
Massively Distributed Virtual Worlds

a Framework Approach

MaDViWorld: a Java Software Framework for Massively

Distributed Virtual Worlds

Patrik Fuhrer and Jacques Pasquier-Rocha

University of Fribourg
Department of Informatics

Rue P.-A. de Faucigny
CH-1700 Fribourg

Switzerland
patrik.fuhrer@unifr.ch

WWW home page: http://diuf.unifr.ch/~fuhrer/

Abstract. The aim of this paper is to briefly present the general con-
cept of virtual worlds and then to focus on distributed and decentralized
ones. MaDViWorld is a Java framework for massively distributed virtual
worlds. We first present its software architecture and then disscuss some
of its specialized features, namely: the object structure, the distributed
event model and the lookup mechanism for the rooms. These are the
main aspects that evolved since the first version of the framework. To
conclude, some example objects and further potentialities of the frame-
work are discussed.

Keywords: Software Framework, Virtual World, Distributed Events

A shorter version of this paper was presented at the FIDJI’2002 Interna-

tional Workshop on scientiFic engIneering of Distributed Java applIcations,
November 28-29, 2002, Luxembourg University of Applied Sciences (IST), Lu-
xembourg-Kirchberg, LUXEMBOURG and has been accepted for publication in
the Lecture Notes in Computer Science by c©Springer Verlag.

2

1 Introduction

1.1 The Virtual Worlds Paradigm

The document paradigm is well-known in today’s Internet technology: doc-
uments are made available on one or several servers and client applications (e.g.
Web browsers) are used in order to interact with them. The underlying metaphor
is the one of a huge cross-referenced book where each user browses through the
pages totally unaware of other users performing the same task at the same mo-
ment. All actions are asynchronous and, thus, there is no need for a central server
to coordinate user interactions with the pages of the book or to take care of an
event redistribution mechanism.

Within the virtual world paradigm, multiple users and active objects interact
in the same space. Therefore they have a direct impact on each other. Within
such systems, if a user interacts with an object, the other connected users can
see her and start a dialog with her. Moreover, it is possible for a user to modify
some properties of the world and all the other users present in the same subspace
(e.g. the same room) must immediately be made aware of it. Examples of the
virtual world paradigm range from simple graphical chat to sophisticated 3D
virtual worlds used for military simulations.

For a good comprehension of the present paper, the following four terms need
to be briefly explained:

1. Avatars are the virtual representation of the users. Concretely, an avatar is
a tool that allows a given user to move through the world, to interact with
its inhabitants and objects and that lets the other users know where she is
and what she is doing.

2. In order to distinguish between near and distant elements it is essential to
divide the world into subspaces where the users might or might not enter and
in which all interactions take place. Otherwise, the world would not scale.
We call such subspaces rooms.

3. Rooms are connected by doors, which an avatar can use for moving from one
room to another.

4. Objects populate the rooms and they can be either passive, reactive or ac-
tive (see [15]). Furthermore, in a distributed world, it should be possible to
”physically” transport a given object from one room to another.

For a more detailed terminology and a historical overview of virtual worlds,
the interested reader can refer to [6].

The conceptual model, that emerges from these considerations, is shown in
Figure 1. It represents a very simple world with four rooms, three avatars (James,
Sylvia and Hans) and a single game object (TicTacToe). One can also see how
the rooms are interconnected by three doors.

1.2 MaDViWorld Goals

The main advantage of the document paradigm approach is that it allows a
really distributed architecture with thousands of http servers interconnected all

3

James

Sylvia

TicTacToe

R2

corridor

Hans

R1

corridor

Fig. 1. The conceptual model of a simple world

over the world. If a crash occurs, only the pages hosted by the failed or the no
longer reachable servers become momentarily unavailable. The whole system is
extremely robust and, since the connection of new decentralized servers is always
possible, there is no limit to its growth.

At the software architecture level, systems based on the virtual world metaphor
are clearly more complex. Indeed, the users directly interact with the original
objects of the system and the resulting event must be correctly synchronized
and forwarded in order to maintain the consistency of the world. This explains
why most of them are based on a client-server model, for which a single server
or more rarely a small cluster of servers contain all the world pertinent data and
assume the world accessibility, consistency and persistence. On the client side,
many of them enable interaction with the other users and the various objects of
the world. This approach depends completely on the central server robustness
and does not scale well.

