tuator Resource on the virtual side called WindowResource. The smart light bulb is
a little bit more complex as it is composed of a sensor and an actuator. Although,
combined into one physical device, their connection is not strong enough to translate
into a Context Resource. Therefore, the smart light bulb is translated into a Resource
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called LightResource containing a Sensor Resource (Light_SensorResource) and an Ac-
tuator Resource (Light_SwitchResource). This structure also delivers the associated
Uniform Resource Locator (URL) schema: http://example.com/room/light/switch
for the Actuator Resource and http://example.com/room/light/ambientlight for the
Sensor Resource. Additionally, the Light_SensorResource offers a Publisher Resource
(Light_SensorResourcePublisherResource) to notify clients about any drastic changes in
the ambient light. Such changes generally involve somebody switching the light on or
off. Finally, the smart heater is also a composed device. On the physical side it is
composed of an actuator to increase or decrease the output of the heater and a sensor
measuring the current output of the heater. Since the two devices are highly coupled
(they act on and observe the same physical property) they are translated into a Con-
text Resource (TemperatureChange_HeaterContextResource). Since a Context Resource
represents both a sensor and an actuator, it could also contain a Publisher Resource.
However, to keep the example simple, no publisher is associated with the smart heater.
It is now clear why the meta-model presented is simpler than similar approaches like the
reference architecture issued from the IoT-A project (see Figure 9.3). Using RESTful web
services allows the modeling of the service components to be simplified. It is enough to
partition the space into different resources. REST takes care of the concrete interfaces.
Furthermore, REST allows to easy reference to concepts like Resource and Methods.
This eliminates the need for an arduous discussion about what forms the service interface
can take. On the other hand, the meta-model is also simpler than others targeting
RESTful services like [73]. The difference here comes from the fact that the focus of
the meta-model is the xWoT and not RESTful web services in general. However, it
would be possible to extend the meta-model with the concepts and relations presented
in [73]. However, the associated methodology and tools take automatic care of some
important REST aspects. After the introduction of the methodology in Subsection 9.3,
we will return to the xWoT meta-model and further refine it. Other published models
put too much focus on one aspect of RESTful web services, for instance in [1] Alarcón
et al. present a Resource Linking Language. This focus is also found in the associated
resource model, which emphasizes the HATEOAS principle and thus, gives a lot of space
to the definition of links between resources but lacks other details. Web Application
Description Language (WADL) [28] is another controversial approach to describe RESTful
web services. RESTifanians advocate that there is no need for an equivalent of the WSDL
format. Discussing whether WADL is used in RESTful web services or not is outside
the scope of this thesis. Moreover, WADL is not a suitable approach to model xWoT
applications as it only covers RESTful aspects, but is unable to handle xWoT specific
facets.

9.3. Methodology

According to Chapter 7 and more precisely to Definition 8, a meta-model introduces a
language for a given domain. Additionally, the meta-model structures this language by
defining the different relationships between the terms composing the language. Subsec-
tions 9.2.3 and 9.2.4 introduce the terminology and the meta-model respectively for the
xWoT. Together with already established standards like REST, the meta-model also
allows the introduction of a methodology to design and create new xWoT applications.
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The aim of this methodology is to support the system architects during the initial design
phase of a project, and also the developers with various tools based on the standards
introduced with the meta-model. This section introduces the methodology supported
by the xWoT meta-model. Highly coupled with this methodology is also a set of tools,
automating parts of the development process. Finally, this section concludes by showing
the application of all these tools through a small example.
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Fig. 9.10.: Overview of the xWoT methodology

The methodology involves several steps, starting with an idea and finishing with a working
smart device. During the modeling, the xWoT meta-model has a strong influence on
all these steps. Figure 9.10 shows the whole modeling process for creating new xWoT
applications. Roughly it can be divided into three phases: (1) Modeling the Entity and its
associated physical and virtual side. (2) Modeling the representations and the underlying
data model, if needed and (3) Implementing the still empty methods responsible for
treating the incoming REST requests. Figure 9.10 also shows these three phases. The
first lays the foundation for everything else and is highly coupled with the xWoT meta-
model. In addition, all the important decisions and choices are made during this phase.
The outcome of this first phase is a project skeleton for the planned REST service. As
a skeleton, it already contains all the defined resources and templates for methods to
treat the incoming REST requests as defined in the meta-model. The second phase is
concerned with data and its representations. Commonly, in RESTful web services, there
are two types of data: (1) data living on the server, stored in some DBMS (Database
Management System) and (2) data transferred between clients and servers. Both types
have their own associated modeling phase. Yet, as they are independent of each other,
these activities can be executed in parallel, so it does not matter whether one starts
with modeling the server side or the exchanged data. Finally, the third phase puts the
different pieces together. It uses the outcome of the preceding phases to implement a
fully functional RESTful web service.
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9.3.1. Entity Modeling

Modeling the Entity and its associated concepts is the first step when creating new xWoT
services. With the aid of the xWoT meta-model, software architects can directly start
modeling new scenarios. First, the adopted point of view is chosen. If the scenario talks
about a room containing several sensors and actuators, then the Entity would be the
room. This concept further serves as the anchor point for any other sensors, actuators,
tags and devices. After defining the Entity, the Physical Entity can be modeled. Again,
the xWoT meta-model support the system architect in this task.

Fig. 9.11.: Creating a new xWoT model in Eclipse

The xWoT meta-model is defined in EMF and translated within Eclipse into an Ecore
meta-model (see Chapter 7). Eclipse is then able to transform the meta-model into a
deployable plugin. Installing this plugin adds a new type of project to the Eclipse menu:
xWoT Model (see Figure 9.11). Upon choosing this project, the integrated editor opens a
new file already containing an Entity and assists the user through the remaining process
of creating a new xWoT compatible model. Upon adding a new element to the model, a
panel opens on the righthand side, showing key-values pairs. Figure 9.12 shows an empty
model with just the Entity as a node. The panel on the right contains the available
properties for each node. For instance, the Entity node only contains one property called
Name. In this case, it holds the value Room to indicate that the Entity is about a smart
room.
After defining the Entity, the next step shapes the Physical Entity. If the Entity is a
very simple smart device, the physical side can be composed of just one sensor, actuator
or tag. If it is slightly more complicated, the physical side will start with a Device to
group the different components. Figure 9.13a shows the model after adding a device to
the physical side. Again, the lefthand side shows the hierarchy of the component and the
righthand side contains the property view. Since the smart room contains more than juste
an actuator, sensor or tag, the topmost element of the Physical Entity is a Device. On
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Fig. 9.12.: Defining the Entity, in this case a smart room

the property view, its attributes are defined. The Device has a name, in this case room.
Furthermore, the Boolean property Composed indicates whether a Device is composed or
not. This switch influences the generated RESTful web services (see Section 9.4) later in
the process. Finally, the Entity Id attribute serves to uniquely identify each item of the
model. Currently this property is not used, but future versions of the associated tools will
not only allow forward engineering of the model to code but also backward engineering.
For this to work, code and model need to be strongly coupled.

(a) Defining the Physical Entity

(b) Adding a first device to the physical side of the Entity

Fig. 9.13.: Working with the physical side

In the next step, the remainder of the Physical Entity is modeled. Figure 9.13b shows
how the model editor supports the architect in this task by limiting the available nodes
to those that are possible according to the meta-model. Regarding the meta-model as
presented in Figure 9.4, the only possible children for a Device node are either another
Device node or a Tag, Sensor or Actuator node. The editor is smart enough to detect this
situation and eliminates all other elements. The outcome of this step should look similar
to the physical model of Figure 9.5 which illustrated what a smart room could look like.
From a more technical point of view, the outcome of this modeling is a partitioning of the
physical space. Sensors, Actuators and Tags are grouped together into physical Devices
and/or into logical Devices (for a detailed explanation of the difference between a logical
and a physical Device see Section 9.4 and the Composed property of Figure 9.13a).



9.3.1. Entity Modeling 163

Subsection 9.2.4 defined the relationship between the physical and the virtual side as a
one-to-one mapping. Since the physical side has already been modeled, it is now time to
do the same for the virtual side, starting by translating the physical elements into virtual
ones. This translation can easily be achieved by applying the following set of rules:

1. Each Device maps to a Resource. The Composed property must be the same as well
as the Name and Entity Id properties. Since the concept of resources is highly cou-
pled with URLs The Virtual Entity has yet another property: URI. Although there
are no strict guidelines when it comes to URL naming, for the reasons discussed
earlier (see Subsection 5.4.1) it should be meaningful and have a relationship with
the Device it stands for.

2. A Sensor maps to a SensorResource. Furthermore, for its properties the same
transformation rules applies as for the Device to Resource transformation.

3. An Actuator maps to an ActuatorResource. Again, for its properties the same
transformation rules applies as for the Device to Resource transformation.

4. Finally, Tags have no direct equivalent. Since tags merely serve to identify some-
thing in the physical world, they map to a general purpose ServiceResource.

5. Since sensors are generating data, it makes most sense to attach a publish-subscribe
mechanism to any resource representing a sensor. Also actuators can produce
events. Therefore, for each SensorResource or ActuatorResource, evaluate whether
a PublisherResource is needed.

After these initial translations, a few simplifications can be applied, making the RESTful
interface more intuitive to use. (1) For each sibling made of an actuator and a sensor,
check whether they can be combined into a ContextResource. (2) Since a ContextRe-
source is the combination of a SensorResource and an ActuatorResource it inherits the
PublisherResource previously attached to the SensorResource. (3) If a Resource contains
only one child, then simplify the hierarchy by removing the Resource and attaching the
child to its grandfather. This simplification breaks the one-to-one mapping but is benefi-
cial for the RESTful API as it saves one useless layer in the REST hierarchy. The order of
these simplifications is important. If before the first simplification, a Resource possesses
two children it might be that afterwards only one ContextResource remains. Thus, this
node becomes a candidate for simplification step two. If the second simplification were
carried out first, it would possibly miss some ContextResource children. For simplicity,
consider again the previously defined smart room example. A smart room is made of a
smart HVAC device, a smart light bulb plus a smart window. After applying the first
three modeling steps, the model should look like the one in Figure 9.14. To keep things
simple, the Name properties of the virtual elements are composed of the Name proper-
ties of their physical counterpart plus a suffix (Resource and ContextResource). Where
PublisherResources do not have an equivalent in the physical world, simply use the Name
attribute of their parent plus a PublisherResource suffix.
The translation of the physical to the virtual side completed, the next step is to refine the
Virtual Entity. So far, the virtual side has been an accurate map of the physical world,
but the Virtual Entity can offer more functionality. If this is the case, then this step adds
the necessary resources. Since they don’t have any physical counterpart, only Resource
and ServiceResource nodes should be added to the actual model from this point on. The
smart room example does not offer any additional virtual services. Therefore a refining
of the virtual side is not necessary.



164 9.3. Methodology

Fig. 9.14.: A smart room with booth, the physical and the virtual side modeled

At this stage the resource design is finished and should not change anymore. Accordingly,
the model can now be translated into code or at least a code skeleton. The translation
is straightforward; each SensorResource, ActuatorResource, ContextResource and Ser-
viceResource is translated into a REST resource. Resources are either translated into a
REST service and a REST resource if their Composed property is false. Otherwise they
are translated into a REST resource. It is important to understand that the outcome of
this translation is not one single RESTful service. Rather, it respects the WoT vision
of multiple small and independent devices. The translation to code generates at least
one “big” RESTful web service representing the Entity. Additionally, for each Resource
where the Composed property is false, it creates another RESTful service to be deployed
directly on the smart device. The “big” RESTful web service representing the Entity then
simply acts as a proxy for the smaller ones, composing the Virtual Entity. Reusability is
the biggest advantage of this architecture. Actually, if the translation creates skeletons
for already existing web services these can be ignored. Instead the existing ones can be
reused. Only the remaining code skeletons need to be implemented.

9.3.2. Data Modeling

After successfully modeling the Entity and its associated physical and virtual side, it is
now time to think about stored and exchanged data. Representations are a core concept
of RESTful web services. Clients interact with a resource over its representations, be
they HTML, JSON, XML or any other format. Since these are the only point of contact
between a REST service and its clients, their design is crucial for a successful web service.
The commonly used formats, JSON and XML can be modeled with XSD (XML Schema
Definition). This is a widely used approach to model XML data and is standardized by the
W3C [WEB69]. Although, it would be possible to think directly in JSON or XML, from
a software engineering point of view this is not a recommended practice. This is easily
illustrated by comparing the representation modeling with the REST API modeling. In
subsection 9.3.1, instead of directly writing executable code of the RESTful web service,
we first modeled the API by creating an instance of the xWoT meta-model. The same
approach should be applied to the representation modeling where the XSD language plays
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the role of the meta-model. For instance, Listings 9.2 and 9.3 show respectively the JSON
and XML representations of the temperature sensor attached to the HVAC smart device,
discussed in the example use-case in this section.

1 {"temperature": {"@units": "celsisus","@precision": "2","#text": "24.00"}}

List. 9.2: JSON representation of the temperature reading of the HVAC smart device

1 <temperature units="celsius" precision="2">
2 24
3 </temperature>

List. 9.3: XML representation of the temperature reading of the HVAC smart device

JSON and XML are the two most popular representations of a resource, although they all
share the same underlying data. In the current example, this is a temperature reading, a
floating-point value. A temperature can be expressed in many ways the Celsius, Kelvin
or Fahrenheit scales being the most commonly used ones, but there are others like the
Rankine scale. However, it is safe to say that the smallest float representation more than
covers the capabilities of commonly used thermistor sensors in consumer devices. This
discussion shows that it is also important to communicate the scale together with the
value to allow users to interpret the returned value. Finally, sensors often return floating
point values with far too many decimal values. In these cases, it is important to make
an educated choice about the required level of precision of the sensor and also the needs
of the clients. Therefore, a temperature sensor is represented by: (1) a floating point
value corresponding to the sensor reading, (2) an indication of the used scale and (3) a
hint about precision. Now that it is clear what needs to be represented, it is time to
decide how this information is to be represented. This is particularly the case for XML
representations where a piece of information can be packed either as an element or as
attribute to an element. Which one to use is a controversial discussion. Google returns
over 1M results, Bing over 6M and Yahoo over 11M responses to this question. Though,
discussing XML document engineering is outside the scope of this thesis. Listing 9.4
shows how the above requirements can be modeled with XSD.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
3 targetNamespace="thermistor" vc:maxVersion="1.1" vc:minVersion="1.0"
4 xmlns:vc="http://www.w3.org/2007/XMLSchema-versioning" xmlns:th="thermistor">

6 <xs:element name="temperature">
7 <xs:complexType>
8 <xs:simpleContent>
9 <xs:extension base="xs:long">

10 <xs:attribute name="units" type="th:unittype" use="required"/>
11 <xs:attribute name="precision" type="xs:integer" use="required"/>
12 </xs:extension>
13 </xs:simpleContent>

15 </xs:complexType>
16 </xs:element>
17 <xs:simpleType name="unittype" final="restriction">
18 <xs:restriction base="xs:string">
19 <xs:enumeration value="celsius"/>
20 <xs:enumeration value="fahrenheit"/>
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21 <xs:enumeration value="kelvin"/>
22 <xs:enumeration value="rankine"/>
23 </xs:restriction>
24 </xs:simpleType>
25 </xs:schema>

List. 9.4: XSD modeling a representation for a temperature reading

There is yet another advantage for first modeling the representations with a language like
XSD instead of writing XML or JSON. Using an intermediary format allows translating it
into many different types of code. JAXB 1 is a Java framework widely used to deserialize
and serialize JSON and XML data to Java POJOs (Plain Old Java Objects). Therefore,
it is frequently adopted in RESTful Java web services. This is only one functionality of
JAXB, the xjc tool which comes bundled with JAXB allows the creation of POJOs from
XSD files. Listing 9.5 shows how this tool transforms the earlier thermistor.xsd to Java
classes. Similar tools exist for other programming languages. Python, a quite popular
WoT language, offers generateDS 2 and PyXB 3 with similar functionalities.

