
1

Web Services Technologies: State of the

Art

 Definitions, Standards, Case Study

W O R K I N G P A P E R

A B D A L D H E M A L B R E S H N E , P A T R I K F U H R E R , J A C Q U E S P A S Q U I E R

September 2009

Abstract

The concept of web services (WS) has gained great importance during the last few

years. It has become essential to make applications broadly available in the World

Wide Web. WS could be especially useful for the creation of dynamic e-business

applications and to allow Java EE and .NET technologies to interoperate. New WS

standards have been developed through the cooperation of several corporations.

Numerous existing concepts such as business process management, security,

directory services, routing and transactions are being adapted for WS. The aim of

this paper is to provide an overview and an analysis of recent developments and

standards in the field of web services as well as to discuss the benefits they offer. In

addition, the paper will look at the creation of WS applications in general and

examine alternative technologies for deploying web services, e.g. RESTful web

services.

Keywords: Web Services, REST, SOAP, HTTP, SOA, WSDL, Services Composition,

Workflow, Services Oriented.

2

Table of Contents

1 Introduction 4

1.1 Motivation .. 4

1.2 Organization of the document ... 4

1.3 Enterprise Architecture .. 5

1.3.1 Client-Server Architecture .. 5

1.3.2 Distributed Internet Architecture .. 6

1.3.3 Web Services Architecture .. 6

1.3.4 Service-oriented architecture (SOA) .. 7

2 Web Services 8

2.1 Web Services definition .. 8

2.2 Web Services Architecture .. 8

2.2.1 The Web Service Protocol Stack ... 9

2.2.2 Additional specifications, WS* ... 10

2.3 How do web services work? .. 11

2.4 Web services characteristics ... 12

2.5 Benefits of using Web Services ... 13

3 Web Services Technologies 15

3.1 Messaging Protocol ... 15

3.1.1 SOAP: Simple Object Access Protocol .. 15

3.1.2 Structure of SOAP Messages.. 16

3.1.3 The SOAP communication model .. 16

3.1.4 Advantages and disadvantages .. 17

3.2 Describing Web Services ... 18

3.3 Registering and Discovering Web Services ... 20

3.3.1 Electronic Business Extensible Markup Language (ebXML) 21

3.3.2 Universal Description, Discovery and Integration (UDDI) 21

3.3.3 ebXML vs UDDI ... 22

4 RESTful Web Services 23

4.1 What is a RESTful web service? .. 23

4.2 RESTful & Resources .. 23

4.3 RESTful & Messages types .. 24

4.4 RESTful Principles ... 24

4.5 RESTful Web Service HTTP methods ... 24

4.6 Advantages ... 29

4.7 Disadvantages ... 29

3

4.8 RESTful Web Services Vs WS-* ... 30

5 Conclusion 32

6 Web Services Case Study 33

7 RESTful Web Services Case Study 37

References ... 40

Referenced Web Resources .. 41

4

 1 Introduction

1.1 Motivation

Forty years ago, computers began to be connected to the Internet and data transfer

among computers was already common. Since then, Internet has evolved to form a

huge information space, in which users can move transparently from one machine to

another. In the field of application programs, a similar development is ongoing.

Distributed computing has been used as long as there have been computer networks.

But at present, distributed applications are increasingly viewed and constructed as

one vast computing medium. Applications which interact between different machines

to provide orchestrated services have now been deployed on a large scale. This

evolution is allowed by new protocols built upon HTTP that are designed to enable

interaction between programs [Erl06].

The existing distributed computing solutions (CORBA [OMG09], Java RMI [Sun09])

imply tight coupling between various components in a system. The high level of

coordination and shared context among business systems from different organiza-

tions needed by those solutions makes them unreliable for open, low-overhead

ubiquitous B2B e-business. Systems composed by loosely coupled, dynamically

bound elements are much more flexible and have therefore better chances to

dominate the next generation of information systems [Got09]. These distributed

pieces of software-called services in the current jargon are spread across many

different machines and new web service frameworks that exploit the new

infrastructure are deployed by companies.

The object of this paper is to explain the principles and best practices of web

services computing. It presents the concepts, architectures, theories, techniques,

standards, and infrastructure necessary for web services and related disciplines.

1.2 Organization of the document

The paper is organized as follows:

� Chapter 1 introduces our motivation, the key trends and architectures in modern

computing that motivate how and why services are emerging.

� Chapter 2 provides a good background about the techniques and the methodolo-

gies for describing web services as well as a discussion of several WS-*

specifications (security, addressing, …).

� Chapter 3 gives an overview about important topics such as SOAP, WSDL and

service discovery.

� Chapter 4 is about Restful web services and compares them with the web services

described in Chapter 2.

� Chapter 5 is the conclusion of th

� Chapter 6 presents a concrete case

� Chapter 7 presents a concrete case study for RESTful web services.