Some proposals for completely distributed environments can be found in the
following projects: Urbi et Orbi [4], DIVE [5] and MASSIVE [11] or in [3] and
[19].

The goal of our research group is to define software solutions in order to
support the virtual world paradigm presented above, without making concessions
to the single server architecture. Actually, MaDViWorld, the acronym of the
software framework presented in this paper, stands for Massively Distributed
Virtual World, since its subspaces are distributed on an arbitrarily large amount
of machines. The only requirement is that each machine containing a part of
the world runs a small server application and is connected to other machines
through the Internet. This obligation is exactly the same as the one required by
the World Wide Web document paradigm approach, with all its advantages in
terms of robustness and scalability.

2 MaDViWorld Software Architecture

First of all, it is important to notice that it is out of the scope of this paper to
explain the framework in all its details. This paper explains the concept of using

4

a framework approach at a rather high level of abstraction and then concentrates
on some critical points, that have been solved.

Most diagrams used to illustrate the framework are designed as UML class
diagrams, or as UML sequence diagrams. More information about the UML
notation can be found in [8].

More detailed information is available in [6] and in [7], which describe the
first version of the framework. Furthermore, an Object Programmer’s Guide is
reachable from the official MaDViWorld web site [13]. The guide includes a tuto-
rial for developing new objects. The working framework can also be downloaded,
with an installation guide and the Javadoc of the framework.

R1

R2

Room Server

Room Server

TicTacToe

Sylvia's machine

(134.21.9.252)

Sylvia

Avatar

James' machine

(134.21.9.255)

James

Avatar

Hans

Avatar

Hans' machine

(134.21.9.112)

"134.21.9.255:1099/James"

"134.21.9.252:1099/Sylvia"

"134.21.9.155:1099/Hans"

LAN / WAN

"134.21.9.255/corridor"

"134.21.9.252:1099/R1"

"134.21.9.255:1099/R2"

"134.21.9.252:1099/corridor"

"134.21.9.255:1099/R2"

"134.21.9.252:1099/R1"

corridor

corridor

ARoom

A physical machine

(IP adress)

Avatar / Room server

An application

list of rooms sharing

doors with ARoom

objects contained in

ARoom

list of avatars connected

to ARoom

connection to the LAN/WAN

Legend

Fig. 2. One possible physical model for the conceptual model of Figure 1

5

2.1 Massive Distribution Explained

In order to clarify what is meant by massively distributed, let us reconsider
the conceptual model of the simple world presented in Figure 1. As already
mentioned, there must be no central server but arbitrarily many of them and
none of them has to know the whole world. Figure 2 shows a possible physical
model, illustrating what concretely happens at runtime. Room R1, one of the
two corridors and Sylvia’s avatar run on Sylvia’s machine, while Room R2, the
other corridor and James’s avatar run on James’s machine. Finally Hans’s avatar
runs on Hans’s own machine.

2.2 The Framework Approach

There are a lot of available definitions for what a framework is. A complete
and precise one is given in [16]. But let us take the following more concise one
that can be found in [2]:

A framework is a partially complete software (sub-) system that is in-
tended to be instantiated. It defines the architecture for a family of (sub-)
systems and provides the basic building blocks to create them. It also
defines the places where adaptations for specific functionality should be
made. In an object-oriented environment a framework consists of ab-
stract and concrete classes. The instantiation of a framework involves
composing and subclassing the existing classes. A framework for appli-
cations in a specific domain is called an application framework.

Keeping these definitions in mind, this section describes the MaDViWorld
application framework. The different places where adaptations for specific func-
tionality should be made will be identified and explained. These flexible points of
the framework are commonly called hot spots and are opposed to the frozen spots

(see [18]). An overview of the whole framework is shown in Figure 3. The root
package for all the other MaDViWorld classes is ch.unifr.diuf.madviworld,
and in the rest of the paper this will be omitted for evident convenience reasons.

First, let us consider an horizontal decomposition of Figure 3:

– The communication between components is defined by a protocol. The up-
per layer of the framework fulfills this task. The framework user only has
to understand this visible interface of the components. That’s why MaDVi-
World would rather be classified as a black-box framework (see [14]). The
core package encloses all these interfaces.