1 xjc -d src -p ch.unifr.softeng.thermistor thermistor.xsd

List. 9.5: Creating Java POJOs from XSD files

Since the format of the representations is now well-defined, what remains is the definition
of stored data. This step is not always necessary. For RESTful web services representing
bare hardware (i.e only made of Resources, Actuator-, Sensor- and ContextResources)
there is no need to store any data in a persistent manner on the server side. However,
for other types of resources it is. Of course, general purpose ServiceResource are likely
to need some data to work with, but a PublisherResource already needs some database.
Since clients can (de)-register for some kind of event (see Subsection 9.4), this information
needs to be stored on the server side.
Which approach is most suitable to model the stored data greatly depends on the type
of data. Thus, a primary analysis is important to decide upon the data characteristics
and their quantity. As a result, it should be clear whether the data can be stored on
the smart device or if this is already outside the capacity of the smart device. Another
important characteristic of the data is whether it is suitable for a relational database or it
is better to use document storages and NoSQL storages. Discussing all these approaches
is clearly outside the scope of this thesis, so the discussion is limited to the case of a
PublisherResource which needs to track its subscribers plus some additional information.
According to Subsection 9.4, a client can subscribe for notifications by invoking the Pub-
lisherResource. As soon as the sensors register a change in its value, the Publisher-
Resource iterates through the list of subscribers and sends a notification to each one.
Furthermore, upon subscribing, the client can define his own events, in the form of a
predicate, for which a notification should be sent. If he does so, this client will only get
notified if the predicates evaluates to true. Figure 9.15 shows one approach to modeling
this situation in an ER (Entity-Relation) model. The ER schema assumes the same role as
the XSD file for the representation modeling. It acts as a standardized definition format,
which can later be translated into various programming languages. The implementation

1https://jaxb.java.net/
2http://pythonhosted.org/generateDS/
3http://pyxb.sourceforge.net/
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of the persistence layer API differs from programming language to programming language,
yet most are able to reverse engineer classes from a database schema.

Fig. 9.15.: ER Model for the underlying data structure of PublisherResource

9.3.3. Implementation

As pointed out, the Entity (of Interest) is the core concept of the meta-model. According
to definition 14, it reflects the point of view the system architect adopts during the
modeling phase. Once this point of view has been chosen, it cannot change without
severe consequences for the rest of the design. Although the model of a smart room and
a smart home share the smart light bulb device, they would not be modeled in the same
way. In the first case, the topmost element is the room, composed of windows, HVAC and
finally, the smart light bulb. Accordingly, the meta-model compiler creates the following
services:

1. one RESTful service representing the use-case, here a smart room,
2. one RESTful service for the smart light bulb
3. one RESTful service for the smart HVAC device
4. one RESTful service for the smart window.

In the second case, the topmost element is the smart home, which is composed of rooms.
Each room decomposes further into windows, HVAC and finally, the smart light bulb.
Accordingly, the meta-model compiler creates the following services:

1. one RESTful service representing the use-case, here a smart home,
2. one RESTful service for the smart rooms composing the smart home,
3. one RESTful service for the smart light bulb
4. one RESTful service for the smart HVAC device
5. one RESTful service for the smart window.

Both models create similar service skeletons. This is not surprising as in the end both
rely on the same sensors and actuators. Therefore, upon implementing the second use-
case, it is not necessary the reimplement the created service skeletons for the smart light
bulb, the smart HVAC device, the smart window and the smart room. Instead, since
these services behave exactly the same as those already created and deployed in the first
scenario, these can be reused and integrated in the second scenario. This also fits the
philosophy of the xWoT where the world is full of small smart devices ready to be used
in different applications. Where software engineering has mandated code reusability for
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decades, the xWoT mandates reusability for smart devices. As reusable blocks of the
xWoT, they are true components as defined by Cox [9] and introduced in Chapter 6.
Whereas for the first example, 4 services need to be implemented, for the second, only
one new service needs to be implemented. The rest is simply reused from the previous
example. Such an approach greatly speeds up the remaining implementation work and
also brings a whole bag of benefits related to component-based architectures.

Code reusability is highly coupled to the way the code is structured. The above discussion
shows that for xWoT modules code reusability is not meant for business logic implemen-
tation details, but rather for the module as a whole. It proposes an approach where the
atomic structure is a full xWoT component. Having solved this first problem, the discus-
sion turns to how the meta-model helps to implement the code necessary for responding
to incoming requests. In its simplest form, the REST web service offers the basic CRUD
HTTP verbs, each mapping to another functionality of the component. Consequently, the
component needs at least four functions, each responsible for one HTTP verb. Figure 9.4
shows the rough overview of the xWoT meta-model, containing the most important ele-
ments system architects are concerned with. So far the different types of Resource have
only served to distinguish them and to introduce a formal terminology for the xWoT.
However, the xWoT meta-model compiler also uses this information to generate the most
complete skeletons possible. Although, the presented meta-model of Figure 9.4 captures
the main aspects of the xWoT it lacks some important RESTful concepts. The concept
of REST resources as a mean of partitioning the space into smaller parts was discussed
when the different *Resource classes were introduced. Nevertheless, a SensorResource
does not act in the same way as an ActuatorResource or a ServiceResource.

Each resource reacts to a set of requests. It makes most sense for an Actuator Resources
to react to PUT request, whereas Sensor Resources react to GET requests. In terms of any
programming language, this means that a resource offers for each request a corresponding
function, internally handling the request. Therefore, each HTTP verb [rfc2616] maps to
at least one function in the final code. To bind a given function to an HTTP request,
different frameworks use different approaches. The Jersey framework uses annotations
before each function, other impose naming conventions. Additionally, each function needs
to know the kind of content a client is sending (Content-Type header) and which type
of content a client is expecting (Accept header). The xWoT meta-model takes care of
this and allows this behavior to be modeled in a very fine-grained manner. It defines
the Method class containing the parameters: (1) a MethodOperation (one of the avail-
able HTTP verbs), (2) the type of input data MethodInput if any and (3) the type of
output data MethodOutput. Therefore, each combination of HTTP verb with Accept
and Content-Types leads to one function for the final fulfillment of the exact request.
Accordingly, for a resource to respond to a GET request with either an XML or an HTML
representation, some code similar to the snippet of Listing 9.6 is needed. This listing con-
tains two methods, both treating GET requests. The first returns an XML representation
of the requested resource, whereas the second returns an HTML representation. This
listing shows the application of the Method class in lines 3 and 12 where they translate in
this case to Java methods. Moreover, lines 1 and 10 define that both methods treat GET
requests. These lines are the results of the compilation of the MethodOperation class.
Finally, lines 2 and 11 define which Accept headers trigger which method. Therefore,
these lines are the result of the MethodInput and -Output compilation.

1 @GET
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2 @Produces({MediaType.TEXT_XML, MediaType.APPLICATION_XML, MediaType.
,! APPLICATION_JSON})

3 public Response getUserXml(
4 @QueryParam("start") @DefaultValue("0") int startpartnerships,
5 @QueryParam("size") @DefaultValue("5") int sizepartnerships){
6 AbstractJaxb rep = getUser(startpartnerships, sizepartnerships, Response.Status

,! .OK);
7 return rep.buildResponse(MediaType.TEXT_XML, null, 0, null);
8 }

10 @GET
11 @Produces({MediaType.TEXT_HTML})
12 public Response getUserHtml(
13 @QueryParam("start") @DefaultValue("0") int startpartnerships,
14 @QueryParam("size") @DefaultValue("5") int sizepartnerships){
15 AbstractJaxb rep = getUser(startpartnerships, sizepartnerships, Response.Status

,! .OK);
16 return rep.buildResponse(MediaType.TEXT_HTML, "/WEB-INF/view/user", 0, null);
17 }

List. 9.6: Two methods answering GET requests

The reader will spot the presence of method parameters in Listing 9.6. In a REST
architectural style, a resource is identified through its associated URI. Furthermore the
HTTP verb defines the action carried out by the server, whereas the remaining headers
fine-tune the input and output, hence, the methods associated with each request are
generally parameterless. However, if the HTTP request contains a body, this data needs
to be stored somewhere. Also, commonly used query parameters need to be stored in
such a way that the method can access them. Like methods, resources can also have
parameters. This is the case for URL parameters when they are used to select one item
from a list as in http://example.com/lightbulbs/1/. Clearly, the last part of the URL
is variable, each pointing to another one of the many available light bulbs. However, in
terms of code, it does not make sense to write code for each individual light bulb. Instead,
the same code can be reused, under the assumption that it is possible to pass this URL
parameter to the code.
This final situation is resumed in Figure 9.16. Besides the already discussed elements from
Figure 9.4, this model contains the necessary elements to model methods responsible for
dealing with incoming RESTful actions, their associated URL and query parameters. To
adapt to this situation the meta-model includes a definition of the most common HTTP
methods in the MethodOperation enumeration. This is not an invention of the meta-
model, rather part of the official HTTP definition [rfc2616, Section 9]. The same applies
to the definitions of the input format (through the Content-Type header) and the output
format (through the Accept header). The enumerations MethodOutput and MethodInput
take care of this aspect by defining the most common content types in RESTful services.
It is however possible (and very likely) to extend this list with future content types.
Furthermore, each VirtualEntity is composed of Method instances, each one responsible
for one available combination of Method with MethodInput and MethodOutput. Finally,
the meta-model includes definitions of the two types of parameters: (1) QUERY to capture
URL parameters and (2) TEMPLATE to represent variable URL path segments.
Although, there are other meta-models for RESTful services like Schreier’s structural
meta-model [73] or Alarcón et al. with their REST Service Description Model [1], this
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Fig. 9.16.: Detailed meta-model for the xWoT

meta-model is tailored to the xWoT. Alarcón et al. focus more on the links between
the resources while Schreier’s meta-model is quite complete and aims to model the whole
spectrum offered by RESTful web services. While it would be possible to integrate these
meta-models into the current xWoT meta-model, this would only artificially bloat the
meta-model. On the other hand, integrating other approaches like the IoT-A’s reference
architecture would be almost impossible. The focus of the latter is too different from the
aim of the xWoT meta-model. As will be seen in Section 9.4, the current xWoT meta-
model captures all the aspects required to build a fully functional yet, generic, model
compiler.

9.4. Component Generation

The methodology supporting users during the creation of new xWoT components is highly
coupled to the xWoT meta-model itself. Whereas Section 9.2 formally introduced the
meta-model and its associate terminology, Section 9.3 defines the associated methodology.
Equipped with these tools, users can easily develop new xWoT compliant components.
Up to now, the meta-model has only played a passive role by checking the validity of the
built model. Most of the work is done by the users themselves. This section shows how
the xWoT meta-model can be enhanced with tools to automate some of these steps.
Before discussing concrete tools, some properties of the meta-model and also the global
vision of the xWoT need re-considering. As suggested in Section 8.3 and more precisely
in Subsection 8.3.3, one of the goals of the xWoT is to close the gap between primitive
smart devices and more complex constructions. To achieve this goal, besides modeling
raw sensors, actuators and tags, the xWoT allows combinations of these to build virtual
devices (called hubs in Subsection 8.3.3). On the one hand, this has the benefit that
platforms like cosm or pachube are replaced by a virtual device fully respecting RESTful
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guidelines with the advantage that it looks and acts like any other smart device, so the
interactions are seamless. This leads, to the RoomResource back in Figure 9.14, which is
not attached to any sensors or actuator but which rather groups other devices. It is still
interesting to be able to address such an embracing resource. On the other hand, creating
such bloated virtual devices breaks the original vision of the WoT where the world is full
of small intelligent pieces of hardware that can communicate with each other.

To overcome this limitation and keeping the benefits of virtual devices, the xWoT meta-
model introduces a clever mechanism which satisfies both needs at the same time. When
modeling the physical side, each Device has a Composed property. This property already
appears in the discussion on how Entities should be modeled in Subsection 9.3.1. It allows
the distinction to be made between devices with a physical counterpart in the form of a
smart device (sensor, actuator and tag) and devices with no attached smart devices but
grouping several of them. By default, this property is set to false indicating that the
model represents a physical smart device. This flag not only serves to distinguish the
two types of Devices in the model, it has also implications for the model’s compilation.
To fulfill the requirement of individual, small and deployed smart devices, the model
compiler creates one service skeleton for each Device with the Composed property set
to false. Furthermore, if the model starts with a Device with this flag set to true, the
compiler creates an additional service representing this composed Device. Since the model
compiler mostly works on the virtual side of a model, the Resource class and its children
also have this attribute. During the translation of the physical to the virtual side, the
attribute is simply copied. Therefore, if a Device has this property set to true, the
corresponding Resource (or subclass) has its Composed property also set to true and vice
versa.

Reconsidering the smart room model in Figure 9.14 as already outlined in Subsection 9.3.3,
the model compiler creates one (device)-service for the HVAC Context, one for the Light-
bulb Resource and one for the Window Actuator. These three service skeletons will later
run directly on their corresponding smart device. Yet, the compiler creates an additional
(nodemanager)-service representing the Room Resource. Although this service contains
the full use-case hierarchy, a call to http://example.com/room/havc/ would be dele-
gated the HVAC (device)-service created earlier. Therefore, all the requirements are met:
the WoT has its many independent devices which can join or leave a place and, the xWoT
has its service(s) representing the modeled scenario making platforms like cosm (almost)
obsolete. Additionally, this approach highly encourages the reuse of already deployed
components.

One of the benefits of the meta-model are the conventions that come with it. This is
true for any meta-model, not just the xWoT meta-model. These conventions and stan-
dards are the foundation for tools working with instances of the meta-model. The xWoT
meta-model comes bundled with a few tools. Subsection 9.2.4 suggests the adoption of
the composite pattern for both the digital and the virtual side of a Thing. Further-
more, it requires a relaxed one-to-one mapping between the physical and the virtual
world. These two constraints allow to automatically add the virtual part for any phys-
ical side modeled with the xWoT meta-model editor. This is the aim of the first tool:
physical2virtualEntities. It takes two parameters: the input file containing an xWoT
meta-model instance and an output file which will contain the augmented model. Follow-
ing the definitions in Subsection 9.2.4 this scripts iterates over the devices composing the
physical side and build up the virtual side of the smart device. Most steps are fully auto-
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matic, however some require user intervention. The script cannot tell whether a Device
containing an Actuator and a Sensor should be translated into a Resource containing a
Sensor- and an Actuator Resource or whether it should translate it into a single Context
Resource. Therefore, the program asks, when necessary whether a Sensor/Actuator cou-
ple should be grouped together into a Context. Additionally, the program also asks for
each Resource’s associated URI. Although this could be derived from the Resource name,
it is very likely that the user will tweak this later. By requesting this information during
the creation of the virtual side, the user does not need to modify the generated model.
Listing 9.7 shows part of the interaction between the user and the scripts when applying
them to the model in Figure 9.14. The result of this application is a new model where
the Physical Entity is the same as in the input and the Virtual Entity is the generated
part. Although the model in Figure 9.9 is done by hand, both the physical and the virtual
parts of a generated model, would look almost the same (only the Resource names will
differ since generated by the tool).

1 ruppena@tungdil:~$ physical2virtualEntities -i smart-room-example.xwot -o smart-room-
,! example_augmented.xwot

2 Specify URI for xwot:Device Room: room
3 I have found the following Nodes:
4 0: <Component name="HVAC" xsi:type="xwot:Device">
5 <Component name="Temperature" xsi:type="xwot:Sensor"/>
6 <Component name="ChangeTemperature" xsi:type="xwot:Actuator"/>
7 </Component>
8 1: <Component name="Lightbulb" xsi:type="xwot:Device">
9 <Component name="LightSensor" xsi:type="xwot:Sensor"/>

10 <Component name="LightSwitch" xsi:type="xwot:Actuator"/>
11 </Component>
12 2: <Component name="Window" xsi:type="xwot:Actuator"/>
13 Is there a ContextResource? [y/n]?n
14 Specify URI for xwot:Device HVAC: hvac
15 I have found the following Nodes:
16 0: <Component name="Temperature" xsi:type="xwot:Sensor"/>
17 1: <Component name="ChangeTemperature" xsi:type="xwot:Actuator"/>
18 Is there a ContextResource? [y/n]?y
19 Combining Node Temperature and Node ChangeTemperature into ContextResource
20 Specify URI for ContextResource TemperatureChangeTemperature: hvac
21 Has this ContextResource a publisher? [y/n] ?y
22 Specify URI for xwot:Device Lightbulb:
23 ...
24 ruppena@tungdil:~$

List. 9.7: Applying the physical2virtualEntities tool to the use-case of
Subsection 9.3.1

The tools provided also take special care of the publishing mechanism. Besides actuators,
sensors and services, the meta-model also defines a special kind of resource responsible
for pushing information (mostly events) back to clients. Figure 9.7 shows where this
Resource sits in the meta-model and Subsection 9.2.4 describes the possible combinations.
Therefore, the physical2virtualEntities tool asks for each Sensor Resource and each
Context Resource whether a Publisher Resource should be added. Listing 9.7 exhibits
this behaviour in line 21 where the TemperatureChangeTemperature Resource gets a
publisher. Nothing more needs to be specified for this to work. On the generated model
(similar to the one in Figure 9.7) the Context Resource now contains a child node, the
Publisher Resource.



