
The Challenge of Supporting Distributed MOOs
Main Difficulties and their Solutions within the MaDViWorld Software

Framework

Patrik Fuhrer and Jacques Pasquier-Rocha

University of Fribourg
Department of Informatics
Rue P.-A. de Faucigny 2

CH-1700 Fribourg
Switzerland

patrik.fuhrer@unifr.ch
WWW home page: http://diuf.unifr.ch/people/fuhrer/

Abstract. MOOs are object-oriented multi-user virtual communities. Al-
though their underlying virtual world paradigm is much richer than the doc-
ument one traditionally supported by the world wide web, their dissemina-
tion on the Internet suffers from two main weaknesses: (1) they are typically
based on centralized architectures and do not scale well; and (2) they usually
propose a rather closed software environment with limited extension and pro-
gramming facilities. For example, one cannot populate them with arbitrarily
complex objects programmed in a mainstream object-oriented language such
as Java, C#, C++ or Smalltalk.

MaDViWorld, the extensible software framework presented in this paper, al-
lows for distributing the rooms of a given MOO on an arbitrarily large number
of machines, each running a small server application. It also offers the pos-
sibility of easily filling up a room with new Java objects at the condition of
respecting a small set of conventions. Finally, it provides the hooks for tak-
ing care of some of the most challenging distributed MOO problems such as
managing event propagation and securing access to resources.

Keywords: MOO, Virtual World, Distributed Framework, Event Propaga-
tion, Security

1

2

Contents

1 Introduction 3

2 Virtual Worlds Main Concepts 4

2.1 An Example Scenario . 4
2.2 Terminology . 4
2.3 The MaDViWorld Model . 5

3 Implementation 6

3.1 Global View . 6
3.2 Programming Objects . 9

4 The Distributed Event Model 11

5 Security 14

6 Conclusion 16

3

1 Introduction

Virtual Community or Inhabited Virtual World finds its roots in the earliest text-
based multi-user games: MUDs1. Continuing the trend was the development of
MOOs (adding object-oriented features to the MUDs), IRC2 and conferencing sys-
tems, as well as the World Wide Web and its many progeny in the 1990s. Finally
“inhabited” 2D and 3D virtual spaces have risen by enhancing text-based chat chan-
nels with powerful graphical interfaces. Although very different in their concrete
application, all these systems have a major similarity: they are based on a virtual
world paradigm, which allows for much richer interactions than the classical docu-
ment metaphor traditionally supported by the World Wide Web. Indeed, multiple
users and active objects interact in the same space and therefore have a direct im-
pact on each other. Within such systems, if a user interacts with an object, the
other connected users can see her avatar representation and start a dialog with her.
Moreover, it is possible for a user to modify some properties of the world and all the
nearby users are immediately made aware of it. Unfortunately, these systems also
suffer from the same weaknesses, which hold back their larger dissemination:

• Since many events must be correctly synchronized and propagated in order to
maintain a given virtual world consistency, its software architecture is typically
very centralized. A single central server contains all the world pertinent data
and assumes its accessibility, consistency and persistence, while many clients
allow for interaction with the other users and the various objects of the world.
This approach has two main weaknesses. First, the whole system depends
completely on the central server robustness. Secondly, it does not scale well.
Just imagine what the web would be today if all its contents would need to be
regrouped on a single server having to coordinate all its users.

• A virtual world system usually proposes a rather closed software environment
with limited extension and programming facilities. For example, an open en-
vironment should allow a vi-world developer (i.e. one who is ready to do some
real programming in order to extend the world facilities) to add new types of
object to the world by using a standard technology3 and not by resorting to
ad-hoc languages. Such an environment should also allow for fully overriding
the programming of avatar and/or room standard features, which means much
more than merely supporting their parameterization.

MaDViWorld
4, the software framework presented in this paper, represents a success-

ful attempt to propose a software environment able to support the richness of the
virtual world paradigm without yielding to the main weaknesses briefly introduced
above. It allows for distributing the rooms of a given world on an arbitrarily large
number of machines, each running a small server application. It also offers the possi-
bility of populating the rooms with new full-fledged Java objects at the condition of
implementing a small set of well-defined interfaces. In other words, MaDViWorld soft-
ware architecture combines the great advantages (scalability, robustness,...) found in

1Multi-User Dungeons, see [15]
2Internet Relay Chat
3An acceptable solution would be to require her to use a mainstream programming language such

as Java, C#, C++ or Smalltalk and to offer her a structured set of abstract and concrete classes
that have to be implemented and inherited, respectively, in order for an object to be “vi-world
compatible”.

