
Hindawi Publishing Corporation
International Journal of Telemedicine and Applications
Volume 2009, Article ID 279091, 13 pages
doi:10.1155/2009/279091

Research Article

Enhancing E-Health Information Systems with Agent Technology

Minh Tuan Nguyen, Patrik Fuhrer, and Jacques Pasquier-Rocha

Department of Computer Science, University of Fribourg, 1700 Fribourg, Switzerland

Correspondence should be addressed to Patrik Fuhrer, patrik.fuhrer@unifr.ch

Received 30 April 2008; Accepted 1 September 2008

Recommended by Yang Xiao

Agent Technology is an emerging and promising research area in software technology, which increasingly contributes to the
development of value-added information systems for large healthcare organizations. Through the MediMAS prototype, resulting
from a case study conducted at a local Swiss hospital, this paper aims at presenting the advantages of reinforcing such a complex
E-health man-machine information organization with software agents. The latter will work on behalf of human agents, taking
care of routine tasks, and thus increasing the speed, the systematic, and ultimately the reliability of the information exchanges.
We further claim that the modeling of the software agent layer can be methodically derived from the actual “classical” laboratory
organization and practices, as well as seamlessly integrated with the existing information system.

Copyright © 2009 Minh Tuan Nguyen et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

The business of today’s complex organizations such as
hospitals in a healthcare network relies on sophisticated
information systems which often inherit many weaknesses
from the past. For instance, due to its lack of flexibility,
a legacy information system cannot integrate the ever-
increasing requirements in order to assist the users or to
free them from many routine tasks. (A legacy information
system represents a massive, long-term investment in the past
[1], with poor system quality, design, and architecture. It is
costly to adapt to rapidly changing business requirements.)
This weakness of legacy information systems is one of many
aspects of the “automation gap.” Another major weakness
relates to the increasing physical mobility of users. Many
legacy information systems are designed for users working
at fixed client workstations in fixed offices. They do not take
into account recent advances in mobile technology such as
PDAs, mobile phones, and smartphones. In many legacy
information systems, the information flow still requires
human interaction between actors either face-to-face or
through the plain old telephone communication system to
get things done (information delivery, alert sending, people
search, feedback, etc.). Automation gap, lack of mobility, and
direct human interaction result in an inefficient information
flow and data processing:

(i) nonautomated information search and retrieval are
time-consuming;

(ii) errors may occur in data transmission by humans;

(iii) users must be physically present at either end of
the communication link to successfully establish a
conversation (i.e., only synchronous interaction);

(iv) the lack of a systematic activity log makes it difficult
to determine the responsibilities of actors when
problems or errors occur during a business process.

This research aims at applying a systematic agent technology
approach to overcome these weaknesses. The design of a
software agent layer on top of a legacy information system
offers many advantages to users:

(i) it adds interesting properties to the information
system: ubiquitousness, intelligence, scalability, sys-
tematic management, logging of the information
flows, and so forth;

(ii) it helps humans to interact efficiently among them-
selves and with the information system. Indeed,
human effort and time can be saved by transferring
routine tasks from humans to software.



2 International Journal of Telemedicine and Applications

After this first introductory part, Section 2 provides
background information on software agents, agents plat-
forms, and development methodologies in general.

Section 3 presents a case study conducted at the HCF
Laboratory (HCF is the French acronym for Hospital of the
state of Fibourg, Switzerland) . This section is further divided
as follows:

(i) the mission and the information system of the HCF
Laboratory are presented;

(ii) the weaknesses and potential problems of the current
information system are identified;

(iii) finally, a software agent-based solution to enhance
the system is proposed.

Section 4 focuses on the medical multiagent system
(MediMAS) prototype, which represents our first implemen-
tation of the proposed agent-based solution. It simulates
an end user’s (lab personnel, physician) point of view by
considering software agents as personal assistants and by
showing them in action.

Section 5 shows how it was possible to define the
requirements and to sketch the architecture of the prototype
using a well-defined and systematic approach, and this
section also briefly describes its main components.

Finally, Section 6 concludes this paper by summarizing
the main achievements of our work and by discussing some
extensions and improvements planned for the future.

2. Background

It is out of the scope of this paper to offer full background
information on software agents and their related technolo-
gies. Therefore, the three next subsections only provide a
short introduction to the domain and refer the interested
reader to the abundant literature for further details.

2.1. What is an Agent? The term “agent” appears in a
wide spectrum of research areas such as economics, physics,
biology, mathematics, artificial intelligence, and software
engineering. Therefore, a unified notion of agent is difficult
to extract from the research literature. In this section, we
do not aim to coin a new definition, but to highlight
the fundamental properties of agents from two published
definitions.

Definition 1. An autonomous agent is a system situated
within and a part of an environment that senses that
environment and acts on it, over time, in pursuit of its own
agenda and so as to effect what it senses in the future [2].

Definition 2. An agent is a small, autonomous, or semi-
autonomous software program that performs a set of
specialized functions to meet a specific set of goals, and
then provides its results to a customer (e.g., human end-
user, another program) in a format readily acceptable by that
customer [3].

