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Abstract—The Web of Things research activities consist
essentially in developing concepts, tools and systems for creat-
ing and operating global networks of devices associated with
embedded resources - RFID tags, sensors, actuators and even
complex computing facilities -, which are accessed by services.
In that context, one of the most accepted standardization
technique in order to seamlessly integrate this potentially huge
set of heterogeneous services consists in RESTifying them. This
operation is rather straightforward for ”quickly computed”
services such as Flickr photo service, Google Maps or Twitter.
But what about cleanly integrating delayed, possibly decompos-
able services, such as a parcel delivery service computing first
the partitions of parcels to various tours and then, for each
tour, the optimal routing respecting additional constraints?

We claim that this question represents an important chal-
lenge if one desires to enrich the potentialities of the web of
things. In order to best contribute to its solution, this paper first
tackles the problematic of RESTifying decomposable delayed
services in a generic way. Secondly, it proposes a general
architecture and validates it with a case study including a
prototypical implementation.
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I. INTRODUCTION

Over the last decade, technology advances have allowed
embedded devices to become cheaper and more sophisti-
cated. This progress opened new perspectives. It gave birth
to innovative ways of using such devices by attaching to
them sensors and actuators. Adding networking capabilities
was the next logical step, since it allowed companies to
track production, shipment and storage of goods. Following
that path, a real need came up to seamlessly integrate
physical objects as well as their virtual representations into
the Internet. Out of that, the Internet of Things emerged.
Internet of Things means the Internet related to Things.
Another definition can be found in [1] and [2]. By looking
closer at the classification in [1], we see that the things are
considered to be physical entities. Furthermore, they can
be associated with devices which are either embedded or
environmental. Finally, devices contain resources which can
be accessed by services.

Key architectures for allowing seamless interactions be-
tween these resources are REST [3] and RESTful ser-
vices [4]. Indeed, RESTful interactions have several ad-
vantages over fully fledged WS-* web services [5]–[8].
Indeed, since HTTP is used as application protocol and
not simply as a transport one, a browser is sufficient for
accessing and exploring resources. The latters are identified
by URIs allowing to bookmark and share them. Besides, it
allows the adoption of well established web technologies
like, authentication, security with https, integration with
Javascript, etc.

Following that reasoning, services composed with things
are usually RESTful (or at least RESTified) in order to
seamlessly integrate them. This is for example the case
for Flickr photo service or Twitter, but what about cleanly
integrating decomposable delayed services? In opposition
to services like Google Maps, which are instantaneous
and ”atomic”, decomposable delayed services might split
themselves up into sub-services, each likely to be delayed.
We claim that if we really want to bring an added value
to the Web of Things (WoT), seamlessly integrating such
services is important.

In this paper, we want to investigate how to seamlessly
integrate these services into the Web of Things. The aim
is to formulate a general architecture fulfilling the intended
purpose. To achieve this goal, we first present a motivating
example where delayed interactions and service decompo-
sition happens and we show what are the problems and
challenges of integrating such services within a RESTful
perspective. We will then present a general architecture
which address these problems. In the last part we illustrate
our architecture applied to a case study, including a proto-
typical implementation.

II. THE CHALLENGE OF DECOMPOSABLE DELAYED
SERVICES

The Web of Things started with combining physical
devices, sensors and actuators in a standardized manner. This
had the advantage that devices from different sources could
easily be combined without the hassle of learning each time



about the vocabulary used by the service. The WoT, however,
is not limited to physical devices. Indeed, bringing delayed,
possibly decomposable services, into the WoT world allows
for the creation of much more sophisticated scenarios as we
shall see.

A. Problematic

Integrating services into the Web of Things works most
of the time out of the box. Drawing coordinates obtained
from Google Maps for example, is just a matter of sending
a GET request with some URL encoded values. The result is
delivered immediately. However, the parcel delivery example
from Subsection II-B shows that services can sometimes be
quite complex and might require a long delay to execute
and to deliver the desired output. For our purposes, let us
roughly classify services into four categories, each of them
having its properties and special requirements regarding the
architecture to choose in order to integrate it.

The first category includes the short living services.
Even though some computation is done upon requesting the
service, the result is almost instantaneous. An example of
such a service is the routing service of Google Maps. Each
time a route is requested, the service launches a computation
and returns the computed routing between the submitted
locations. This is so quick that it does not make sense to
cache the result for later consultation. Such services integrate
seamlessly into the Web of Things. Consuming them is just
a matter of a GET request. In fact, a user cannot distinguish
if the answer from the server is actually computed or if he
has accessed a static resource.