4
MaDViWorld stands for Massively Distributed Virtual World, see [7], [8] and [5].

4

the document paradigm with the shared virtual world metaphor and contrasts with
the “many clients-one server” architectures typically proposed by most virtual world
platforms. Some similar approaches are presented by [3] in Urbi et Orbi, by [11] in
MASSIVE or by [4] in DIVE.
This paper is organized as follows. Section 2 clarifies the terminology and introduces
the MaDViWorld model, thus setting up the foundations for the rest of the paper.
Section 3 presents an in depth discussion of the software architecture that has been
chosen in order to implement the model. The two next sections concentrate on two
additional challenging aspects: event distribution and security. Finally, Section 6
summarizes MaDViWorld main achievements and provides an insight into the future
of the project.

2 Virtual Worlds Main Concepts

The first part of this section is dedicated to a short typical scenario, which should
be possible in a virtual world. Building on this story, we then identify and extract
the main concepts that are involved and we present the MaDViWorld model.

2.1 An Example Scenario

Suppose we have a virtual world, a user wants to “live” in. As the user strolls through
the world, she discovers it and its components, objects and other users like her. Doing
so, she comes to a place where she sees two other users playing a battleship game
and a little crowd watching them. She joins the observers and, after a while, she says
to her neighbour: “Do you want to play this game with me?” As the other agrees,
they go to another place where the user has placed a copy of the previous game and
they start to play. When they are finished she puts the battleship object back in her
bag and leaves the other user.

2.2 Terminology

The main concepts emerging from the above simple scenario are:

• Avatar : The human user needs a representation in the virtual world and is
therefore personified by an avatar. Through her avatar the user can walk, “fly”,
look around the virtual world, manipulate objects and perform virtual actions.
In other words, avatars allow users to interact with the virtual world and other
users and also allow navigation through the world. We see one’s avatar as
being her representative in Cyberspace. In text-based virtual realities, such as
MUDs, one’s avatar consists of a short description which is displayed to other
users who have their avatars “look” at her. In a 3D graphical world, the avatar
can take the shape of an animated cartoon or of your favorite fantasy hero.

• Object : The objects found in the discussed virtual worlds do not just represent
passive data, but are active objects the avatars can execute (e.g. the battleship
game). These objects can be multi-user and even have many observers like in
our little story. Last, but not least, objects can be copied and/or moved around
by the avatar.

• Location: Avatars and objects have a location. This concept is natural and
necessary, since it supports navigation.

5

• Navigation: It is the action of going from a given location to another. Avatars
can perform this task, either if there is a link between these two locations, or
directly if they know the address of the subspace.

• Subspaces: Each location can be seen as a subspace of the whole virtual world.
It is natural to consider that the shared virtual space is composed of many
different subspaces. Furthermore, the avatars and the objects are always con-
tained within one given subspace.

• Event : The avatar has to be aware of its environment. This awareness is
achieved by the concept of events. Another avatar entering one’s subspace or
a move in the battleship game are simple examples of such events.

• Event producer : An event always has a source which produces it. For instance,
the game could produce a “game finished event”.

• Event consumer : An event can be catched and interpreted by an event con-
sumer, which then reacts properly or simply ignores it. For instance, the players
and the audience of a given game understand that the game is finished.

• Event propagation: Each event has an event propagation space. This space is
a delimited zone around an event producer, within which an event consumer
will be aware that the event has occurred.

The concepts above have been formalized and integrated within a general theoretical
model (see [5]). The rather mathematical formalism used in the latter, however, is
out of the scope of the present paper and not necessary for its further comprehension.
Therefore, the next subsection provides a more practical and concrete description of
the adopted model.

2.3 The MaDViWorld Model

Let us use the metaphor inherited from the early MUDs and MOOs for the subspaces:
they are called rooms and the links between them are naturally called doors.