The first definition proposes the most general notion of
agent which may be a person, a robot, a piece of software,
and so forth. The second definition focuses on agents in the
software domain which is of interest to us. Both definitions
exhibit the following basic properties of software agents:

(i) autonomy: agents have some degree of control over
their actions and can work without intervention of
humans;

(ii) social ability: agents can coordinate their actions and
cooperate with other agents to achieve their goals,
using a common language to communicate with each
other;

(iii) reactivity: agents can perceive their environment and
respond to environmental changes;

(iv) proactiveness: agents can act on their own initiative
to achieve their goals instead of simply reacting with
the environment.

For our research purposes, we further characterize a software
agent as a running program object, capable to initiate, receive,
execute, or reject a message autonomously to attain its goals
during its life cycle.

2.2. Agent Platforms. An agent platform is a software envi-
ronment in which agents are incarnated and operate to
achieve their goals. The agent platform must provide the
following minimum set of functionalities [4, 5]:

(i) agent management (creating, starting, removing,
migrating agents, etc.),

(ii) agent communication,

(iii) supervision of agents, error notification,

(iv) security mechanism.

Today, several platforms have been developed (e.g.,
JADE [6], JACK [7], AgentBuilder [8], Aglet [9], etc.) and
researches are being conducted to define new platforms for
building agent systems. JADE was selected based on two
criteria:

(i) the selected platform is well-proven;

(ii) it is scalable for our research and experimental
purposes.

Java Agent DEvelopment Framework (JADE) is a soft-
ware framework fully implemented in the Java language.
It simplifies the implementation of multiagent systems
through a middleware that complies with the Foundation
For Intelligent Physical Agents (FIPA) specifications and
through a set of graphical tools that supports the debugging
and deployment phases. (FIPA is an IEEE computer society
standards organization that promotes agent-based technol-
ogy and the interoperability of its standards with other
technologies [10].) This agent platform can be distributed
across machines (which do not even need to share the same
OS) and the configuration can be controlled via a remote



International Journal of Telemedicine and Applications 3

Chemistry lab
personnel

Lab director

Microbiology lab
personnel

Haematology
lab personnel

Responsible
physicians

Laptop

Workstation

Workstations

Laptops

Data Data

Data

Servers

Server

Telephone communication system

WinDMLAB Multisite of datamed SA

Information system infrastructure

Layer 3

Layer 2

Layer 1

Figure 1: Layers of the current laboratory information system.

GUI. JADE has been developed by the Telecom Italia Lab [6],
and the Agent and Object Technology Lab at the University
of Parma [11]. It is open-source, cost-free, and offers the
developer complete control over the framework. We refer the
interested reader to [12] for a good introduction to the JADE
agent platform.

2.3. Agent-Oriented Methodologies. The concept of agents
was first introduced in the 1970’s. However, the development
of agent-based systems is a relatively new domain of software
engineering. Today, several agent-oriented methodologies
have been developed (e.g., Gaia [13], MaSE [14], and MAS-
CommonKADS [15]). They are based on different theoretical
foundations [16]: artificial intelligence (AI), object-oriented
Programming (OOP), combination of AI and OO, as well as
i∗ organization modeling framework (Tropos) [17].

These methodologies contribute significantly to the
rigorous and systematic development of agent-based sys-
tems. The JADE Methodology [18] is a new agent-oriented
methodology that supports the ontology approach. It
encompasses the analysis and design phases to develop
software agents on the JADE platform. This methodology
proposes to build the ontology at the end of the design phase
in order to share the knowledge between software agents.

3. HCF Laboratory: Current Organization and
Software Agent Solution

3.1. The HCF Laboratory. The HCF Laboratory [19] provides
medical analysis ordered by hospitals in the state. The
laboratory is located on several sites with different domains:
haematology, immuno-haematology, chemistry, and micro-
biology. It receives daily hundreds of orders with specimens,
analyzes the specimens, then delivers final results to the
requesters (doctors, hospital departments, etc.). The method
of transmission of test results depends on their urgency level.

Besides the lab equipment for carrying out medical
analysis, the personnel of the HCF Laboratory are supported
in their daily tasks by the WinDMLAB Multisite laboratory
information system [20], coupled with a traditional tele-
phone communication system. They constitute two major
components of the current HCF Laboratory Information
System (cLIS).

cLIS ensures the availability of medical results in a
centralized database and their transmission:

(i) between departments and sites of the laboratory,

(ii) between the laboratory and the HCF,

(iii) between the laboratory and other requesters in the
province of Fribourg.



4 International Journal of Telemedicine and Applications

Lab. director
agent

Lab. director

Physician Physician agent

Yellow pages
agent

Lab. personnel
agent Lab. personnel

cLIS

Integration agent
Alert manager

agent

Audit agent

Logs

Interaction between the agents in MediMAS and yellow pages agent of the agent platform
Interaction between the agents and actors in MediMAS

Figure 2: MediMAS overview.

Figure 3: Patrik’s laboratory personnel agent GUI.

Each requester (doctors, hospital departments, etc.) can
access and review the test reports on their patients at any level
of detail.

The WinDMLAB Multisite system and the traditional
telephone communication system must coexist to achieve all
the functionalities as cLIS was initially designed for. Indeed,
several scenarios still require the telephone communication
system to get things done, for example, in the following
circumstances:

(i) a lab technologist calls a physician to transmit
patient’s test results;

(ii) a physician calls the laboratory to obtain by phone
the test results;

(iii) a lab technologist asks, by phone, his director to make
a decision in an emergency situation, and so forth.