173

1 ruppena@tungdil:Test$ model2Python -i smart-room-example_enhanced.xwot
2 INFO - Start processing
3 INFO - Creating Server: REST-Servers/NM-Room_Server
4 INFO - Creating Server: REST-Servers/_HVAC_Server
5 INFO - Creating Server: REST-Servers/_Lightbulb_Server
6 INFO - Creating Server: REST-Servers/_Window_Server
7 INFO - Successfully created the necessary service(s)

List. 9.8: Applying the model2Python tool to the use-case of Subsection 9.3.1

The second tool bundled with the meta-model, model2Python, is a model compiler. It
takes as input a valid xWoT model and creates as output REST service skeletons ready
to be deployed on the individual devices. Listing 9.8 shows that the tool generates 4
different services according to the Composed properties set on the different Resources.
Services prefixed with NM are application scenario services or node manager services, the
result of a Resource having the Composed property set to true. In the current use-
case, there is only one such a service representing the Entity. All other services have
the Composed property set to false, meaning they are device services and are prefixed
with _. The lefthand side of Figure 9.17 shows the generated skeleton structure for the
_HVAC_Server. Besides some documentation and bootstrap scripts, each REST resource
has its own python module. The _HVAC_Server is composed of the HVAC resource plus
the publisher, hence, the HVAC resource gets its own python module. Furthermore, the
publisher is translated into two modules, one representing the Publisher Resource and the
other the subscribed users. Why two python modules are necessary to represent an xWoT
publisher will be discussed later. Additionally, the project contains a skeleton bridging
the gap between business logic code and the underlying hardware sensors and actuators
(Hadware_Monitor.py). The remaining modules implement a very basic announcing
mechanism, which can be used for the automatic discovery of smart devices. Unlike the
first tool, this one runs without human intervention. Since everything is defined in the
model, the compiler simply translates it into code.

Fig. 9.17.: Generated REST service skeleton for the HVAC resource

As for the physical2virtualEntities, the model2Python compiler also takes special
care of the Publisher Resource. During the first phase of generation, the physical2-
virtualEntities creates the Publisher Resource and sets its properties to some default
values. Since the Publisher Resource class inherits all the properties of the Resource class,
it also inherits the Uri attribute (set to pub during the first phase). By design, a child class
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can only extend its father but not restrict him, so it is possible to adapt this property prior
to the compilation. However, its default value is one of the properties of the meta-model
and other models should not change it. Subsection 8.2.2 explains a few approaches to
push information back to clients. The subsection concludes that depending on the needs,
one or the other approach might be better. For obvious reasons, the meta-model can’t
decide which approach is the most suitable one. Instead of asking the user for advice, the
model compiler translates each Publisher Resource into two pushing mechanisms:
(1) A WebSocket connection is deployed under pub/ (note the trailing slash).
(2) Clients register for events by sending a POST request to pub containing all the nec-

essary information so that the server can later contact the client. This implements
an inversion of control whereby the service becomes the client of the user supplied
service. The information joined to the POST request upon subscribing for notifications
includes at least an URL and an HTTP method (either PUT or POST). Additionally, for
each client, the service creates a sub resource pub/{id} where id uniquely identifies
a given client. A client can use this URL to modify (PUT) or cancel (DELETE) his
subscription later.

1 import sqlite3
2 import requests
3 import json
4 import logging

6 class Publisher():
7 def __init__(self):
8 self.__database = ’clients.db’

10 predicate = """
11 def testEvent(*values):
12 if values[0] > 30:
13 return true;
14 return false;
15 """

17 def publish(self, values):
18 """Entry point for external scripts to send a notification to all subscribers

,! """
19 clients = self.__executeQuery("Select * from Subscriber where resourceid=1

,! order by id")
20 for client in clients:
21 #TODO do this in a new thread for each client
22 predicate = client["predicate"]
23 execute predicate
24 if testEvent(values):
25 self.__updateClient(client, values)

27 def __updateClient(self, client, values):
28 """Updates each individual client by sending the corresponding request"""
29 #TODO update client with a REST request

List. 9.9: Predicate execution to test whether a notification needs to be sent

Choosing this approach gives each xWoT device the best of all pushing mechanisms. If
a client is interested in very frequent events over short periods of time, he can connect
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over a WebSocket. If instead, the client is more interested into less frequent events, he
can subscribe for them. Ideally, upon subscribing, the client sends, together with the
other information, a predicate limiting the number of notifications. For each generated
event, the server then evaluates for each client the corresponding predicate to determine
whether a notification is sent or not. Listing 9.9 shows a partial python code for how such
a predicate could be implemented. This is, of course, only a very simplistic approach.
Executing strings as code is dangerous especially if the string is submitted by users.
Yet, this simple example shows how notifications can be handled from an architectural
point of view. Programmatically, it would surely be a better approach to implement
this with some custom mini language, which can then be interpreted. This still lets users
submit a string, which is executed on the server. However, imposing such a mini language
removes almost all programmatic constructs, therefore the threat would be limited. Such
a language can be very simple and only contain basic comparators. For an even stronger
approach, instead of giving the users the full power of predicates, something like regular
expressions would be sufficient to limit the events. The most suitable approach would be
to define a Domain Specific Language (DSL) tailored to this domain of application.
The way the meta-model compiler works is quite similar to Model Driven Architecture
(MDA) works [B19]. Starting from an abstract description of the SUS complying to
the meta-model, a tool chain first translates this early model into a more sophisticated
model. This first step alone conforms to the definition of MDA: translating descriptions
(the model) into code. Here the generated code is again a model, augmented with the
virtual side of the modeled entity. In the second step, the tool chain translates this
second model into ready to use code skeletons. Again, by transforming the model into
code (RESTful web services), this tool perfectly fits the definition of MDA. Generally,
MDA asks for a DSL (Domain Specific Language) to describe a system in a platform
independent manner, the task of the xWoT meta-model. Being expressed in Ecore, the
meta-model is platform independent. Furthermore, the availability of Eclipse on various
platforms guarantees that the xWoT meta-model can be used on all supported platforms
to model xWoT entities. Additionally, the tool chain is written in Python, liberating it
from any specific OS (Operating System) . Hence, not only can most platforms be used
to express xWoT models, they can also compile them to xWoT service skeletons.

9.5. The Web as a Container

Chapter 6, Section 6.4 in the discussion of software components, Definition 4 asks for
a life cycle of components. The lifecycle has an influence on the current capabilities
of the component and is imposed by the supporting container. Furthermore, according
to Definition 12, the xWoT is a component based approach, where the components are
the basic bricks composing the xWoT. Therefore, deployed xWoT components have an
associated life cycle. Regarding these components, two different and disjoint life cycles
can be identified: (1) A development life cycle taking care of the component creation.
(2) A runtime life cycle starting with the deployment of the component on the smart
device and remaining active throughout the lifespan of the smart device.
The development life cycle is the first cycle of each xWoT component. Starting with an
Entity, the system architect first considers what a smart device would look like in the real
world. For example, to create a smart door, requires a door. Furthermore, a door can be
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locked and unlocked, opened and closed. Therefore, the system architect concludes that
a smart door needs two actuators to fulfill this requirement. It might also be of interest
to know whether the door is unlocked and whether it is open or closed. Thus, two sensors
track these two physical properties. In the model, the system architect will finally model
the door as composed of two devices each having one sensor and one actuator. One
device is responsible for representing the open and closed property, whereas the other is
responsible for representing the locked and unlocked property. This reasoning results in
a first xWoT model reflecting the physical properties of the smart object. This model is
then refined with the aid of the provided tool chain and as result the model is enhanced
with a virtual side representing the smart object in the virtual world. Here, the system
architect can fine tune the translation by adding more resources or by influencing the
hierarchy of the generated ones. Of course, it is also possible to rename the resources of
the associated URIs.

start
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Refined Virtual 
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Code Artefacts
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Artefacts

Implementation

Ready for 
deployment

end

1

2

2

3

45

1

6

Fig. 9.18.: Schema of the development life cycle

As soon as the model reaches a stable state, with the aid of the compiler, it is translated
into code artifacts. These skeletons represent the outer structure of the future component,
but to be fully functional the developers need to fill the code gaps. This means defining
the input and output formats as well as wiring up the code with the underlying hardware
of the different sensors and actuators. Once this task is completed, the smart device is
considered ready to deploy. In this state, the hardware is built according to the physical
model. The different sensors and actuators are physically grouped to Devices, which
in turn are placed accordingly. Moreover, for each Device as well as for the Entity, a
RESTful web service is ready and the code sits on the corresponding Device. This step is
the last step in the development cycle. The Entity is considered stable and once deployed
it can serve incoming requests covered by the runtime lifecycle.
Code is always subject to change as are xWoT smart devices. With changing require-
ment or technological enhancements, either the RESTful web service or the underlying
hardware is likely to change. To incorporate such changes, either the code, the hardware
or both need some modifications. It seems that the life cycle in Figure 9.18 does not
handle such changes. Yet, as pointed out in Section 6.3, such modifications lead to a new
version of the API deployed under a new URI, so to incorporate changes after the release
of the initial version, the development lifecycle starts again. Of course, some steps can
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be copied from the initial lifecycle; nonetheless the new life cycle eventually leads to a
new xWoT component ready to be deployed. Since this life cycle describes the different
states of a smart device throughout the development phase, it is highly coupled with the
development flow shown in Figure 9.10.

The runtime lifecycle takes care of all aspects of the component’s life cycle once it is ready
to deploy. The final state of the development life cycle thus corresponds to the initial
state of the runtime life cycle. If a component is ready to be deployed this means its code
has been finished and tested. To deploy the code on the component, one can either copy
the code or fetch it from a repository like git. If the code is compressed (zip) or packaged
(tar), it needs to be extracted/unpacked at its final destination. The tool chain provided
with the meta-model translates xWoT models into Python code. Before executing the
code, the necessary dependencies need to be installed. Setuptools [WEB13] is the Python
way of installing Python software into an existing OS. A corresponding setup scripts
tells setuptools what dependencies are needed and where to install the tools. Whereas
setuptools is great for installing components into the OS, there are simpler approaches for
dependency handling. The pip package manager can easily install missing package in an
existing python installation. Additionally, it is a good practice to create separate Python
environments for separate projects. In software engineering, this approach has become
more and more of a standard these days. Ruby makes heavy use of this pragma. Ruby
uses rvm to manage separate Ruby environments and Python uses virtualenv. This
approach only requires one command to create a new Python environment to which all
missing dependencies are added through pip. Listing 9.10 shows the first few deployment
steps for a component available in a git repository. Of course, line 7 is repeated for each
necessary dependency.

1 ruppena@tungdil:~$ git co https://example.com/git/Component.git
2 ruppena@tungdil:~$ cd Component
3 ruppena@tungdil:Component$ python virtualenv.py xwot
4 New python executable in xwot/bin/python
5 Installing setuptools.............................done.
6 Installing pip............................done.
7 ruppena@tungdil:Component$ xwot/bin/pip install autobahn
8 ...
9 ....

10 ruppena@tungdil:Component$ xwot/bin/python rest-server.py

List. 9.10: Steps executed during Deployment

The RESTful web service is now ready on the physical device but not yet running, that
is, the component is ready and installed in its environment. In the stopped state, no
clients are served and neither the actuators nor the sensors are working. To activate
the virtual side of any smart device, the component needs to be started. This is as
simple as running the rest-server.py module taking care of the rest. If at some point
the service is stopped, it will no longer serve incoming requests and the virtual façade
of the smart device disappears. Therefore, the component is again in the stopped state.
Additionally, a component can be undeployed, simply by removing all the code artifacts
and the RESTful web service from the hardware. Usually, this is only necessary to deploy
a new version of he API.
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Fig. 9.19.: Schema of the runtime life cycle

Every time a component is in the running state, yet another life cycle kicks in. This is
the life cycle of the supporting container, in this case, the Web. At first, the component
is ready and waiting for clients and just occupies some memory but does nothing more.
As soon as a client connects, some memory is allocated to this client and the request
is served. There are two major approaches for serving clients: (1) Blocking requests:
only one client can use the connection with the web server at any given time. This
approach is simple to implement but rather limited. (2) Non-Blocking requests: allow
the simultaneous connection of multiple clients, each getting some memory allocated and
all requests are served in parallel. Obviously, this approach is superior, but implementing
frameworks tend to be bigger. Whether a RESTful web service is blocking or not, often
depends on the chosen web framework, which in turn, may depend on the underlying
hardware capabilities. In our case, the adopted framework is Twisted [WEB65], which is
asynchronous by nature and thus allows for non-blocking requests. When the request is
answered, the occupied memory is freed up.
Although the web serves as a container for any RESTful component, it only gives the
rough structure of how interactions happen. This cycle is far less complex than compara-
bles ones using Java application servers with memory handling, messages queues, database
pools, security policies etc. However, the component itself also influences the life cycle in
part. As soon as an xWoT component is running, if it has a least one publisher, the latter
also runs. However, by their nature, publisher resources have a slightly different life cycle.
Subsection 9.4 discussed how Publisher Resources get translated into code. On the one
hand, a WebSocket endpoint is created, listening for incoming WebSocket requests. As
soon as at least one client is connected, the WebSocket starts broadcasting events to its
subscribers. To keep the connection with the clients up, a heartbeat message is send reg-
ularly. The amount of time between two heartbeat messages is implementation-specific.
Heartbeat messages are only sent if no other modification was pushed to subscribers in
the given amount of time. If the last client unsubscribed from the WebSocket, it pauses
until another client connects. The second publisher endpoint works by sending the event
as a REST request to a “client server”. Since the xWoT component plays the role of
a client, the components life cycle has no special effect on these outbound events. For
both pushing mechanisms, the component itself needs to be aware of an event happening.
How this is implemented depends on the underlying hardware and the communication
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between the code and the hardware (see the Hardware_Monitor.py module). If an event
happens, the publisher.py module sends it to all WebSocket subscribers. Furthermore,
for each subscribed client, it checks whether his alert condition is met, and if so, a PUT
or POST request, depending on the client’s preferences, is sent.
When we discussed software component in Chapter 6, the life cycle was one of the key
element in the definition of a component. The xWoT component fulfilled this requirement
by relying on the Web as a container and therefore depending on it for its runtime life
cycle. This chapter has shown that the runtime life cycle is quite simplistic compared
to other component’s life cycle, like Java Stateful Session Beans. This is mainly because
the supporting container is the Web, having only a small life cycle. However, a closer
look shows we have seen that an xWoT component is supported by several associated life
cycles, each taking care of a different aspect. The different publishing mechanisms play
an important role here.
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10.1. Introduction

So far the discussion has covered the historical foundation of the Web and its associated
success story throughout its history, from the early days to Web 3.0. Additionally, we
have seen how Model Driven Architectures can help developers create new applications
by adopting a Domain Specific Language tailored for a given domain. In this case, the
DSL is the xWoT meta-model. It has introduced a formalism for naming the different
elements of the xWoT and their relationship. With the help of an Eclipse plugin, it is
possible to create valid instances of this meta-model which serve as input for the different
tools. The latter compile the model either into more sophisticated models or into code
skeletons.
This chapter discusses use-cases to show how the xWoT meta-model and its associated
tools can be used in real life situations. Section 10.2 starts by introducing three small
use-cases each underlining different aspects of the xWoT. Section 10.3 takes a look at
a slightly more complicated scenario to show that the xWoT meta-model can efficiently
model any situation. Finally, the chapter concludes with a vision of how the xWoT will
perform and evolve.
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10.2. Some Small Examples

This section discusses and showcases some simple small use-cases. Some of them already
served as examples throughout this thesis and will now be examined in detail. The
approach remains the same for all use-cases:

1. Introduce the use-case. Discuss the use-case and its scope. This also includes a
short rationale for why the use-case is within the scope of the xWoT. Furthermore,
this discussion also clearly defines the boundaries of the current use-case.

