
A component based approach for the
Web of Things

Andreas Ruppen
Software Engineering Group

University of Fribourg
1700 Fribourg, Switzerland

andreas.ruppen@unifr.ch

Jacques Pasquier
Software Engineering Group

University of Fribourg
1700 Fribourg, Switzerland

jacques.pasquier@unifr.ch

Sonja Meyer
EMPA

Research
St. Gallen, Switzerland

sonja.meyer@empa.ch

Alexander Rüedlinger
Software Engineering Group

University of Fribourg
1700 Fribourg, Switzerland

alexander.rueedlinger@unifr.ch

ABSTRACT
Model Driven Architectures are the holy grail of software en-
gineering. Instead of writing code, developers draw models
from the client’s specification, which are then compiled into
executable code (skeletons). We have taken this principle
and applied it to the WoT. With the help of a meta-model
tailored for the WoT we are able to build models to simulta-
neously take care of the physical and virtual aspects of smart
devices. These models can then automatically be turned
into code skeletons. The emphasis in the meta-model and
its associated tools is reusability. Following the software en-
gineering principle of independent reusable and deployable
components, the outcome of the meta-model compiler are
WoT compliant components.

CCS Concepts
•Computer systems organization → Client-server ar-
chitectures; •Software and its engineering → Layered
systems; Software design techniques; Publish-subscribe
/ event-based architectures;

Keywords
meta-model, Web of Things, model driven architecture, soft-
ware architecture, component based approach, software de-
velopment approach

1 Introduction and Motivation
Looking at the fast growing number of available consumer
grade smart devices, it becomes obvious that the IoT (In-
ternet of Things) is a reality: Belkin has a whole palette of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WoT ’15, October 26 2015, Seoul, Republic of Korea
c⃝ 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4045-8/15/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2834791.2834792

IoT smart devices1, Philips sells their hue lightbulbs2 and
Koubachi their Plant Sensor3, to cite only a few. With the
spread of cheap hardware containing numerous sensors and
actuators, new architectures and paradigms are needed to ef-
ficiently build, connect and manage smart devices. To keep
them manageable and interoperable requires standards. The
WoT (Web of Things) introduces such a standard by impos-
ing the REST (Representational State Transfer) architec-
tural style [6] for all smart devices.

Using REST as the architectural style has proven advan-
tages over other approaches [15]. HTTP is a proven proto-
col, is stable with a large community and has great support
in all operating systems and most programming languages.
Furthermore, RESTful interfaces facilitate the ad-hoc cre-
ation of mashup applications [8, 5, 18].

Yet, the WoT is facing a “things crisis”. There are no
standards or guidelines on how to build new smart devices.
In this paper, we present the vision of an extended WoT
addressing some major shortcomings of the WoT. This vi-
sion is supported by a meta-model tailored for the extended
WoT. Its outcome is a methodology and associated tools to
guide and help developers through the task of creating new
smart-devices. Embracing the meta-model and its associ-
ated tools will lead to deployable and reusable components
for the xWoT (extended WoT) .

2 Related Work
Research shows that, although the WoT is a viable ap-
proach, some important aspects are missing. First, the WoT
only takes into consideration physical smart devices (e.g. a
HVAC device or an AED). Second, pushing information
from servers back to clients is difficult to achieve. Third,
there exist very few guidelines on how to build “good” smart
devices. The research WoT community actively addresses
the first two topics; however, it still largely ignores the third
one, although things are about to change.

Classically, the WoT is all about smart devices with a
RESTful interface [3]. The WoT treats smart devices like