The second category is composed of the real-time ser-
vices. Upon requesting such a resource, the user gets imme-
diately its representation. Over time, however, the resource
might change and the user would like to be informed about
updating events. Since these happen constantly, it is not
necessary to worry about problems like connection timeouts
or users quitting the interface. An example for such a service
is the Twitter timeline. It can be accessed in a RESTful
manner. This resource, however, changes over time as new
tweets arrive. Therefore, its representation changes also over
time. A popular approach to offer such services consists
in using web-hooks: upon requesting a resource, the user
provides a URI under which the service can contact him
and provide him with updates. While this solution proposes
a clean design, it has the drawback that it most certainly
will not work in corporate environments. Security policies
will most of the time forbid opening ports for incoming
traffic and therefore block the updates from the service.
Another well established approach is Comet [9]. The Comet
framework uses either HTTP streaming or long polling in
order to fetch the updates from the server. Unfortunately,
Comet is not supported at the same level in all browsers,
which makes it a big and complicated framework. The
upcoming HTML 5 also brings a set of new technologies

to the browser, the WebSockets API [10] standard being one
of the most promising. A WebSocket opens a new TCP/IP
connection in the browser. This connection is Firewall and
NAT proof, which makes it a real alternative to Web-hooks.
Upon requesting a resource, a new WebSocket is created.
Later notification about updates of the resources are sent
over this WebSocket together with the new representation of
the resource. Actually, the main drawback of this solution
is that the WebSocket API is currently only a draft version
from W3C, with the consequence that its support in modern
browsers varies.

For the first two categories, even if the service executes
some computation on the data passed along with the URL,
the result is computed at each request. This is smart insofar
as the time needed for the computation is barely measurable.
The service is REST compliant in the way that the URI to
the result can be bookmarked and viewed again. For such
instantaneous interactions, it would not make sense to store
the results somewhere in the cache. It is much more practical
to compute them each time. In the case of delayed services,
however, this is clearly not the best approach.

The third category are the delayed services. When the
user requests a resource, the service is unable to send
back a representation of the latter in a reasonable time. An
example for such a service is the planning of Round-Robin
Tournaments with complicated constraints like minimizing
breaks [11]. Finding a solution is time consuming. In fact
the computation launched by requesting the resource is so
time consuming that no user would really wait for the result
to be ready. Besides that, such long delayed services might
lead to dropped connections. Yet, a dropped connection
does not stop the computation on the server; thus, CPU
cycles are wasted. Furthermore, the user will see the dropped
connection and most likely will relaunch the request. This
multiplies the server charge needlessly, which may lead
to a break down of the system all together. One possible
solution would be to use longer connection timeouts on
HTTP connections. However, for usability reasons, this is
a bad idea: the user sends a request to the service and thus
expects a result. But, if the process takes too much time,
the user tends to think that there is a connection problem
and she aborts. Another point is that systems using long
HTTP connection timeouts scale very badly. This is surely
not in the philosophy of the Web of Thing where thousands
of devices are supposed to interact.

As for the second category, web-hooks are a common
approach to solve these problems. However, if we cannot
expect the user to wait for the final result, we cannot
expect that the provided web-hook will be available when
the computation finishes. Another approach is proposed by
Richardson et al. [4]. Instead of requesting the resource
with a GET statement, a new task is created. The latter
shows the progress of the ongoing computation and, ul-
timately, its result when finished. With this solution, the



server should always respond to a request, either with the
computed answer or, if the computation takes too much
time with a 202 Accepted, plus some URI where the user
can check the progress and, if available, the result. We
do consider Richardson’s solution as the most rightful one
at the architectural level and we will elaborate on it in
Subsection II-C. An advantage of this proposition is that it
is always possible, as an add-on, to use either the Comet
framework, polling or WebSockets in order to track the
progress of the computation.

The fourth category is composed of decomposable de-
layed services. Upon being requested, such a service does
not respond with an ”atomic” answer, but rather split itself
up into sub-services, thus returning a whole hierarchy of
answers. Furthermore, as we shall see in the example of
Subsection II-B, each sub-service might have its own delay.
This fourth category is the one on which the rest of this
paper focuses. It represents clearly a generalization of the
third one, for which Richardson and Ruby’s solution [4]
must be further refined.