2. Design the UML use-case diagram. From the initial discussion, it is possible to
derive a use-case diagram exposing the functionality of the smart device. Although
some aspects are shared between different use-cases like the publisher mechanism,
all use-case diagrams mention them.

3. Model the Physical Side. The physical side of the entity can be modeled based on the
description and the use-case diagram. Possibly, this physical side only partly covers
the use-case model since not all involved actions translate to something physical.
This represents the first step of the activity diagram of Figure 9.10. The outcome
of this step serves as input for the following ones.

4. Launch first tool. With the aid of the physical2virtualEntities tool, the phys-
ical model is augmented with its virtual counterpart. Although, this step involves
human intervention to choose URIs, nothing else is done here.

5. Enhance the generated model with virtual only resources. After the automatic trans-
lation of the physical to virtual resources, those still missing from the use-case
diagram are added to their corresponding places.

6. Generate the code skeletons. Once the model is completed and with the help of the
model2Python tool, the code skeletons are generated, one for each device service
and one for the application scenario service.

7. Build the hardware. Wire the necessary sensors and actuators to a breadboard and
implement the necessary logic to pilot the device. Ideally, the code has methods to
read sensor values and to modify actuators.

8. Fill in the code gaps. Following the recipe in Figure 9.10 and Subsections 9.3.2
and 9.3.3, fill the gaps in the generated code skeletons to build a functional RESTful
web services.

9. Deploy and run. In this last step the software is deployed on the hardware and
installed in the physical world. The system is now ready to be used.

The main focus of these use-cases is the xWoT meta-model and its associated tools,therefore,
not all use-cases will go through all of the steps above. Building the hardware side of
a smart device, for example, is outside the scope of the meta-model as well as defining
the inputs and outputs with the help of XSD schemas. Therefore, some use-cases are
limited to a preliminary analysis of the specific requirements, the modeling as an xWoT
compatible model and some basic code gap filling.
The connection with the hardware is a central piece of the generated code. Basically, there
are two approaches to interacting with hardware: (1) Exchange messages over a serial
bus, the preferred way when dealing, for example, with Arduino prototypes. (2) Low level
input output with signals directly on pins. This approach is similar to what is done on
the Arduino directly to interact with the connected sensors and actuators. However, this
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approach is also the only choice when dealing with GPIO (General-purpose input/out-
put) pins like the ones available on a Raspberry Pi. If the communication with the raw
sensors and actuators is done directly over the digital/analog pins where the hardware
is connected, it is sufficient to respect the hardware specification to read sensor values
and write to actuators. Generally, this implies a mixture of the correct timing plus read-
ing/writing the right sequence of raising and falling signals. Often, the hardware vendors
or the community provide ready to use libraries abstracting from the raw hardware and
proposing high-level functions to interact with the hardware. Therefore, using this ap-
proach, the hardware integrates into code just like any other code segment. On the other
hand, if the software communicates with the hardware over a serial bus, no additional
libraries are needed. Yet, the serial bus is just a (duplex) channel between two endpoints
quite like a WebSocket connection. In order to communicate, the peers need to agree on a
message format. The firmata protocol is one such example of a message format [WEB17].
A hardware mock simplifies the hardware side during the use-cases. This is quite a
frequent approach in software engineering. As long as something is not yet implemented
but already specified, it is sufficient to provide a dummy implementation sending back
fixed responses. A mock for a login service would for example always return true. This
allows developers depending on this functionality to continue developing their own code.
The same approach can be applied to hardware. Instead of building the full hardware
first, it is possible to mock it up. A prerequisite to mock hardware is to already know
the concrete sensor and actuator layout (and potentially also their corresponding pins).
Using a mock up for the hardware also has another benefit. Testing the business logic
code with real sensors and actuator can be painful. Not only is it necessary to bring the
system back (by hand) to the initial state between different runs but sometimes it can also
be quite frustrating to make a sensor change its value (imagine a gravity force sensor).
If they are mock sensors and actuators however, bringing them into a given state is just
a matter of a few clicks. Mocking up hardware is especially easy when the hardware
communicates with the rest of the code over a serial bus, as in this case it is sufficient
to define the possible messages, so that a piece of code can then send such prefabricated
messages on the serial bus.

1 {"humidity":"45", "electricity":"1"}

List. 10.1: JSON message exchanged over the serial bus

To speed up the development of xWoT smart devices we have developed a general-purpose
hardware mock-up based on serial exchanges. To keep things simple we opted for our own
message protocol instead of adopting something like firmata. Of course, this may limit
the usefulness of the mock hardware but it has shown that this approach is sufficient in
the examined use-cases. All exchanged messages are JSON strings reflecting the state
of the hardware. Each element in the JSON string represents one element of the circuit
and its associated value. Listing 10.1 shows such a message for a smart air humidifier
composed of a humidity sensor and a power switch. Listing 10.1 describes the full state of
the system: the current humidity is of 45% and the device is switched on. Each element
of the JSON string designates one component of the electrical circuit, thus, the humidity
element designates a DHT11 sensor, whereas the electricity stands for a relay module.
Although very simple, this message format has the advantage of being easily debuggable
since it is human readable. Furthermore, since JSON (de)serializers are available for
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many platforms and programming languages, its implementation in code is very easy and
straightforward. Such JSON messages can not only be sent from the hardware to the
code to inform the latter about the state of the hardware, but also in the other direction,
from the code to the hardware to influence actuators.

1 ruppena@tungdil:~$ screen /dev/ttyACM0 9600
2 humidity": "34.00"}
3 {"temperature": "24.00", "humidity": "34.00"}
4 {"temperature": "24.00", "humidity": "34.00"}
5 {"temperature": "24.00", "humidity": "34.00"}

List. 10.2: Reading from a serial connection

On Unix systems, when a device like an Arduino with a serial interface gets connected,
the OS allocates a new device in the /dev folder. From this point on, programs can open
this file and read and write on the serial bus. Therefore, having a serial port file seems
to be a requirement when mocking-up hardware. However unlike a LATEXdocument, files
sitting in /dev are not normal files and therefore they can’t be opened and read like
standard files. Listing 10.2 shows the content of such a serial device file dumped with
a serial console applications screen. The listing also shows a problem which can occur
when reading them: messages can get truncated when no special measures are taken.
Also the listing can give the impression that lines 2 to 5 are the content of this device
file. However, this is false, the device file never contains anything. If nobody is there
to listen to the serial bus, then the messages just disappear. Accordingly, the hardware
mock-up also needs such a special device file when starting. However, these file are
automatically created and setup by the OS as soon as the hardware is plugged in. To
overcome this limitation, a serial connection between two parts can be simulated with
socat. This command line tool was originally developed as the equivalent of cat for
sockets. Consequently it can cat the input of one socket into another one. Finally, the
socket can be anything like a TCP endpoint but also a virtual serial device. Listings 10.3,
10.4 and 10.5 show how socat can be used; first to create two linked virtual serial devices
(Listing 10.3) and second how these two sockets can be used for communication between
two processes (Listings 10.4 and 10.5).

1 ruppena@tungdil:~$ socat -d -d PTY,link=$HOME/COM1,b9600 PTY,link=$HOME/COM2,b9600
2 2015/01/21 18:58:29 socat[17441] N PTY is /dev/pts/14
3 2015/01/21 18:58:29 socat[17441] N PTY is /dev/pts/15
4 2015/01/21 18:58:29 socat[17441] N starting data transfer loop with FDs [3,3] and

,! [5,5]

List. 10.3: Creating two virtual serial devices

1 ruppena@tungdil:~$ echo "Hello World"
,! > COM2

List. 10.4: Writing on one side of the
virtual serial devices

1 ruppena@tungdil:~$ cat COM1
2 Hello World!

List. 10.5: Listening on the other side of
the virtual serial devices

Now all the necessary tools are in place to build a hardware mock-up for quicker devel-
opment and testing purposes. It might seem a poor choice at first glance to limit the
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mock hardware to serial data exchanges with a message format as defined previously.
However, in a well-designed code, communication with the hardware is encapsulated in
a class. This is also the case for the generated skeletons. Back in Figure 9.17 (page 173)
the Hardware_Monitor module was briefly shown, taking care of all interactions with the
hardware. Now, in a situation where the final hardware does not communicate over a
serial bus, it is sufficient to slightly adapt the code here to read and write the values
without changing the modules’ public interface. This way, only the inner guts of this
module needs to adapt to the final hardware. Based on these considerations, we have
built a generic hardware mock-up as a single page web application. This seems to be
the best compromise between easy deployment and platform independence. Figure 10.1
shows the virtual breadboard of the mock hardware. The menu on the left contains vari-
ous prefabricated sensors and actuators which can be activated on the breadboard space
on the righthand side. Each menu item corresponds to a full device.
The upper menu contains a few sensors to build simple scenarios. The middle menu
contains actuators. These two menus merely exist for testing purposes. It is unlikely
that the hardware side of a smart device would only be composed of a single actuator
or sensor. The bottom menu contains more complex devices built from a combination of
sensors and actuators. The breadboard space on the right side can accommodate several
devices simultaneously, as long as each uses a different virtual serial port. This allows
simulating different devices at once. Since the model compiler generates one RESTful web
service for each non-decomposable device it makes sense that the mock hardware should
also accommodate multiple devices together. This is also demonstrated by Figure 10.1,
where the breadboard contains two devices one called Meteo Sensor and representing a
rudimentary meteo-station and the second the Smart Light Bulb of Subsection 10.2.1.

Fig. 10.1.: Hardware Mock Application running in a Browser

New devices can be easily added to the mock application code. Since the application is
written in Ruby with the Rails framework, it embraces the Rails MVC structure in partic-
ular, the Rails partial rendering mechanism for HTML pages. To add a new device is sim-
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ply a matter of creating a new file in views/sensors/ and giving it a name respecting the
Rails partial rendering naming conventions (it needs to start with an underscore). Thus,
to create a LED smart device, it is sufficient to create a new file called _led.html.erb and
add it to the menu in views/sensors/index.html.erb. Listing 10.6 shows the content of
the _led.html.erb file defining what the LED (Light-emitting Diode) breadboard looks
like. Lines 7 to 16 are necessary for all devices and print a drop-down menu to select the
virtual serial port to which this device is connected. The device definition itself happens
in lines 17 to 23. Each component of a device gets an id which is composed of a literal
plus a random number arduinoNumber, which is only used for internal logic. The literal
part however composes the JSON messages this device sends and accepts. Additionally,
each device has a name, defined on line 5. The remaining elements of the listing are the
same for any new device and serve either for internal purposes (onchange attribute) or
are CSS attributes. Therefore, in the case of a simple LED, defining such devices is a one
liner (line 20).

1 <div class="row arduino<%=arduinoNumber%>">
2 <div class="panel callout radius">
3 <div class="fi-eject right"

,! onclick="removeArduino(’arduino<%=arduinoNumber%>’)"></div>
4 <div class="row">
5 <span class="label">LED</span>
6 </div>
7 <div class="row">
8 <select id="serialPortSelector" class="com1 columns large-4 right"

,! onchange="updateComPort(’arduino<%=arduinoNumber%>’, this)">
9 <option value="null">Select Port</option>

10 <option value="COM1">COM1</option>
11 <option value="COM3">COM3</option>
12 <option value="COM5">COM5</option>
13 <option value="COM7">COM7</option>
14 <option value="COM9">COM9</option>
15 </select>
16 </div>
17 <div class="row">
18 <span class="columns large-3">LED </span>
19 <div class="columns left switch round large-4">
20 <input id="led<%=arduinoNumber%>" type="checkbox"

,! onchange="xwotcallback(’arduino<%=arduinoNumber%>’)" class="xwot
,! actuator">

21 <label for="led<%=arduinoNumber%>"></label>
22 </div>
23 </div>
24 </div>
25 </div>

List. 10.6: Defining a new smart device for the Hardware Mock

At this stage, all the necessary tools are in place to build xWoT smart devices and
follow the steps enumerated earlier in this subsection. UML use-case diagrams are useful
for the requirements analysis. The xWoT meta-model and its associated tools support
the developer during the design phase and build code skeletons. The mock hardware
allows the required hardware to be quickly simulated instead of building it. Finally,
input and output formats are defined in XSD for which just any modern IDE (Integrated
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Development Environment) contains an editor with syntax highlighting. The same IDE
can also be used to fill the code gaps in the generated skeletons.

10.2.1. Smart Light Bulb

The first use-case considers a smart light bulb. Subsections 8.2.3 and 8.4 have already
taken a smart light bulb as examples and discussed various aspects related to the xWoT
and the meta-model. This subsection however, concentrates on a simpler version of the
smart light bulb. Unlike previously, there is no presence sensor, just the raw light bulb
translated into the virtual world. Furthermore, in contrast with previous discussions of
a smart light bulb, this subsection shows all aspects, from the analysis to the final build.
The primary analysis concludes that in the physical world, a light bulb can be switched
on and off. Additionally, by looking at the light bulb, a person can conclude whether it
is currently on or off. To make a light bulb smart, these properties and actions need to
be transported to the virtual world. Figure 10.2 shows all possible interactions. On the
left are the three possible interactions: Switch Light on, Switch Light off and Get State.
Moreover, in the physical world, it is possible to notice when a light bulb is switched
on or off without staring at it. This phenomenon of passive observation translates to a
publisher mechanism in the virtual world. The right hand side of the use-case diagram
shows how this publisher works. Both, the Switch Light on and the Switch Light off
use-case can generate an event, each of the same type. The bottom right part shows
the possible interactions with the publisher. These will remain the same for any xWoT
publisher and are given by the xWoT model compiler.

Fig. 10.2.: Use-Case diagram of a simple Smart Light Bulb

Now the use-case has been explained, a model of the physical side of the smart light bulb
can be created. This is merely a one-to-one translation of the use-case to physical devices.
The topmost element of the smart light bulb model, the Entity, is the smart light bulb.
Although there are thousands of light bulbs, and a dozen in a house, only one needs to
be modeled. This is sufficient to render all the light bulbs smart since the outcome of
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this process can later be deployed on each individual light bulb. On the physical side, the
smart light bulb is made of a Light Bulb Device grouping an actuator OnOff to switch
the light bulb on and off and a sensor that measure its current State.

Fig. 10.3.: xWoT model for the smart light bulb

This initial physical model then serves as input for the physical2virtualEntities script
constructing the virtual side of the smart light bulb. In this case, it is impossible for the
property observed by the sensor to change without an action by the actuator. Since
the output of the sensor is directly coupled with the action of the actuator, they form
a Context Resource. Furthermore, the passive observation capability of the real world
that was translated as the Notification use case gives birth to a Publisher Resource.
Figure 10.3 shows the outcome of these first two modeling steps.

Since the discussed model completely describes the system, there is no need to add any
other virtual-only resource. Therefore, Figure 10.3 represents the final xWoT model for
the smart light bulb, which can now be compiled into code skeletons. The model2Python
compiler generates only one device service and no associated node manager service. Given
that the scenario is only made up of one non-decomposable device, the generated service
represents exactly one smart light bulb and there is no need to represent anything else.
Listing 10.7 shows that the generated service has a structure similar to the one presented
in Figure 9.17. The difference lies in the different *ResourceAPI modules that are created.
The compiler creates the OnOffStateContextResourceAPI, which stands for the smart
light bulb and accepts GET requests for querying the state of the light bulb and PUT
requests to influence this state. Additionally, the two modules for the publisher associated
with this resource are also created.