– The middle layer consists the default implementation packages of the frame-
work. It contains concrete and abstract classes.

– The lower layer, finally, is for the concrete implementation, where all the
application specific classes are placed.

Second, let us decompose the blocks of Figure 3 vertically. From left to right
one finds respectively all the packages and classes relative to the client appli-
cations (i.e. avatars), then those relative to the server applications (i.e. rooms)

6

and those relative to the objects populating the rooms. Ultimately there are
two utility packages, one containing packages and classes used by the framework
and leftmost the event package. Obviously, the implementation or extension of
the Avatar, Room and Object packages are the hot spots of the MaDViWorld
framework. There are two types of activities for a framework user:

– The first one consists just to enrich the world with new types of active objects
by providing the appropriate implementations of the wobject package. For
this activity, users may use the standard avatar and room server application
and use a little wizard application to install their new objects dynamically
into a running (potentially remote) room.

– The second one consists to provide richer or better avatar and/or room
server applications either by extending the default ones, or by both extending
and implementing the appropriate framework extendable classes or by fully
implementing the appropriate framework interfaces from scratch (see Figure
4).

The current version of the framework consist of a total of approximatively
100 classes organized in 10 packages and counts 14000 lines of code. If one counts
all the already available objects, the total amount of classes is greater than 200
composed of 37000 lines of code.

core

event
util

wobject

Avatar
 Room
 Object

Framework packages
 Default Implementation packages

Specific Implementation packages

Default

avatar

avatar

Default

room

room

Fig. 3. Overview of the MaDViWorld framework

7

«interface»

Implementable Interface

Extendable Class

Default Implementation

Adaptation by Extension

Adaptation by Extension and Implementation

Adaptation by Implementation

fra
m

ew
or

k
cl

as
se

s

im

pl
em

en
ta

tio
n

cl
as

se
s

Fig. 4. The three modes of adaptation offered to the framework user

8

3 Objects, Events and Lookup

This section focuses on the objects and particularly on the distributed event
model of the framework, which is one of the aspects that was not yet present in
the first version of MaDViWorld as presented in [6] and which plays a central
role for objects. The third part discusses another point that is new in framework:
the integration of JINI technology.

3.1 Object Structure

The purpose of this section is to go over the main points of the objects
creation and use. Figure 5 illustrates how the wobject package has to be im-
plemented in order to develop new objects. For further comments about this
package the reader is invited to consult the Object Programmer’s Guide on [13].

In order to add a new object, the framework user has to create the cor-
responding newobj package, which must contain two subpackages, one for the
object’s implementation part and one for its graphical user interface (GUI) part.
This clean separation between the user interface and the object logic does not
provide a two-way communication channel between these two parts. The client
relationship between the MyObjGUIImpl class and the MyObj interface provides
a one-way communication channel (from GUI to the implementation), but the
implementation part cannot send information back to the GUI. The distributed
event model designed to address this issue is presented below.

3.2 The Distributed Event Model

Events play a crucial role in the MaDViWorld framework. Schematically, each
time the state of one of the world components changes, a corresponding event
is fired by the altering subject and consumed by the registered listeners, which
react appropriately. The management of all these events is a complex task:

– They are in reality remote events and several network problems can occur;
– Some of the events have to be fired to only a subset of all the listeners;
– Some listeners may not be interested in every type of event.

Thus the framework must offer a distributed event model that handles all
these situations.

The two last points listed above, lead to the elaboration of an abstraction for
creating unique identifiers. DUID is the acronym for Distributed Unique ID and
is implemented in the core.DUID class 1. Each room, object or avatar has an
associated DUID that is generated by the framework, so that it can be identified
without ambiguity. The use of such a DUID was inspired by [12].

It is now time to take a closer look at the content of the event package (see
Figure 6) and how it solves the mentioned problems:

1 The DUID is the combination of a java.rmi.server.UID (an abstraction for creating
identifiers that is unique with respect to the host on which it is generated) and an
instance of java.net.InetAddress (a representation of the host’s IP address where
the object was created which makes the UID globally unique).