1.3 Enterprise Architecture

Application architecture is an essential instrument for an application development

team. The degree of abstraction used in the documentation of application architecture

varies from one organisation

physical and logical representations of the technical patterns, others include more

detail, such as common data models, communication flow diagrams, application

security requirements, and aspects of infrastructure. An organization often uses

distinct application architectures for different solution environments. For example,

an organization that implements .

define separate application architecture specifications for each

In larger IT infrastructures, we need to defin

specifications will help to control and manage IT infrastructure when numerous,

disparate application architectures co

heterogeneous context, the underlying hosting platforms must be able to meet

complex demands. Further, enterprise

of how the organization plans to evolve its technology and environments

1.3.1 Client-Server Architecture

In its general meaning, the term “client

pieces of software request or receive information from another. This condition is met

by virtually every variation of application architecture that ever existed. Yet the

meaning of the industry term “client

a particular generation of environments in which the client and server had each

particular functions as well as different implementation characteristics. Generally,

this architecture was composed by multiple fat clients where each of them need

connect to a database on a central server. Client

part of the processing, including all presentation

(see Figure 1.1). In addition, these clients were supported by one or several servers

which hosted RDBMSs [Erl06]

Figure 1.1 A typical two

5

conclusion of this paper.

concrete case study for web services.

presents a concrete case study for RESTful web services.

Enterprise Architecture

Application architecture is an essential instrument for an application development

abstraction used in the documentation of application architecture

organisation to another. While some provide only highly abstract

physical and logical representations of the technical patterns, others include more

ta models, communication flow diagrams, application

security requirements, and aspects of infrastructure. An organization often uses

distinct application architectures for different solution environments. For example,

an organization that implements .NET as well as Java EE solutions would probably

define separate application architecture specifications for each [Erl06]

In larger IT infrastructures, we need to define a high level architecture

p to control and manage IT infrastructure when numerous,

disparate application architectures co-exist and sometimes even integrate. In such a

heterogeneous context, the underlying hosting platforms must be able to meet

complex demands. Further, enterprise architectures often contain a long

of how the organization plans to evolve its technology and environments

Server Architecture

In its general meaning, the term “client-server” designs an environment

pieces of software request or receive information from another. This condition is met

by virtually every variation of application architecture that ever existed. Yet the

meaning of the industry term “client-server architecture” is more specific:

a particular generation of environments in which the client and server had each

particular functions as well as different implementation characteristics. Generally,

this architecture was composed by multiple fat clients where each of them need

connect to a database on a central server. Client-side software hosted the essential

part of the processing, including all presentation-related and most data access logic

. In addition, these clients were supported by one or several servers

[Erl06].

A typical two-tier client-server architecture (inspired from [Erl06]

presents a concrete case study for RESTful web services.

Application architecture is an essential instrument for an application development

abstraction used in the documentation of application architecture

to another. While some provide only highly abstract

physical and logical representations of the technical patterns, others include more

ta models, communication flow diagrams, application-wide

security requirements, and aspects of infrastructure. An organization often uses

distinct application architectures for different solution environments. For example,

NET as well as Java EE solutions would probably

[Erl06].

e a high level architecture. These

p to control and manage IT infrastructure when numerous,

exist and sometimes even integrate. In such a

heterogeneous context, the underlying hosting platforms must be able to meet

architectures often contain a long-term vision

of how the organization plans to evolve its technology and environments [Erl06].

server” designs an environment in which

pieces of software request or receive information from another. This condition is met

by virtually every variation of application architecture that ever existed. Yet the

server architecture” is more specific: it refers to

a particular generation of environments in which the client and server had each

particular functions as well as different implementation characteristics. Generally,

this architecture was composed by multiple fat clients where each of them needed to

side software hosted the essential

related and most data access logic

. In addition, these clients were supported by one or several servers

[Erl06])

1.3.2 Distributed Internet Architecture

Component-based applications became popular because they provided a better

alternative to the costly and inflexible two

multi-tier client-server applications as shown on

client executable into components designed

object orientation. Applications can be deployed more easily when the application

logic is located in numerous components (some situated on the client, others on the

server) because the logic is essentially

pools of database connections by server

applications servers reduces concurrent usage on the database server. These

improvements brought also disadvantages with them: higher complexity

costly development and administration processes. Creating applications able to treat

concurrent and multiple requests is even more complex

Figure 1.2 A typical multi

Moreover, the client-server remote procedure call (RPC)

replaced the client-server database connections. RPC technologies like CORBA

[OMG09] and DCOM [Mic09

distributed between clients and

those implied by client-server architectures, such as resources and persistent

connections management. Additionally, the maintenance effort had to be increased

due to the middleware layer. Servers and trans

in large environments.

1.3.3 Web Services Architecture

“Web Services, at a basic level, can be considered a universal client/server

architecture that allows disparate systems to communicate with each other without

using proprietary client libraries

The Web Services architecture is a new approach for e

progressing transformation from object

can be observed. Web Servi

dynamic binding of services. Such systems are composed by services which contain

behaviour and messages. Services are found by applications using service discovery

[Got09].

6

Distributed Internet Architecture

based applications became popular because they provided a better

alternative to the costly and inflexible two-tier client server architecture. The new

server applications as shown on Figure 1.2 divide the monolithic

client executable into components designed to different degrees of compliance with

object orientation. Applications can be deployed more easily when the application

logic is located in numerous components (some situated on the client, others on the

server) because the logic is essentially centralised on servers. Sharing and managing

pools of database connections by server-side components located on special

applications servers reduces concurrent usage on the database server. These

improvements brought also disadvantages with them: higher complexity

costly development and administration processes. Creating applications able to treat

concurrent and multiple requests is even more complex [Erl06].

typical multi-tier client-server architecture (inspired from [Erl06]

server remote procedure call (RPC) [NWG88

server database connections. RPC technologies like CORBA

Mic09] enabled remote communications between components

distributed between clients and servers. Problems appeared which were similar to

server architectures, such as resources and persistent

connections management. Additionally, the maintenance effort had to be increased

due to the middleware layer. Servers and transaction monitors needed much attention

Web Services Architecture

Web Services, at a basic level, can be considered a universal client/server

architecture that allows disparate systems to communicate with each other without

prietary client libraries” [Mye09].