Figure 1 illustrates cLIS as a three-layer system in which
both the laboratory information system and the telephone
communication system coexist:

(i) the first layer defines the information system infras-
tructure, which is composed of servers running
different operating systems and application software
in a computer network;

(ii) the second layer is the WinDMLAB Multisite system;

(iii) the third layer provides the telephone communica-
tion system which allows requesters and laboratory
staff to exchange test results via voice and fax.

One can notice that human actors interact with each other
directly or indirectly through the second and third layers.

3.2. Potential Problems. cLIS raises numerous potential
problems [21]:

(i) even though the major part of results (80%) are
transferred through automats and WinDMLAB Mul-
tisite system, the quality of services provided by
cLIS depends to a more or less extent on human
factors, for example, any mistake of a lab technologist
in transferring test results to a doctor may cause
dramatic consequences on patients;

(ii) cLIS does not allow the requesters to know when
results become available;

(iii) the processes which take place in the telephone
communication system (layer 3) cannot be logged
automatically in cLIS for monitoring and tracking
purposes;



International Journal of Telemedicine and Applications 5

Figure 4: Tuan’s physician agent GUI.

Figure 5: Tuan’s physician agent GUI—after nlab-007 has been confirmed.

(iv) physicians who use cLIS spend a lot of time searching,
retrieving, consulting, and interchanging the test
results;

(v) to establish a successful phone communication, two
actors must be present, therefore, time is wasted if
either one cannot reach the other when needed;

(vi) because of the time-consuming use of cLIS in many
scenarios, physicians and laboratory personnel have
less time for their real medical activities.

The above-identified problems, caused by human opera-
tions, often prevent information to flow smoothly from

cLIS to actors and vice versa. These problems illustrate the
so-called “automation gap” [22, 23]. What is needed is a
systematic, strategic approach that automates error-prone
human processes.

3.3. A Software Agent Solution. The “automation gap” may
be filled using different software technologies, for example,
JavaSpaces with SMS message technology, Web services
technology, multiagent technology, and so forth. It is out
of the scope of this paper to compare these technologies.
Our purpose is to propose a methodology for allowing
us to migrate from the legacy human agent-centered cLIS



6 International Journal of Telemedicine and Applications

Table 1: The three simulated specimens.

Criticality/priority None Urgent

Non-critical nlab-007 nlab-008

Critical — nlab-009

toward an enhanced software agent-based system. In cLIS,
actors (laboratory personnel, laboratory director, physicians,
etc.) are human agents. A human agent is a professional
characterized by experience, skills, intelligence, reactiveness,
proactiveness, and ability to work autonomously and to
cooperate with other human agents. They also have weak-
nesses inherent to human beings. Our proposal aims at
designing software agents which will work on behalf of
human agents with similar characteristics. In other words,
our solution delegates daily routine tasks performed by
human agents to software agents. In this new approach,
each actor is assigned a personalized software agent which
acts as his personal assistant. We also say that the actor
is an assistant’s owner. When talking about these personal
assistants, we could also use the “virtual twin” metaphor
[24] or consider them as avatars representing humans like
in virtual worlds. The assistant receives a list of things to
do from its owner, performs the assigned tasks in close
cooperation with other software agents, and delivers the final
result to the owner. In our solution, the software agents are
designed on Layer 3, shifting the telephone communication
system up to the fourth layer (cf. Figure 1). The software
agent solution offers significant advantages for cLIS:

(i) the features and functionalities of WinDMLAB Mul-
tisite are maintained, preserving the investment in
this legacy laboratory application;

(ii) in the new software agent-based cLIS, the delegation
of routine tasks from human to software agents
(personal assistants) allows human actors to focus
their attention on specimen analysis, test result inter-
pretation, medical decision making, and so forth;

(iii) the new software agent-based cLIS, coupled with
mobile devices (PDAs, mobile phones, smartphones,
etc.), allows the actors to view the test results trans-
mitted by personal assistants anywhere and anytime;

(iv) all events and actions are systematically logged
and centralized to support auditing of the system.
Traceability and exception investigation, for example,
to answer a patient’s complaint, is also improved.

4. The MediMAS Prototype

The MediMAS prototype [21] is the first experimental
implementation of the proposed agent-based solution. A case
study was conducted at the HCF Laboratory to test it in the
real world, and to explore different practical aspects.

4.1. Agents as Personal Assistants. MediMAS has six agent
categories:

(i) physician agents,

(ii) lab personnel agents,

(iii) lab director agents,

(iv) alert manager agent,

(v) integration agent, and

(vi) audit agent.

Figure 2 depicts their organization in which the agents assist
different categories of humans in their daily tasks. This figure
also shows the social ability of agents to cooperate with each
other in order to automate the information flow between the
actors themselves, as well as between the actors and the cLIS.

4.2. Software Agents in Action

4.2.1. Environment Setup. In the environment of our Med-
iMAS prototype, the integration agent (riAgent) plays a
central role. Therefore, it is launched first with the JADE
platform before starting any other agent. When the setup
is complete, the agents are attached to the MediMAS’s
containers (a JADE container is a runtime environment for
agents [25]):

(i) riAgent is the integration agent,

(ii) amAgent is the alert manager agent,

(iii) adAgent is the audit agent,

(iv) pAgents are the physician agents,

(v) lpAgents are the lab personnel agents,

(vi) ldAgents are the lab director agents.