In order to avoid the dependance on a central server, the rooms have no “geographi-
cal” location relative to the entire world. Furthermore, within our actual prototype,
the avatars and objects contained in a given room also have no location relative to the
latter. In this basic model, when the avatar is in a given room, it only sees three lists
containing respectively the available doors to other rooms, the present avatars and
the present objects (see Figure 1). This is the simplest topological model supporting
immersion, i.e. the feeling of sharing a space with other users and objects.

Figure 2 illustrates the conceptual model of a simple running world composed of four
rooms and inhabited by three avatars. One can see that one of the rooms contains
an active object. It is also worth noting that, in order to maintain a consistent view
of the world from its various components (i.e. avatars, rooms and active objects), a
distributed event model is necessary. The basic mechanism is inspired by the observer
pattern [10]. There are event producers and event consumers. The event consumers
register event listeners to event producers, also called event sources, in order to be
notified by them of events of interest. Figure 3 summarizes this mechanism.

6

Figure 1: A MaDViWorld “basic” avatar user interface: Its name is Hans and it is
located in room R2. Avatar Sylvia is also present, as well as an active object called
theGame. Hans has nothing in his bag. Sylvia entered and deposited the active object
from her bag and Hans just restarted it.

3 Implementation

This section shows how our concrete solution for the MaDViWorld model is imple-
mented as an object-oriented framework. The first subsection gives a global view of
the software architecture, while the second one concentrates on the programming of
new objects.

3.1 Global View

MaDViWorld is a distributed framework and adopts a multi-layered and multi-tiered
architecture. More precisely there are abstraction layers and orthogonal deployment
tiers. This decomposition allows for an optimal separation of concerns between the
different building blocks. Figure 4 illustrates the global structure of the framework.
First, let us recall the roles of each abstraction layer, which alltogether embody the
fundamental principle called separation of interface and implementation [2]:

• The upper abstraction layer (core) contains the interface parts of all the main
components of the system. It defines the functionality of each component and

7

Hans
Sylvia

Battleship

R2

corridor

James

R1

corridor

Figure 2: The conceptual view of a simple world

e1 e1

e2

event
consumer c1

e1

e3
event

consumer c1

event
consumer c3

event source s

event
listener l1

event
listener l2

event
listener l3

event
listener l4

Figure 3: An event source with its listeners and consumers

provides clients with guidelines for using them. The specification of these inter-
faces could be strengthened by using Design by Contract [14]. As MaDViWorld

is implemented in the Java language which does not directly support Design by
Contract, rigorous specification must be provided by a good documentation of
the interface methods. Thus, this first layer defines clear boundaries between
the components and defines a communication protocol between them.

• The middle layer consists of the default implementation packages of the frame-
work. It contains the implementation part of the components and the actual
code for the functionality they provide.

• The lower layer, finally, is for the concrete applications, where all the applica-
tion specific classes are placed. This layer may provide specializations of the
features provided by the middle layer.

The main idea behind this decomposition could be summarized with the following
idiom: “Program against interfaces, not classes.” Adopting this technique is a way
to achieve information hiding and encapsulation and results in a low coupling of
components. This approach supports changeability and eases the task of altering
a component’s behavior or representation. The Bridge [10] pattern, for example,
addresses this principle.
Second, let us give some details about the vertical tiers which correspond to the three
main applications interacting when using virtual worlds.

8

Framework packages

Default Implementation packages

Specific Implementation packages

room
factory room room

setup wobjectavatar

core

event

util

Avatar Room
Factory Room Room

Setup Object

Figure 4: Vertical and horizontal layers of the MaDViWorld framework

• Avatar application: This leftmost tier contains the classes and packages im-
plementing the avatar. It is a client application allowing for the connection to
rooms, and for the interaction with objects and other avatars.

• Room Server and Rooms: The second tier is composed of two parts. The imple-
mentation of the room interface supports a single room. The second component
of this layer is dedicated to a room server application that acts as a room fac-
tory. A factory, in this context, is a piece of software that implements one of
the “factory” design patterns introduced in [10]. The room server manages the
rooms existing on a given host and controls the creation of new ones on behalf
of a setup application.