The Web Services architecture is a new approach for e-business architectures. A

progressing transformation from object-oriented systems toward systems of services

can be observed. Web Services systems enable a high level of decoupling as well as

dynamic binding of services. Such systems are composed by services which contain

and messages. Services are found by applications using service discovery

based applications became popular because they provided a better

ier client server architecture. The new

divide the monolithic

to different degrees of compliance with

object orientation. Applications can be deployed more easily when the application

logic is located in numerous components (some situated on the client, others on the

on servers. Sharing and managing

side components located on special

applications servers reduces concurrent usage on the database server. These

improvements brought also disadvantages with them: higher complexity and more

costly development and administration processes. Creating applications able to treat

[Erl06])

NWG88] has partially

server database connections. RPC technologies like CORBA

enabled remote communications between components

servers. Problems appeared which were similar to

server architectures, such as resources and persistent

connections management. Additionally, the maintenance effort had to be increased

action monitors needed much attention

Web Services, at a basic level, can be considered a universal client/server

architecture that allows disparate systems to communicate with each other without

business architectures. A

oriented systems toward systems of services

ces systems enable a high level of decoupling as well as

dynamic binding of services. Such systems are composed by services which contain

and messages. Services are found by applications using service discovery

7

1.3.4 Service-Oriented Architecture (SOA)

SOA presents a new method to create distributed applications where basic services

can be published, discovered and bound together so as to build more complex

composed services representing greater added value. Applications interact with

services through an interface endpoint and not at the implementation level. Thus,

applications become more flexible due to their ability to interact with any

implementation of a contract [Pap08].

Only the implementation through multiple solution platforms allows retrieving

maximum advantage of SOA. In this way, it is possible to obtain a maximal return on

the investment by providing reusable and interoperable services based on a vendor-

neutral communications environment without implying that the whole enterprise has

to become service-oriented. SOA causes a great positive impact by the features and

characteristics it offers [Erl06].

8

 2 Web Services

2.1 Web Services definition

Different books and organizations give several complementary definitions of Web

Services. Some of them are given here:

“A web service is any piece of software that makes itself available over the internet

and uses a standardized XML messaging system. XML is used to encode all

communications to a web service. For example, a client invokes a web service by

sending an XML message, then waits for a corresponding XML response. Because all

communication is in XML, web services are not tied to any one operating system or

programming language--Java can talk with Perl; Windows applications can talk with

Unix applications” [Cer02].

“Web Services are self-contained, modular, distributed, dynamic applications that

can be described, published, located, or invoked over the network to create products,

processes, and supply chains. These applications can be local, distributed, or Web-

based. Web services are built on top of open standards such as TCP/IP, HTTP, Java,

HTML, and XML” [IBM09].

“A web service is a collection of open protocols and standards used for exchanging

data between applications or systems. Software applications written in various

programming languages and running on various platforms can use web services to

exchange data over computer networks like the Internet in a manner similar to inter-

process communication on a single computer. This interoperability (e.g., between

Java and Python, or Windows and Linux applications) is due to the use of open

standards” [Wha09].

Thus, web services are platform-independent, based on XML messages. The idea is

to distribute services over the Internet and to make them available for clients. These

services can be implemented with any language and can be invoked as well as

composed.

2.2 Web Services Architecture

There are three major roles within the web services architecture:

� Service provider

This is the provider of the web service. The service provider builds the service

and makes it available on the Internet for consumers.

� Service requestor

This is any consumer of the web service. The requestor invokes an existing web

service by opening a network connection and sending an XML-SOAP (see

Subsection 3.1) request.

9

� Service registry

It is a centralized directory of services. The registry is used as a central place

where providers or developers can publish new services or find existing ones. It

therefore serves as a centralized clearinghouse for companies and their services.

Figure 2.1 gives a logical view of web services by illustrating the relationship

between the web services roles and operations. First, the web service provider

publishes its web services with the discovery agency. Next, the web service

consumer looks for desired web services using the registry of the discovery agency.

Finally, the web services client invokes the web services by using the information

obtained from the discovery agency.

Figure 2.1 (taken from [Dmr02])

2.2.1 The Web Service Protocol Stack

The architecture of a Web Services stack varies from one organization to another.

The number and complexity of layers for the stack depend on the organization. Web

services are built by using various related technologies. Figure 2.2 illustrates the

stack of specific, complementary standards on which web services are generally

based on.

Figure 2.2 The Web Services technology stack (inspired from [Pap08])

10

� Service transport

The service transport layer delivers messages between applications. This layer

usually implements hypertext transfer protocol (HTTP) [NWG99], Simple Mail

Transfer Protocol (SMTP) [Wik092], file transfer protocol (FTP), and newer

protocols, such as Blocks Extensible Exchange Protocol (BEEP) [Wha09].