9

fra
m

ew
or

k
cl

as
se

s

im

pl
em

en
ta

tio
n

cl
as

se
s

+notify(in theEvent : RemoteEvent) : void

NewObjRemoteEventListener

+initComponents() : void

NewObjGUIImpl

NewObjPanel

NewObjImpl

+initComponents() : void

WObjectGUIImpl
 WObjectImpl

«interface»

WObjectGUI

«interface»

WObject

+notify(in theEvent : RemoteEvent) : void

«interface»

RemoteEventListener

«interface»

java.rmi.Remote

javax.swing.JPanel
java.rmi.server.UnicastRemoteObject

RemoteEvent

1
 1

1

1

«interface»

NewObj

ch.unifr.diuf.madviworld.wobjects.newobj

ch.unifr.diuf.madviworld.event
 ch.unifr.diuf.madviworld.wobject

+notify(in theEvent : RemoteEvent) : void

NewObjRemoteEventListener

java.rmi.server.UnicastRemoteObject

ch.unifr.diuf.madviworld.wobjects.newobj.gui

ch.unifr.diuf.madviworld.wobjects.newobj.impl

Fig. 5. Implementation of the wobject package

10

– The RemoteEventListener interface extends the java.util.EventListener
interface and defines the single notify() method. Any object that wants to
receive a notification of a remote event needs to implement it.

– The RemoteEventProducer interface defines the methods needed to register,
unregister and notify event listeners used to communicate between different
parts of the system. The register method takes as parameter the event type
the listener is interested in. There are five possibilities: all events, avatar

events, room events, object events and ”events for me”. With the latter, the
listener is only informed of events addressed explicitly to it (thanks to its
DUID), without paying attention by whom.

– The RemoteEvent class defines remote events passed from an event generator
to the event notifiers, which forward them to the interested remote event
listeners. A remote event contains information about the kind of event that
occurred, a reference to the object which fired the event and arbitrarily many
attributes.

– The RemoteEventProducerImpl class implements the RemoteEventProducer
interface.

– The RemoteEventNotifier helper class notifies in its own execution thread
a given event listener on behalf of an RemoteEventProducerImpl.

Figure 6 shows the design pattern used through the whole framework for
the collaboration between the three different parts of MaDViWorld (i.e. avatars,
rooms and objects) and the utility event package. Note that the three of them
are both implementing the RemoteEventProducer interface and are client of
its implementation, RemoteEventProducerImpl. The operations defined by the
interface are just forwarded to the utility class. With this pattern we have the
suited inheritance relation (a WObject ’is a’ RemoteEventProducer) without
duplicating the common code. A lot of similarities with the Proxy Pattern defined
in [10] can be found.

To sum up the whole event mechanism, the UML sequence diagram of Fig-
ure 7 dwells on all the operations, from the registration phase to the firing and
notification of an event.

First (a), the event consumer registers a RemoteEventListener to a room,
avatar or object whose events it is interested in. Second (b), due to a state
change an event is fired and all interested listeners are notified, each by a
RemoteEventNotifier. The informed listener can then do the appropriate work
with regard to the type of the event. On Figure 7, one can also see the different
methods invoked remotely across the LAN. This pattern present some similari-
ties with the Jini distributed event programming model, which is specified in [1]
and thoroughly explored in [17].

3.3 Lookup

Let us briefly discuss one big difference between the actual and the first
version of the prototype framework: it is Jini enabled.

11

«interface»

Avatar / Room / WObject

-rep : RemoteEventProducer

Avatar- / Room- / WObjectImpl
 RemoteEventListenerImpl

RemoteEventNotifier

RemoteEvent

RemoteEventProducerImpl

java.util.EventListener

«interface»

RemoteEventListener

+anOperation()

«interface»

RemoteEventProducer

«interface»

java.rmi.Remote

«interface»

java.lang.Runnable

fra
m

ew
or

k
cl

as
se

s

im

pl
em

en
ta

tio
n

cl
as

se
s

Ja
va

 c
la

ss
es

ch.unifr.diuf.madviworld.wobjects.event

ch.unifr.diuf.madviworld.wobjects.core

ch.unifr.diuf.madviworld.wobjects.avatar/room/wobject

Fig. 6. Pattern used for integrating the event model in the framework

12

<constructor>(
this
,
aList
,
anEvent
)

<constructor>
(
this
)

myDUID
 = new DUID()

register(
rel
,
myDUID
)

notifyAllListeners(
anEvent
)

notify(
anEvent
)

anOperation()

Event Generator Virtual Machine
Event Consumer Virtual Machine

[for each interested

listener
aList
]

LAN

(a)

(b)

rel

RemoteEventListener

aConsume
r

Room / Avatar / WObject

aProduce
r

Room / Avatar / WObject

rep

RemoteEventProducerImpl

notifier

RemoteEventNotifier

Fig. 7. (a) Setup of the event model (b) Notification of an event

Indeed, there are some utility classes, used by the framework, that allow
rooms and avatars to register themselves to remote Jini lookup services and
behave as normal Jini services.