• Setup Application and Objects: This tier contains the packages concerning the
objects. A room setup application allows for the creation and customization of
rooms on distant room servers, and for the installation of objects into them.

There remain two building blocks that were not discussed yet: event and util. These
are in fact two utility packages. The first one is dedicated to the remote event mech-
anism and the second one contains packages and classes used by all the components
of the framework (such as http file servers, custom classloaders, etc.).
Each of the three main tiers can be deployed separately. The applications are de-
ployed with the packages directly concerning themselves, as well as those common to
all applications, i.e. the core layer, as well as the event and util packages. Indeed, in
a massively distributed world, the subspaces are distributed on an arbitrarily large
amount of machines. The only requirement is that each machine containing a part
of the world runs a small server application and is connected to other machines.
With Figure 5 it becomes clear that the simple virtual world of Figure 2 can be sup-

9

ported by many physical configurations. For instance, four machines interconnected
by a network, each hosting one ore several applications (room server and/or avatar
application). The most relevant point is, that there is no central server.

R2

corridor

Battleship

Hans

corridor James

Sylvia

R1

LAN / WAN

Figure 5: One possible physical configuration for a simple world

3.2 Programming Objects

Objects occupy a special place in the distributed virtual world. At the user level, they
aim to resemble as much as possible objects of the real world in terms of mobility. At
the programmer level, objects are the main hot spot of the framework, since adding
a new type of object is the most obvious way to customize an existing virtual world.
This subsection explains the extension mechanism and the software design of the
object related classes.
Objects must offer a graphical user interface (GUI) to the avatar who wants to use
them. As the avatar and the object generally run on different computers, the GUI
of the object must be executed on the avatar’s host and remotely interact with the
application logic of the object. To achieve this, a design pattern fostering a clean
separation between presentation and logic is adopted.
Thus, when a developer wants to add a new object NewObj to the framework she has
to separately provide5 the three following pieces of code:

1. the classes supporting the logic of the object (see Figure 6). This is done

5For detailed instructions about how to create a new type of object the reader is invited to
consult the MaDViWorld Object Programmer’s Guide on the project’s web site [6].

10

by implementing a class (NewObjImpl), which extends the abstract WObjectImpl
framework class;

2. the classes dedicated to the presentation, by extending WObjectGUIImpl (see
Figure 7). This graphical class essentially serves as a graphical container of the
JPanel subclass NewObjPanel. Hence the latter can directly be designed with
any Integrated Development Environment (IDE).

3. the object’s pure functionality, expressed via the methods of its NewObj inter-
face. This interface is the coupling point between UI code and functionality
code.

One advantage of this architecture, in which UI and functionality are loosely coupled,
is that multiple UIs can be associated with the same object. Associating multiple
UIs with one object lets you tailor different UIs for clients that have particular UI
capabilities, such as Swing or speech. Clients can then choose the UI that best fits
their user interface capabilities. In addition, you may want to associate different UIs
that serve different purposes, such as a main UI or an administration UI, with an
object.

«interface»
WObject

«interface»
java.rmi.Remote

«interface»
NewObj

WObjectImpl

NewObjImpl

Ja
va

 c
la

ss
es

fr
am

ew
or

k
cl

as
se

s
im

pl
em

en
ta

tio
n

cl
as

se
s

Figure 6: Implementation of the logic part of an object

However this clean separation does not provide a two-way communication channel
between these two parts. The aggregation relationship between the NewObjPanel class
and the NewObj class provides a one-way communication channel (from the UI to the
logic), but the logic cannot send information back to the UI. The distributed event
model presented in Section 4 fills this gap.
Indeed, the UI registers the NewObjRemoteEventListener depicted on Figure 7 to the
logic part of the object, which extends RemoteEventProducer (see Figure 9). This
allows the object logic to easily notify the remote event listeners of the object’s
presentations. In this way, an object’s logic part does not have to care about the

11

NewObjRemoteEventListener

+initComponents()

NewObjGUIImplNewObjPanel

+initComponents()

WObjectGUIImpl

«interface»
WObjectGUI

+notify()

«interface»
RemoteEventListener

javax.swing.JPanel

«interface»
NewObj

«interface»
java.rmi.Remote

-content

11

-context

1 1

-eventConsumer

1 1

-logic1 1

+getUI()