� XML messaging

This layer is responsible for encoding messages in a common XML [W3C08]

format so that messages can be understood at either end. Currently, this layer

includes XML-RPC and SOAP [Wha09].

� Simple object access protocol (SOAP)

SOAP is a simple XML-based messaging protocol responsible for transferring

data between different web services. It is built using XML and relies on common

Internet transport protocol like HTTP to transport its messages. SOAP allows

communication among interacting web services by implementing a re-

quest/response model and using HTTP to access networks protected by firewalls,

which do not currently prevent HTTP and FTP service requests [Pap08]. See

Section 3.1 for further information.

� Service description WSDL

The purpose of this layer is to define the public interface of a specific web

service. Currently, service description is realised through the Web Service

Description Language (WSDL) which is based on XML [Wha09]. See Section 3.2

for further details about WSDL.

� Service discovery

The service discovery layer registers services into a common repository and

provides an easy publish/find mechanism. This layer is often implemented via

Universal Description, Discovery, and Integration (UDDI) [Wha09]. But, the

problem of service discovery is much discussed and the UDDI standard seems not

to be used in large scale deployments. See Section 3.3 for more details.

� Service orchestration

The topmost service orchestration layer is in charge of the execution logic of web

services based applications by determining their control flows (e.g. conditional,

sequential, parallel and exceptional execution). This layer enables enterprises to

define and realise complex business processes [Pap08].

With the ongoing evolution of web services, it is possible that more layers will be

added to these different layers, for example specifying quality of services (QoS)

aspects, may be added to the technology stack described above as well.

2.2.2 Additional specifications, WS*

Several Web services specifications have recently been developed or are still being

developed in order to enlarge Web Services functionalities. These specifications are

generally referred to as WS-*. Below, some of these are briefly described.

� WS-Security

The WS-Security specification determines the use of XML Encryption and XML

11

Signature in SOAP so as to secure communication. It is used either as an

alternative or an extension to using HTTPS to secure the message exchanges. As

mentioned in [Erl06], the principal aspects of security addressed by these

specifications are identification, authentication, authorization, integrity,

confidentiality and non-repudiation.

� WS-Reliability

The purpose of the WS-Reliability specification is to provide an environment that

insures the delivery of a SOAP message or the reporting of a failure condition

[Erl06].

� WS-Transaction

The Web Services Transactions specifications enable Web services domains to

interoperate and allow composing transactional qualities of service into Web

services applications. These specifications describe an extensible coordination

framework and specific coordination types for: Short duration, ACID transac-

tions (WS-AtomicTransaction) and Longer running business transactions (WS-

BusinessActivity). The interested reader is referred to [IBM04] for further details.

� WS-addressing

The WS-addressing specification implements addressing extensions which are

based on endpoint references and message information headers. Endpoint

references allow the identification in a standardized way of a specific instance of

a web service. Message information headers provide message exchange properties

to a specific message, conveying interaction semantics to recipient services

[Erl06].

� WS-policies

The WS-Policies specification serves to attach features/characteristics (e. g. rules,

behaviours, requirements and preferences) to Web resources, principally web

services [Erl06].

� WS-Metadata exchange

WS-Metadata exchange specification enables service requestors to issue requests

to obtain metadata (such as WSDL, Schema, Policy Meta information) from

services providers. This specification helps to improve the service description

discovery process [Erl06].

� WS-Notification and eventing

WS-Notification is a group of specifications in the context of the WS-Resource

environment. These specifications allow event driven programming between web

services by providing a protocol for web services to subscribe to another web

service, or to accept a subscription from another web service [Wik09].

2.3 How do web services work?

The programmer builds a web service using a specific programming language. This

service is published using a WSDL interface. This service can be invoked by a

consumer “client” using this interface. Web services are presented to clients as a set

of operations that provide business logic on behalf of the provider. Web services

12

must be deployed on a server container to be available for consumers. On the client

side, a remote object that represents the remote service must be generated. This

allows clients to invoke the operations defined on the server side. The developer has

not to care about creating or parsing SOAP messages. That task is performed by the

web service’s APIs runtime system. .Net web services for example can be invoked by

any web service client and vice versa.

A Java-based Web Service built and deployed on Solaris operating system can be

accessed from Visual Basic program which runs on Windows. Any language can also

be used to realise new web services. These web services are invoked from any web

application which is implemented using any other programming language and runs on

any operating system.

An Example

Let us consider a simple application to sell cars. The buyer uses a client application

built with Visual Basic or JSP to get information about a specific vehicle.

The processing logic for this application is written in Java and resides on a Linux

machine which also interacts with a database to store the information.

The steps illustrated above are:

� The client calls the web service method through a remote object which represents

that web service.

� The client program bundles the car information request into a SOAP message.

� This SOAP message is sent to the Web service as the body of an HTTP POST

request.

� The Web service unpacks the SOAP request and converts it into a command that

the application can understand. The application processes the information as

required and responds with details concerning the selected car.

� Next, the Web Service packages up the response into another SOAP message,

which it sends back to the client program in response to its HTTP request.

� The client program unpacks the SOAP message to obtain the results of the car

details process (the return result of the called method).