But it is important to note that this capability does not replace the previ-
ous more classical manner, which consists in registering rooms and avatars into
local rmiregistries. The combination of this two publishing methods offers great
advantages, without altering the scalability of the world.

In fact, the use of Jini lookup services offers great benefits for finding rooms
and avatars when one have no a priori knowledge of the running world (i.e. on
which machine to find a room for example). In addition to that, the template
matching mechanism of Jini lookup presents a lot of possibilities (e.g. searching
all german speaking avatars or all rooms intended for games). Unfortunately,
these lookup services become bottlenecks if the world becomes too wide and
counts a lot of room services they have too manage.

The classical rmiregistry approach offers the shallow and flat ”search by
name” lookup method, but offers a perfect performance and avoids bottleneck
then each rmiregistry only contains the rooms and avatars running on one ma-
chine, and those are not so many (by the decentralize nature of our world).

So we hope we have the best of both worlds!

3.4 Some Examples of Objects

In various students projects, the MaDViWorld framework was intensively
used and tested. So, there is already a little collection of interesting objects
available. Here is a non exhaustive list of them:

13

– Battleship. This is a complete version of the legendary distracting two player
board game. Its user interface includes graphics and sounds (see Figure 8).

– Minesweeper. Analog to the battleship, but it is a single user object.

– Tamagotchi. These little objects or virtual pets their owner has to take care
of, present the peculiarity that they are affected by what happens to their
siblings. For instance, if another tamagotchi in the same room dies, they feel
sad and their own health level will decrease. That’s why one could say that
they are an example of ”social” objects.

– Whiteboard. This simple version represent a basic collaborative editor.

Fig. 8. A battleship game for MaDViWorld

4 Conclusion

4.1 Achievements

The actual version of the MaDViWorld framework has reached the following
achievements:

– It is an application framework for highly distributed virtual worlds. It offers
programmers the opportunity to transparently develop any kind of objects
and test them in a virtual world, with all the advantages of mobility, remote
execution, persistence, etc.

14

– As avatars, rooms and objects are distributed on several machines and are all
interacting within the same world, an efficient distributed event mechanism

is provided by the framework.
– In order to locate existing objects and services (room servers, rooms, avatars),

the framework provides a dual lookup mechanism. On the one hand, it makes
use of rmiregistries since its very first version. On the other hand, its latest
release offers an important additional option. Indeed, it allows rooms and
avatars to register themselves to remote Jini lookup services (reggie) and to
act as well-behaved Jini services.

– Avatars can execute an object remotely, but the graphical user interface of
the object always runs locally. As the avatars has no a priori knowledge
of the kind of objects they will meet during their trip through the world,
the framework provides a graphical interface transport mechanism. The core
idea is that the graphical user interface and the implementation parts of an
object are always clearly separated.

– The transport of mobile objects from one room to another is complex because
it occurs in fact from one machine to another. So, when an avatar takes an
object to carry it with her into a room running on a completely different
machine, all the resources and class files relative to this object have to be
moved along with it. This is all kept transparent for the end-user and hidden
from the framework user.

4.2 Future work

The framework is still evolving and some enhancements will be integrated
in the coming versions and will improve the efficiency and the conviviality of
the various applications. Some efforts will also focus on the documentation and
the refactoring (see [9]) of the framework for an even better understanding and
readability for the user. But future research will cover the following five main
points:

1. Security. On the one hand a security model inside the world (access to rooms,
permissions,...) should be clearly defined and developed. On the other hand,
security issues at the lower level of the framework should be resolved (down-
loading of classes, codebase verification, trusting of lookup services, etc.).
An overview of existing solutions can be found in [?].