1http://belkinbusiness.com/internet-things
2http://www2.meethue.com/de-ch/
3http://www.koubachi.com/

http://dx.doi.org/10.1145/2834791.2834792


first class citizens, but at the same time, ignores everything
else. However, research has shown that there is some inter-
est in leveraging algorithms and other virtual goods to the
WoT. Mayer and Karam proposed a computational space
where smart devices could link to algorithms compatible
with their outputs [12]. Since smart devices were to link to
these algorithms, they needed to be fully embedded in the
WoT. Meyer and Ruppen went one step further and dis-
cussed how entire business processes can be embedded into
the WoT [13]. On the other hand, smart devices can also be
seen as workers in business processes [14]. Therefore, smart
devices leverage their capabilities to business processes. The
important point of these researches is that smart devices and
other virtual goods should integrate seamlessly with each
other [13].
By definition, in client server systems, the client initiates

the exchange and the server responds to requests. No other
type of communication is possible. Over the years, research
and industry came up with a few architectures to circum-
vent this problem and create, at least apparently, server to
client interactions. Although all of these approaches work,
there are differences in their performances. The most ba-
sic approach is polling or long polling, where a client exe-
cutes repetitive GET requests. Atom and RSS feeds rely on
this approach. Webhooks [7] take a completely different ap-
proach. Instead of having the client requesting a resource
on the server, the client provides an URL where the server
can later contact him. Therefore, the roles are inverted; the
client becoming the server and vice-versa. Another popu-
lar approach are Websockets [11]. Not only do they solve
many problems occurring with other approaches, they per-
form very well. While other approaches like streaming exist,
they only play a minor role today.
Software components have been around for a while. When

the software crisis hit the industry, Ledbetter and Cox pro-
posed relying upon reusable software components, since this
was already a standard in the hardware industry [10]. They
stated that software must be capable of withstanding changes.
Therefore, a key concept is encapsulation and interfaces to
define a software’s specification. According to Szyperski [17]
components are the solution to building robust and reusable
software. Accordingly, components are meant for composi-
tion, which is one way of reusing software. One of the first
approaches to structure the IoT was Haller’s proposal, The
Things in the Internet of Things, which laid the foundations
for the European project IoT-A [1]. Being a compromise
between the views and opinions of the different participants
of the project, the resulting reference model is too generic
to be of any real use. It contains, however, some interesting
points. More recently, the w3c has started a WoT interest
group with the aim of structuring the current IoT [2].
Additionally, much work has been achieved in different

aspects related to the IoT and, more precisely, to the WoT.
Mashup applications and editors have been researched ex-
tensively [5, 9]. The results of these efforts are different
platforms providing more or less sophisticated mashup ca-
pabilities [4]. IoTaaS platforms offer places to link smart
device hardware to a publicly available API. However, all
these discussions completely ignore the smart device itself
and its underlying structure. It is taken for granted that
the smart device already exists.

3 Reusability for the WoT
Ledbetter and Cox [10] identified reusability as one of the
main factors to avoid the software crisis back in the early
80’s. Software components apply Ledbetter’s vision in prac-
tice. They have a clearly defined interface over which they
can communicate with other components, but their inner
guts remain hidden. Furthermore, components are ready
to use. To run, they need to be deployed in a container.
Therefore, components can be seen as the atomic units of
software. New software creates new components, but it can
also rely on already existing components to implement the
services provided. We think that the same concepts should
be true for the WoT. Whereas extensive research has been
done about how to combine smart devices, we propose to go
one step back and to re-think how to build these building
blocks of the WoT.

This vision supports the concept that each smart-device
corresponds to a RESTful web service having a clearly de-
fined interface. Together, they form a deployable and reusable
component. These components have, at the same time, a
physical side made of the sensors and actuators defining the
capabilities of the smart device, and a virtual side trans-
posing those physical attributes into the virtual world. If
these components are well built and structured, they can be
easily deployed, managed and reused by other applications
built on top of smart-devices. Let us consider the exam-
ple of a door. We can admit that a door can be opened
or closed and that it can be locked or unlocked. Therefore,
to build a smart door, the physical side needs 2 actuators,
one for opening and closing the door and another for lock-
ing and unlocking it. Furthermore, the physical side con-
tains two sensors, each reporting one of the two properties.
These physical properties need to be translated into the vir-
tual world. Additionally, the virtual world should offer a
notification system, so that clients (humans and machines)
can rely upon these notifications to take action. These two
facets, the actuators and sensors and their virtual counter-
parts, bundled together already form a component. Relying
on a component based approach allows such components to
always look similar to the outer world, regardless how their
inner structure is. According to Szyperski [17], a component
also needs a container. In the case of the WoT and RESTful
Web services, this container is simply the web.