B. Motivating example — Parcel delivery center

We now come to an example application motivating the
value of decomposable delayed services. We first present
a concrete example and move then on to the abstract case.
The presented example will be used as a use-case throughout
the remaining of the paper. Consider a parcel delivery center
which has to deliver parcels to its customers. Each parcel
has an assigned priority adding a constraint on the delivery
time. All parcels received during the day, will be distributed
the next day respecting the given priorities. Upon arriving at
the central, each parcel is scanned (for example by reading
its RFID tag or its bar-code). Through this scanning, the
systems knows the priority and the delivery address of each
parcel. It is then added to the current distribution list. In the
evening all parcels have to be assigned different tours.

This is an instance of the well known problem in oper-
ations research called Vehicle Routing Problem with Time-
Windows (VRP-TW) [12]. It consists of finding an optimal
set of routes to be performed by a fleet of vehicles to serve
a given set of customers. The problem can be described as
follows: Given n locations (the customers and the parcel
delivery central) numbered from 1 to n, we want to deliver
goods to each customer in a given window-time using k
vehicles, all starting at the central (location 1) and returning
to the central using the shortest distances possible that the
vehicles have to travel. This problem is NP-complete and it
is very difficult even for small instances to find an optimal
solution. The problem can be solved in two steps:

1) partitioning all the customers 2 to n into k subgroups
and

2) finding the shortest tour for each subgroup.

C. Generic Architecture

Section II-B introduced a motivating example of decom-
posable delayed services. Even if each service provides its
own specific features, there are important similarities, which
can be abstracted in order to obtain a generic architecture
for decomposable delayed services. This section explains
our architecture in two steps: first, we define the structure
of a task and second, we show how to seamlessly integrate
a RESTful facade to an arbitrary delayed service.

Basic RESTifycation of the Resources: The idea of using
tasks on a server representing the ongoing and finished
jobs is not new. A first approach to this problem has been
presented by Richardson et al. [4]. To our point of view,

Figure 1. Conceptual overview of the tasks hierarchy

it is a good reasoning, but not enough. What happens for
example, if the created task decomposes itself into several
sub-tasks (see the motivating example in Section II-B)?
Indeed, resources that appear and disappear are very much
in the spirit of the Web of Things where many things and
processes interact simultaneously. As stated in [4], there are
not that many possibilities to bring asynchronous services
into the world of RESTful services. Each request to a
service creates a task, which is added to the task queue
associated with the service. This queue and its tasks are
the only resources bound to the service. As Richardson
et. al state the task is not a state which is transferred to
the server (and thus would violate the concept of RESTful
interaction), it is a newly created resource with which a
client can interact. The associated URI scheme is there-
fore quite simple: http://. . . /servicex/tasks/ is the list of
all tasks on that service and http://. . . /servicex/tasks/id/
points to a given task. This definition can be extended
recursively; http://. . . /servicex/tasks/id/tasks/ is a list of sub-



tasks whereas http://. . . /servicex/tasks/id/tasks/id/ points to
one sub-task. This recursive definition can be drilled down
to as many layers as needed. Figure 1 gives a conceptual
overview of this hierarchy of tasks.

A deeper analysis of the example of Section II-B shows
that the presented service makes use of tasks and task
lists. Besides, all tasks share a common set of properties.
Therefore, we propose that a task is always defined by at
least the following set of attributes:

• A unique identifier is needed to identify a task. This
identifier is also part of the URI pointing to a task. It
is the only mandatory attribute.

• Additionally, the user Id is part of these attributes. It
ensures a clear separation of users and rights.

• Furthermore, the results are also part of the list of
attributes. They may not yet be available and thus be
empty.

• Just as important is the input. It describes the actual
task which has to be performed by the system.

• Once created, a task is executed by the service and,
after some period, the result is available. Therefore, a
task needs a status indicating whether it is still running
or not.

• Finally the start-, end-time, and a short log message are
not directly part of the task. However, it is interesting
to have access to this information.

Most of these attributes are provided by the server. For
example, the user Id should, for security considerations, be
filled-in by the server. Similar reasons apply for the other
attributes, except the problem description which is the only
one provided by the user. As showed by Figure 1, tasks are
defined recursively. A task can have several sub-tasks. This
relation has to be translated into the system.