UIFactoryImpl

+getUI()

«interface»
UIFactory

Ja
va

 c
la

ss
es

fr
am

ew
or

k
cl

as
se

s
im

pl
em

en
ta

tio
n

cl
as

se
s

Figure 7: Implementation of the presentation part of an object

presentation’s implementation details. Furthermore, an arbitrarily number of UIs
can be attached to a single logic simultaneously. Thus, one has a solution which
allows a given object to be shared by several avatars using it at the same time.
The sequence diagram of Figure 8 dwells on the mechanism that allows the avatar
to get a GUI to a remote object, thus elucidating the role of the UIFactory6. This
mechanism was inspired by one of the first successes of the Jini.org Jini Community
Process, the ServiceUI project [17, 18], led by Bill Venners of Artima Software.
The ServiceUI API enables multiple user interfaces to be associated with a single
Jini service, allowing the service to be accessed by users with varying preferences
and accessibility requirements on computers and devices with varying user interface
capabilities.

4 The Distributed Event Model

Events play a crucial role in the MaDViWorld framework because they glue its different
components together. Indeed, events are the only communication channel between
rooms and avatars, rooms and objects and between two objects. Moreover Subsection
3.2 showed yet another situation where remote events play a central role, namely,
offering a communication channel from object logic to its UIs. Schematically, each
time the state of one of the world components changes, a corresponding event is
triggered by the altering subject and consumed by the registered listeners, which

6To allow the UIFactory to return a concrete GUI, some resources (e.g., sound files, icons, etc.)
may need to be downloaded. For sake of simplicity, Figure 8 does not show how these resources are
transferred.

12

anAvatar anObject

aUIFactory

aGUI

getUIFactory()

getUI()

anOperation()

�����

Figure 8: An avatar getting a GUI to an object

react appropriately. The management of all these events is a complex task for several
reasons: (i) they are in reality remote events and several network related problems
can occur; (ii) some of the events have to be fired to only a subset of all the listeners;
(iii) some listeners may not be interested in every type of event. The distributed
event model of the framework must handle all these situations.
The two last points listed above, lead to the elaboration of an abstraction for cre-
ating unique identifiers. DUID is the acronym for Distributed Unique ID and is
implemented in the DUID class7. Each room, room server, object or avatar has an
associated DUID that is generated by the framework and that never changes during
its life cycle, so that it can be identified without ambiguity. The use of such a DUID
was inspired by [9].
It is now time to take a closer look at the framework classes which aim to solve the
mentioned problems (see Figure 9):

• The RemoteEventListener interface extends the java.util.EventListener interface
and defines the single notify() method. Any object that wants to receive a
notification of a remote event needs to implement it.

• The RemoteEventProducerImpl class implements two interfaces: (i) RemoteEvent-
ProducerRemote is an interface defining the methods that interested event con-
sumers can remotely invoke to register their listeners; (ii) RemoteEventProduc-
erLocal does not extend java.rmi.Remote since the methods it defines are not
offered to remote clients. Therefore RemoteEventProducerImpl provides the
methods needed to register, unregister and notify event listeners used to com-
municate between different parts of the system. The register method takes as
parameter the event type the listener is interested in. There are five possibili-
ties: all events, avatar events, object events, room events and “events for me”.
With the latter, the listener is only informed of events addressed explicitly to
it (thanks to its DUID), without paying attention by whom.

7The DUID is the combination of a java.rmi.server.UID (an identifier that is unique with respect
to the host on which it is generated) and of a java.net.InetAddress (a representation of the host’s
IP address where the object was created which makes the UID globally unique).

13

• The RemoteEventNotifier helper class notifies in its own execution thread a given
event listener on behalf of a RemoteEventProducerImpl.

• The RemoteEvent class defines remote events passed from an event producer to
the event notifiers, which forward them to the interested remote event listeners.
A remote event contains information about the kind of event that occurred, a
reference to the object which fired the event and arbitrarily many attributes.