Of course, we can build all sorts of such simple compo-
nents: smart blinds, smart smoke alarms, smart HVAC etc.
Each of these components is of interest on its own. However,
they can also be grouped together to form new components.
Rather than just a single smart door, imagine now that we
would like to build a smart corridor, containing smart lights
and smart doors. We could do so by creating a mashup
application relying on the capabilities offered by the differ-
ent smart devices composing a corridor. However, a better
approach is to create a new component smart corridor con-
taining the different smart light bulb and smart door com-
ponents as children. Modeling the smart corridor as a new
component rather than using a mashup application has sev-
eral advantages: (1) Already existing and deployed com-
ponents can be reused. (2) The smart corridor component
inherits all the properties of a component. This includes a
well defined event architecture. (3) Since it offers a RESTful
interface, applications can build on top of this component.
(4) Being a component, the smart corridor can be reused
in other scenarios like a smart building. (5) Unlike mashup



applications, components are deployed and always on, even
if no client is currently using it.

Mashup

xWoT
Component

xWoT
Component

Actuators
Sensors

Tags Algorihms

xWoT Meta Model

Figure 1: A three layered approach for reusable components

3.1 Building the Right Components
Before diving into the details of our meta-model, its scope of
application needs to be defined. In any software, algorithms
play a major role. In the WoT, they can occur at different
levels: a mashup application can sometimes be seen as an
algorithm taking different (sensor) inputs and producing a
result. However, algorithms can also be of interest at the
smart device layer. A unit conversion algorithm deployed as
component with a RESTful interface allows sensors to de-
liver a large palette of data format. Deploying algorithms
as components has not only the advantage of reusability but
also allows for a seamless integration of time consuming al-
gorithms [16] within the WoT. For these reasons we state
that an algorithm should be treated in the same way as any
other smart devices. As long as it offers a clear RESTful
interface, it is treated as a first class-citizen. On a larger
scale, this vision applies to all kinds of purely virtual goods.
From a client’s perspective, it is impossible to tell whether
a result actually comes from a smart device, i.e. from a sen-
sor, or is a computed one. Therefore we define the xWoT
as a natural extension of the classic WoT encompassing -
at the same time - physical and virtual goods. This point
of view also covers RESTful APIs like the ones offered by
Facebook and Twitter, which would be outside the scope of
classic WoT applications.
To come back to the previous example, we can imagine a

new xWoT component taking as input the different sensor
values from the smart light bulbs and returning as output
whether there is light in the corridor or not. The advantage
of offering this simple algorithm as a new component, is its
reusability: each corridor can now have its own instance of
this algorithm. Additionally, this aggregation service might
also be useful for other devices, as long as their inputs are
compatible.
Popular mashup editors like IFTTT4 show that events

play a major role. Applications built on top of the xWoT
can get the necessary information by two means: (1) they
can actively fetch the data when needed or (2) they can listen
to events. Whereas the first approach is fully supported by

4https://ifttt.com/

every RESTful API, the second approach requires some en-
gineering and there is no standard for how to push events to
clients. Instead there are a handful of competing and com-
plementary approaches. To overcome this situation, each
xWoT component integrates a well-defined pushing infras-
tructure so that applications can rely upon events. Rather
than proposing yet another event architecture, xWoT com-
ponents integrate a combination of the best available ap-
proaches: each resource capable of generating events con-
tains a child resource responsible for the event architecture.
This contains a WebSocket endpoint, useful in situations
where events occur frequently, plus a Webhook for situa-
tions with less frequent events. Depending on the kind of
event, each client can choose whether a WebSocket or a Web-
hook is more suitable. Additionally, upon subscribing, the
user provides a machine-readable description of the kind of
events he is interested in. Through this mechanism, a client
can specify to be notified only if a given sensor or actua-
tor is in some state. He can for example restrict the events
generated by a smart thermometer to situations where the
temperature is above 30◦C. This helps to keep the amount
of notifications as low as possible.

