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Abstract: The Web of Things research activities consist essentially in developing
concepts, tools and systems for creating and operating global networks of devices
associated with embedded resources - RFID tags, sensors, actuators and even complex
computing facilities -, which are accessed by services. In that context, one of the most
accepted standardization technique in order to seamlessly integrate this potentially huge
set of heterogeneous services consists in RESTifying them. This operation is rather
straightforward for ” quickly computed” services such as Flickr photo service, Google Maps
or Twitter. But what about cleanly integrating delayed, possibly decomposable services,
such as a parcel delivery service computing first the partitions of parcels to various tours
and then, for each tour, the optimal routing respecting additional constraints?

We claim that this question represents an important challenge if one desires to enrich
the potentialities of the web of things. In order to best contribute to its solution, this
paper first proposes a classification of services into five categories with a special emphasis
on tackling the problematic of the delayed and decomposable ones. It also advocates
the use of WebSockets as the standard callback mechanism. Secondly, it enriches the
preceding theoretical discussion with three motivating examples. Finally, it presents a
generic software architecture for RESTifying decomposable delayed services and validates
it with a case study including a prototypal implementation.
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1 Introduction

Over the last decade, technology advances have
allowed embedded devices to become cheaper and more
sophisticated. This progress opened new perspectives.
It gave birth to innovative ways of using such devices
by attaching to them sensors and actuators. Adding
networking capabilities was the next logical step, since
it allowed companies to track shipment, production
and storage of goods. Following that path, a real need
came up to seamlessly integrate physical objects as well
as their virtual representations into the Internet. Out
of that, the Internet of Things emerged. Internet of
Things means the Internet related to Things (Huang and
Li, 2010). Another definition can be found in (Haller,
2010) and IOT-A (2012). By looking closer at the
classification in (Haller, 2010), we see that the things are
considered to be physical entities. Furthermore, they can
be associated with devices which are either embedded or
environmental. Finally, devices contain resources which
can be accessed by services.

Key architectures for allowing seamless interactions
between these resources are REST (Fielding and
Taylor, 2002) and RESTful services (Richardson
and Ruby, 2007). Indeed, RESTful interactions have
several advantages over fully fledged WS-* web
services (Pautasso et al., 2008; Guinard et al., 2009,
2010b; Drytkiewicz et al., 2004; Luckenbach et al.,
2005; Guinard et al., 2010a). For example, since HTTP
is used as application protocol and not simply as a
transport one, a browser is sufficient for accessing and
exploring resources. The latters are identified by URIs
allowing to bookmark and share them. Besides, it allows
the adoption of well established web technologies like
authentication, security with https, integration with
Javascript, etc.

Following that reasoning, services composed with
things are usually RESTful (or at least RESTified) in
order to seamlessly integrate them. This is for example
the case for Flickr! photo service or Twitter?, but what
about cleanly integrating decomposable delayed services?
In opposition to services like Google Maps®, which
are instantaneous and ”atomic”, decomposable delayed
services might split themselves up into sub-services, each
likely to be delayed. We claim that if we really want
to bring an added value to the Web of Things (WoT),
seamlessly integrating such services is important.

In this paper, we want to investigate how to
seamlessly integrate these services into the Web of
Things. The aim is to formulate a general architecture
fulfilling the intended purpose. In order to best
achieve this goal, the present paper is structured
as follows: Chapter 2 proposes a classification of
services into five categories with a special emphasis
on tackling the problematic of the delayed and
decomposable ones. In the last section of the
chapter, a standard callback mechanism based on
WebSockets is also discussed; Chapter 3 presents three
motivating examples where delayed interactions, service
decomposition and callbacks are needed and comments
them within a RESTful perspective; Finally, Chapter 4
proposes a generic software architecture for RESTifying
decomposable delayed services and Chapter 5 validates it
with a case study including a prototypal implementation.

2 The Challenge of Decomposable Delayed
Services

The Web of Things started with combining physical
devices, sensors and actuators in a standardized manner.
This had the advantage that devices from different
sources could easily be combined without the hassle of
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learning each time about the vocabulary used by the
service. The WoT, however, is not limited to physical
devices. Indeed, bringing delayed, possibly decomposable
services, into the WoT world allows for the creation of
much more sophisticated scenarios as we shall see.

Integrating services such as Flickr or Twitter into
the Web of Things is rather straight forward. It is just
a matter of one request. This, however, does not apply
for decomposable delayed services. Their integration into
the Web of Things raises new challenges, which must be
solved. The need for integrating delayed services into the
Web of Things is not new. In the following, we give an
overview of the problematic of delayed interactions and
discuss some standard approaches to solve the problem.

Integrating services into the Web of Things works
most of the time out of the box. Drawing coordinates
obtained from Google Maps for example, is just a matter
of sending a GET request with some URL encoded values.
The result is delivered immediately. However, the three
examples of Chapter 3 will show that services can
sometimes be quite complex and might require a long
delay to execute and to deliver the desired output. For
our purposes, let us roughly classify services into five
categories, each of them having its properties and special
requirements regarding the architecture to choose in
order to integrate them.

2.1 Short Living Services

The first category includes the short living services.
Even though some computation is eventually done upon
requesting the service, the result is almost instantaneous.
An example of such a service is the routing service of
Google Maps. Each time a route is requested, the service
launches a computation and returns the computed
routing between the submitted locations. This is so quick
that it does not make sense to cache the result for later
consultation. In fact, a user cannot distinguish if the
answer from the server is actually computed or if he
has accessed a static resource. Such services integrate
seamlessly into the Web of Things. Consuming them is
just a matter of a GET request.