The design pattern illustrated by Figure 9 is used through the whole framework
for the collaboration between the three different parts of MaDViWorld (i.e. avatars,
rooms and objects) and the utility event package. Note that the three of them are
both implementing the RemoteEventProducerRemote interface and are client of its
default implementation, RemoteEventProducerImpl. The operations defined by the in-
terface are just forwarded to the utility class. With this pattern we have the suited
inheritance relation (a WObject ‘is a’ RemoteEventProducer) without duplicating the
common code. A lot of similarities with the Proxy pattern defined in [10] can be
found. This composition based design is more flexible and better adapted to our
class hierarchy than the straightforward approach consisting of just inheriting of a
common RemoteEventProducerRemote implementation. Note that the main inspira-
tion of this structure comes from the Obsever [10] pattern and its publish-subscribe
interaction kind and presents some similarities with the Jini distributed event pro-
gramming model, which is specified in [1] and thoroughly explored in [12].

+register()
+unregister()

Avatar- / Room- / WObjectImpl

java.util.EventListener

+notify()

«interface»
RemoteEventListener

«interface»
java.rmi.Remote

«interface»
java.lang.Runnable

RemoteEventProducerImpl

RemoteEventListenerImpl

+getSource()
+getAttribute()
+getID()

RemoteEvent

-myEvent
-myListener

RemoteEventNotifier

«interface»
Avatar / Room / WObject

rep.register()

-rep

1

1

-eventConsumer

1 1

+notifyListeners()
+notifyAllListeners()

«interface»
RemoteEventProducerLocal

+register()
+unregister()

«interface»
RemoteEventProducerRemote

«interface»
java.io.Serializable

1 *

rep.unregister()

java.rmi.server.UnicastRemoteObject

Ja
va

 c
la

ss
es

fr
am

ew
or

k
cl

as
se

s
im

pl
em

en
ta

tio
n

cl
as

se
s

Figure 9: Pattern used for integrating the event model in the framework

14

5 Security

Security, privacy and trust are crucial elements in virtual world systems. One has to
distinguish between two levels of security concerns: (i) the system level and (ii) the
virtual world level. In order to address system level security concerns (e.g., passing
through firewalls, encrypted communication protocol, downloaded proxy code trust,
etc.), facilities offered by the Java and Jini technology can be used. In the actual
version of the MaDViWorld project, system level security is not the first priority, and
some further configuration would be necessary prior to large scale deployment. This
section clarifies how the framework manages security at the virtual world level, i.e.
security sensitive actions inside the virtual world.

There are several critical actions that objects and avatars may undertake while visit-
ing the rooms of a virtual world: access a given room, use an object, remove or copy
an object from a given room, etc. All these interactions concern a room and another
entity (an avatar or an object).

Thus the basic principle of MaDViWorld ’s security model is that the subspace grants
access rights or privileges to the avatars and objects. Rooms achieve this task by
using challenge-response tests. A challenge-response test is a test involving a set of
questions (or “challenges”), that the other entity has to answer in order to pass the
test. If the entity provides a satisfactory response to the challenges then it is deemed
that the entity has passed the test. The question often relies on the possession of a
secret of some sort. A simple example challenge is asking for a password, and the
adequate response is the correct password.

The software structure adopted to realize this mechanism adopts the Proxy [10] design
pattern. Indeed, the RoomAccessor provides a factory for room proxies. For each
existing room there is exactly one corresponding RoomAccessor registered in a remote
lookup registry or service. The RoomAccessor’s checkAnswer() method provides clients
of the room it represents with an appropriate RoomSecurityProxy depending on how
the challenge is solved.

The RoomAccessor’s getQuestion() method returns an instance of a Question imple-
mentation class. One can see on Figure 10 that the framework offers two default kinds
of questions represented by two8 lightweight classes: (i) EmptyQuestion is an empty
implementation of the Question interface whose execute() method simple returns null;
(ii) PasswordQuestion represents the simple challenge asking for a password. It fulfills
its task by invoking the getPassword() method of the solver it receives as parameter.

The framework also contains a Solver class, which contains one method per challenge
supported by the security system. This class simply provides dummy implementa-
tions of each method, i.e. simply returning null. This class is intended to be refined
and some methods overridden in order to provide correct solutions to the proposed
challenges. Typically the avatar will need a smart Solver class which either asks the
human user to type a password or provides the solution of the question autonomously.