The vision presented herein is particularly interesting if
supported by the necessary tools and methodologies to au-
tomatically generate such xWoT components. This guaran-
tees that new components meet the meta-model’s require-
ment and stay composable. The reference architecture dis-
cussed in Section 2 is of particular interest. First, it acts as a
starting point for our meta-model. By eliminating its short-
comings and limiting its application to the xWoT, we can
define a simpler meta-model and also provide a model com-
piler, turning instances of the meta-model into almost ready
to deploy xWoT components. Second, taking into account
events and integrating a clearly defined pushing mechanism
opens up the perspective for novel applications. xWoT com-
ponents cannot only answer to what happens but also when
something happens. These two questions are complemen-
tary and depending on the scenario, one or the other is of
interest. Figure 1 introduces a three layered approach to
create reusable and deployable xWoT components. It shows
how the meta-model helps to shape xWoT components and
how classic mashup applications like Xively5 or IFTTT can
build on top of these components. By sitting in-between the
raw physical device or the algorithm and the final xWoT
component, its associated tools support developers through-
out the development lifecycle.

3.2 A Meta-Model for the xWoT
The core concept of the xWoT meta-model is the Entity.
This reflects the point of view adopted by the application
designer and gives birth to the base component. For the
examples used throughout this paper, the Entity would be
the abstract concept of a smart door or the abstract con-
cept of a corridor. The previous section introduced virtual
only goods as first class citizens of the xWoT. Therefore
the Entity can be either a fully blown smart device or some-
thing purely virtual, like an algorithm. In the first case, we
have learned from the examples above that a smart device
has both a physical side and a virtual side. Algorithms,
on the other hand, are virtual only and have no physical
counterparts. Therefore, an Entity is always composed of a

5http://xively.com



Virtual Entity

Resource

Actuator 
Resource

Sensor 
Resource

Service 
Resource

1..*

Publisher 
Resource

Context 
Resource

Physical Entity

Entity

0..1 1

DeviceSensorActuator

1..*

name: EString
method: MethodOperation
output: MethodOutput
input: MethodInput

Method

style: MethodStyle
MethodParam

style: MethodStyle
VEntityParam

name: EString
type: EString

Param
TEMPLATE
QUERY

MethodStyle
XMLJSON
MULTIPARTRELATED
FORM
NONE

MethodInput
XMLJSON
MULTIPARTRELATED
FORM
NONE

MethodOutput
GET
PUT
POST
DELETE

MethodOperation

0..* 0..*

0..*

Figure 2: A Meta-Model for the WoT

virtual part called the Virtual Entity and, sometimes, also
of a physical part called the Physical Entity. To ensure co-
herence between the physical and the virtual world, there is
a one-to-one mapping from the Physical to the Virtual En-
tity. Furthermore, as shown in Figure 2, both are structured
with the composite design pattern. The Physical Entity has
one child node for composition (light blue) and several leaf
nodes (red), one for each kind of hardware. The structure
of the Virtual Entity is slightly different. It also has one
node used for composition (light blue). However, its only
leaf is the Publisher Resource. This is necessary to em-
bed the publishing architecture into any kind of resource.
Therefore, the concrete resources (red) are modeled as chil-
dren of the composite node. Actuator- and Sensor Resources
stand for their corresponding physical counterpart. Service
Resources are necessary to model purely virtual goods like
algorithms. Furthermore, in a very last step, the one-to-one
mapping between the physical and the virtual side can some-
times be relaxed leading to more meaningful APIs. These
simplifications ensure that the generated API (Application
Programming Interface) is as flat as possible. One of these
simplifications combines a Sensor Resource and an Actuator
Resource into a Context Resource. Semantically, a Sensor
Resource only responds to GET requests while an Actuator
Resource responds to PUT requests. However, if the actu-
ator and the sensor are highly coupled (e.g. light switch,
and luminosity sensor), they can be combined into a single
Context Resource accepting both, GET and PUT requests. Fi-
nally, items in yellow are necessary to define the possible
interactions as well as inputs and outputs of the modeled
RESTful service.
The application of the composite pattern is also the key

to building reusable components. As shown in the top part
of Figure 3 for the smart door example, the physical side is
a Device representing the door. The latter is composed of a
Device for the open/close mechanism and a second one for
the locked/unlocked mechanism. Each of these Devices is
composed of a Sensor and an Actuator. Translated to the
virtual world, this gives birth to the exact same structure

as a RESTful web service and the outcome of this model is
exactly one xWoT component. We call this type of compo-
sition atomic.