2.2 Real-Time Services

The second category is composed of the real-time
services. Upon requesting such a resource, the user
gets immediately its representation. Over time, however,
the resource might change and the user would like
to be informed about updating events. Since these
happen constantly, it is not necessary to worry about
problems like connection timeouts or users quitting the
interface. An example for such a service is the Twitter
timeline. It can be accessed in a RESTful manner. This
resource, however, changes over time as new tweets
arrive. Therefore, its representation changes also over
time. A popular approach to offer such services consists
in using web-hooks: upon requesting a resource, the user
provides a URI under which the service can contact

him and provide him with updates. While this solution
proposes a clean design, it has the drawback that it
most certainly will not work in corporate environments.
Security policies will most of the time forbid opening
ports for incoming traffic and therefore block the
updates from the service. Another well established
approach is Comet (Comet Framework, 2012). The
Comet framework uses either HTTP streaming or long
polling in order to fetch the updates from the server.
Unfortunately, Comet is not supported at the same level
in all browsers, which makes it a big and complicated
framework. The upcoming HTML 5 also brings a set
of new technologies to the browser, the WebSockets
API (WebSocket API, 2012) standard being one of the
most promising. A WebSocket opens a new TCP/IP
connection in the browser. The connection is full-duplex,
which means that communication is possible in both
directions at the same time. Besides, the connection
is Firewall and NAT proof, which makes it a real
alternative to web-hooks. Upon requesting a resource,
a new WebSocket is created. Later notification about
updates of the resources are sent over this WebSocket
together with the new representation of the resource.
Actually, the main drawback of this solution is that the
WebSocket API is currently only a draft version from
W8C, with the consequence that its support in modern
browsers varies.

For these two categories, even if the service executes
some computation on the data passed along with the
URL, the result is computed at each request. This is
smart insofar as the time needed for the computation
is barely measurable. The service is REST compliant in
the way that the URI to the result can be bookmarked
and viewed again. For such instantaneous interactions,
it would not make sense to store the results somewhere
in the cache. It is much more practical to compute them
each time. In the case of delayed services, however, this
is clearly not the best approach.

Short living and real-time services are the base of the
Web of Things. Querying a sensors for its current state
can either be seen as a short living service if the user is
only interested in its value once or it can bee seen as a
real-time service if the user is more interested in the value
changes from the server. The frontier between these two
categories is fuzzy and sometimes only the concrete use-
case defines in which of the two categories an application
actually fits better.

2.8 Delayed Services

The third category are the delayed services. When the
user requests a resource, the service is unable to send
back a representation of the latter in a reasonable time.
An example for such a service is the planning of Round-
Robin Tournaments with complicated constraints like
minimizing breaks (Briskorn, 2008). Finding a solution
is time consuming. In fact the computation launched by
requesting the resource is so time consuming that no
user would really wait for the result to be ready. Besides
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that, such long delayed services might lead to dropped
connections. Yet, a dropped connection does not stop the
computation on the server; thus, CPU cycles are wasted.
Furthermore, the user will see the dropped connection
and most likely will relaunch the request. This multiplies
the server charge needlessly, which may lead to a break
down of the system all together. One possible solution
would be to use longer connection timeouts on HTTP
connections. However, for usability reasons, this is a bad
idea: the user sends a request to the service and thus
expects a result. But, if the process takes too much
time, the user tends to think that there is a connection
problem and she aborts. Another point is that systems
using long HTTP connection timeouts scale very badly.
This is surely not in the philosophy of the Web of Thing
where thousands of devices are supposed to interact.

As for the second category, web-hooks are a common
approach to solve these problems. However, if we cannot
expect the user to wait for the final result, we cannot
expect that the provided web-hook will be available when
the computation finishes. Another approach is proposed
by Richardson et al. (Richardson and Ruby, 2007).
Instead of requesting the resource with a GET statement,
a new task is created with a POST statement. The latter
shows the progress of the ongoing computation and,
ultimately, its result when finished. With this solution,
the server should always respond to a request, either
with the computed answer or, if the computation takes
too much time with a 202 Accepted, plus some URI
where the user can check the progress and, if available,
the result. We do consider Richardson’s solution as the
most rightful one at the architectural level and we will
elaborate on it in Chapter 4. An advantage of this
proposition is that it is always possible, as an add-on, to
use either the Comet framework, polling or WebSockets
in order to track the progress of the computation.

2.4 Decomposable delayed services

The fourth category is composed of decomposable delayed
services. Upon being requested, such a service does not
respond with an ”atomic” answer, but rather split itself
up into sub-services, thus returning a whole hierarchy of
answers. Furthermore, as we shall see in the examples
of Chapter 3, each sub-service might have its own delay.
This fourth category is the one on which the rest of
this paper focuses. It represents clearly a generalization
of the third one, for which Richardson and Ruby’s
solution (Richardson and Ruby, 2007) must be further
refined. Today, there exists no standard approach to
solve such problems. Our solution will combine several
known and well established techniques from the WoT
world in order to provide a clean integration of such
services into the Web of Things.