2.4 Web services characteristics

From [Pap08] and [Wha09] one can derive the following characteristics of web

services:

� XML-based

Web Services rely on XML for data representation and transportation. The use of

XML avoids any network, operating system or platform binding.

� Loose coupling

There is no direct tie between a web service and its user. Alterations of the WS

13

interface do not deteriorate the user’s capability of interacting with the service.

Whereas in a tightly coupled system, the client and server logic are closely bound

to each other, implementing a loosely coupled architecture facilitates software

system management and helps the integration of different systems.

� Ability to be synchronous or asynchronous

Ties between the client and the execution of the service are referred to as

synchronicity. In synchronous invocations, the client sends his request and then

waits for the response without being able to execute other operations during this

period. In contrast, asynchronous invocations allow clients to request a service

and then immediately execute other operations without waiting for the result

(“fire and forget” model). Asynchronous capability is a crucial factor to make

loosely coupled systems possible.

� Supports Remote Procedure Calls (RPCs)

Web services enable clients to invoke methods and operations on remote objects

using an XML-based protocol (SOAP). Input and output parameters which a web

service must support are made available through remote procedures. A web

service supports/implements RPC either by providing services of its own,

equivalent to those of a traditional component, or by translating incoming

invocations into an invocation of an EJB or a .NET component.

� Supports document exchange

A central aspect of XML is that it is capable to represent data, simple and even

complex documents in a generic way. This transparent exchange of documents

supported by Web services contributes to make business integration easier.

2.5 Benefits of using Web Services

As also mentioned in [Pap08] and [Wha09], using web services offers many

interesting benefits such as:

� Reusability

A Web service is a component which can be remotely accessed using HTTP. Web

Services provide a means to make a pre-existing code available through Internet.

As a result, the program’s functionalities can be invoked by other applications.

� Interoperability

Web Services enable the share of data and the communication between different

applications. For example, .NET applications can interact with Java web services

and vice versa. Thus, applications become platform and technology independent.

� Standardized Protocol

Web Services uses industry standard protocol for the communication. All the four

layers (Service Transport, XML Messaging, Service Description and Service

Discovery layers) use well defined protocol in the Web Services protocol stack.

This standardization of protocol stack gives the business many advantages like

wide range of choices, reduction in the cost due to competition and increase in

the quality.

� Automatic Discovery

Web Services automatic discovery mechanism allows businesses to easily find the

14

Service Providers and retrieve web service description that have been previously

published. The first step to access a web service is through the discovering

process. Client queries the service registry for web service matching his needs.

The query contains search criteria like service type or preferred price. After the

discovery process is completed, the client can access the web service.

 3 Web Services Technologies

This chapter describes the concepts related to SOAP, WSDL and Service Discovery.

We will supply introductory descriptions of the primary elements provided by these

technologies.

3.1 Messaging Protocol

Traditional distributed object communication protocols, such as CO

DCOM [Mic09], Java/RMI

to-server communication. These limitations appear most evidently when clie

machines are distributed over the Internet. The conventional distributed

communication link must be implemented under a distributed object model and

would need the deployment of libraries. To solve such problems, the Simple Object

Access Protocol (SOAP) was created. SOAP allows interoperability between a wide

range of programs and platforms. In this way, existing applications can be accessed

by a broader range of users

3.1.1 SOAP: Simple Object Access Protocol

The messaging protocol currently used by web services is SOAP. SOAP is designed

to enable separate distributed computing platforms to interoperate. This aim is

accomplished by following the same principles as other successful web protocols:

simplicity, flexibility, firewall friendliness, platform neutrality as well as XML

based messaging. Instead of representing a new technological innovation, SOAP

merely suggests a manner to codify the usage of existing internet technologies in

order to standardize distributed com

exchanged through HTTP which is used by Web browsers to access Web resources.

HTTP constitutes an efficient way of sending and receiving SOAP messages

Figure 3.1 The Web services communication and messaging network

Figure 3.1 shows that SOAP messages can be built on different protocols such as

HTTP to transport messages. SOAP’s role is to define how a message is formatted

15

Web Services Technologies

apter describes the concepts related to SOAP, WSDL and Service Discovery.

We will supply introductory descriptions of the primary elements provided by these

Messaging Protocol

Traditional distributed object communication protocols, such as CO

 [Sun09], and others, present severe weaknesses for client

server communication. These limitations appear most evidently when clie

machines are distributed over the Internet. The conventional distributed

communication link must be implemented under a distributed object model and

would need the deployment of libraries. To solve such problems, the Simple Object

P) was created. SOAP allows interoperability between a wide

range of programs and platforms. In this way, existing applications can be accessed

 [Pap08].

SOAP: Simple Object Access Protocol

aging protocol currently used by web services is SOAP. SOAP is designed

to enable separate distributed computing platforms to interoperate. This aim is

accomplished by following the same principles as other successful web protocols:

, firewall friendliness, platform neutrality as well as XML

based messaging. Instead of representing a new technological innovation, SOAP

merely suggests a manner to codify the usage of existing internet technologies in

order to standardize distributed communications over the Web. SOAP is usually

exchanged through HTTP which is used by Web browsers to access Web resources.

HTTP constitutes an efficient way of sending and receiving SOAP messages

The Web services communication and messaging network (inspired from

shows that SOAP messages can be built on different protocols such as

HTTP to transport messages. SOAP’s role is to define how a message is formatted

apter describes the concepts related to SOAP, WSDL and Service Discovery.