In the previous section, we discussed a smart corridor ex-
ample. Here, the Physical Entity is a Device representing
the corridor. Its only children are other Devices, one for each
smart thing composing the smart corridor, e.g. smart doors
or smart light bulbs. Such compositions are non-atomic,
meaning that they translate to more than one xWoT com-
ponent; one for the smart corridor, one for each smart door
and one for each smart light bulb. Accordingly, the compiler
translating xWoT models into code skeletons creates three
service modules. Listing 1 shows these three modules. Since
components are reusable, if somebody has already build and
deployed smart doors and/or smart light bulbs, then only
the additional smart corridor component need to be imple-
mented. However, this last component will no re-implement
functionality already provided by the two others. Instead,
requests will be redirected to these components to achieve
the desired effect.

1 aragorn@gondor:src$ ll REST-Servers/
2 total 0
3 drwxrwxr-x 3 aragorn staff 1.0K Aug 18 11:03 NM-

↪→ _corridor_Server/
4 drwxrwxr-x 3 aragorn staff 1.1K Aug 18 11:03 __int:

↪→ doorid__Server/
5 drwxrwxr-x 3 aragorn staff 612B Aug 18 11:03 __int:

↪→ lbid__Server/

Listing 1: Generated modules for the smart corridor use-case

3.3 Meta-Model Compilers
The meta-model also introduces a Model Driven Architec-
ture approach for the xWoT. Instead of writing code, de-
velopers deal with models to create a figure of the physical
world. These models serve as starting point to automatically
generate the necessary code. The rules introduced with our
meta-model allow for such an approach. Since there is a



one-to-one mapping from the Physical to the Virtual En-
tity, the developer only model physical interactions in terms
of actuators and sensors on the physical side. For the pre-
vious smart door example, the developer would model the
physical properties like the ones of Figure 3.

Figure 3: Physical side of a smart door

In a second step, the corresponding virtual side can be
generated automatically by applying the rules introduced
with the meta-model (one-to-one mapping plus relaxing con-
straints). Whenever more than one option is possible, the
compiler ask the user for a resolution. The outcome of this
compilation is a new xWoT model. For the smart door ex-
ample, the outcome of this step would produce the same
model as the one discussed previously on Figure 3. Of
course, the developer can refine this virtual representation
by adding supplementary resources having no physical coun-
terparts. Once the virtual side is finished, a second compiler
takes it as input and generates code skeletons like those from
Listing 1. The model compiler takes care of the non-atomic
compositions and creates the right number of xWoT com-
ponents. Also, the compiler produces the necessary code for
the event mechanism, where needed. Thus, the outcomes of
the model are almost ready to deploy xWoT components.
These skeletons contains the basic RESTful interface def-
inition plus the event infrastructure. The developers still
needs to connect this code with the raw hardware. Since
there are many ways to link hardware to code (I2C for ex-
ample) the compiler creates one class making the interface
between the hardware and the code. This has the advan-
tage that the hardware might change without affecting the
rest of the code. Furthermore the developers also needs to
take care of the different inputs and outputs (XML, JSON
HTML etc.). Once these two gaps filled in, the components
are ready to be deployed.
The common point of all xWoT components is the meta-

model which is expressed as a model in EMF. Therefore, it is
language agnostic. This allows the model compiler to gener-
ate various different implementations ranging from Node.js
over Python to Ruby. For each model, the developer can
choose among the proposed target platforms the most suit-
able one and have the according code generated.