2.5 Business process services

The fifth category are the business process services.
Services in this category don’t fit in one of the other

categories. Their main property is that a business process
is launched when they are invoked. This can be just
a small computation or a heavy use-case with many
dependencies. Business process have to handle properly
cases in which the computation cannot be completed (if
for example some input are not available). An example
of such a service would be the booking of a trip abroad.
A trip is in general composed of the flight plus a hotel
reservation. The trip can only be booked if a flight is
found and booked and if a hotel is found and successfully
booked. Since flight tickets and hotel reservation systems
are updated frequently, it might happen that a user
selects a flight and a hotel, successfully books the flight
but when arriving at the stage of booking the hotel, no
more rooms are available. Such cases needs special care
since the system should not be left in an inconsistent
state. Another example is the electronic shelf labels in a
shopping center (Magerkurth et al., 2011).

In a certain way, this last category represents the
ultimate generalization of the preceding ones. As we
shall see in the next chapter, a lot can be achieved
with single delays and decomposition, but sometimes
complex business services needs to be interrupted until
a given event wakes them up and helps them pick-up
the next action or they need to be rolled back up to
a given point. How to model, architect and implement
such services is out of the scope of this paper and an
active ongoing research topic (Sperner et al., 2011). The
currently established tools for modeling such business
process lack of support for the Internet of Things related
entities like sensors and actuators. First efforts have been
done by adding some basic IoT concepts to BPEL but
much remains to be done (Meyer et al., 2011).

2.6 Callback mechanisms

For some of the categories above it would be interesting
to have a sort of callback when the service reaches critical
points or when it is done and the results are ready.
There exist several approaches to solve this problem. One
could imagine an email integration into the process. At
each predefined step, an email is sent to some address
(which might be defined as input when requesting the
service). Similar approaches consist of protocols like
XMPP (XMPP Protocol, 2012; RFC 6120, 2012; RFC
6121, 2012; RFC 6122, 2012). Even if these protocols
works well and are widely used for other means they
present the disadvantage of being out of the scope of the
WoT. Web-hooks are also a popular approach to inform
the user about events. As for the email callback, the user
has to provide some information about the hook where
the server can join her later. Basically, a web-hook is a
client side resource which is made available to the server.
Even if web-hooks are cleanly integrated into the Web
of Things they have the drawback of being banned from
corporate environments. In fact, most firewall will block
incoming connections on random port numbers making
the web-hook use-less.
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Finally, together with HTML 5 a new standard
for full duplex communication in browsers has
been recently established: the WebSocket protocol
and API (WebSocket API, 2012). WebSockets allow
asynchronous communications in a browser. They are
transparent to firewalls and proxies, making them a
good alternative for the solutions presented above. A
WebSocket connection is always initiated by the client.
Thus, she can decide when she wants to listen to the
notifications generated on the server. Furthermore, it
is possible to re-connect to the notifications at any
time. This makes WebSockets a flexible mechanism for
providing callbacks and feedback from services. They are
really well in sync with the Web of Things philosophy.
They will be further discussed in Section 5.2.

3 Three Motivating examples

3.1 Smart Shopping List Service

The introduction of the first iPhone and iPod Touch
by Apple in 2007 changed the way we solve everyday
problems. Formerly, shopping lists were written down on
small pieces of paper with no apparent order of the items.
Nowadays, there is a shift to manage such shopping
lists on smart phones. There are plenty of applications
developed for this task. They have several advantages
over the paper version. Besides the fact that the users
carry their smart phones always with them, they offer
functions like barcode scanning for an easy setup of a new
shopping list and some propose options to assign given
products on the list to local stores. Yet, they present
the same disadvantage as the paper version: there is no
”smart sorting” of the items to purchase (e.g. ordering by
stores and within a store by shelves, with various routing
optimization and so on).

On the other hand, it is possible to build services
which can assign products to local stores, either
automatically or by the user’s preferences and then
compute an optimal order to visit these stores.
Furthermore, most shopping centers are layed out
following some psychological guidelines (e.g. fresh fruits
and vegetables right at the entry). The services could
take into account this knowledge and propose an order
of the items for each store to visit.

We could imagine a smart shopping list application
where the user can add products either manually by
providing a name or by scanning an already purchased
item. Each product on the list can be assigned to a shop.
If the user assigns a product to a store, this item has to
be purchased on that store. Once the user has entered all
the desired products, the list should be saved and sorted
in a logical manner.

We can define the following hierarchy for locating a
product. Each product is available in at least one store.
Such a store is made of shelves presenting the different
products. A store is found either at a given address or in
a bigger shopping mall. A shopping mall has a physical

address. Based on this hierarchy it is possible to find out
a smart order of the items to purchase.

Such a system first has to assign each product to
a store. This is done either by respecting the user’s
preferences or by smart-selecting a shop selling the
product. This smart selection has to take into account
that the number of different shops to visit should be kept
low. Once each product is assigned to a store, the best
routing between the shopping malls to visit is computed.
At the same time, for each shopping mall, there exists a
best order to visit all the shops. Furthermore, each shop
is layed out according to known principles. This allows
to roughly order the list of products for each store. All
these tasks can be done in parallel.

Therefore, a shopping application could integrate
such a "routing service”. When the user has finished
adding products to its shopping list, the service is called
with the list of products as parameters. The service
would then use the necessary computing time to return
a "smart list” sorted by shopping malls, stores, shelves
and products. The client can now go shopping. Arriving
in one store he can grab the ordered list for this store
and do the shopping.