2. Scripting. The end-user should be able to change the behavior of objects at
runtime.

3. Static description. Rooms and avatars with all their attributes should be
described statically in a form of structured data such as XML and created
”on the fly” by a parser tool. Persistence and state recovery mechanisms
could then take advantage of this feature.

4. Multimedia and 3D. More complex space aspects of virtual worlds (rooms,
avatars and objects) should be integrated.

5. Real world example. Developing concrete practical applications of the frame-
work like educational worlds as virtual campus could be a possibility. Such
a world is sketched in [6].

15

References

1. Arnold, K. et al.: The Jini Specification, Addison-Wesley:Reading, MA, 1999.
2. Buschmann, F. et al.:Pattern-Oriented Software Architecture - A System of Pat-

terns, John Wiley and Sons, 1996.
3. Deriggi, FV. et al.: CORBA platform as support for distributed virtual environ-

ments. Proceedings of the 9th International Conference in Central Europe on Com-
puter Graphics, Visualization and Computer Vision 2001 (WSCG’2001), Plzen,
Czech Republic, February 5-9, 2001.

4. Fabre, Y. et al.: A framework to dynamically manage distributed virtual environ-
ments. Virtual Worlds, Proceedings of the Second International Conference, VW
2000, Paris, France, 5-7 July. Springer: Berlin, 2000; 54-64.

5. Frécon E., Stenius M.: DIVE: A scaleable network architecture for distributed vir-
tual environments (special issue on Distributed Virtual Environments). Distributed
Systems Engineering Journal 1998; 5(3):91-100.

6. Fuhrer, P., Kouadri Mostfaoui, G., Pasquier-Rocha, J.: MaDViWorld: a Software
Framework for Massively Distributed Virtual Worlds. Software Practice and Expe-
rience, 2002, 32:645-668.

7. Fuhrer, P., Kouadri Mostfaoui, G., Pasquier-Rocha, J.: The MaDViWorld Software
Framework for Massively Distributed Virtual Worlds: Concepts, Examples and Im-
plementation Solutions. Department of Informatics Internal Working Paper no 01-
23, University of Fribourg (CH), Switzerland, July 2001.

8. Fowler, M., Scott, K.: UML Distilled: a brief guide to the standard object modeling
language, 2nd Edition, Addison-Wesley, 2000.

9. Fowler, M.: Refactoring: Improving the Design of Existing Code, Addison-Wesley,
2000.

10. Gamma, E. et al.: Design Patterns: Elements of Reusable Object-Oriented Soft-
ware, Addison-Wesley Professional Computing Series: Reading, MA, 1995.

11. Greenhalgh, C., Benford, S.: MASSIVE: A distributed virtual reality system incor-
porating spatial trading. Proceedings 15th International Conference on Distributed
Computing Systems. IEEE Computer Society Press: Vancouver, Canada, 1995, 27-
34.

12. Gachet, A.: A Software Framework for Developing Distributed Cooperative Deci-
sion Support Systems - Construction Phase, Working Paper no 02-02, University of
Fribourg (CH), Switzerland, March 2002.

13. Department of Informatics, University of Fribourg (CH), Software Engineering
Group. MaDViWorld: a Software Framework for Massively Distributed Virtual
Worlds http://diuf.unifr.ch/softeng/projects/madviworld/ [2 December 2002].

14. Johnson, R. E., Foote B.: Designing Reusable Classes. Journal of Object-Oriented
Programming 1(2), June/July 1988, pp. 22-35.

15. Kirsh, D.: Adaptive rooms, virtual collaboration, and cognitive workflow. Coop-
erative Buildings–Integration Information, Organization, and Architecture (Lecture
Notes in Computer Science), Streitz N (eds.). Springer: Heidelberg, 1998;94-106.

16. Larman, C.: Applying UML and Patterns, Prentice Hall PTR:Upper Saddle River,
NJ, 2002.

17. Li, S.: Professional Jini, Wrox Press Ltd.:Birmingham, 2000.
18. Pree, W.: Design Patterns for Object-Oriented Software Development, Addison-

Wesley, 1995.
19. Wilson, S., Sayers, H.; McNeill, MDJ: Using CORBA Middleware to support the

development of distributed virtual environment applications. Proceedings IEEE Vir-
tual Reality. IEEE Computer Society Press:Los Alamitos, CA, 1999, 8-13.