In the MediMAS system, each human actor (physician,
lab personnel, lab director) is assigned an Agent, and
simultaneously, one or more GuiAgents. For example, a
single agent pAgent TuanAgent and two GuiAgents are
assigned to the physician Tuan.

We now setup our sample WinDMLAB database by
feeding it with the fictitious test results of specimens nlab-
007, nlab-008, and nlab-009 in order to simulate the three
test results which are recorded into the database by the lab
analysers, and validated by the lab technologist. (Our sample
WinDMLAB database was developed using SQLite RDBMS
[26].)

Let us introduce the actors who will play different roles
in our scenario:

(i) Tuan is a physician in the HCF and is assigned the ID
3;

(ii) Jacques is the lab director;

(iii) Patrik is a lab technologist in HCF Laboratory: he is
working on the specimens: nlab-007, nlab-008, and
nlab-009, ordered by a caregiver Tuan.

In the following scenario, starting with the notification
of results availability, we study in finer detail the human
actors, their assigned personal assistant agents, and their
interactions.



International Journal of Telemedicine and Applications 7

Figure 6: Jacques’ lab director agent GUI.

Phase I
Real world system analysis

Phase II
Domain ontology definition

Phase III
Agent-based modelling

Phase IV
Implementation

Figure 7: The phases of the methodology.

4.2.2. Notification of Results Availability.

(i) Patrik has finished the analysis of all specimens.
The three test results are recorded into WinDMLAB
database. Table 1 shows the priority of the specimens
and their degree of criticality. (The priority of an
analysis is set by its requester and the degree of
criticality depends on its result and is set by the lab
technologist.)

(ii) At completion of the nlab-007 analysis, Patrik
observes that the test results are noncritical (see
Table 1). In order to notify the availability of the test
results to Tuan (requester ID = 3), Patrik enters nlab-
007 and clicks on the button beside the NLAB field
to automatically fill in the other fields (Figure 3).
Finally, Patrik clicks the “notify result” action button
to direct his lpAgent to announce the availability of
test results to the requester.

(iii) Patrik further treats the other results in the same
manner.

(iv) Patrik’s lpAgent sends the announcements of the
results to Tuan’s pAgent.

(v) It also sends these announcements to amAgent which
records the announcements and starts to monitor
closely the read/unread status of the new test results.

4.2.3. Acknowledgments of Notification Receipt.

(i) Concurrently with amAgent, Tuan’s pAgent receives
the announcements and refreshes the list of pending
results in the upper pane of its window by adding
the new announcements of nlab-007, nlab-008, and
nlab-009 test results, flagged as “available” in the
status of announced Result column (Figure 4).

(ii) Tuan clicks on the received announcement nlab-007
in the list of pending results in order to preview
the details of the test results. Tuan’s pAgent requests
riAgent to retrieve the contents of the nlab-007 test
results and displays the contents of the nlab-007 test
results in the lower pane of its window (Figure 4).



8 International Journal of Telemedicine and Applications

Define
vocabulary

Determine
business processes

Determine
use cases

Define/refine
domain ontology

[Identified new
concept/action

/predicat/relation] [Identified new agent]

Define agents’ tasks,
workflows and behaviours

Establish
agents’ models,

roles in organization

[Otherwise] [Otherwise]

[Identified
new task/
workflow/
behaviour]

Associate agents
with tasks, workflows and behaviours

Define/refine domain ontology
Identify the

concepts

Identify the
actions

Identify the
relations

Identify the
predicates

Implement
agent system

(on selected platform)

Implement
agent system

JADE platform

Agent
classes

Behaviour
classes

Ontology
classes

P
h

as
e

I
R

ea
lw

or
ld

sy
st

em
an

al
ys

is
P

h
as

e
II

D
om

ai
n

on
to

lo
gy

de
fi

n
it

io
n

P
h

as
e

II
I

A
ge

n
t-

ba
se

d
m

od
el

lin
g

P
h

as
e

IV
Im

pl
em

en
ta

ti
on

Figure 8: Development methodology.

(iii) Tuan clicks the “confirm” button to acknowledge
receipt of the notified announcement of nlab-007 and
thus directs his pAgent to send this acknowledgement
to amAgent.

(iv) amAgent updates the status of nlab-007 as “read” and
removes the nlab-007 announcement from his own
internal list. This terminates the monitoring of nlab-
007 by amAgent.

(v) Once the announcement is flagged as “read,” Tuan’s
pAgent removes nlab-007 from the list of pending
results (Figure 5).

(vi) Tuan further acknowledges the nlab-008 result.

One notices that, in the pAgent’s window, each an-
nouncement is first flagged as “available” during a predefined
time interval, for example, 20 minutes for normal test



International Journal of Telemedicine and Applications 9

Laboratory assistant calls
the physician back by phone

to give him the results

Inform that the
result is
available

[Not critical
thus not urgent]

[Critical
thus urgent]

Do the requested
analysis

[Physician wants to be called back
as the result becomes available] Result

becomes
available

[Physician chooses to
phone the laboratory

to get the result]
asks for results by phone

Physician

Ask for analysis
[Physician chooses

to access WinDMLAB
to request the result] Physician accesses

WinDMLAB to get the results

Physician
knows the result Treat patient

L
ab

or
at

or
y 

as
si

st
an

t
P

hy
si

ci
an

Figure 9: The business processes of the HCF laboratory.