The next step is all about the hardware. Instead of building it with real sensors and
actuators, mock hardware applications are used. The code chunk creating a smart light
bulb device is quite small and easy to understand. Although the model explains that the
physical side of the smart light bulb is composed of a sensor and an actuator, the mock
set-up only contains a switch button. This is possible since the sensor and actuator form
a context. Therefore, the code necessary to represent the smart light bulb is similar to
the example discussed in Listing 10.6. It outputs and consumes the following message
format: {"light":"on"} or {"light":"off"} depending on the current state or action
to execute. Building the circuit with actual hardware is also straightforward. Figure 10.4
shows the electrical wiring necessary to drive a LED from a raspberry pi. We chose the
combination of a raspberry pi with a connected LED instead of an actual 220V light
bulb simply for safety reasons. The chances are high that the electronic circuit in the
Philips Hue light bulbs for example, will be quite similar (plus the ZigBee hardware for
communication), thus validating the model.
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1 ruppena@tungdil:src$ ll REST-Servers/lb_Server/
2 total 464
3 -rw-rw-r-- 1 ruppena staff 4.3K Jan 21 10:13 Hardware_Monitor.py
4 -rw-r--r-- 1 ruppena staff 3.7K Jan 22 11:45 Light Bulb DeviceResourceAPI.py
5 -rw-r--r-- 1 ruppena staff 3.7K Jan 22 11:45 OnOffStateContextResourceAPI.py
6 -rw-rw-r-- 1 ruppena staff 4.6K Jan 22 11:45

,! OnOffStateContextResourcePublisherClientResourceAPI.py
7 -rw-r--r-- 1 ruppena staff 4.1K Jan 22 11:45

,! OnOffStateContextResourcePublisherResourceAPI.py
8 -rw-rw-r-- 1 ruppena staff 407B Oct 1 10:03 README.md
9 -rw-rw-r-- 1 ruppena staff 3.5K Oct 1 10:03 WebSocketSupport.py

10 -rw-rw-r-- 1 ruppena staff 1.4K Oct 1 10:03 ZeroconfigService.py
11 -rw-r--r-- 1 ruppena staff 36K Dec 12 11:13 clients.db
12 -rw-r--r-- 1 ruppena staff 2.5K Jan 16 16:40 publisher.py
13 -rw-rw-r-- 1 ruppena staff 236B Dec 12 11:28 requirements.txt
14 -rw-rw-r-- 1 ruppena staff 11K Jan 22 11:45 rest-documentation.html
15 -rwxrwxr-x 1 ruppena staff 6.1K Jan 22 11:45 rest-server.py*
16 -rwxrwxr-x 1 ruppena staff 71B Oct 1 10:03 setup.bat*
17 -rwxrwxr-x 1 ruppena staff 741B Oct 1 10:03 setup.sh*
18 drwxrwxr-x 5 ruppena staff 340B Dec 12 11:31 templates/
19 -rwxrwxr-x 1 ruppena staff 112K Oct 1 10:03 virtualenv.py*

List. 10.7: Generated smart light bulb skeleton

Fig. 10.4.: Electronic wiring of a smart light bulb
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Finally, the gaps in the code need to be filled. In the case of a simple smart device,
this is done rapidly. The publisher module and its associated module don’t need any
modification. Only the context resource needs to be adapted to return the state of the
smart light bulb in an appropriate manner and to parse the input JSON data. For this, a
new HTML template takes care of representing the smart light bulb as an HTML page.
In this example, the JSON and XML message are quite simple and able to adopt the
same format, which is also used for communication between the RESTful web service
and the underlying hardware. Therefore, if a client requests a JSON representation,
the server responds with a message like {"light":"on"}. The last step is to adapt the
Hardware_Monitor module so that it can parse the incoming messages and modify the
state of the light bulb if requested. Again, only minor changes are necessary to parse the
incoming messages and translate them into commands for the hardware. Through the
provided setup.sh script, the RESTful web service can easily be deployed to the hardware
(for example a Raspberry Pi). Listing 10.8 shows how the final code is deployed and run.
To keep the focus on the important parts, some messages about installing the required
dependencies have been removed from the listing (line 10). After line 20, the smart device
is ready and can serve incoming requests.

1 ruppena@tungdil:lb_Server$ ./setup.sh
2 be sure to install first
3 apt-get install libavahi-compat-libdnssd1
4 New python executable in xwot/bin/python
5 Installing setuptools.............................done.
6 Installing pip............................done.
7 Collecting setuptools from https://pypi.python.org/packages/3.4/s/setuptools/

,! setuptools-12.0.4-py2.py3-none-any.whl#md5=062ffc9b0b1b4b4ff1ade2fd1d6664f8
8 Using cached setuptools-12.0.4-py2.py3-none-any.whl
9 Installing collected packages: setuptools

10 [....]
11 Running setup.py install for pyserial
12 changing mode of build/scripts-2.7/miniterm.py from 644 to 755
13 changing mode of /Volumes/home/ruppena/Desktop/lb_Server/xwot/bin/miniterm.py to

,! 755
14 Successfully installed autobahn-0.9.5
15 backports.ssl-match-hostname-3.4.0.2 certifi-14.5.14 ponydebugger
16 pybonjour-1.1.1 pyserial-2.7 requests-2.5.1 six-1.9.0 tornado-4.0.2
17 twisted-14.0.2 zope.interface-4.1.2
18 ruppena@tungdil:lb_Server$ xwot/bin/python rest-server.py -d ~/COM2 -s 1
19 INFO Peparing Serial Connection. Please stand by...
20 INFO Up and Running

List. 10.8: Deploy and run the smart light bulb

10.2.2. Smart Door

The previous use-case, although very basic, shows a full example of how to create a
new smart device including the required hardware. This subsection examines a similar
example. However, the hardware side and the virtual side in particular, will be slightly
more complex. Whereas for the smart light bulb the virtual side was only made of a
context resource which translated into one single REST resource, this time the virtual
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side delivers a more complex URL hierarchy. This thesis has referred to a smart door
several times (see for example Listing 5.9) without giving more detail of what such a
smart door should look like. It seems quite natural that a door in the physical world
can be opened or closed. This is also how we mostly use a door: we open it to enter
a room and close it behind us. Furthermore, a door can be locked with a key and also
unlocked. Obviously, before opening a door, it has to be unlocked and a door can only
be locked if it has previously been closed. Once again, somebody can gather a door’s
open/closed state simply by looking at it. Figure 10.5 resumes this situation in a UML
use-case diagram. Compared to the use-case diagram of the smart light bulb, this one has
more elements and will therefore translate into a richer xWoT model, with more REST
resources. Again, the model’s left side reproduces the passive observation of the door’s
state. As previously, this passive observation translates into a publisher resource in the
virtual world. This time however, the scenario needs two types of observable events:
(1) when the door is opened or closed and (2) when the door is locked or unlocked. It
makes sense to distinguish these two types of event to allow subscribers to listen only
to one or the other. Moreover, if a subscriber is interested in both event types, he
can simply subscribe to both. The bottom right of Figure 10.5 is exactly the same as
before and simply shows the predefined xWoT subscription actions that are possible on
any publisher resource. The model’s right hand side contains the use-cases specific to
this example. Each described action translates into a use-case. Furthermore, the Get
State use-case allows a client to query the current state. Since the example contains two
observable properties, two separate use-cases are necessary. However, by using inclusions
in the UML model, we show that they have something in common. In terms of REST
resources, this means that each use-case translates to one Resource reflecting either the
open/close state or the locked/unlocked state. The base use-case still also gets translated
into a Resource giving access to both statuses at once.

Based on this use-case diagram, we can now model the physical side of the smart door
as an xWoT model. The topmost element of the model, the Entity, is the door itself.
It is composed of an actuator responsible for opening and closing the door and a sensor
measuring whether the door is opened and to what degree. Additionally, the door needs
an actuator to (un)lock it and a sensor returning whether the door is (un)locked. The first
pair of actuator and sensor form one device and the second pair of actuator and sensor
form a second device. Therefore, the physical side of the Entity is made of two Devices.
This physical model can be turned into an augmented model where both the physical and
the virtual side are modeled. With the help of the physical2virtualEntities tool, a
basic structure for the virtual side can be constructed.

Figure 10.6 shows the situation after the execution of this tool. Each device of the physical
side is translated into a resource on the virtual side, as are their child devices. One could
argue that both actuators should translate into a Context Resource. However, the locked
property depends on the closed property and vice versa. Therefore, the dependency
between the actuator and its sensor is not strong enough to combine them into a Context
Resource, although this is a matter of personal taste. Even though the tool makes an
educated guess about how the physical side should be translated into the virtual one,
it sometimes fails or the translation is incomplete, as in this case. Yet, this is not the
tool’s fault, nor the model’s. The physical2virtualEntities tool correctly translates
the physical side into an adequate virtual side. However, according to the use-case of
Figure 10.5 there is one use-case where it is possible to query the overall state of the
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Fig. 10.5.: Use-Case diagram of a Smart Door

Fig. 10.6.: Automatic translation of the physical to the virtual side
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system with two subsequent use-cases to query each state individually. Although the
present translation allows querying each state individually, it is impossible to query the
global state of the system. Therefore, it is necessary to tweak this initial Virtual Entity
until it functions as required. Figure 10.7 shows the final result of these efforts. Instead
of two resources, the virtual side is now made of three, where the third resource makes
the global and individual door states available. This resource contains two children, each
representing one state. This leads to a situation where two URLs point to the same
resource. Nonetheless, according to Richardson [B18] this is not forbidden, but care is
required later when filling the gaps in the code, that one of the two resources is defined
as the canonical one (like the one for the device), while the other as a symlink (via the
redirect mechanism) to the former. Additionally, Figure 10.6 shows that the door is a
device with two child devices. Although physically there are two separate devices, they
act like one. It is unlikely that any other scenario relies on only one or the other of the
two devices without relying on the door itself. Therefore, the composed property of the
door device is set to false to indicate that this is a logical grouping of physically separated
devices. As a result, the model compiler will produce one RESTful web service for the
door encompassing the open/close and the locked/unlocked mechanism.

Fig. 10.7.: Tweaking of the generated virtual side

1 ruppena@tungdil:src$ ll REST-Servers/
2 total 0
3 drwxrwxr-x 3 ruppena staff 748B Jan 23 15:04 _door_Server/

List. 10.9: Generated code skeletons for the smart door

At this stage, the model perfectly fits the use-case and is ready to be converted into code
skeletons via the model2Python command line tool. Listing 10.9 shows the generated
code skeletons. As for the previous use-case one single service skeleton is generated,
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_door_Server, representing the smart door and containing the enumerated resources of
Figure 10.7. Once the code gaps are filled, the service will be deployed directly on the
door, thus making it available to the virtual world.

Fig. 10.8.: Hardware mock for the smart door

Building the electronic circuit for a real smart door is outside the scope of this thesis.
Therefore, the hardware mock application is used to simulate how the hardware would
react. Figure 10.8 shows the hardware mock-up of the smart door. In contrast with
previous mock-ups, this one is composed of two mock devices, one running on the virtual
serial port COM1 and the other on COM3. Through this separation, they can be used as
separate devices and it is possible to talk to each one separately. This also reflects how
the physical side is built, with two disjointed physical devices.

10.2.3. Smart Door Revisited

How a single door can be augmented and represented in the virtual world was discussed
earlier. In the process, a device with a bunch of sensors and actuators is attached to the
door. This device delivers information to and accepts command from a RESTful web
service automatically generated from the virtual entity description in the corresponding
xWoT model. The compilation of this model leads to one single service to be deployed
directly on the device attached to a door. The last step of the approach discussed on
page 182 can be repeated for several doors resulting in a number of smart doors. Once
the coupling of hardware and xWoT service is deployed to these doors, each has its own
representation in the virtual world and therefore can be manipulated either in the physical
or the virtual world.
If this vision of several smart doors in a building is pushed a little further, we can try
to model more than just a bare door. Modeling a full building would require too much
space to discuss. Therefore, instead of a full building, we limit the present use-case to
a building composed of several floors, each having several doors and several lights. The
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use-case diagram of this example is a combination of the use-case diagram of the smart
light bulb and the use-case of the smart door. Additionally, floors group the doors and
lights and the building is composed of several floors, so it is possible to know and modify
the state of a whole floor or building. Furthermore, it is possible to ask a given floor
which doors are open and it is also possible to open/close all the doors on the same floor
at once. Of course the same is true for the whole building. Figure 10.9 resumes this train
of thought visually.

Fig. 10.9.: Use-Case diagram of a smart building

As before, this use-case diagram guides the modeling of the physical side of the smart
floor. It is interesting to note that the sensors and actuators are only attached to the
doors but none are attached to the floors. Whereas the physical entity for a door is exactly
the same as before, each door is now attached to a floor and these are grouped together
as a building. Both the floor and the building are represented as devices. However, these
devices are now used to physically group the different doors together into floors and then
into a building. Therefore, the floor as well as the smartBuilding both have their
composed flag set to true, whereas the door and the light bulb keep this flag set to
false to indicate a logical grouping of devices. The top part of Figure 10.10 shows the
physical model of such a smart building. There is the building itself, the floor as well as
the smart door and smart light bulb with the hierarchy as depicted in Figure 10.10.
Unfortunately, there are no model floors, doors and light bulbs as they don’t appear
naturally in the physical world. As will bee seen later, this decision has an influences
on the generated virtual entity, which needs some work in order to become a meaningful
RESTful API.
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Fig. 10.10.: xWoT model of a smart building
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If the physical model is translated via the physical2virtualEntities tool, the result is
not convincing. First, the virtual door lacks the statusResource. Since this is a purely
virtual resource, it needs to be added by hand to the generated model. This issue has
already been discussed for the smart door use-case and the same approach ca be used
again. Second, the generated resources hierarchy exactly reflects the physical hierarchy.
This leads to URIs like http://example.com/sb/5/3 where the first integer represents
the floor identified by the number 5 and the second integer represents either the smart door
with id 3 or the smart light with this id. Already this reflection shows that the generated
structure lacks consistency. Besides, in RESTful services, when dealing with a group of
objects, sometimes it is necessary to introduce an aggregation layer. Therefore, instead of
attaching the doorResource and the lightbulbResource directly to the floorResource,
two aggregation resources are created: doorsResource and lightbulbsResource. The
former aggregates all doors in a given floor whereas the latter aggregates the light bulbs
in the same floor. Normally, such an aggregation layer would be necessary to group all the
floors together. However, since the floors are the only child resource of the smart building
this is not necessary and would just bloat the API. However, if there are other resources
at the floor level, such an aggregation resource becomes mandatory. Consequently, the
new URIs look like http://example.com/sb/5/doors/3 to access, for example, the door
with id 3 on the floor with id 5 and http://example.com/sb/7/lights/8 to access the
light with id 8 on floor with id 7. Not only does this aggregation level make the API
more readable, it also prevents conflicting ids between smart doors and smart lights.

Now that the virtual model is fine-tuned it can be turned into code skeletons. As before,
the model2Python model compiler takes care of this. Since some of the resources have
their composed flag set to true, more than one service skeleton will be generated. This is
also as expected: one skeleton for the smart door, another for the smart light and finally,
the last for the smart building. Listing 10.10 shows the different service skeletons gener-
ated by the model compiler. The __int:doorid__Server and the __int:lbid__Server
service skeletons implement the smart door and the smart light respectively. These two
services are deployed on the corresponding hardware. This combination of hardware and
software is copied so that each door and each light gets its own hardware and software.
These services (and also the necessary hardware) is the very same as discussed in previous
use-cases. Suppose that somebody has already implemented these use-cases. Then smart
doors and smart lights are already deployed. Although, they were foreseen for a different
use-case, the xWoT meta-model ensures they look the same as the skeletons generated in
this use-case. Therefore, instead of reimplementing these services and deploying a second
piece of hardware on each door and light bulb, these smart devices can be reused. The
NM-_sb_Server is the node manager service and represents the smart building use-case.
It represents the Entity and therefore contains the overall resource hierarchy as defined in
the model. However, most of its resources are not canonical but refer to other resources
available on one of the other generated services.