Note that a smart shopping list service has to solve
several sub-problems in order to solve the overall one
of smart ordering the list of items to purchase. Most
of these sub-problems will only have a short delay and
the overall delay for solving the problem is not the
primary matter in this use-case. Yet it illustrates well the
necessity to decompose the primary task into sub-tasks
in such a way that it will be very comfortable for the
design of mashup applications to have a different URI to
each resource (e.g. one for accessing the whole shopping
list, several sub-resources for each shopping mall and
several sub-sub-resources to the items to purchase in
each store).

3.2 Alert system for Firefighters

Let us imagine a system for alerting firefighters of an
incident. For that purpose we will base our description of
the system on the structure and roles of the British fire
service. A fire department is organized as a hierarchical
structure. For each area there is an Area Manager
responsible for several Groups. Each Group is made of a
given number of Stations, each having associated some
firefighters and vehicles (Firefighters, 2012; Firefighter
Roles, 2012; British Firefighters, 2012). Figure 1 shows
these hierarchical dependencies. When an incident is
declared a specific number of firefighters and vehicles
have to be sent to the incident and the Area Manager
decides which Group will handle it. The Group Manager
will then decide upon the Station having enough capacity
to handle the incident and finally, firefighters from
one station are sent out. Several factors influence the
choice of one Group / Station or another, among them,
the distance to the incident and the manpower of a
station. The alert is only treated as soon as one station
successfully committed.
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Figure 1 Hierarchy of a Fire Department

This scenario embeds seamlessly into the Web of
Things. The vehicles and the firefighters can be seen
as Things. Vehicles can be tracked by GPS in order
to know if they are currently in use or not. The same
applies for firefighters. With a small application on their
smart-phones the system knows whether a firefighter is
already handling an incident, on holiday or available.
In countries where there are no professional firefighters
the biggest challenge is to find enough man-power to
respond to an incident. Today this is done by pager or
phone calls or sometimes by SMS. In a world seamlessly
integrated into the Web of Things, this process could
be greatly simplified. As soon as an alert gets recorded
it has to be treated by the hierarchy described above:
The area manager creates a new alert in the system.
The system then transmits the alert to a suitable group,
which in turn selects a station and by that the attached
firefighters. The system is smart enough to discard
groups and stations which have no capacity to handle
this alert. By having a persisted alert in the system, the
area manager or a group manager can always check in
which state an alert is. On the last layer, each firefighter
gets the alert. The alert message that the firefighters
get consists of a link to the alert resource. By clicking
on that link a new WebSocket connection is opened to
the alert on a Station level. Thus, each firefighter can
see if there are still more firefighters needed. If this is
the case, he can accept the alert and by that increase
the number of committed firefighters for that alert. Each
firefighter connected to the alert will get updates about
other commitments in real-time. As soon as enough
firefighters have committed to the incident, the alert is
marked as treated by a station. This in turn closes the
alert on a group level and by that closes the alert for
the area manager. The area manager can come back
later and check which group finally has accepted the
alert. The system has to be smart enough for handling
situations where a suitable station is found but not
enough firefighters committed in a reasonable time. In
such cases, the alert has to be escalated to the next
available station or group. As for the firefighters a station

manager can open a WebSocket connection to the alert
resource in order get informed about who has committed.

Therefore, the process of finding firefighters for
handling an alert decomposes itself into several sub-
tasks: finding a group handling the alert, finding a
station and enough firefighters to accept the alert. In
addition, the handling is done asynchronously as it might
take some time to find the right amount of firefighters.

This use-case shows another interesting problem
where decomposable and delayed services are needed.
Since fire departments have to handle incidents as
quickly as possible, the delay is in general not very
big. Yet, it is interesting to see it as a delayed service.
When an incident arrives at the area manager he has
to take care of it. However, he cannot always wait for
the result of pushing the alert down to a station as
other incidents might happen. Thus having a sort of
delayed system where he can check later the outcome
of that alert is necessary. Besides, decomposing the
problem is necessary in order to give each participant
direct access to the relevant information. This might be
the accept/deny part for a firefighter or the overview
of how many firefighters did accept the alert for a
station manager. Furthermore, this mechanism allows for
a hierarchical escalation of the alert to ensure that at
least one station will take care of it.

3.3 Parcel Delivery Central

A parcel delivery central receives each day a large
number of parcels, which have to be delivered to
addresses the next day. Upon arriving at the postal office,
each parcel is scanned (for example by reading its RFID
tag or its bar-code). Through this scanning the system
knows which parcel has to be delivered to which address.
The parcel is then added to the current distribution list.
In the evening when the office closes, all parcels have to
be assigned to different tours. Moreover, each parcel has
a given priority, which gives an additional constraint on
the delivery time.

This is an instance of the well known problem in
operations research called Vehicle Routing Problem with
Time-Windows (VRP-TW) (Golden et al., 2008; Paolo
and Vigo, 2002). It consists of finding an optimal set of
routes to be performed by a fleet of vehicles to serve a
given set of customers. The problem can be described
as follows: Given n locations (the customers and the
parcel delivery central) numbered from 1 to n, we want
to deliver goods to each customer in a given window-time
using k vehicles, all starting at the central (location 1)
and returning to the central using the shortest distances
possible that the vehicles have to travel. This problem
is NP-complete and it is very difficult even for small
instances to find an optimal solution. The problem can
be solved in two steps:

1. partitioning all the customers 2 to n into k
subgroups and

2. finding the shortest tour for each subgroup.
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Immediately after the first step is finished and thus
the partitioning known, the parcels can be distributed to
the different trucks. Each truck has an assigned tour and
driver. The next morning when the drivers are arriving,
each one can check its assigned route and deliver the
parcels according to the computed routing and their
priority in an optimal route.