Abstract agents

O
nt

ol
og

ie
s 

(r
ul

es
, b

eh
av

io
rs

,..
.)

an
d 

co
m

m
un

ic
at

io
n 

(l
an

gu
ag

es
, p

ro
to

co
ls

,..
.)

T
oo

ls
 a

nd
 u

ti
lit

ie
s

P
er

so
nn

el
 a

ss
is

ta
nt

u
se

r 
in

te
rf

ac
e 

ag
en

ts

P
er

so
nn

el
 a

ss
is

ta
nt

co
re

 a
ge

nt
s

Sy
st

em
 su

pe
rv

is
or

ag
en

ts

Alert manager
agent

R
es

ou
rc

e 
in

te
gr

at
or

an
d 

au
di

t
ag

en
ts

WinDMLab
integration agent

Laboratory
ontology

Platform for agent
based applications

Generic framework for
personnel assistant and
integration agents

Physician,
lab assistant

and director agent

JADE platform

Figure 10: Overview of the software architecture.

results; and 10 minutes for critical ones. Thanks to the close
monitoring of pending announcements, amAgent alerts
pAgent as soon as an announcement has not been confirmed
within the predefined time interval. pAgent immediately
flags the alerted announcement as “1st reminder,” then “2nd
reminder,” and so on in the Status of Announced Result
column.

4.2.4. Problem Detection and Alert.

(i) For the nlab-009, amAgent has not yet received an
acknowledgment message from Tuan’s pAgent within
the preset time interval. After three unsuccessful

warnings, amAgent escalates up the organizational
hierarchy by sending an alert to Jacques’ ldAgent.

(ii) Jacques’ ldAgent receives the nlab-009 alert from
amAgent and displays it in the ldAgent’s window
(Figure 6).

(iii) Jacques clicks on the nlab-009 alert in order to
preview it. Jacques’s ldAgent requests riAgent to
retrieve the contents of the nlab-009 test result and
displays the contents of the nlab-009 test results in
the lower pane of its window.

(iv) Jacques contacts Tuan to manually transmit the test
results to him.



10 International Journal of Telemedicine and Applications

Table 2: Tasks performed by agent categories.

Agent categories Tasks

Physician agent

Receives notification of test results availability from the lab personnel agents.

Receives alerts of unread available test results from the alert manager agent.

Notifies the physician that test results are available.

Queries the integration agent for test results according to search criteria determined by the physician.

Receives test results data from the integration agent.

Displays test results data to the physician.

Informs the alert manager agent about the read/unread status of the test results sent to the physician.

Informs the audit agent before and after each action.

Lab personnel agent
Notifies the alert manager agent that test results are available.

Notifies the physician agents that results are available.

Informs the audit agent before and after each action.

Lab director agent

Receives alerts from the alert manager agent signaling the abnormal unread status of a test result.

Reports alert to the lab director.

Acknowledges the alert manager agent that the lab director read the alert sent to him.

Informs the audit agent before and after each action.

Alert manager agent

Alerts the lab director agent as soon and as the abnormal unread status of a given test result is detected.

Receives test results from the lab personnel agent.

Receives from the physician agent the status “test results have been read by physician.”

Receives from the lab director agent the status “alert message has been acknowledged by the lab director.”

Informs the audit agent before and after every action.

Integration agent
Retrieves test results from cLIS, based on the query issued by the physician agent or the lab director agent.

Delivers extracted test results to the requester agent.

Informs the audit agent before and after every action.

Audit agent Receives the actual action start/end notifications and log them with their date and time.

(v) Jacques clicks the “confirm” button to acknowledge
receipt of the nlab-009 alert and thus directs his
ldAgent to send this acknowledgment to amAgent.

(vi) AmAgent updates the status of nlab-009 as “read,”
and removes the nlab-009 announcement from his
own internal list. This terminates the monitoring of
nlab-009 by amAgent.

(vii) Once the announcement is flagged as “read,”
Jacques’s ldAgent and Tuan’s pAgent remove nlab-
009 from their respective windows.

(viii) Throughout the above-simulated scenario, each
agent sends to the audit agent (adAgent) the start
and stop times of every performed task along with its
relevant information (date and time, involved actors,
action, etc.).

We have simulated some specimens to demonstrate the
working of assistant agents in the MediMAS prototype and
the benefits of a software agent approach to enhance a legacy
information system. In order to fully grasp the power of
our solution, one however must consider the real laboratory,
where hundred of specimen analysis are ordered everyday

by dozen of physicians. After a rather simple configuration
process, each human actor will be able to transparently rely
on his software counterpart to be reminded what he has to do
next with respect to the hospital regulations. Furthermore,
all communication exchanges and reminder warnings will be
coordinated, timely delivered to all the appropriate actors,
and properly logged for further references.

At this stage, the attentive reader has certainly noticed
that we used a very high level approach in order to describe
the concrete run-time working of the MediMAS prototype.
It is, however, very important for her to understand that
MediMAS components are not just plain objects, but they
are, indeed, software agents in the sense of the definition
given at the end of Section 2.1. Because of that, the use of
agent technologies in general and of an agent platform in
particular is a necessity if one does not want to reinvent the
wheel by implementing from scratch many low-level services
such as naming and yellow pages services, code mobility
support, debugging and monitoring/management facilities,
security mechanism, agent communication, or resource
control. For example, the alert manager agent, amAgent
introduced above, is a running program object, with its
own thread of control (i.e., having its own autonomy),
which



International Journal of Telemedicine and Applications 11

(i) reacts to physician and lab personnel agents messages
by updating its test results pending list;

(ii) has an aim to timely detect and to act upon test results
with abnormal unread status;

(iii) acts autonomously (i.e., without the necessity of a
special external event or method call) in order to
fulfill its goal. It does so by constantly monitoring
its test results pending list and by sending warning
messages to the appropriate agents (physician and lab
director ones) according to the hospital regulations.