Additional semantic: In order to fully RESTify a delayed
service, we first have to ensure that it will only be requested
with a POST request. As usual, a POST request creates a
new resource on the service. It is important to use the POST
statement since it is not known in advance under which URI
the new resource will be created. This resource represents
the actual task that the service has to solve. Since the
server replies with a ”202 Accepted”, the resource is created
immediately and can, from this point on, be requested to
know the state of the task. Since the resource describes an
ongoing task on the service, its representation changes over
time. The POST request should allow at least two content
types: XML/JSON for simple tasks and multi-part form
data for file upload. The multi-part creation comes handy
when the description of the computation is complicated or
when the service interaction with the service is file based
(see Section III for more details). This semantic is fully
compatible with RESTful principles.

While the POST request allows the creation of a task,
its modification requires the PUT request. One possible
modification of a running task that should absolutely be

implemented is its abortion. There are situations where
this is mandatory. This is for example the case when the
service is blocked at some point of the computation. This
can have many reasons: waiting for not available input,
infinite loop etc. By sending a PUT request we can abort
such a computation. Abortion of tasks is also interesting
when launching problems which do an iterative refinement
of the solution. Maybe at some time, the solution is good
enough for the present situation and should stop to free
the occupied computing facilities for other tasks. The third
operation, DELETE removes a task from the service. When
launching this request, the service should ensure that if the
task is still running, it gets first aborted and then deleted.
Both, the PUT and the DELETE request should send back a
representation of the task. Finally, the GET request returns
either a task or a list of tasks. In the first case, it returns both
the attributes of the task and a list of links to its sub-tasks.
In the second case, it returns just a list of tasks. Besides
that, the GET method should allow filtering relative to most
of these properties. A common use-case for this is searching
for errored or unfinished tasks. Filtering for these attributes
allows the creation of Atom [13] feeds to which users can
subscribe to get, for example, all unfinished tasks or all tasks
started before a given time [14].

The discussion above shows that a task can be aborted,
running or finished. Besides that, it is possible that a task
produces an error and stops. This can have several reasons
like waiting for input which is not available etc. These
considerations lead us to affirm that the status attribute must
accept at least one of the four values: running, finished,
aborted, or error. In the case of an error, the log attribute
should provide some debugging information. The start- and
end-time are not directly related to the task, yet, they can be
used for example, to detect tasks which run for quite a long
time and are therefore, good candidates for infinite looping
tasks. Depending on the situation, it is quite possible that
additional properties are needed to describe the current status
of task running on a service. Such attributes are situation
specific and hence, out of the scope of this architecture.

Software Design Considerations: When building a REST-
ful delayed service, the decision of RESTifying the current
service or building a new service from the scratch has to
be taken. Both approaches present their advantages and
disadvantages, but both have in common that they provide
a universal API to access delayed services in a RESTful
manner. In most cases; however, the service already exists.
This is especially the case for complex services where the
business logic is complicated and developed for years. It can
be seen as a black box to which a RESTful facade is created.
Figure 2 shows a service with a WS- (or RPC) interface. The
facade is built following our generic approach. It implements
the WS-, respectively the RPC client-interface on the server
side and offers a RESTful interface to its clients. Our
approach makes it easy to create such facades. All the



Figure 2. RESTifying a service

business logic remains in the original service. Therefore,
the facade only acts as a mediator between a client and the
existing service. This method also applies in situations where
the black box service offers some proprietary interface only.
Either way, the architecture stays the same.

III. PROTOTYPAL IMPLEMENTATION

The parcel delivery central of section II-B embeds seam-
lessly into the Web of Things. Each parcel has a tag (for
example RFID) containing among others, its priority level
and the destination address which is read on entering the
central. It allows, with the help of Google Maps (another
service), the construction of the distance matrix needed later.
The priority of each parcel and the number of available
vehicles are sent together with the distance matrix to some
”routing service”. This service first computes the partitioning
of the customer on the k vehicles and then define the best
routing for each of them.

Suppose our central has to deliver packets to 199 cus-
tomers in a given region during a given day. Starting in the
morning at 5h00, each of the four postmen (using a vehicle
each) visits a subset of all customers. Suppose furthermore,
that each customer is in a group of “express”, “normal” or
“slow” delivery, where “express” means that the customer
must be visited not later than 9h25, “normal” means not
lather than 11h05 and “slow” can be delivered the whole
day till 16h00.