The sequence diagram of Figure 11 illustrates in greater detail the different steps an
avatar has to pass to gain access to a room. The room accessor sends a Serializable
Question to the avatar. The avatar locally solves the question through its Solver and
receives an answer. The answer is serialized and sent back to the room accessor, which
can check it for correctness and create a proxy for the room with the corresponding
access rights. This proxy is actually a remote-secure proxy for the room. It is
returned to the avatar, which now has a handle for the room.

8In fact three subclasses are depicted but the RSAQuestion class is not part of the framework.

15

+execute()

«interface»
Question

«interface»
java.io.Serializable

+execute()

PasswordQuestion

+execute()

RSAQuestion

+execute()

EmptyQuestion

+getPassword()
+RSAdecrypt()

Solver

«optional»
RefinedSolver

Ja
va

 c
la

ss
es

fr
am

ew
or

k
cl

as
se

s
im

pl
em

en
ta

tio
n

cl
as

se
s

«optional»
NewQuestion

Figure 10: Challenge-response classes relationships

Note that the communication channel between the avatar and the room accessor may
not be secure and some malicious individual could intercept the answer sent by the
avatar. Thus sending a password in plain text over this channel clearly represents a
security hole. To thwart such kind of attacks a more sophisticated challenge-response
must be proposed. An asymmetric (public key - private key) cryptographic algorithm
like RSA9 could be employed to achieve this goal.

Enhancing the MaDViWorld framework with such a new authentication process can
be done in two simple steps: (i) add a new method to the Solver which could be
named RSAdecrypt() and (ii) provide a corresponding subclass of Question, for instance
RSAQuestion. The new RSAdecrypt() method should be able to manage a key ring
to successfully pass the challenges proposed by the different rooms.

Because the security is a difficult topic that may require some experimentation to
get right, the security policy of a room is centralized in a single subclass of Question.
This allows the framework user to easily try different policies if the existing proves
inadequate. Another benefit of the explained architecture is that each room manages
its security policy independently allowing for a completely distributed implementa-
tion with no central security authority. At installation time, the user who creates
the room can choose and parameterize its security policy. Thus we have a simple,
yet flexible and powerful security model.

It will be discussed later.
9The RSA algorithm was first described in 1977 by Ronald Rivest, Adi Shamir and Leonard

Adleman [16]; the letters RSA are the initials of their surnames. The interested reader can find a
comprehensive discussion of this algorithm in [13].

16

anAvatar aRoomAccessor

Question

aRoomImplSecurityProxy

aRoomImpl

aSolver

���	�

aLookupAndRegistrationSystem

getRoomAccessorReference()

getQuestion()

checkAnswer(resp)

resp := execute()

getRoomReference(aSolver)

anOperation

anOperation()

getPassword()

Figure 11: An avatar getting a secure room proxy

6 Conclusion

Designing an extensible and truly decentralized software platform able to support a
virtual community based on the MOO paradigm represents a very challenging task at
the fringe of today’s software engineering technology. In this paper, we have drawn
from our experience developing MaDViWorld in order to propose a coherent set of
solutions to some of the main questions one must answer in order to embark on such a
daunting task. Indeed, the actual version of MaDViWorld is a fully functional frame-
work for creating highly distributed virtual worlds. It has been carefully designed in
order to facilitate its enhancement either by extending some of its concrete classes
or by implementing the well-documented interfaces of its higher levels.
Although MaDViWorld default avatar (see Figure 1) and room server applications are
rather basic (i.e. no immersion into 2D or 3D spaces), the actual implementation
is sufficient in order to design interesting virtual worlds by creating a rich enough
variety of objects to populate them. This is the reason why we concentrated on
facilitating as much as possible the process of programming new types of object
with the ultimate goal of instigating a large community of object creators. In order
to validate this vision, we launched a series of student projects10 with the only
requirement of enriching the framework by programming new “useful” objects.
Our experience with these projects proved that it is possible for an average Java pro-
grammer using the framework to develop her own objects and to test them in a virtual
world, with the transparent additional advantages of mobility, remote execution and
persistence. Some of the newly created objects are rather specific (e.g. single or

10Bachelor or Master level projects realized at the DIUF (see [6]).