We will supply introductory descriptions of the primary elements provided by these

Traditional distributed object communication protocols, such as CORBA [OMG09],

, and others, present severe weaknesses for client-

server communication. These limitations appear most evidently when clients’

machines are distributed over the Internet. The conventional distributed

communication link must be implemented under a distributed object model and

would need the deployment of libraries. To solve such problems, the Simple Object

P) was created. SOAP allows interoperability between a wide

range of programs and platforms. In this way, existing applications can be accessed

aging protocol currently used by web services is SOAP. SOAP is designed

to enable separate distributed computing platforms to interoperate. This aim is

accomplished by following the same principles as other successful web protocols:

, firewall friendliness, platform neutrality as well as XML

based messaging. Instead of representing a new technological innovation, SOAP

merely suggests a manner to codify the usage of existing internet technologies in

munications over the Web. SOAP is usually

exchanged through HTTP which is used by Web browsers to access Web resources.

HTTP constitutes an efficient way of sending and receiving SOAP messages [Pap08].

(inspired from [Pap08])

shows that SOAP messages can be built on different protocols such as

HTTP to transport messages. SOAP’s role is to define how a message is formatted

16

but not how the message is delivered. HTTP is the most commonly used transport

protocol. However, also other protocols, such as SMTP or FTP may be used [Pap08].

3.1.2 Structure of SOAP Messages

The structure of SOAP messages is relatively simple. It consists of a header and a

body with some fault sections, all defined in an envelope as shown in Listing 3.1.

1 <Envelope xmlns=http://www.w3.org/2001/12/soap-envelope>

2 <Header>

3 ...

4 </Header>

5 <Body>

6 ...

7 <Fault>

8 ...

9 </Fault>

10 </Body>

11 </Envelope>

Listing 3.1 SOAP message structure

� Envelope: a mandatory root element which defines the beginning and the end of

the message. It contains an optional <Header> section and a mandatory <Body>

section. All elements of a SOAP envelope are defined using a W3C XML schema.

� Header is an optional element which defines any optional attributes of the

message. The role of the Header is to host extensions separately from payload

without changing the fundamental structure of SOAP. Due to this separation,

additional features and functionalities can be added e. g. security, transactions,

QoS attributes without modifying the specification [Pap08].

� Body is a mandatory element which envelops the message to send in XML

format. This element holds either the requested data (response) or an error

message (fault). Requested data represent the application-specific data exchanged

with a Web service. This information can be XML data or parameters to a method

call. Inside the SOAP <Body>, the method call information as well as its related

arguments are defined, the response to a method call is placed and error

information can be saved [Pap08].

� Fault is an optional element that provides information about errors that occurred

while processing the message.

3.1.3 The SOAP communication model

The web service communication model describes how to invoke web services and

relies on SOAP. The SOAP communication model is defined by its communication

style and its encoding style. SOAP supports two possible communication styles: RPC

and document (message).

� RPC- style Web services

RPC-style web services are used as remote objects on the client application side.

Clients send their request as a method call. The method returns a response

message [Pap08]. This information is formatted as sets of XML elements loaded

into a SOAP message as shown in Listing 3.2.

17

1 <Envelope xmlns="http://www.w3.org/2001/12/soap-envelope"

2 <Header>

3 ...

4 </Header>

5 <Body>

6 <GetProductPrice>

7 <product-id>4562</product-id>

8 </GetProductPrice>

9 </Body>

10 </Envelope>

Listing 3.2 RPC-style web services

� Document (message)-style Web services

SOAP supports documents exchange for any kind of XML data. The client sends

the whole document to the provider instead of sending a set of arguments

[Pap08]. See Listing 3.3.

1 <soap:Envelope xmlns:SOAP=http://www.w3.org/2001/12/soap-envelope>

2 <soap:Body>

3 <pourchaseOrder orderDate=”2009-05-20” xmlnso=http://www.amzon.com/POs>

4 <po:accountName>Ricard</po:accountName>

5 <po:accountNumber>1234</po:accountNumber>

6 <po:book>

7 <po:title>J2EE web services</po:title>

8 <po:quantity>300</po:quantity>

9 <po:price>24.5</po:price>

10 </p:book>

11 </pourchaseOrder>

12 </soap:Body>

13 </soap:Envelope>

Listing 3.3 Document-style web services

3.1.4 Advantages and disadvantages

As presented in [Pap08], there are several advantages of using SOAP:

� Simplicity: SOAP is simple as it uses XML that is well structured and easy to

parse.

� Portability: SOAP is platform-independent and thus portable.

� Firewall-friendliness: SOAP is capable of getting past firewalls which are totally

blocking for other protocols. This is possible due to using the HTTP protocol.

� Use of open standard: SOAP is based on the open Standard XML to format data.

As a consequence, SOAP becomes easily extendable and well supported.

� Interoperability: SOAP relies on open instead of vendor-specific technologies and

thus enables distributed interoperability and loosely coupled applications.

� Resilience to changes: It is unlikely that future modifications of SOAP

infrastructure will have any impact on applications using the method, as long as

no significant serialization changes are made to the SOAP specification.