Messages are based on the FIPA ACL Message standard [10],
and the behaviors or agent “intelligence” are programmed in
Java classes using either plain procedural code or declarative
rules with the help of the Jess to JADE Toolkit developed by
our research group [27]. Note that with the latter technology,
it is even possible to change the agent behavior by modifying
rules at run-time (e.g., escalating up the organizational
hierarchy after two instead of three unsuccessful warnings
or warning another physician in the same group if available
instead of the lab director).

5. Development Methodology

We have designed our own “in-house” methodology,
inspired by the theoretical foundations mentioned
in Section 2.3. More precisely, we adapted the JADE
Methodology [18] to our own purposes by integrating the
ontology in the earlier phases of the modelling process.
Our strategy has been applied to develop the MediMAS
prototype. The next paragraphs present it in four phases (see
Figure 7), while Figure 8 summarizes it and put in evidence
the relationships between its different phases.

5.1. Phase I: Real-World System Analysis. The analyst per-
ceives the current system in order to understand its goals,
problems, and its future requirements. This phase aims
at defining a common vocabulary and describing the
current organization of entities (actors, human agents),
use cases, and/or business processes of the system. The
deliverables of Phase I consist in a well-defined set of goals
and requirements, the common vocabulary describing the
entities with their organization, a set of identified use cases,
and business processes. In our case study, the outputs of our
real-world system analysis are the three-layer information
system structure of the HCF Laboratory (Figure 1), and UML
activity diagrams of its business processes (Figure 9).

5.2. Phase II: Domain Ontology Definition. The Domain
Ontology Definition phase takes the deliverables of Phase
I as input and aims at defining the domain or application
terminology standards and semantics. To this end, the
analyst focuses on concepts, actions, predicates and relations

between concepts. In MediMAS, we adopt the following
guidelines to build the ontology:

(i) Concepts are substantives (e.g., doctor, patient, anal-
ysis, etc.).

(ii) Actions are verbs or verbal phrases (e.g., SendResult,
Alert, SendAvailableList, etc.).

(iii) Predicates are expressions that make statements
about something, which can be evaluated true, false
or indeterminate (e.g., isTestResultCritical, isResult-
Comfirmed, etc.).

(iv) Relations are expressions that establish the relation-
ship between concepts.

The output of this phase is the domain or application
ontology, that actors will use to understand each other in
their communications.

In software engineering, ontology development tools,
such as Protégé [28], TopBraidComposer [29], etc., have
been developed in order to assist the ontologists to build
the domain or application ontology efficiently. The interested
reader is refered to [30] for a graphical overview of the
ontology we defined using the Protégé suite of tools.

5.3. Phase III: Agent-Based Modelling. The modelling phase
consists in the following set of tasks using the deliverables of
Phase I and II as inputs:

(i) identify and create eligible software agents which will
be assigned to actors;

(ii) determine the tasks (also called the responsibilities)
of each agent;

(iii) specify the workflow of elementary operations in
each task and the agent’s operational behavior;

(iv) assign tasks, workflows, and behaviors to agents
according to their roles in the organization.

Figures 7 and 8 draw our attention to the iterative nature
of the tasks within Phase III on one side, and between Phases
II and III on the other side. Indeed, successive refinement
steps are required in order to enrich the domain ontology
as new concepts, actions, predicates, and relations between
concepts are identified.

The deliverables of this phase are the documents:

(i) describing the agents in different categories, and

(ii) specifying all the tasks, workflows, and behaviours,
and their assignment to agents.

The agent categories and their assigned tasks in MediMAS
are summarized in Table 2.

5.4. Phase IV: Implementation. The previous phases are
platform-independent. In Phase IV, the selection of a
platform closely impacts the implementation process. In our
case study, the JADE platform was selected to implement the
MediMAS prototype.



12 International Journal of Telemedicine and Applications

This phase involves the programmer team to implement
and test the agent-based system according to the model spec-
ifications. To this end, the programmers use the deliverables
of the previous phases as inputs, and then translate them
into system components which are extensions of the existing
classes in JADE, namely:

(i) designed agents are translated into classes of agents
according to the terminology used in JADE;

(ii) designed tasks, workflows, and behaviours are con-
verted into classes of behaviours in the sense of JADE.

The domain ontology must also be implemented as exten-
sions of the existing ontology in JADE. This task is achieved:

(i) either by manually coding vocabulary, bean class-
es, ConceptSchema, AgentActionSchema, Predicate-
Schema, and so forth, or

(ii) through the bean generator plug-in for Protégé [31].

The completion of phase IV results in a multiagent system
that fulfils the defined user goals and requirements and
operates on the selected platform. It would be out of the
scope of this article to fully describe the software architecture
of the MediMAS prototype. It is nevertheless worth giving an
overview of its main software components. (The interested
reader can find the class diagram of MediMAS as imple-
mented on the JADE platform in [30] and its complete source
code is available at [32].)