This scenario clearly shows the interest and need for
decomposable delayed services. The scenario describes
how the problem has to be decomposed into sub-
problems in order to solve the first instance of the
problem. Additionally each sub-problem has its own
delay which varies from one sub-problem to another. In
the worst case scenario the overall delay for solving the
problem is the sum of all sub-problem delays.

4 Generic RESTful Architecture

Chapter 3 introduced three motivating examples of
decomposable possibly delayed services. Even if each
service provides its own specific features, there are
important similarities, which can be abstracted in
order to obtain a generic architecture for decomposable
delayed services. This section explains our architecture
in two steps: first, we define the structure of a task and
second, we show how to seamlessly integrate a RESTful
facade to an arbitrary delayed service.

4.1 Basic RESTification

The idea of using tasks on a server representing the
ongoing and finished jobs is not new. A first approach
to this problem has been presented by Richardson et
al. (Richardson and Ruby, 2007).

To our point of view, it is a good reasoning, but
not enough. What happens for example, if the created
task decomposes itself into several sub-tasks (see
the Parcel Delivery Center example in Section 3.3
and its prototypal implementation in Chapter 5)?
Indeed, resources that appear and disappear are very
much in the spirit of the Web of Things where many
things and processes interact simultaneously. As stated
in (Richardson and Ruby, 2007), there are not that
many possibilities to bring asynchronous services into
the world of RESTful services. Each request to service
z creates a task, which is added to the task queue
associated with the service. This queue and its tasks
are the only resources bound to the service z. As
Richardson et. al raise the task is not a state which
is transferred to the server (and thus would violate
the concept of RESTful interaction), it is a newly
created resource with which a client can interact.
The associated URI scheme is therefore quite simple:
http://. .. /servicex/tasks/ is the list of all tasks on
service z and http://. .. /servicex/tasks/id_y/ points to a
given task y. This definition can be extended recursively.
As stated by RESTful principles, the representation of
a task should contain links to related resources, in this

case the associated sub-tasks. Thus, http://. .. /servicex-
Jtasks/id_y/id_z/ points to one sub-task z of task y.
This recursive definition can be drilled down to as
many layers as needed. Figure 2 gives a conceptual
overview of this hierarchy of tasks. Let us have a closer
look at the shopping list example of Section 3.1. The
URL http://. .. /shopping_list/tasks/ would return a
list containing all shopping lists created on the server.
Whereas  hitp://... /shopping_list/tasks/jpl/  would
return one particular shopping list containing, among
others, a list of links to the shopping lists for each store to
visit. Finally http://... /shopping_list/tasks/jp1/storel
would return, among others, the list of products to
purchase in storel.

A deeper analysis of the examples of Chapter 3 shows
that each presented service makes use of tasks and task
lists. Besides, all tasks share a common set of properties.
Therefore, we propose that a task is always defined by
at least the following set of attributes:

e A unique identifier is needed to identify a task.
This identifier is also part of the URI pointing to
this task. It is the only mandatory attribute.

e Additionally, the user Id is part of these attributes.
It ensures a clear separation of users and rights.

e Furthermore, the results are also part of the list of
attributes. They may not yet be available and thus
be empty.

e Just as important is the input. It describes the
actual task which has to be performed by the
system.

e Once created, a task is executed by the service and,
after some period, the result is available. Therefore,
a task needs a status indicating whether it is still
running or not.

e Finally the start-, end-time, and a short error
message are not directly part of the task. However,
it is interesting to have access to this information.

e Since a task can have sub-tasks, they have to be
linked against their father. Therefore, a task should
contain a list of pointers to its related sub-tasks.

Most of these attributes are provided by the server. For
example, the user Id should, for security considerations,
be filled-in by the server. Similar reasons apply for the
other attributes, except the problem description which
is the only one provided by the user. As showed by
Figure 2, tasks are defined recursively. A task can have
several sub-tasks. This relation has to be translated into
the system.

4.2 Additional semantic

In order to fully RESTify a delayed service, we first have
to ensure that it will only be requested with a POST
request. As usual, a POST request creates a new resource
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Figure 2 Conceptual overview of the tasks hierarchy

on the service. It is important to use the POST statement
since it is not known in advance under which URI the
new resource will be created. This resource represents the
actual task that the service has to solve. Since the server
replies with a 7202 Accepted”, the resource is created
immediately and can, from this point on, be requested to
know the state of the task. Since the resource describes
an ongoing task on the service, its representation changes
over time. The POST request should allow at least two
content types:

1. XML/JSON for simple tasks and
2. multi-part form data for file upload.

The multi-part creation comes handy when the
description of the computation is complicated or when
the interaction with the service is file based (see
Section 5.2 for more details). This semantic is fully
compatible with RESTful principles.