There are, however, several aspects of SOAP which can be viewed as disadvanta-

geous. These include the following:

� SOAP is stateless which implies that the requesting application has to reintroduce

itself to other applications if additional connections are needed as if it was

connected for the first time.

18

� SOAP serializes by value and does not serialize by reference.

� SOAP was at the beginning mainly based on HTTP. This imposed a re-

quest/response architecture which did not suit all situations. As HTTP is

relatively slow, the performance of SOAP was affected.

3.2 Describing Web Services

In [W3C09] the following definition for the Web Services Description Language

(WSDL) is provided:

“WSDL is an XML format for describing network services as a set of endpoints

operating on messages containing either document-oriented or procedure-oriented

information. The operations and messages are described abstractly, and then bound

to a concrete network protocol and message format to define an endpoint. Related

concrete endpoints are combined into abstract endpoints (services). WSDL is

extensible to allow description of endpoints and their messages regardless of what

message formats or network protocols are used to communicate”.

Thus a WSDL document defines the point of contact (endpoint) for a service

provider. It contains a formal definition of the service interface so that requestors

who intend to invoke the service provider know how to build the messages.

Additionally, it provides the physical location of the service [Erl06].

Let us dig deeper into how the service description document itself is organized.

According to [Erl06] a WSDL service description (see Figure 3.2) can be separated

into two parts:

1. Abstract description

An abstract description portion provides information about the interface

characteristics of the Web service without any description or details concerning

the technology used to implement the web services or the one used to send

messages. As a result, the integrity of the web service is maintained notwith-

standing a change of the underlying technology platform. It consists of several

parts including types, message and port type [Erl06].

2. Concrete description

The concrete description portion of the WSDL file defines the connection to the

real implementation of the web services where is its logic. This description

contains three parts: binding, port and service [Erl06].

A WSDL document uses the following elements in the definition of network services

as defined by W3C [W3C09]:

� Types: “a container for data type definitions using some type system (such as

XSD)”.

� Message: “an abstract, typed definition of the data being communicated”.

� Port Type: “an abstract set of operations supported by one or more endpoints”.

19

� Operation: “an abstract description of an action supported by the service”.

� Binding: “a concrete protocol and data format specification for a particular port

type”.

� Service: a collection of related endpoints.

� Port: “a single endpoint defined as a combination of a binding and a network

address”.

Figure 3.2 WSDL file structure (taken from [Act09])

1 <definitions.... >

2 <types>

3 <xsd:schema />

4 </types>

5 <import namespace=”http://www.xml.com/tls/schema”

6 Location=http://www.xml.com/tls/schema/car.xsd/>

7 <message name=”getID”>

8 <part type=”xsd:intger”/>

9 </message>

10 <portType name=”CarInterface”>

11 <documentation>

12 Get Car Details operation.

13 </documentation>

14 <operation name=”getCarDetails”>

15 <input message="tns:rentCar"/>

16 <output message="tns:rentCarResponse"/>

17 </operation>

18 <operation name=”UpdateCarDetails”>

19 …………………

20 </operation>

21 </portType>

22 <binding name=”CarBinding” type=”tns:CarInterface”>

23 <soap:binding style=”document”

24 Transport=http://schemas:xmlsoap.org/soap/http/>

25 <operation name=”GetCarDetails”>

26 ………………………………

27 </operation>

28 </binding>

29 <service name=”CarService”>

30 <port binding=”tns:CarBinding” name=”CarPort”>

31 <soap:address location=http://www.localhost:8080/car/>

32 </port>

33 </service>

34 </definitions>

Listing 3.4 WSDL elements

20

Each of these parts relates to corresponding elements that are defined in the WSDL

specification [W3C09]. Let us describe in brief the syntactical implementation of

these elements (shown in Listing 3.4) as presented in [Erl06].

� The definitions element

Definitions element encapsulates the entire WSDL document and it usually

contains several namespaces definitions.

� The types element

Types serve as a container which contains all abstract data types. It can contain

XML schema that define other data type definition [W3C09].

� The import element

This element allows importing parts of the WSDL definition and XSD schemas.

� The message and part elements

Message definition determines the payloads of messages which are sent or

received by a web service. Messages are composed of <part> elements. Each part

stands for an instance of a particular type.

� The portType, interface and operations elements

portType describes several abstract operations with the outgoing and incoming

messages.

� The documentation element

With the documentation element, it is possible to add descriptive, human readable

annotations within a WSDL definition. This information facilitates the discovery

of the service within a service registry.

� The input and output elements

For every operation, there are input and optionally output child elements. An

operation uses inputs and outputs to request and return messages.

� The binding element

The binding element determines which communications protocol can be used to

access and interact with WSDL. It defines where the service is located or to

which network address the message has to be sent.

� The service and port elements

The service element provides a physical address of the service. It contains the

port element that defines this location information.

3.3 Registering and Discovering Web Services

A directory service serves as information point for components and participants (e.g.

applications, agents, web services, people, objects, requestors and procedures) which

enables them to locate each other. Directories organize and provide web services’

location and description details and publish them to any requestor. There are two

kinds of directories available: name servers referred to as “white pages” in which

21

entries are defined and found by their name as well as so called “yellow pages”,

where entries are defined and found by their characteristics and functions [Sin05].