A typical layered approach has been adopted (see
Figure 10): the upper layer is an abstract layer providing
the basic classes, interfaces, and agent types, and it directly
extends the JADE platform. The second layer offers the main
functionalities and default behaviors for each kind of identi-
fied agent type: resource integration for seamless interfacing
with legacy systems, audit agent for addressing logging issues,
and alike system supervisor agents which enhance the system
with some new services and the personnel assistant agents
which embody the “virtual twin” paradigm. Note that this
latter category is split into core and user interface agents. This
separation allows for a one-to-many relationship between a
personal agent’s core part and several user interface agents
which are deployed on the humans’ computing devices
(desktops/laptops and/or smartphones and/or web browsers,
etc.).

These agent families form the main vertical blocks of
our architecture. Eventually, the lowest layer is dedicated for
application specific implementations of the agents. In the
case of MediMAS, this layer contains

(i) the WinDMLAB integration agent,

(ii) the alert manager agent,

(iii) the lab assistant, lab director and physician personnel
assistant agent.

Beside these blocks, there are two further components
(rightmost on Figure 10): one for ontology related issues and
one for miscellaneous tools and utilities.

This layered architecture actually provides a general
framework that could be used for other application domains
than our medical laboratory use case. In order to reuse the
framework, one could simply inject a new ontology, attach
the according behaviours to the personnel assistant agents,
and implement the business logic of the system supervisor
agents.

6. Conclusion

This research paper discusses major features and benefits of
our agent-based approach to enhance a hospital laboratory
legacy information system. Such approach preserves the
investment in the legacy system and allows developers to
seamlessly add new features, which aim at filling the automa-
tion gap, satisfying the needs of growing user mobility, and
providing intelligent assistance to users. Finally, a methodol-
ogy to systematically adopt and implement such a solution is
proposed and it is validated with the implementation of the
concrete MediMAS prototype.

6.1. Achievements. The current version of the MediMAS pro-
totype provides physicians, lab personnel, and lab director
with software agents running on desktop computers. (The
whole source code and related documentation are available
for download from [32].) These agents act as personal
assistants to free the actors from tedious and routine work
so that they can really concentrate on their medical activities.

6.2. Work in Progress

6.2.1. Mobile MediMAS. Our research will extend the model
to allow software agents to run on mobile devices (e.g., PDAs,
mobile phones, smartphones, etc.). The agents that work for
the same owner on different devices must collaborate and
synchronize their tasks to efficiently assist the owner who
may work anywhere and anytime. A first prototypal version
of this extended model is already available [32, 33], but still
needs some fine tuning.

6.2.2. MediMAS Simulation Tool. The development of a sim-
ulation tool for MediMAS is another topic of our research.
The tool offers the HealthCare experts the opportunity to
visualize the working of MediMAS prototype by simulation,
and to get an insight in the properties of an agent-
based system in the HealthCare domain (ubiquitousness,
intelligence, reactiveness, proactiveness, scalability, etc.). A
first version of the tool is now available [34] and has been
extensively used in order to debug and test the MediMAS
prototype.

6.2.3. Adaptive MediMAS Agents. Withing another project,
we developed the Jess to JADE (J2J) toolkit [27], which
allows JADE agents to seamlessly use the Jess rule engine
[35] in order to perform appropriate behavior. This solution
has been tested on our alert manager agent and it allowed
us to declaratively define and modify the agent behavior at
runtime.



International Journal of Telemedicine and Applications 13

6.2.4. Methodology Enhancement. The light in-house agent-
based system design methodology has been defined, and
applied in the MediMAS experimental project in HealthCare
domain. Future extensions will enhance the methodology
with additional modelling possibilities to design more com-
plex real-world systems.

References

[1] J. Bisbal, D. Lawless, B. Wu, and J. Grimson, “Legacy
information systems: issues and directions,” IEEE Software,
vol. 16, no. 5, pp. 103–111, 1999.

[2] S. Franklin and A. Graesser, “Is It an agent, or just a program?:
a taxonomy for autonomous agents,” in Proceedings of the
Intelligent Agents III Agent Theories, Architectures and Lan-
guages (ATAL ’96), vol. 1193, pp. 21–35, Springer, Budapest,
Hungary, August 1996.

[3] Daniel H. Wagner Associates, Inc., “Software Agents,” http://
www.wagner.com/technologies/softwareagents/softwareagents
.html.

[4] F. Bellifemine, A. Poggi, and G. Rimassa, “Developing multi-
agent systems with a FIPA-compliant agent framework,”
Software: Practice and Experience, vol. 31, no. 2, pp. 103–128,
2000.

[5] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa,
JADE—A White Paper, http://jade.tilab.com/papers/2003/
WhitePaperJADEEXP.pdf.

[6] Telecom Italia Lab, “Java Agent DEvelopment Framework,”
http://jade.tilab.com/.

[7] Agent Oriented Software Limited (AOS), “JACK Documenta-
tion,” http://www.aosgrp.com/products/jack/documentation
and instructi/jack documentation.html.

[8] Acronymics, Inc., “AgentBuilder,” http://agentbuilder.com/.
[9] IBM, “Aglets,” http://www.trl.ibm.com/aglets/.

[10] FIPA, “IEEE Foundation for Intelligent Physical Agents,” FIPA,
http://www.fipa.org/.