While the POST request allows the creation of a task,
its modification requires the PUT request. One possible
modification of a running task that should absolutely be
implemented is its abortion. There are situations where
this is mandatory. This is for example the case when
the service is blocked at some point of the computation.
This can have many reasons: waiting for not available
input, infinite loop etc. By sending a PUT request we
can abort such a computation. Abortion of tasks is
also interesting when launching problems which do an
iterative refinement of the solution. Maybe at some time,
the solution is good enough for the present situation
and should stop to free the occupied computing facilities
for other tasks. The third operation, DELETE removes a
task from the service. When launching this request, the
service should ensure that if the task is still running, it
gets first aborted and then deleted. Both, the PUT and

© [ taskType

userld
results

input

gpec

© [ statusType

running

starttime
endtime
errormessage

Tasks
tasksType |-
— T &

the DELETE request should send back a representation of
the task.

Finally, the GET request returns either a list of tasks
or a task and its list of sub-tasks. In the first case, it
returns just a list of links pointing to individual tasks. In
the second case, it returns both the attributes of the task
and a list of links to its sub-tasks. As used in RESTful
services, the GET method should be able to deliver
different representations of its resources. Among them,
JSON/XML and HTML should be available. Besides
that, the GET method should allow filtering relative to
most of these properties. A common use-case for this is
searching for errored or unfinished tasks. Filtering for
these attributes allows the creation of Atom (Gregorio
and de Héra, 2007) feeds to which users can subscribe to
get, for example, all unfinished tasks or all tasks started
before a given time (Wilde and Marinos, 2009). Since the
introduction of HTML 5, a new approach for delivering
updates is available: the WebSocket API. WebSockets
allow a bidirectional communication between a client
and a server. In our use-case of decomposable-delayed
services, the bidirectional part is not the most important
aspect of WebSockets. Their main advantage in this
context is their ability to “push” messages from the
server to the client. Hence, the GET method is the entry
point for the WebSocket connection. Instead of polling
for updates on a given resource, a user can open a
WebSocket on this resources and by that, getting all
updates on the resource. This can be handy for providing
log messages to the user in real-time. WebSockets are
not just a new content-type to handle. They will later
allow the creation of mashup applications which will feel
like native ones.

The discussion above shows that a task can be
aborted, running or finished. Besides that, it is possible
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that a task produces an error and stops. This can
have several reasons like waiting for input which is not
available etc. These considerations lead us to affirm that
the status attribute must accept at least one of the four
values: running, finished, aborted, or error as shown in
Figure 2. In the case of an error, the error message
attribute should provide some debugging information.
The start- and end-time are not directly related to the
task, yet, they can be used for example, to detect tasks
which run for quite a long time and are therefore, good
candidates for infinite looping tasks. Another use-case is
the billing of used service time, which can be calculated
based on these attributes. Depending on the situation, it
is quite possible that additional properties are needed to
describe the current status of task running on a service.
Such attributes are situation specific and hence, out of
the scope of this architecture.

4.8 Software Design Considerations

When building a RESTful delayed service, the decision
of RESTifying the current service or building a new one
from scratch has to be taken. Both approaches present
their advantages and disadvantages, but both have in
common that they provide a universal API to access
delayed services in a RESTful manner. In most cases;
however, the service already exists. This is especially
the case for complex services where the business logic
is complicated and developed for years. It can be seen
as a black box to which a RESTful facade is created.
Figure 3 shows a service with a WS- (or RPC) interface.
The facade is built following our generic approach.
It implements the WS-, respectively the RPC client-
interface on the server side and offers a RESTful interface
to its clients. Our approach makes it easy to create such
facades. All the business logic remains in the original
service. Therefore, the fagade only acts as a mediator
between a client and the existing service. This method
also applies in situations where the black box service
offers some proprietary interface only.

Either way, the architecture stays the same. On the
client side the fagade offers a REST interface respecting
the principles presented in Section 4.1. On the server
side, either the facade implements the required business
logic or it implements a client (WS-*, RPC, POJO etc.)
for an existing service which actually solves the problem.

5 Case Study

5.1 Business Aspects

We now come to a concrete case study motivating
the value of decomposable delayed services. Let us
consider again the Vehicle Routing Problem with Time-
Windows (VRP-TW) of Section 3.3. As already stated,
the problem can be solved in two steps:

Al RESTful Old Business
— Facade interface Logic
REST
S —
RESTful request
to REST facade
REST An
« __RESTAn swer _
WS-*, RPC, ..
—
Proprietary
communication
<<call>>
Result
e _____F esuity
e Resuity
RESTful
Alice Facade

Figure 3 RESTifying a service

1. partitioning all the customers 2 to n into k
subgroups and assign each subgroup to a vehicle
and

2. finding the shortest tour for each subgroup
starting at location 1 and returning to location
1 by satisfying the given time-windows for each
costumer.

This problem has many practical applications in
distribution and logistics. Suppose our central has to
deliver letters and packets to 199 customers in a given
region during a given day. Starting in the morning at
5h00, each of the four postmen (using a vehicle each)
visits a subset of all customers. Suppose furthermore,
that each customer is in a group of ”express”, "normal”
or "slow” delivery, where ”express delivery” means that
the customer must be visited not later than 9h25,
"normal delivery” means not later than 11h05, and ”slow
delivery” can be delivered the whole day till 16h00.
Hence, we have given a set of customers including the
central, defined mathematically as I ={1...n} with
n = 200, where ¢ = 1 is the parcel delivery central (the
depot) and ¢ = 2. ..n are the customers and we have k =
4 vehicles. Finally, we have the distances between the
customers ¢ and j given as a matrix ¢; ; with ¢, j € I (that
is, a 200 x 200 data matrix) and a vector p; € {1,2,3}
with i € I, saying what type of delivery the customer 4
asked for (1 = ”express”, 2 = "normal”, 3 = "slow”).