Listing 10.10 also contains three other node manager services: one representing a single
floor plus two others aggregating, respectively, the smart doors and smart lights. Since
these are purely virtual resources, their functionality can also be directly implemented in
the NM-_sb_Server. The choice is up to the developer whether the canonical URIs are
on the NM-__int:floorid__Server, the NM-_doors_Server and the NM-_lbs_Server
or on the NM-_sb_Server. However, since all these services need to be deployed on
some extra server (they dont have any associated hardware) it makes most sense to only
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1 ruppena@tungdil:src$ ll REST-Servers/
2 total 0
3 drwxrwxr-x 3 ruppena staff 1.0K Jan 29 11:03 NM-__int:floorid__Server/
4 drwxrwxr-x 3 ruppena staff 884B Jan 29 11:03 NM-_doors_Server/
5 drwxrwxr-x 3 ruppena staff 510B Jan 29 11:03 NM-_lbs_Server/
6 drwxrwxr-x 3 ruppena staff 1.0K Jan 29 11:03 NM-_sb_Server/
7 drwxrwxr-x 3 ruppena staff 1.1K Jan 29 11:03 __int:doorid__Server/
8 drwxrwxr-x 3 ruppena staff 612B Jan 29 11:03 __int:lbid__Server/

List. 10.10: Generated Code Skeletons for the smart building use-case

implement the NM-_sb_Server and skip the three other services.
Therefore, supposing that the smart lights and smart doors already exist, only one
RESTful web service needs to be implemented to complete this scenario. This shows
yet another aspect of the xWoT meta-model where the model compiler tries to produce
the most valuable xWoT components not only for the current use-case, but also for future
use-cases which might rely on some of these components. This not only greatly speeds
up development but also ensures that for one door, there is exactly one virtual represen-
tation and not a dozen different ones for each use-case. Again, this vision is inspired by
the physical world where physical components serve a goal but also can be used for other
means.

10.2.4. Medical Records

The previous examples showcased various combinations of sensors and actuators and
how they translate into a physical model, and finally, into executable code. Furthermore,
the discussion about how the global system state translates into the physical world (see
Subsection 10.2.2) nicely illustrates how the virtual side of a smart device can offer more
than what is possible in the physical world. In this example this approach is pushed
even further by completely eliminating the physical side. It seems that sometimes it can
be difficult to grasp the physical manifestation, for several reasons: for example, if the
entity is moving through sensors installed at fixed locations, it is difficult to model the
physical side through a combination of sensors and actuators since these are not attached
to the entity itself. Moreover, if the physical manifestation is a phenomenon which can
be measured only by observation but not by attaching devices in a permanent manner,
modeling the physical side through a combination of sensors and actuators is not accurate
either. This is for example the case when the Entity is a person. First, depending on
the context, a person can be an individual; it can be a client, a customer, a patient, a
caregiver etc. Depending on the context, different information about him are of interest
and some cannot be measured. A first name for example or a gender is an attribute of
a person. There is no sensor that can be attached to a person to measure his name.
For other properties, a person behaves like a moving entity through fixed sensors. This
is, for example, what happens to get the height, the weight or the blood pressure of a
person. Although this is a measurable quantity, no person comes packaged with a height
or weight sensor. Instead, some external instruments are used to measure the person’s
height etc. This example further investigates such a scenario where the Entity cannot be
augmented with sensors and actuators.
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Regarding the huge quantity of fabricants producing various fitness trackers (eg. Fitbit,
Nike Fuel etc.) e-Health and e-Nursing is a trending topic and all major vendors launch
their products to track the user’s health [WEB52, WEB4, WEB19]. All these data need
to be stored somewhere. Commonly, in a hospital environment, this is done in medical
records. Historically, this is a paper file containing sheets with personal data, analyses,
consultations etc. More and more hospitals and also caregivers are switching to electronic
systems. Imagine now that this medical record is an xWoT resource. It can participate
in mashup applications either as data provider or data receiver and push the barrier to
e-Nursing one step further. Section 10.3 will investigate a larger use-case involving the
medical record discussed herein.

In contrast to the previous examples, the approach is slightly different this time. The
medical records, although having a physical representation, are a purely virtual good. The
physical and virtual side can be linked together through a tag (NFC, QR, RFID, barcode
etc.), but a modification of the physical side will have no effect on the virtual side and
vice versa. Since the two are disconnected, the model has only a virtual side. Therefore,
only the steps dealing with the virtual side remain. Also the physical2virtualEntities
tool is useless in this example. Even though its application would not harm, its outcome
would be empty. Therefore, the modeling process directly starts with the virtual side of
the entity. Since there is no physical anchoring, there are no guidelines on how to model
the virtual entity. It is up to the architect to choose an appropriate design. Therefore,
during modeling he must already think about the resulting hierarchy and if it makes
sense to represent the entity this way. Also, since he is free of any physical constraints,
the architect should take into consideration the usability of the resulting hierarchy. This
sometimes involves digital information having a different hierarchy from its physical coun-
terpart (sheets of paper in this case). For example, whereas in the physical file, all records
are stored in temporal order, the virtual side can offer more types of ordering. Another
point where use-cases based on a physical device diverge from purely virtual use-cases is
the modeling approach. Whereas for the former, the physical device imposes its structure
to the virtual side, the latter merely asks to model directly the final API. In this example,
this means that the content of such a medical records needs to be defined. Instead of
starting with a blank sheet, what the physical file based medical records look like and
the type of information they contain has to be considered. Five types of information can
be identified:

1. General information about the patient like his name and gender but also information
about insurance and family members or emergency contacts.

2. Data about the patient’s lifestyle. This encompasses information like the height
and weight but also factors directly influencing the patient’s health like his drinking
behavior, if he smokes or takes drugs.

3. Medications need to be tracked to ensure that there are no nasty side effects between
two prescribed drugs. Having the medication grouped together greatly speeds up
this process. The medication not only contains information about what drugs are
prescribed, but also the start and end date as well as the quantity.

4. Analyses are part of the daily business of any hospital or any medical practice.
They range from a simple blood analysis to determine the blood group before an
operation to long term tracking of the heart rate for example. Storing them all
together can save money and time since it is easy to find past analyses.



200 10.2. Some Small Examples

5. A short résumé for each consultation. This is the place where the caregiver can
make notes about what he did or what he plans to do in future consultations. Since
the xWoT supports the property of connectedness, a consultation contains links to
medication if the caregiver prescribes drugs and links to analyses if they are needed
for future consultations.

Fig. 10.11.: Translation of the requirements into resources

These requirements also dictate the available resources and how they are modeled. Fig-
ure 10.11 shows the results of these efforts. Each of the five types of information gives
birth to a resource. Since a patient can have several consultations, analyses and med-
ications, these resources are all composed ones, the top level resource giving access to
a list of consultations (for example) whereas the child resources give access to individ-
ual consultations. The model compiler allows a variable path definition and correctly
translates it into code. The ConsultationsResource, for example, is associated with the
consultations URI, whereas the ConsultationResource is associated with the {id} URI.
The special syntax with a parameter name between curly brackets indicate that the URI
is not a string but a variable and should be treated as such by the compiler. The last
decision is whether the hierarchy of Figure 10.11 should translate into one RESTful web
service or instead, whether each of the five types of information gives birth to an in-
dividual web service with one node manager service representing the use-case. Both
approaches are doable. For the sake of this example, let the composed properties be
false and generate a single RESTful web service. The outcome of the model2Python
compiler is a single RESTful web service containing the modeled resources and their hi-
erarchy. The result of this process is shown in Figure 10.12 containing on the left the
structure of the generated code skeleton and on the right the ConsultationsResource.
This resource also defines the URL schema of its child resources, where on line 90, the
compiler has translated the {id} URI into a numeric variable and delegates requests to
it to the ConsultationResource module.
At this stage, the code gaps can be filled with the required business logic and then the
service is ready and can be deployed. Implementing the business logic is also slightly
different from the previous examples; instead of dealing with hardware and low level
programming, purely virtual resources deal with information available in a database or
file system. Since they can represent anything, they can contain quite large business
logic. In this example, the business logic is reduced to some SQL queries to fetch the re-
quested information from some database or Customer Relationship Management (CRM).
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Fig. 10.12.: Generated REST web service

As such, the ConsultationResource, for example, executes a query in the database,
with the parameters of the WHERE statement adapted to the right patient and the selected
consultation. Still, the input and output format need to be defined, likely with and XSD
schema as for the previous examples. Figure 10.13 depicts how a patient is represented.
It contains the attributes discussed during the requirement-engineering phase plus other
not discussed any further now. Although XSD is only used to define valid XML files,
they also define JSON representations since XML can easily be mapped to JSON. Since
the defined attributes are judged to be important, they should also appear in the HTML
representation. Therefore, the XSD file also influences the HTML output. More special-
ized representations however need special engineering. The ConsultationsResource, for
example, could offer an ical output. Of course, such a representation needs special care.
Another use-case that would fit this example is the parcel tracking and delivery problem
we discussed in [71]. In this case the parcels are the entity of interest. As a parcel travels,
it visits different scanners, which are the devices in this scenario measuring the parcel.
However, the devices are never attached to the parcels; instead they are attached at a
fixed places in space. A parcel is only identified through a tag. An use-case where such
sensors form the hardware of a service and the tags serve as input parameters for the
sensors is illustrated in the next section.

10.3. A Bigger Example — eHealth

The previous section discussed various small examples highlighting different aspects of
the xWoT modeling environment. The first example showcased a simple combination of
one sensor and one actuator forming a context. The second example showed how the
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Fig. 10.13.: XSD file defining the XML and JSON representations for the Patient Re-
source

generated model could be enhanced with additional virtual resources, making the virtual
side richer than the physical. In a combination of these two use-cases, we discussed a
situation that needs a node manager to represent the entity and showed that in these
situations, the model compiler generates several independent service skeletons running
either on dedicated hardware or some generic server. Finally, the last example introduced
a model containing only virtual resources and explained how the xWoT meta-model
handles entities lacking any physical device. This section concentrates on a bigger use-case
combining the previously considered aspects and approaches to model a full environment.
Some entities are similar to the smart light bulb example or contain enhanced virtual
representation. Others need a node manager to represent the entity and break down
into independent deployable xWoT components, whereas some aspects require a mashup
composed of other xWoT components.

Regarding the xWoT modeling approach depicted in Figure 9.10 and re-examined in
Section 10.2, not all the steps will be carried out. Many of the involved devices would
require a deep knowledge of how to build them and need very specialized sensors and
actuators. The focus of this thesis is the meta-model and its associated tools and not
an introduction to electronics. Thus, the assumption is that these devices implement
some low level connection (like a serial interface) to which it is possible to connect the
generated RESTful web services. Therefore, this section focuses on modeling the use-case
and translating it into code skeletons. This involves many different resources, some of
them being purely virtual, others simple sensors or a combination of sensors and actuators.

The most notable difference compared to the other use-cases examined is the number
of actors involved. Whereas previously, there was only one client, the consumer of the
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smart device, here there are patients, caregivers, visitors, administrative staff, cleaners
and many more. All together, they ensure that the hospital is running, that somebody is
taking care of the patients, their surgeries and postoperative care. Although it is possible
to model all this in one big use-case, this would miss the essential parts. Therefore, in this
use-case the focus is on patients and what they are doing during a stay at the hospital.
Depending on the situation (e.g. emergency, pregnancy, surgery) the process may vary.
Yet without loss of generality, it is true that a patient enters the hospital at some point,
gets treatment according to his condition and returns home as soon as he is better. To
keep the example manageable, we will focus on a standard stay at a hospital either for
examination or a surgery. Having a closer look at this flow, a more fine-grained process
can be identified. Upon arriving at the hospital, the patient needs to check in like in
a hotel. If it is his first stay, the secretary creates a new medical record and fill in the
general information. At this stage, the patient also gets a badge identifying him. This can
for example take the form of a wristband with his name or containing a NFC tag linked
to his medical record. After admission, the patient is transferred to his room. When the
physician visits, he completes the missing information in the medical record. This mainly
concerns the patient’s life style factors : smoking, drinking, drugs, height and weight
as well as medical pre-conditions. To ensure the best possible care, often analyses are
needed. They range from simple blood type determination to more complicated analyses.
Figure 10.14 shows an extract from the form used to execute different analyses and gives
an insight into the quantity of possible analyses.

Depending on his condition, a patient often needs some drugs to help during the convales-
cence. Again, the type and quantity of drugs a patient needs can vary and depend on his
medical condition. It is important to avoid (1) overdoses and (2) unwanted side effects.
This is only possible if the global medication state for a patient is known. Furthermore,
drugs are prescribed for a given amount of time and need to be taken at precise intervals
(only evening, before meal etc.) and in a given quantity. This information is just as
important and needs to be stored together with the prescribed drugs.

From an architectural point of view, caregivers, patients and drugs behave the same way.
Although they deliver information, like a sensor, they are not connected to the hardware
delivering this information to a RESTful web service. Instead this information needs
to be entered and stored somewhere so that later, a RESTful web service can expose
this information as a resource. Yet, caregivers, patients and drugs are not completely
disconnected from their virtual representations. Through tags, they are linked to their
virtual counterpart. Other elements though can be turned into real smart devices. For
example, the machine executing different analyses on the patient’s blood can be turned
into a smart object by hooking up a REST service directly on the machine. Also a
heart rate monitor can be rendered smart simply by taking the reading of the sensor and
making it available over a RESTful web service. Basically, these machines are sensors
(and actuators), which are either directly or indirectly attached to a patient to observe a
given property. As such, they can be turned into smart devices embedded in the xWoT
if they offer the sensor readings not only on a screen but also over a RESTful API. In
this sense, this scenario is similar to the parcels and scanners discussed at the end of
Subsection 10.2.4.

The similarity between the parcels example and this use-case also becomes clear from
the use-case diagram in Figure 10.15. All use-cases include the patient as the central
element (although there are other processes in a hospital like cleaning, which has no
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Fig. 10.14.: Analysis Sheet
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Fig. 10.15.: Overview of the eHealth use-case

connection to patients). Either, they measure something on the patient like the heart
rate machine or they act on the patient like the physician during surgery. Unlike for
the previous example where each use-case was self-contained, here some use-cases require
some mashup layer exploiting the underlying xWoT elements. The monitor heart rate
use-case on the bottom right of Figure 10.15 only makes sense if the heart rate sensor
can report its values somewhere. The same applies to the analyses and consultations.
Therefore, this use-case on the one hand implies the modeling and creation of several
xWoT components and on the other hand it needs a mashup layer implementing the
business processes taking advantage of these components.

10.3.1. Physical Devices

As an example of medical machines involved in this use-case we will analyze a life support
system helping the patient to breathe (mechanical ventilation) and controlling his heart
rate and pressure through an Automated external defibrillator (AED). The device needs
at least one sensor to capture the patient’s breathing and an actuator to help his breathing
if required. Additionally, the device needs sensors for monitoring the heart rate and blood
pressure and also a defibrillator in case of emergency. Consequently, we can conclude that
the life support machine is made of two devices, one responsible for the breathing and the
second responsible for the heart, each having its own sensors and actuators as discussed.
The top part of Figure 10.16 shows how this description translates into an xWoT physical
model. The last question is whether the lifesupporsystem device has the composed flag
set to true or not. Setting it to true would later lead to individual service skeletons for
each device plus one node manager service skeleton for the lifesupporsystem. However,
since physically this is one big machine, it is better to set this property to false and only
generate one service representing the life support machine as a whole.
Once the physical side is modeled, the virtual side can automatically be generated with
the physical2virtualEntities script. Figure 10.16 already contains the result of this
operation. Since the life support machine is relatively simple regarding its devices, there
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Fig. 10.16.: Physical and virtual model of a life support machine

is no need to change or add anything. The default translation from the physical to the
virtual word is fine. Figure 10.16 shows that all the sensors also contain a publisher
resource. The previous example discussed how, when using a publisher, a client is more
interested in the fact that a change has taken place than the new value. This is an
example where this assumption is false. The publisher can still be used to detect a
change (a cardiac arrest) but mashup applications may be more interested in getting a
feed of measures that can be saved for later consultation.