[11] The Agent and Object Technology Lab at University of Parma,
University of Parma, Italy, April 2008, http://aot.ce.unipr.it/.

[12] F. L. Bellifemine, G. Caire, and D. Greenwood, Developing
Multi-Agent Systems with JADE, John Wiley & Sons, New York,
NY, USA, 2007.

[13] F. Zambonelli, N. Jennings, and M. Wooldridge, “Multi-agent
systems as computational organizations: the Gaia methodol-
ogy,” in Agent-Oriented Methodologies, chapter 6, pp. 163–171,
Idea Group Publishing, Hershey, Pa, USA, 2005.

[14] S. A. DeLoach and M. Kumar, “Multi-agent systems engineer-
ing: an overview and case study,” in Agent-Oriented Method-
ologies, chapter 11, pp. 317–340, Idea Group Publishing,
Hershey, Pa, USA, 2005.

[15] C. A. Iglesias and M. Garijo, “The agent-oriented methodol-
ogy MAS-CommonKADS,” in Agent-Oriented Methodologies,
chapter 3, pp. 46–78, Idea Group Publishing, Hershey, Pa,
USA, 2005.

[16] B. Henderson-Sellers and P. Giorgini, Eds., Agent-Oriented
Methodologies, Idea Group Publishing, Hershey, Pa, USA,
2005.

[17] P. Giorgini, M. Kolp, J. Mylopoulos, and J. Castro, “Tropos:
a requirements-driven methodology for agent-oriented soft-
ware,” in Agent-Oriented Methodologies, chapter 2, pp. 46–78,
Idea Group Publishing, Hershey, Pa, USA, 2005.

[18] M. Nikraz, G. Caire, and P. A. Bahri, “A methodology for
the development of multi-agent systems using the JADE

platform,” Computer Systems Science and Engineering, vol. 21,
no. 2, pp. 99–116, 2006.

[19] Hôpital cantonal de Fribourg, Kantonspital Freiburg,
http://www.hopcantfr.ch/index.html.

[20] Datamed SA: Informatique médicale et scientifique: WinDM-
LAB, http://www.datamed.ch/cms/front content.php?change-
lang=1&idcat=73.

[21] A. Ruppen, Systèmes multi agents—MediMAS: etude de
cas dans le domaine du E-health care, Bachelor thesis,
Department of Informatics, University of Fribourg, Fri-
bourg, Switzerland, September 2007, http://diuf.unifr.ch/
softeng/student-projects/completed/ruppen/.

[22] S. W. Gozdan, “How big is your process automation gap?”
Mortgage Banking, vol. 68, no. 1, p. 176, 2007.

[23] A. Rasmussen, “Closing the IT Process Automation Gap,”
Ptak, Noel & Associates LLC—White Paper, May 2007,
http://www.opalis.com/upload/whitepapers/Closing the IT
Process Automation Gap.pdf.

[24] A. Gachet and P. Haettenschwiler, “The virtual twin: a
socialization agent for peer-to-peer networks,” International
Journal of Intelligent Information Technologies, vol. 1, no. 2, pp.
56–67, 2005.

[25] D. R. A. de Groot and F. M. T. Brazier, “Identity management
in agent systems,” in Proceedings of the 1st International
Workshop on Privacy and Security in Agent-Based Collabo-
rative Environments (PSACE) at the 5th International Joint
Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS ’06), N. Foukia, J. Seigneur, and M. Purvis, Eds., pp.
23–34, Future University, Hakodate, Japan, May 2006.

[26] SQLite, http://www.sqlite.org/.
[27] J. Vogt, Jess to JADE toolkit (J2J)—a rule-based solution sup-

porting intelligent and adaptive agents, M.S. thesis, Department
of Informatics, University of Fribourg, Fribourg, Switzerland,
August 2008.

[28] Stanford Center for Biomedical Informatics Research, “The
Protégé Ontology Editor and Knowledge Acquisition System,”
http://protege.stanford.edu.

[29] TopQuadrant, Inc., “TopBraid Composer,” http://top-
braidcomposer.com/.

[30] M. T. Nguyen, P. Fuhrer, and J. Pasquier-Rocha, “Enhancing
legacy information systems with agent technology: the case of
a hospital medical laboratory,” Internal Working Paper 07-11,
Department of Informatics, University of Fribourg, Fribourg,
Switzerland, December 2007.

[31] C. V. Aart, Ontology Bean Generator, http://protege.cim3.
net/cgi-bin/wiki.pl?OntologyBeanGenerator.

[32] MediMAS, “Medical Multi-Agent Systems,” http://diuf.unifr.
ch/softeng/projects/medimas/.

[33] J. Schaeppi, Extension de MediMAS: développement et
déploiement d’agents JADE sur des supports mobiles,
Bachelor thesis, Department of Informatics, University
of Fribourg, Fribourg, Switzerland, September 2008, http://
diuf.unifr.ch/softeng/student-projects/completed/schaeppi/.

[34] B. Pointet, MediMASim: a test and simulation toolkit
for the medimas application, Bachelor thesis, Department
of Informatics, University of Fribourg, Fribourg, Switzer-
land, June 2008, http://diuf.unifr.ch/softeng/student-projects/
completed/pointet/.

[35] Jess, “Jess, the Rule Engine for the Java Platform,”
http://herzberg.ca.sandia.gov/.