4 Validation
To prove the applicability of the presented meta-model and
its associated tools we have set up a laboratory where stu-
dents can build and deploy xWoT compatible smart devices.
The laboratory provides an isolated testbed where devices
can be deployed an tested. Its infrastructure supports a net-
work topology where devices can live in separated networks.
This is important to test features like cross-border discov-

ery, pushing information beyond physical network bound-
aries etc. Finally, the setup is also responsible to separate
the laboratory from the rest of the university network and
still providing Internet access to all of the deployed smart-
devices.

Figure 4: Entity Model of a smart windows

Since all smart devices need to have their own HTTP
server, we choose Raspberry Pies as a platform for all smart
devices. They natively run Python and Node.js which also
explains why our model compiler supports, among others,
these two target languages. To simplify the communication
with the hardware, we implemented the required sensors and
actuators on various Arduino boards. The boards are then
wired up over the I2C bus with the Raspberry and allow for
a seamless integration. This combination of Raspberry Pi
and Arduino is used for most smart devices deployed in our
lab. The Raspberry Pies run the generated RESTful web
servers and use the I2C protocol to communicate with sen-
sors, actuators or Arduinos. For example, Figure 4 shows
the physical and virtual model of a smart window with au-
tomatic blinds. The blinds can be opened and closed and so
can the window itself. These actions are represented in the
physical part of the model (upper part of Figure 4). With
a first compiler run, the lower part of Figure 4 is generated.
This part can now be tweaked an refined to fit the individual
needs of the current smart device.

1 pi@window-2 ~/shutter-window/app $ ls -Rl
2 .:
3 total 296
4 -rw-r--r-- 1 pi pi 1603 Jul 19 08:34 description.jsonld
5 -rw-r--r-- 1 pi pi 450 Aug 14 16:07 runserver.py
6 drwxr-xr-x 2 pi pi 4096 Sep 29 07:32 xwot_app

8 ./xwot_app:
9 total 40

10 -rw-r--r-- 1 pi pi 388 Sep 26 16:59 RootResource.py
11 -rw-r--r-- 1 pi pi 1105 Sep 29 07:32 BlindsResource.py
12 -rw-r--r-- 1 pi pi 1025 Sep 26 16:59 WindowResource.py
13 -rw-r--r-- 1 pi pi 777 Jul 19 08:34 __init__.py

Listing 2: Generated Server Code for the Smart Blinds

The second compiler translates the model of Figure 4 into
code skeletons which need to be completed. Listing 2 shows
some of the generated files by the compiler. Once the code
gaps filled (mainly I2C bus and I/O formats) the code can
be deployed on the Raspberry Pi and wired up with the
hardware. Figure 5 shows the final hardware implementaion
like it is deployed in our laboratory.



Figure 5: Smart Blinds

5 Conclusion
Through a number of advanced student works conducted in
our xWoT lab, we have successfully evaluated the applicabil-
ity of the xWoT meta-model. Our experiences have shown
that the meta-model greatly simplifies the task of creating
new xWoT components. Another benefit of the meta-model
is the decoupling of the raw hardware from the RESTful
interface. The communication between the two is encapsu-
lated in one module, letting the developer implement the
hardware side according to his preferences. This decoupling
also allows developers to use mock hardware during the de-
velopment and testing phases. If later the real hardware
is hooked up, it is just a matter of changing one module.
Although the meta-model may seem small, it covers all the
necessary aspects of xWoT components and is still open for
future extensions. Currently, we have ongoing research in
two directions: (1) A discovery mechanism tailored for
the xWoT allowing a late binding in mashup applications.
(2) Semantics describing the capabilities of the component.
Furthermore, if our components contain a semantic descrip-
tion, we can start semantic discovery. Therefore, it would
not only be possible to discover actuators and sensors, but
also a smart door or a thermometer. Additionally, user inter-
face can rely upon the semantic description of the resource
to get a hint about what it contains and therefore choose an
appropriate representation. In the near future, the meta-
model, or at least the associated compiler, should also take
care of these aspects and produce semantically discoverable
xWoT components. This would lead to reusable, semanti-
cally meaningful and discoverable xWoT components.