17

multi-user games), while others (e.g. a chat, a whiteboard or a collaborative editor)
are generic and could enhance a world by being installed in most of its rooms. A stu-
dent even took advantage of the object intrinsic mobility and “inter-communication”
capabilities in order to program two mobile agents: the first one draws a “map” of
the world by exploring it on its own and the second one can arrange appointments
for its owner with other users. It is our hope that other programmers will join us in
order to continue this “adventure”.

References

[1] K. Arnold, B. O’Sullivan, R. W. Scheifler, J. Waldo, and A. Wollrath. The Jini
Specification. The Jini Technology Series. Addison-Wesley, 1st edition, 1999.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-
Oriented Software Architecture: A System of Patterns. John Wiley & Sons,
1996.

[3] Y. Fabre, G. Pitel, L. Soubrevilla, E. Marchand, T. Géraud, and A. Demaille.
A framework to dynamically manage distributed virtual environments. In J.-
C. Heudin, editor, Virtual Worlds, volume 1834 of Lecture Notes in Computer
Science, pages 54–64. Second International Conference, VW 2000, Paris, France,
July 2000, Springer-Verlag, 2000.

[4] E. Frécon and M. Stenius. Dive: A scaleable network architecture for distributed
virtual environments. Distributed Systems Engineering Journal (special issue on
Distributed Virtual Environments, 5(3):91–100, June 1998.

[5] P. Fuhrer. Distributed Virtual Worlds - Abstract Model and Design of the MaDVi-

World Software Framework. PhD thesis, Department of Informatics, University
of Fribourg, Switzerland, Nr. 1458, September 2004.

[6] P. Fuhrer. MaDViWorld: Massively Distributed Virtual Worlds. [online], 2005.
http://diuf.unifr.ch/softeng/projects/madviworld/index.htm (accessed July 19, 2005).

[7] P. Fuhrer, G. K. Mostéfaoui, and J. Pasquier-Rocha. MaDViWorld : a software
framework for massively distributed virtual worlds. Software - Practice And
Experience, 32(7):645–668, June 2002.

[8] P. Fuhrer and J. Pasquier-Rocha. Massively distributed virtual worlds: A frame-
work approach. In E. A. Nicolas Guelfi and G. Reggio, editors, Scientific Engi-
neering for Distributed Java Applications, volume 2604 of Lecture Notes in Com-
puter Science, pages 111–121. International Workshop, FIDJI 2002 Luxembourg-
Kirchberg, Luxembourg, November 2002, Springer-Verlag, March 2003.

[9] A. Gachet. A Software Framework for Developing Distributed Cooperative De-
cision Support Systems. PhD thesis, Department of Informatics, University of
Fribourg, Switzerland, Nr. 1402, February 2003.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns Elements
of Reusable Object-Oriented Software. Addison-Wesley, Massachusetts, 1995.

18

[11] C. Greenhalgh and S. Benford. MASSIVE: A distributed virtual reality system
incorporating spatial trading. In Proceedings of the 15th International Confer-
ence on Distributed Computing Systems (ICDCS’95), pages 27–35, Los Alamitos,
CA, USA, 1995. IEEE Computer Society Press.

[12] S. Li. Professional Jini. Wrox Press Ltd., 2000.

[13] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, October 1996.

[14] B. Meyer. Object-Oriented Software Construction. The Object-Oriented Series.
Prentice-Hall, 2nd edition, 1997.

[15] E. Reid. Cultural formations in text-based virtual realities. Master’s thesis,
University of Melbourne, January 1994.

[16] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital sig-
natures and public-key cryptosystems. Communications of the ACM, 21(2):110–
126, February 1978. Previously released as an MIT “Technical Memo” in April
1977, [Retrieved July 19, 2005, from http://theory.lcs.mit.edu/∼rivest/rsapaper.pdf].

[17] B. Venners. How to attach a user interface to a Jini service: An in-depth look
at the serviceui project from the Jini community. JavaWorld How-To-Java,
October 1999. [Retrieved July 19, 2005, from http://www.javaworld.com/javaworld/

jw-10-1999/jw-10-jiniology.html].

[18] B. Venners. The ServiceUI API Specification (Version 1.1). Artima Software,
October 2002. [Retrieved July 19, 2005, from http://www.artima.com/jini/serviceui/

Spec.html].