To solve this problem, we run in a first step a service
that takes the data (i € I, ¢; j, p; and the number k)
and distributes the customers into k =4 groups. The
result of this service is a vector ¢; € {1,2,3,4} withi € I,
defining the assignment of each customer i to a postman
(vehicle), where ¢; = 1,2,3,4 depending on whether the
customer 1 is assigned to postman 1,2, 3 or 4. In a second
step, we run k services (in parallel) that take the data
(¢ij, pi, k and ¢;) and generates the optimal tour for
each postman.
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Figure 4 Creating a new Task on the VRP-TW service

This scenario embeds seamlessly into the Web of
Things. Each parcel has a tag (for example RFID)
containing among others, its priority level and the
destination address which is read on entering the central.
It allows, with the help of Google Maps (another service),
the construction of the distance matrix ¢; ; needed later.
The priority of each parcel and the number of available
vehicles are sent together with the distance matrix to
some ”routing service”. This service will, first compute
the partitioning of the customer on the k vehicles and
then define the best routing for each of them. Figure 4
gives a rough overview of the sequencing of such a
service. As described above, to respect the idea of
RESTful services, the routing service creates an URI
to the partitioning task, as well as k sub-URIs to each
of its routing tasks. By simply sending these URIs to
the postmen, the latters can consult the status of these
tasks and finally their routes on any web-enabled device.
It would even be possible to mash-up this information
with Google Maps and GPS location to create a turn-
by-turn application always indicating how to reach the
next client. Moreover, such an application could reflect
the delivery status of each parcel.

Several lessons can be retained from the discussion
of the case study above. There are a certain number of
things. These are the parcels and their tags but also the
vehicles. Apart from the things, there are synchronous
services like the tag reading, the construction of a
distance matrix and GPS tracking of the vehicles.
Besides these synchronous services, there is also an
asynchronous one which coordinates the whole, the
routing service. However, everything is identified by an
URI and all interactions are RESTful. Therefore, they

present a seamless way to be integrated, thus creating a
seamless Web of Things and Services.

5.2 Implementation Aspects

To validate our generic architecture of Chapter 4, we
have implemented the Routing Service of Section 5.1 as a
RESTful decomposable delayed service. Currently there
is a program called LPL (Hiirlimann; Hurlimann, 2012)
for solving the VRPTW, but it is only available as a
Windows DLL. Thus, it cannot be used directly from a
mashup. Optimization problems, as in the case study, are
described by models and their associated data on which
the computation will be done. We applied to this DLL
our generic solution to RESTify it. The model is already
provided as LPL binary. Thus, the only input needed are
the data on which the computation will be executed. The
choice between starting over or implementing a facade
was easy here. The solver has been developed for years
and is very stable in its current form. However, the solver
has no web interface. Thus, we created a RESTful fagade
for it.

All the methods mentioned in Chapter 4 were
implemented. The LPL binary accepts two sorts of input,
plain text and a pre-compiled binary format. Thus,
the POST method accepts either XML/JSON input, or
multipart form-data. The first content-type sends plain
LPL commands embedded in the XML, whereas the
latter uploads a pre-compiled binary in LPL format to
the service. Both were implemented, but currently only
the first one is used. Upon posting a new task, the
service fills out the missing fields like the start-time
and the user ID and persists the task into a database.
Afterward, the LPL solver is launched with this data
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<Task uri="http://localhost:9090/SlowLPLServer/resources/tasks/617506558”

<id >617506558</id >
<userid >rua</userid>

status="finished”>

<result>

<fileResult >http://localhost:9090/SlowLPLServer/lpltmp /617506558 /617506558 . nom</fileResult >
<imageResult>http://localhost:9090/SlowLPLServer/lpltmp /617506558 /617506558.jpg</imageResult>

<logResult>Current

</result>

shell is

...SUBTASK ended 5</logResult>

<input>http://localhost:9090/SlowLPLServer/lpltmp /617506558/617506558.1pl </input>
<startdate >1325607398832</startdate >

<enddate >1325607418966 </enddate>
<usedSolverTime >15</usedSolverTime>
<problemName>Test 2</problemName>
<numberOfSubTasks>4</numberOfSubTasks>

9090/ SlowLPLServer/resources /tasks /617506558/1/”
9090/ SlowLPLServer/resources /tasks /617506558/2/”
9090/ SlowLPLServer/resources /tasks /617506558/3/”
9090/ SlowLPLServer/resources/tasks /617506558 /4/”

status="finished” />
status="running” />
status="finished” />
status="running” />

<subtasks>
<ShortTask uri="http://localhost:
<ShortTask uri="http://localhost:
<ShortTask uri="http://localhost:
<ShortTask uri="http://localhost:
</subtasks>
</Task>

Listing 1 XML representation of a Task

set as input. This is the first part of the computation
where the partitioning of the parcels is computed. As
soon as this first step - partitioning into 4 tours -
has finished, the task attributes are updated, reflecting
the new state as well as the result. Figure 5 shows a
graphical representation of a partitioning while Figure 6
displays the tour associated with the second vehicle. The
attentive reader will notice that since each parcel has an
assigned priority, it is not enough to partition the space
and return the shortest path for each turn.