The model is now ready to be turned into code skeletons via the model2Python compiler.
As shown in Listing 10.11, the compiler correctly translates the model into one unique
xWoT service. The generated code contains the usual gaps that need to be adapted to the
current hardware. This involves some coding in the Hardware_Monitor module, which
is vendor specific. Additionally, the inputs and outputs need to be defined. Measures
can generally be characterized by four attributes: (1) the measured value, (2) the
scale, (3) the precision of the sensor and (4) a timestamp. These attributes completely
describe most sensor readings, thus an adapted output format for a sensor contains all
this information. Since XML allows elements, values and attributes we can put the
scale, precision and timestamp can be put into attributes and the element’s value used
for the sensor reading. The name of the element is in its simplest form the name of
the sensor. Such a representation seamlessly translates into JSON (although it does
not differentiate between attributes and element value) and HTML. Actuators are more
difficult to describe since their input depends on the actuator. A switch for example only
needs a binary value whereas a brushless motor accepts degrees. However, the format
should be kept as simple as possible. To keep things simple, the different publisher
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resource use the same format as their corresponding resource.

1 ruppena@tungdil:src$ model2Python -i eHealthDevice_augmented.xwot
2 INFO - Start processing
3 INFO - Creating Server: REST-Servers/_lsm_Server
4 ruppena@tungdil:src$ ls -l REST-Servers/
5 total 0
6 drwxrwxr-x 3 ruppena staff 986B Jan 27 20:57 _lsm_Server/

List. 10.11: Compile the Life Support Machine into code skeletons

The approach discussed in this subsection can be used for any device in this scenario.
Whether it is a smart thermometer or a life support machine does not matter. The end
result is an environment where all machines of interest are equipped with a RESTful API
and thus, seamlessly embedded in the xWoT. On their own, these smart eHealth devices
have no big value. Nevertheless, it is easy to imagine a scenario where instead of printing
the measured values directly on the attached screen, a caregiver can get them in real time
on his portable device. Therefore, a mobile device can serve as output for many smart
devices. Since all sensors propose a publisher, getting real time information on such a
distant screen is quite an easy task. This also opens smart device to all kind of screens,
ranging from full size tablets to smart watches. In [72] we show how a hospital could
take advantage of such smart devices to build an alert escalation system. In this paper
we showed that the values measured by smart devices can be checked by some service
to decide whether a given measure is in between acceptable boundaries or represents a
danger to the patient’s life. In the second case it is important to alert a caregiver and
to ensure that at least one caregiver acknowledges the alert and checks the patient’s
condition.

10.3.2. Virtual only Resources

The different physical devices are one part of Figure 10.15. Yet, there are many other
resources that neither are a device nor can be augmented with devices. This is for example
the case for the patient and the caregiver. Both are of central interest. The caregiver
is generally the actor initiating the use-case, whereas the patient is the receiver of the
use-case. It is thus important to give them a virtual counterpart and embed them in
the xWoT. This can easily be achieved with virtual only resources. Such resources have
no physical device attached and the physical and virtual sides are only loosely coupled
through tags. Regarding the use-case diagram 10.15 the following objects will be modeled
as virtual only, since their connection with their physical counterpart is too weak to take
their physical manifestation into consideration:

• Caregiver,
• Patient and
• Medical Record.

These three entities will become top level resources. Again, it is arguable whether each
of these resources is to be modeled as an entity and get its own xWoT service or whether
they are direct children of the hospital entity and are also attached to the latter. Since all
these services require a dedicated server to run them, it is less cumbersome to create only
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one hospital service exposing the hospital as root resources having the other resources as
direct children. Finally, to ensure that only one service is generated, the hospital resource
must have its composed property set to false. This analysis leads to the hierarchy model
in Figure 10.17.

Smart-Hospital

Patient Medical Record Caregiver

Fig. 10.17.: Initial Hierarchy of the Smart Hospital

Yet, the use-case diagram on Figure 10.15 still contains some elements that are neither
devices nor represented in the hierarchy of the Figure 10.17. These are mainly:

• Lifestyle factors,
• Preconditions,
• Medications,
• Analyses and
• Consultations.

Although in the physical world and the physical medical record file, most would be
represented as a child resource of the medical record, this hierarchy can be optimized in
the virtual world. Whereas it makes sense to attach the consultations and medications to
the medical record, lifestyle factors can be attached to the patient. Commonly, they don’t
change depending on the medical condition of a patient and are therefore interpreted like
a patient’s name or social security number. Preconditions might as well be attached to
the medical record as to the patient. Although they are subject to more frequent changes
than the lifestyle factors, it still makes sense to keep them separate from the medical
records and attached directly to the patient. Figure 10.18 incorporates these observations
by attaching the lifestyle factors as well as the preconditions to the patient resource.
Finally, the last element is the analyses. Unlike consultations or lifestyle factors, analyses
are based on scientific measures. Usually, specialized hardware is use to conduct such
analyses. Therefore, the question whether analyses are a top level resource, a standalone
service or attached to some of the already discussed resources is legitimate. Although
analyses only make sense in the context of a given patient, they are carried out by sensors
and other specialized hardware. Therefore we choose to make the analyses a top level
resource. The REST requirement for connectedness permits keeping all these resources
together in a consistent manner. An analysis, for example, contains a link to the patient
to which the analysis relates. Additionally, the analysis also links to the caregiver who
ordered it. This is only one example where the connectedness helps to build the bigger
picture out of individual resources. In reality, many more links between resources are
implemented.
The hierarchy on Figure 10.18 now guides the modeling of the virtual hospital. For
most parts, the hierarchy directly translates into Resources. For others some tweaking
is necessary. The patients, caregivers and medical records being groups, each one needs
an additional aggregation layer in between them and the smart hospital resource. Upon
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Fig. 10.18.: Final Hierarchy of the Smart Hospital

translation of the hierarchy into an xWoT model, all the elements with cardinality greater
than 1 need to be packaged into an aggregation resource. This is the case for medications,
analyses and consultations. Additionally, the hierarchy on Figure 10.18 contains squares
and circles. Squares translate to resources whereas, circles represents the attributes of
the resource they are attached to. These attributes are in no way complete but rather a
starting point to create the XSD files later. As such, they serve as examples to designate
what type of information each resource represents.

1 ruppena@tungdil:src$ model2Python -i hospital.xwot
2 INFO - Start processing
3 INFO - Creating Server: REST-Servers/_hospital_Server
4 INFO - Successfully created the necessary service(s)
5 ruppena@tungdil:src$ ll REST-Servers/
6 total 0
7 drwxrwxr-x 3 ruppena staff 1.0K Jan 29 17:37 _hospital_Server/

List. 10.12: Generated Smart Hospital Service Skeletons

The resulting model is too big to fit on one figure, yet Figure 10.19 shows a partial view
of the model. As discussed in Section 9.4, the meta-model also allows the set of HTTP
methods the resource supports to be associated with each resource. Figure 10.19 shows
that all resources support the GET method to fetch information from them. Furthermore,
aggregation resources are used to create new child elements, so they also support the POST
method. All resources dealing with atomic information must allow their manipulation.
Consequently, resources like caregiverResource also implement the PUT method for
modifications as well as the DELETE method for deletion. At this stage, the model does
not need any further tweaking and is therefore ready for the compiler. Listing 10.12
shows the compiler output as well as the enumeration of the generated service skeletons.
Since all resources have their composed flag set to false only one xWoT service skeleton
is created. This is exactly what is required.
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Fig. 10.19.: The smart hospital modeled as an xWoT model (partial view)
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The last remaining steps in the modeling process are the definition of the input and out-
put formats, the code gap filling and the deployment. All resources in this hierarchy are
purely virtual and therefore they don’t get the information they deliver from sensors and
actuators. Instead, the information is stored in some database. What type of storing
system is used, and how the connection to this system is implemented does not matter.
So, it might be possible that some information is stored in a local database and other
information is pulled from a CRM. Usually, GET requests execute one or several select
queries (or their equivalent for a CRM (Customer Relationship Management) system).
The result of these queries is processed to fit the defined output format. On the other
hand, POST, PUT and DELETE modify the underlying database with either insert, update
or delete queries. In his Bachelor Thesis [49], Mathieu fully describes the implementa-
tion of such a system with proper inputs and outputs in JSON, XML and HTML (see
Figure 10.20) and the proof that the current model leads to a nice usable RESTful API.

Fig. 10.20.: HTML representation of a Medical Record

The inputs and outputs for analyses are quite difficult to design due to the variety of
different types of analyses, so, the most generic approach is chosen. Besides some fields
used for connectedness like the caregiverid and the patientid and some meta-data
about the analysis like the startdate and enddate the format defines a generic input
field which can contain anything. Mostly, its content will be some base64 encoded binary
data. For the RESTful web service the format does not really matter. The machine
executing the analysis should be able to read and interpret this information. However,
the input can also be empty. As will bee seen in Subsection 10.3.3, the smart hospital also
contains a bunch of mashup applications for different needs. If the initiator of an analysis
is a mashup application, the input element contains nothing. The generated output
is also difficult to define. Yet, in the introduction to the current use-case, we stated
that an analysis is quantifiable and executed by sensors or other specialized hardware.
If the outcome of an analysis were not quantifiable (for example when the caregiver
diagnoses a broken arm), then the result should rather be stored in the medical record.
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Therefore, it is safe to assume that an analysis produces values. Here again, the defined
format is very generic. The results contain all outcomes of an analysis. As shown in
Figure 10.14, sometimes one analysis consists of a multitude of measures; each is stored
in its own result element. Finally, a result only contains the numerical value of the
current measure, yet due to the variety of possible measures, it is mandatory to specify
the units and to later distinguish the different results by a unique key for each measure.
Besides, the value element contains a timestamp attribute. This information can be used
to show any time-dependent evolutions of a given measure. In fact, for some diseases it
is important to show that a given value is within a predefined threshold before stopping
the treatment.
Discussing the Patient and Caregiver resources would only bloat this section. Both
contain barely more information than any classic CRM system. The RESTful API adopts
the resource hierarchy explained in Figure 10.18 and exposes for each child resource the
corresponding information. Again, where this information is fetched and stored highly
depends on the already deployed infrastructure in the hospital. Yet, in the simplest case
they simply use some relational database that the REST API can query.

10.3.3. eHealth Mashup

At this point the smart hospital already has many different smart devices like life support
machines, blood analysis equipment, automatic drug dispensers, etc. There are also some
purely virtual resources representing objects which cannot be rendered smart through
the addition of sensors and actuators like the medical records file or the patient. In this
subsection we will further investigate how a smart hospital can take advantage of all the
deployed resources and make the nursing smart. We will first examine a sort of manual
mashup application linking resource dynamically. The second part introduces processes
and shows how processes, mashups and xWoT components go hand in hand to provide a
better service to both patients and caregivers.
The previous subsection briefly discussed a smaller use-case where a caregiver used his
tablet as a distant screen to plot the measures from one of the different smart devices
monitoring a patient’s medical condition. Such an application becomes reality by the
implemented pushing mechanism in each xWoT device. In its simplest form, some Web-
Socket client is sufficient to implement this scenario. For example, Figure 10.21 shows
what such a distant monitor for taking a patient’s temperature over a short interval of
time could look like. The monitor can be used to plot various sensor information; only
the WebSocket message parsing needs to be adapted. However, such a simple parsing
can be prepared for all sensors in the form of regular expression. It is then sufficient to
choose the right expression according to the sensor to be monitored.
Although Figure 10.21 is not really what is usually considered a mashup application (only
one sensor is consumed) it shows the trend of what is possible. This simple scenario can
be extended to create a fully blown mashup application. If instead of just quitting the
application, the caregiver is given the choice to save the results for later consultation, the
mashup has already integrated two resources. Upon confirmation, the mashup applica-
tion then takes all the readings and saves them, for example, as a new analysis for the
patient. Although this might not be useful for a simple temperature plotter, for ECG
(Electrocardiogram) and EEG (Electroencephalogram) this is the standard procedure,
especially since the measures are usually not taken by the physician himself but rather by
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Fig. 10.21.: Pushing real-time of a smart clinical thermometer

a nurse. In the case of the smart clinical thermometer, saving the information for later
consultation would lead to a new analysis resource similar to Listing 10.13. This simple
example shows how mashup applications can enhance the nursing process. Although this
is a quite simple example, there are no limits as to how such a complex mashup could
look like. For instance, imagine a heart rate mashup takes into account the patient’s
age to adapt the desirable interval for his heart rate. Mixing this information helps the
caregivers to gain valuable information at a glance, which would be difficult to find out
in the physical world.

Section 8.3 discussed the nuance between mashup applications and hubs and concluded
that sometimes it is better to propose a given functionality as a hub so that other clients
can build upon this service. Additionally, Subsection 8.2.1 classified the different types
of services of interest for the xWoT. Among them, business processes were identified as
industry standard and an approach to embed them into the xWoT was discussed. Business
processes are a perfect example of a situation where a mashup should be replaced by a hub.
Behind the scenes, such a business process is very similar to what could be accomplished
with a mashup application. Consider the following example: A patient needs different
measures of his EEG at predefined intervals over a period of time. Since, the measures
can be taken with a sophisticated machine, no human intervention is necessary to take
the raw measures. Therefore, it is desirable for the patient to stay at home and does not
occupy valuable resources in the hospital. Yet, at some point of time, a physician needs
to analyze the different EEG plots. Therefore, each measure is stored as a new analysis.
Since such scenarios are standard procedures, they can be modeled once in BPM and
then deployed whenever needed and for any patient. Other benefits of business processes
compared to mashup applications is that they can: (1) Run in parallel. Several business
processes can be executed at the same time, either on the same patient or on different
patients. (2) Run in the background. They don’t block a terminal until the measures are
terminated. Therefore, to build a smart hospital it also makes sense to consider business
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processes exploiting the capabilities of the different available smart devices.

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <analysis xmlns="http://domain.ehealth.digsim.homelinux.org"

,! uri="http://localhost:8080/AnalysisServer/resources/analyses/112829951/">
3 <id>112829951</id>
4 <caregiverid>1</caregiverid>
5 <patientid>5</patientid>
6 <results>
7 <result uri="http://[...]/analyses/112829951/results/555/">
8 <value key="temperature" units="celsius"

,! timestamp="1422629685">37.2</value>
9 </result>

10 <result uri="http://[...]/analyses/112829951/results/556/">
11 <value key="temperature" units="celsius"

,! timestamp="1422629695">37.1</value>
12 </result>
13 ...
14 </results>
15 <input>......</input>
16 <startdate>2015-01-30T15:54:45+02:00</startdate>
17 <enddate>2015-01-30T15:54:55+02:00</enddate>
18 </analysis>

List. 10.13: XML representations of an Analysis

10.3.4. Location Service — Tags Revisited

Throughout this thesis we defined the physical artifacts as actuators, sensors or tags.
Whereas it seems easy to model either a sensor or an actuator with the meta-model,
things get a little bit more problematic when it comes to tags. According to the defi-
nition introduced earlier, tags are passive attributes. Therefore, they neither generate
data nor accept commands. Instead, they identify objects and serve as input for tag
readers. Consider a use-case involving tags, tag sensors and services still in the hospital
environment. Each day, a given number of caregivers are on duty. Unlike in an office
environment where each employee has a fixed working place, caregivers move around in
the hospital. When an emergency occurs, it is important to know which caregiver is most
suitable to give aid. This decision depends on the specialty of the caregiver, but also on
his location. To build such a system, the hospital needs to track the caregivers and store
their location somewhere. Like the patients, caregivers can be identified through RFID
tags. The hospital places RFID readers at strategical points in the building. Such points
include the entry to operating rooms, main entrances and doors between the different
departments. Therefore, each time a caregiver passes one of these points, the associated
RFID reader scans the tag and knows which caregiver has just passed.
At first glance, modeling this use-case seems straightforward; the caregiver resource gets a
new attribute location containing the last known position. However, such a model would
require the caregiver to have some sensor attached to him reporting his position. Yet,
the caregiver only has his tag, the sensors being installed at fixed locations. Therefore,
the better approach is to model the sensor, capturing the different tags passing by as
depicted in Figure 10.22a. Using the meta-model this requires a Sensor on the physical
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side plus a corresponding Sensor Resource on the virtual side leading to a simple REST
API.
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Fig. 10.22.: RFID tags in the hospital

Each of these RFID sensors responds to GET requests containing the last scanned RFID
tags. Therefore, to know the position of a caregiver, it is necessary to send GET requests to
all deployed RFID sensors, which is cumbersome. Furthermore, this does not guarantee
that one of the sensors will respond with the caregiver’s location. If the caregiver has not
moved for some time, chances are high that no RFID holds old enough data to find the
caregiver. Therefore another approach is needed. The requirements remain the same: the
system must be capable of reporting the last location for each caregiver. Furthermore, it
must respect xWoT design principles. The easiest way to achieve this goal is to implement
a service providing this exact information like the one in Figure 10.22b. This is a purely
virtual service with no physical counterpart. It takes its information out of a database
containing for each caregiver his last known location. To fill in the database, the location
service is subscribed to all RFID sensor Publisher Resources. Each time one of the RFID
sensors scans the tag of a caregiver; it produces an event, which is pushed to the location
service. The latter stores this new information in its local database. From this point on,
the location service is able to answer GET requests, returning locations associated with
each caregiver. Respecting the HATEOAS principle, the caregiver resource mentioned
earlier should be modified to contain a link pointing to his location served by the location
service.
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The main goal of this thesis is to introduce the xWoT together with a meta-model to
support software engineers in the task of creating new smart device ecosystem. This chap-
ter summarizes the main contributions of the present work and concludes by considering
future work and further research questions.