6 References
[1] Internet of Things Architecture. http://iot-a.eu

(accessed August 19, 2015).

[2] Web of Things Interest Group.
http://www.w3.org/WoT/IG/ (accessed August 19,
2015).

[3] D. Guinard. A Web of Things Application Architecture
– Integrating the Real-World into the Web. PhD
thesis, ETH Zurich, Zurich, Switzerland, 8 2011.

[4] D. Guinard, M. Mueller, and J. Pasquier. Giving
RFID a REST: Building a Web-Enabled EPCIS. In
Proceedings of Internet of Things 2010 International
Conference (IoT 2010), Tokyo, Japan, 2010.

[5] D. Guinard, V. Trifa, T. Pham, and O. Liechti.

Towards Physical Mashups in the Web of Things. In
Proceedings of INSS 2009 (IEEE Sixth International
Conference on Networked Sensing Systems),
Pittsburgh, USA, 6 2009.

[6] D. Guinard, V. Trifa, and E. Wilde. A Resource
Oriented Architecture for the Web of Things. In
Proceedings of Internet of Things 2010 International
Conference (IoT 2010), Tokyo, Japan, 2010.

[7] V. Gupta, R. Goldman, and P. Udupi. A network
architecture for the Web of Things. In Proceedings of
the Second International Workshop on Web of Things,
WoT ’11, pages 3:1–3:6. ACM, 2011.

[8] K. Kenda, C. Fortuna, A. Moraru, D. Mladenić,
B. Fortuna, and M. Grobelnik. Mashups for the Web
of Things. In Semantic Mashups, pages 145–169.
Springer, 2013.

[9] J. Lathem, K. Gomadam, and A. P. Sheth. SA-REST
and (S)mashups: Adding Semantics to RESTful
Services. In Proceedings of the International
Conference on Semantic Computing, ICSC ’07, pages
469–476, Washington, DC, USA, 2007. IEEE
Computer Society.

[10] L. Ledbetter and B. Cox. Software-ICs. Byte
Magazine, 10(6):307–316, June 1985.

[11] P. Lubbers, B. Albers, R. Smith, and F. Salim. Pro
HTML5 Programming: Powerful APIs for Richer
Internet Application Development. Apress, Berkely,
CA, USA, 1st edition, 2010.

[12] S. Mayer and D. S. Karam. A computational space for
the web of things. In Proceedings of the Third
International Workshop on the Web of Things, WOT
’12, pages 8:1–8:6. ACM, 2012.

[13] S. Meyer and A. Ruppen. An Approach for a Mutual
Integration of the Web of Things with Business
Processes. In J. Barjis, A. Gupta, and A. Meshkat,
editors, Enterprise and Organizational Modeling and
Simulation, volume 153 of Lecture Notes in Business
Information Processing, pages 42–56. Springer Berlin
Heidelberg, 2013.

[14] S. Meyer, A. Ruppen, and C. Magerkurth. Internet of
Things-aware Process Modeling: Integrating IoT
Devices as Business Process Resources. In CAiSE
2013, 2013.

[15] C. Pautasso, O. Zimmermann, and F. Leymann.
Restful web services vs. ”big”’ web services: making
the right architectural decision. In Proceeding of the
17th international conference on World Wide Web,
WWW ’08, New York, NY, USA, 2008. ACM.

[16] A. Ruppen, J. Pasquier, and T. Hürlimann. A
RESTful architecture for integrating decomposable
delayed services within the web of things. Int. J.
Internet Protoc. Technol., 6(4):247–259, 6 2011.

[17] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2nd
edition, 2002.

[18] R. Tuchinda, P. Szekely, and C. A. Knoblock. Building
Mashups by example. In Proceedings of the 13th
international conference on Intelligent user interfaces,
IUI ’08, pages 139–148. ACM, 2008.

http://iot-a.eu
http://www.w3.org/WoT/IG/

	Introduction and Motivation
	Related Work
	Reusability for the WoT
	Building the Right Components
	A Meta-Model for the xWoT
	Meta-Model Compilers

	Validation
	Conclusion
	References