The partitioning computation took 10 minutes on a
standard dual-core machine. With this result as input,
the second part of the computation is started, computing
for each of the k vehicles the best routing. This is done in
parallel for each of the k vehicles. To respect the RESTful
principles, a new task is created for each of the vehicles.
They get the same user ID as their parent task. These
tasks will later be consulted by the postmen to get the
details of their tour. In our example, where n is 200
and k is 4 the computation of a solution took about 20
minutes, pushing the overall running time to at least 30
minutes. This amount shows that a synchronous solution
would not be apt to integrate this service seamlessly.
Accordingly, the parcel delivery office can accept parcels
until 3.30 AM. Passed that deadline, the service needs
to be started to know the tours in the morning when the
postmen arrive.

The GET method returns either the current status
of the task, including a set of links to the computed
result if already available, or a list of tasks, depending on
the URI on which the request is executed. This request,
as RESTful principles propose, delivers either a fully
fledged HTML page or XML/JSON data which can then
be used to be integrated into a mashup on the postmen
smart-phones. Listing 1 shows the XML representation
of such a task. The listing displays a finished task which
has four sub-tasks, two of them are still running. All
the attributes summarized by Figure 2 are present and
correctly filled in. Furthermore the chosen URI schema is
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Figure 5 Partitioning of the parcels

similar to the one presented in Section 4.1. The input is
no longer available as plain text but was transformed into
a file read by the solver. This is mainly for two reasons:
1. on the server side, the communication with the LPL
solver is file based, thus, even if the task is created from

/
Central

Figure 6 Computed tour for vehicle 2
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its XML representation, an input file for the LPL binary
will be created; 2. returning always a link to the input file
allows for an easier integration of the service into future
mashup applications. As stated before, the result is a list
of links pointing to the individual parts of the solution.
In fact, besides the information needed for the delivery
(fileResult and imageResult), the LPL solver has also
computed information needed for quality management
of the service (LogResult). The complexity of the result
attribute however, may vary from one service to another.
The attentive reader will also notice the links towards
the four sub-tasks (finished or still running).

Additionally the GET method is also the entry point
for a WebSocket connection. This is achieved by using
the media type text/plain for WebSocket connections.
If a browser requests a plain text representation of a
task, the server will initiate the WebSocket handshake
with the client. This media type is only available on
a given task but could easily be expanded to task-lists
or subtasks. After a successful handshake, all the log
messages generated by the solver are transmitted to the
client over the WebSocket thus, allowing him to follow
closely the process.

Besides, it is possible to add filter queries to the
request: hence, only a partial task list is returned. Again,
this information is not helpful for the postmen but rather
to the office launching the tasks. Such queries make
it possible to find quickly erroneous computations and
react accordingly.

The PUT and DELETE requests modify an already-
existing task. Both methods return the same information
as the GET. However, the PUT method is used to abort a
currently running task whereas the DELETE aborts and
removes a task, independently from its current running
status. Since a task can have sub-tasks, resolving sub-
problems, a DELETE also removes all sub-tasks. This
has to be done to ensure integrity of the underlying
data structure. Both methods have to take care that
the launched process (i.e. the solver) also gets properly
stopped and resources cleaned-up and freed to give other
running task more computing facilities to run.

The implemented fagade contains only the code
interacting with the actual LPL solver and generating
the recursive tasks. No business logic is implemented
in the fagade. Furthermore, the attributes discussed
in Section 4.1 are sufficient to describe the system.
They add enough information to ensure that the service
is working, but not more than needed. The attentive
reader may notice that there are a few more attributes
on Listing 1. They are mainly intended for quality
control and billing. The prototypical implementation
proved the validity of the presented generic solution. The
implementation provides now a standard and easy way
to use our API to access the LPL solver. Since REST is
a stateless protocol, it is needless to wait for the task to
finish. Instead, it can be launched and the status can be
checked later on.

6 Conclusion

We identified the challenging problem of integrating
decomposable delayed services within typical Web
of Things situations. We were able to provide a
generic (fully RESTful, using established standards)
architecture to its solution and we validated the whole
with a prototype. We also showed with our facade
approach that such a service can be RESTified even if
you are not its owner.

Besides the prototypal implementation of the parcel
delivery service we have several other ongoing projects
in this domain to prove the viability of our approach.
A system similar to the alert system for firefighters
presented in Section 3.2 is currently developed together
with the University of Applied Science of Western
Switzerland and datamed SA* as part of a CTI® project.
The focus of the project is to build an e-Health system
providing the medical staff an easy access to medical
analysis results. Such an analysis can be seen as a task,
they are created by a doctor who then has to wait for
the result. Also the shopping list example of Section 3.1
is currently under discussion together with the WNEC
Lab. at Taiwan Tech for pushing it further and providing
an implementation together with a mashup application.

We believe in a future where things, synchronous
services, data, but also decomposable delayed services,
coordinating business process, and so on, are unified
within a consistent and seamless structure. We believe
that this seamless structure is RESTful for its simplicity
and scalability. The low entry barrier for constructing
quick (and dirty) mash-ups as well as the use of well-
established standards are further arguments for a world
of RESTful services. Some starting point for such a world
is provided in (Haller, 2010) and (IOT-A, 2012) but
much remains to be done, like giving precise definitions
and larger classifications, but we think that the present
paper contributes to a small part of solving this complex
puzzle.
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