11.1. Summary of Contributions

This chapter returns to the major contributions of this thesis as defined in Chapter 1, of
which there are four: (1) An extension of the classic WoT to include service components
allowing the integration of algorithms and business processes working on sensor data
or managing actuators. (2) A clean publishing mechanism compatible with RESTful
architectures. (3) A meta-model to define structure and to name the important elements
of the xWoT. (4) A component based approach whereby the meta-model defines the
shape of the building blocks of the xWoT and allows automatic generation of their code
skeletons. Each contribution is reviewed and its impact on the current WoT discussed.

The xWoT

The classic WoT is all about sensors and actuators and how they can be embedded in the
Internet. It is no secret that in the near future, the number of things participating in the
web will outnumber the number of human participants [WEB63]. This leads to a flood
of information that no human can deal with anymore. Big Data applications [B11] and
Linked Open Data [WEB30] can handle huge quantities of information, where humans
are rapidly overwhelmed. Meyer et al. propose a solution where smart devices can link to
algorithms, which are input compatible with smart devices [50]. Although, this seems to
work, the integration is not seamless. Things outside the WoT suddenly cooperate with
services outside the WoT. This is where the xWoT tries to unify the different types of
resources. The xWoT proposes to make no difference between a resource standing for a
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physical device or just for some algorithm. By analyzing the different types of services,
we conclude that there are only 5 classes of services: (i) Short Living, (ii) Real-time,
(iii) Delayed, (iv) Decomposable-Delayed and (v) Business processes.
Smart devices are usually in one of the first two categories. The three others are reserved
for computationally intensive resources. Since the xWoT combines smart devices with
other RESTful web services, a user cannot distinguish between the two anymore. This
comes in handy for aggregating data. The smart home use case in Subsection 10.2.3
contained smart light bulbs and smart doors, all deployed independently. However, the
example also implemented a smart floor and smart building layer. In this use-case,
these two resources can be seen as aggregation of several smart doors and smart light
bulbs. In this way, it becomes possible to get the overall states or updates from several
smart devices by invoking just one, single resource. Such an aggregation of resources have
no physical equivalent, yet they are useful to a point where the WoT cannot ignore them.
The next three categories are also important for the xWoT. Components in these cat-
egories are generally only loosely coupled to their physical counterpart, if any. The
examples presented throughout this thesis show how these services can be seamlessly in-
tegrated into the xWoT. Furthermore, the examples show that mashup applications are
not the solution to all problems. For the xWoT, it is better to provide business logic, as
xWoT component are embedded in the Web of Things.

A Publishing Mechanism

Smart environments rely on events. For example, IFTTT [WEB22], a popular IoT mashup
editor, relies on some initial event to fire adequate reactions. This allows the creation of
simple if-then scenarios like: If: „door opens“ then „Switch floor light on“.
However, the way the system achieves this goal today is suboptimal; if an IFTTT recipe
defines if „the temperature drops below 18�C“ then „increase the thermostat“
then IFTTT continuously polls the website associated with the Netatmo Weather Station
to check the current temperature. This situation could be tremendously improved if the
Netatmo Weather Station could send a notification about events to the IFTTT service.
To improve the situation, the xWoT mandates for a clearly defined pushing infrastruc-
ture to come bundled with each smart device. Subsection 8.2.2 discussed several pushing
mechanisms used in the web and their advantages and disadvantages. Two suitable ap-
proaches for the xWoT were selected: (1) WebSockets and (2) Webhooks. By default,
each xWoT component comes equipped with both approaches, letting the client choose
which method is suitable for the given use-case. The eHealth mashup of Subsection 10.3.3
showed for example, how a WebSocket could be used to implement a distant monitor con-
tinuously displaying sensor readings. The implementation of this example proved that
the chosen approach works and is quite reliable. Therefore, a WebSocket application is
well indicated to follow the evolution of a sensor in real-time over a relative short amount
of time. However, for more isolated events, webhooks are more suitable. Additionally,
using this second approach, a client can register for several distinct events and get notified
about them.
Although it is already possible to add various publishing mechanisms to a smart device,
the real strength of the approach here is its support from the meta-model. This has the
advantage that publisher behaves in a predictable manner. Therefore, upon querying a
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sensor, it is very likely that this sensor offers a sub resource pub/ containing the publisher.
Such conventions are useful for creating semi-automatic mashup applications.

A Meta-Model

The meta-model and its associated tools are the most notable outcome of this thesis.
Erik Wilde perceived early on that the WoT lacks supporting tools and methodologies to
guide system architects and engineers through the design of new WoT components. [79].
This absence of tools and conventions led to the Things crisis. It is possible to overcome
this situation by accepting a common playground. The xWoT meta-model introduces
some conventions each smart device has to adopt. The benefits, are manifold; by adopt-
ing the meta-model, engineers get the methodology to create new smart devices. Since
each future xWoT component is designed as an instance of the xWoT meta-model, the
associated tools take care of supporting the developers in their tasks. These tools can
automatically generate missing parts but also implement skeletons for each required com-
ponent. The developer can therefore concentrate on the core of the components, provide
the business logic and wire the necessary electronics. Furthermore, all smart devices share
some common mechanisms like the implemented publishing approaches. This makes the
behavior of smart devices predictable and eases the creation of either mashup applications
or business processes.

A Component-Based Approach for the xWoT

The natural output of the xWoT meta-model methodology are independent and reusable
components. These are deployed directly on the smart device, with the advantage that
each smart device operates on its own and can be reused in other scenarios. Additionally,
this makes platforms like Xively almost obsolete. They still have some use when it comes
to sharing things, but are no longer necessary for taking full advantage of smart devices.
The components produced by the meta-model and its associated tools are the building
blocks of the WoT and therefore also the xWoT. All other applications that take advan-
tage of smart devices rely upon these building blocks. The meta-model is smart enough to
create the necessary atomic components, which can be re-used in other scenarios. How-
ever, instead of limiting the developer to only primitive smart devices, the meta-model
also embraces virtual devices, a composition of different physical devices. This duality
allows both, a maximum reusability of the generated (device) components and design as
well as implementation of interesting (node manager) components. Previsouly, creating
a smart home like in Subsection 10.2.3 was limited to mashup applications. The meta-
model breaks with this approach and allows for the creation of complex hubs, appearing
to the client like any other smart device.

11.2. Future Work and Open Research Questions

The xWoT meta-model supports the vision of small, independently and deployed smart
devices in all aspects of our lives, each providing a useful service on its own. However, they
can be easily combined into novel applications and adapted to changing needs. Through
the combination of purely virtual services and smart devices the xWoT can take advantage
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of deployed smart devices to produce virtual devices. For a client, there is no difference
between a service tied to a physical device and a service without any attached hardware.
Again, this vision where compositions lead to new xWoT components participates in the
spread of the xWoT. However much work remains to be done. The xWoT meta-model
allows the re-consideration of how mashup applications are built today. Having the meta-
model as a base allows a future with smart mashup applications to be imagined, where
inexperienced users with no IT skills can create and adapt their own mashups. To achieve
this visions several problems needs to be solved.

Event Multithreading

The REST services generated from the model support multiple clients at the same time.
This is mainly due to the underlying HTTP framework, which allows two clients to
subscribe for notifications at the same time. When the service creates an event and
notifies the subscribers, it iterates through the list of subscribed clients and sends out
the notification. While this approach is simple and works well in situations with only a
few subscribers, it gets more complicated as the number of subscribers and subscribed
events grows. Sending a notification involves opening a TCP connection, doing an HTTP
handshake and sending the message. If this action were to take 1 second per client,
this would lead to a high server occupation for a small number of subscribers, resulting
in not all subscribers being notified simultaneously. In this case the generated code
would greatly benefit from an asynchronous approach. The difficulty is finding a good
compromise between the limited capabilities of the relatively cheap hardware and the
gain in time.

Event Language

By providing publishing as a drag and drop component, the meta-model helps to provide
a better pushing mechanism to smart objects. Whereas the use-case for the WebSocket
endpoint is clear and its applicability has been shown through some examples, the ap-
proach based on Webhooks would gain in usability if the system had some predicate
language allowing a user to define which events he is interested in as this removes an-
other decision from the developer. Without such a language, the developer has to define
what amount of change in a system leads to an event. However, this is an almost impossi-
ble task: for a temperature sensor, is a change of 0.2 degrees Celsius a big enough change,
are 10 degrees a big enough change? Chances are high that there is not answer satisfying
all needs. Furthermore, if the developers decide that an event has been generated, it is
pushed to all the clients. In a world with millions of smart-devices this only leads to an
unnecessary congestion of the network with useless notifications.

Discovery

Currently, mashup applications are not portable. They are tied to one given environment.
Transporting them to another environment, even a similar one, requires a good amount
of engineering. This is due to how mashup applications work: the data providers and
data consumers (smart devices and other xWoT services) are mostly hardcoded. If one
smart device changes, the mashup breaks. For some time now, the WS-* world has
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discovered the power of late binding for services, which allows the creation of abstract
business processes where the worker is chosen during the run time depending on the
available services. Mashup applications would benefit in a similar way from such a late
binding approach, as this would allow recipes to be created that users could download
and deploy in their environment (as long as they have the compatible data providers).
Most serious works in the domain of the WoT have briefly brought up the problem of
discovery. A notable amount of papers, however, conclude by favoring mDNS (Domain
Name System) as a discovery mechanism for the WoT, arguing that it is open-source and
well established [rfc7252, 75]. However a true RESTful discovery should respect RESTful
principles, as depicted by R. Fielding.

Semantics

A RESTful discovery mechanism allows deployed smart devices to be found. However,
the discovery itself says nothing about the capabilities of the devices found nor their
inputs and outputs. The only reliable way to define them is by injecting some semantics
into the discovery. Yet, to separate the concerns and keep the protocol clean, semantics
should be done in a separate layer, independ of the discovery. Furthermore, semantics
would not only benefit the discovery of smart devices, but also the creation of mashup
applications. Here semantics would allow the automatic preparation of the outputs of
one components in a format suitable as input for the next component. Since semantics is
used for several tasks, it should also be implemented outside the meta-model. However,
it should take advantage of the definitions and conventions introduced by the latter.

11.3. Final Thoughts

This thesis analyzed the current situation and concludes that the WoT is in a crisis. The
only way out of this crisis is to adopt a common playground and create truly re-usable
smart devices. Through discussing the different aspects in this thesis, we have tried to
give an answer to this problem and point the way out of the Things Crisis. Although the
present work allows for an exit from this crisis, this is only the first step. Embracing the
meta-model and its methodology opens new visions for the future of the WoT. This work
allows a future to be imagined where a company not only sells sensors and actuators but
also builds and sells the accompanying software for turning the hardware into a smart
device. For clients this means that they no longer acquire raw hardware but a ready-to-
be-deployed xWoT component.
Furthermore, in a world full of smart devices respecting the meta-model more sophisti-
cated and intelligent mashup editors can be imagined. Through the discovery mechanism,
such an editor can present the user with a selection of available devices. HTML 5 makes
it easy to build fancy GUIs similar to what users are accustomed to from desktop ap-
plication. Through drag and drop, the found smart devices can be combined into novel
mashups. Semantics is necessary to seamlessly combine the output of one xWoT com-
ponent with the input of the next one. All these ingredients are necessary to create an
ecosystem of smart devices, so the WoT really will be their oyster.
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A
Common Acronyms

ADT Abstract Data Type
AED Automated external defibrillator
ANSI American National Standards Institute
API Application Programming Interface
APT Advanced Packaging Tool
ARPA Advanced Research Projects Agency
ARPANET Advanced Research Projects Agency Network
B2B Business-to-Business
BPEL Business Process Execution Language
BPM Business Process Modeling
BPMN Business Process Model and Notation
CERN Conseil Européen pour la Recherche Nucléaire
CGI Common Gateway Interface
CMS Content Management System
COM Component Object Model
CORBA Common Object Request Broker Architecture
CPU Central Processing Unit
CRM Customer Relationship Management
CRUD Create, Read, Update, Delete
CSS Cascading Style Sheet
DARPA Defense Advanced Research Projects Agency
DBMS Database Management System
DCOM Distributed Component Object Model
DIY Do-it-yourself
DNS Domain Name System
DSL Domain Specific Language
ECG Electrocardiogram
EEG Electroencephalogram
EMF Eclipse Modeling Framework
EMOF Essential MOF
EPC Electronic Product Code
EPCIS Electronics Product Code Information Services
EPFL École Polytechnique Fédérale de Lausanne
ER Entity-Relation
ESB Enterprise Service Bus
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FTP File Transfer Protocol
GNU GNU is Not Unix
GPIO General-purpose input/output
GRDDL Gleaning Resource Descriptions from Dialects of Languages
GUI Graphical User Interface
HATEOAS Hypermedia as the Engine of Application State
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
HVAC Heating, Ventilation and Air Conditioning
IANA Internet Assigned Numbers Authority
IDE Integrated Development Environment
IDL Interface Definition Language
IMP Interface Message Processor
IP Internet Protocol
IRC Internet Relay Chat
ISP Internet Service Provider
IT Information Technology
IoT Internet of Things
JPA Java Persistence API
JSON JavaScript Object Notation
LAN Local Area Network
LED Light-emitting Diode
LIFO Last-in, First-out
M2M machine-to-machine
MDA Model Driven Architecture
MIT Massachusetts Institute of Technology
MOF Meta Object Facility
MVC Model View Controller
NAT Network Address Translation
NFC Near Field Communication
NSFNet National Science Foundation Network
OMG Object Management Group
OS Operating System
OSI Open Systems Interconnection
P2P Peer-to-Peer
PHP Hypertext Processor
POJO Plain Old Java Object
POM Project Object Model
QR Quick-Response
QoS Quality of Service
RDF Resource Description Framework
RDFa Resource Description Framework in Attributes
REST Representational State Transfer
RFC Request for Comments
RFID Radio Frequency Identification
RMI Remote Method Invocation
ROA Resource Oriented Architecture
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RPC Remote Procedure Call
RSS Really Simple Syndication
ReLL Resource Linking Language
SGML Standard Generalized Markup Language
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
SQL Structured Query Language
SSE Server Side Event
SSL Secure Socket Layer
SUS System under Study
TCP Transmission Control Protocol
TLS Transport Layer Security
UDDI Universal Description Discovery and Integration
UDP User Datagram Protocol
UML Unified Modeling Language
URI Unified Resource Identifier
URL Uniform Resource Locator
VRP-TW Vehicle Routing Problem with Time-Windows
W3C World Wide Web Consortium
WADL Web Application Description Language
WSDL Web Service Description Language
WSN Wireless Sensor Networks
WWW World Wide Web
WoT Web of Things
XDR External Data Representation
XMI XML Metadata Interchange
XML eXtensible Markup Language
XML-RPC Extensible Markup Language Remote Procedure Call
XSD XML Schema Definition
XWoT eXtended Web of Things
xWoT extended WoT
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