Figure 3 gives a rough overview of the sequencing of
such a service. As described above, to respect the idea of
RESTful services, the routing service creates an URI to
the partitioning task, as well as k sub-URIs to each of its
routing tasks. By simply sending these URIs to the postmen,
the latters can consult the status of these tasks and finally
their route on any web-enabled device. It would even be
possible to mash-up this information with Google Maps and

GPS location to create a turn-by-turn application always
indicating how to reach the next client. Moreover, such an
application could reflect the delivery status of each parcel.

To validate our findings of Section II-B, we have imple-
mented the above scenario in a RESTful decomposable de-
layed service. Currently there is a program called LPL [15],
[16] for solving the VRP-TW. Yet, any other solver capable
of solving this problem could be used. LPL is only available
as a Windows DLL; thus, it cannot be used directly from
a mashup. We applied to this DLL our generic solution to
RESTify it. Optimization problems, as in the case study, are
described by models and their associated data on which the
computation will be done. The model is already provided
as LPL binary. Thus, the only input needed are the data on
which the computation will be executed. The choice between
starting over or implementing a facade was easy here. The
solver has been developed for years and is very stable in
its current form. However, the solver has no web interface.
Thus, we created a RESTful facade for it.

Figure 3. Requesting the “routing service”

All the methods mentioned in Section II-C were im-
plemented. Upon posting a new task, the service fills out
the missing fields like the start-time and the user ID and
persists the task into a database. Afterward, the LPL solver
is launched against this data set. This is the first part of
the computation where the partitioning of the parcels is
computed. As soon as this first step - partitioning into
four tours - has finished, the task attributes are updated,
reflecting the new state as well as the result. The partitioning
computation took 10 minutes. With this result as input, the
second part of the computation is started, computing for each
of the k vehicles the best routing. This is done in parallel for
each of the k vehicles. To respect the RESTful principles,
a new task is created for each of the vehicles. They get the
same user ID as their parent task. These tasks will later be



consulted by the postmen to get the details of their tour. In
our example, where n is 200 and k is 4 the computation
of a solution took about 20 minutes, pushing the overall
running time to at least 30 minutes. This amount shows that
a synchronous solution would not be apt to integrate this
service seamlessly.

The GET method returns either the current status of the
task, including a set of links to the computed result, if
already available or a list of tasks, depending on the URI on
which the request is executed. As stated before, the result is
a list of links pointing to the individual parts of the solution.
This request, as RESTful principles propose, delivers either
a fully fledge HTML page or XML/JSON data which can
then be used to be integrated into a mashup on the postmen
smart-phones.

Besides, it is possible to add filter queries to the request:
hence, only a partial task list is returned. Again, this infor-
mation is not helpful for the postmen but rather to the office
launching the tasks. Such queries make it possible to find
quickly erroneous computations and react accordingly.

The implemented facade contains only code interacting
with the actual LPL solver and generating the recursive
tasks. No business logic is implemented in the facade. Fur-
thermore, the attributes discussed in Section II-C are suffi-
cient to describe the system. They add enough information to
ensure that the service is working, but not more than needed.
The prototypical implementation proved the validity of the
presented generic solution. The implementation provides
now a standard and easy way to use our API to access the
LPL solver. Since REST is a stateless protocol, it is needless
to wait for the task to finish. Instead, it can be launched and
the status can be checked later on elsewhere. Furthermore,
nothing stops us to integrate technologies like WebSockets,
a Comet framework or simple polling to embellish the final
application and provide more usability.

IV. CONCLUSION

We identified the challenging problem of integrating de-
composable delayed services within typical Web of Things
situations. We were able to provide a generic (fully RESTful,
using established standards) architecture to its solution and
we validated the whole with a prototype. We also showed
with our facade approach that such a service can be REST-
ified even if you are not its owner.

We believe in a future where things, synchronous services,
data, but also decomposable delayed services, coordinating
business process, and so on, are unified within a consis-
tent and seamless structure. We believe that this seamless
structure is RESTful for its simplicity and scalability. The
low entry barrier for constructing quick (and dirty) mash-
ups as well as the use of well-established standards are
further arguments for a world of RESTful services. Some
starting point for such a world is provided in [1] and [2]
but much remains to be done, like giving precise definitions
and larger classifications, but we think that the present paper
contributes to a small part of solving this complex puzzle.
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