Two main standards for directories have already been defined: ebXML (Electronic

Business using XML) [ebX08] registries and UDDI (Universal Description,

Discovery and Integration) registries. Inconveniently, both of them lack semantic

descriptions and semantic searching on functionality. The searches can be done only

by keywords, like a service’s name, provider, location or business category. In

contrast with UDDI registries, ebXML registries permit at least SQL-based queries

on keywords [Sin05].

3.3.1 Electronic Business Extensible Markup Language (ebXML)

ebXML is used as a global electronic market place where enterprises of any size,

anywhere can determine each other electronically and clear semantics by exchanging

XML messages. This exchange is based on mutual trading protocol agreements. In

other words, ebXML Registry’s goal is to provide generic, extensible, secure and

federated information management [Tut09].

ebXML architecture enables to define business processes and their related messages.

It gives as well a way to register and discover business process sequences. Moreover,

ebXML allows defining company profiles and a uniform message transport layer

[Tut09].

3.3.2 Universal Description, Discovery and Integration (UDDI)

[Sin05] defines UDDI as “a platform-independent, Extensible Markup Language

(XML)-based registry for businesses worldwide to list themselves on the Internet.

UDDI is an open industry initiative, sponsored by the Organization for the

Advancement of Structured Information Standards (OASIS), enabling businesses to

publish service listings and discover each other and define how the services or

software applications interact over the Internet”.

UDDI supports three kinds of services descriptions: white-pages, yellow-pages, and

green-pages services.

� White pages contains the following information fields:

- Business name.

- Text description: a list of Multilanguage text strings.

- Contact information: names, phone numbers, and web sites.

� Yellow pages provide the business categories organized as the following major

taxonomies:

- Industry, a six-digit code for classifying companies.

- Products and services.

- Geographical location for countries and region code.

22

� Green pages contain the information business used to describe how other

businesses can conduct electronic commerce with them. It is a nested model

comprising business processes, service descriptions, and binding information

Data structures describe details about organizations (for example their services,

implementation technologies, relationships to other businesses). UDDI defines five

principal data structures [Sin05]:

� A businessEntity represents the business or organization that provides the web

services.

� A businessService represents a web service.

� A BindingTemplate represents the technical binding of a web services to its

access point, its URL and to tModels.

� A tModel represents a specific kind of technology, such as SOAP or WSDL.

� A publisher Assertion represents a relationship between two business entities.

There are two kinds of APIs that allow programmatic access to a UDDI registry:

firstly the inquiry API which is used to retrieve information from a registry and,

secondly, the publish API which is used to store information in a registry. In contrast

with the inquiry API, the publish API needs authenticated access.

3.3.3 ebXML vs UDDI

Below is a high level summary comparing the design centers of the two standards

UDDI and ebXML Registry [SUN05].

UDDI Registry ebXML Registry and Repository

Contains no repository. Unable to store

content. Capable only of storing

metadata about (or pointers to) content.

Has an integrated Registry and Repository. Able to

store content as well as metadata.

Design center lists businesses and

services, similar to yellow/white pages.

Design center provides secure, federated information

management of any type of artifact.

Protocols and information model is

focused and specific.

Protocols and information model is generic and

extensible.

Supports multi-registry topologies using

replication of every transaction to all

participating registries.

Supports multi-registry topologies using loosely

coupled federations with optional selective

replication.

Table 3.1 ebXML vs UDDI

23

 4 RESTful Web Services

4.1 What is a RESTful web service?

REST the abbreviation of “Representational State Transfer” designates an

architecture style used to create networked applications. The terms "representational

state transfer" and "REST" were introduced in 2000 in the doctoral dissertation of

Roy Fielding, [Fie00] one of the principal authors of the Hypertext Transfer Protocol

(HTTP) [NWG99] specification. REST uses a stateless, client-server, cacheable

communications protocol which is almost always the HTTP protocol. Its original

feature is to work by using mere HTTP to make calls between machines instead of

choosing complex mechanisms such as CORBA, RPC [NWG88] or SOAP [Ric07]

[Elk09].

In many ways, the World Wide Web itself, based on HTTP, can be viewed as a

REST-based architecture. Many aspects of the Internet correspond to the

characteristics of a REST-based architecture. Restful applications use HTTP requests

to post data (create and/or update), read data (e.g., make queries), and delete data.

Thus, REST uses HTTP for all four CRUD (Create/Read/Update/Delete) operations

[Elk09].

REST does not offer security features, encryption, session management, QoS

guarantees, etc. But these can be added by building on top of HTTP, for example

username/password tokens are often used and for encryption, REST can be used on

top of HTTPS (secure sockets).

4.2 RESTful & Resources

Characteristic elements of RESTful technology are sources of specific information

which are referred to as resources. Each of them is linked to a global identifier, for

example a URI in HTTP. These resources are accessed by components of the network

(user agents and servers) which communicate through a standardized protocol (e.g.,

HTTP) and exchange content (representations) of these resources. In order to

interoperate with a resource, an application must possess both the resource’s

identifier and the required method. On the opposite, there is no need to know the

services implementation and system configuration, i.e. whether there are caches,

proxies, gateways, firewalls, tunnels, or anything else between the application and

the server which hosts the resources. However, the application must be capable of

interpreting the data format (representation) returned from the resource, which is

often an HTML or XML document, though it may also be an image, plain text, or any

other content [Wik091].

24

4.3 RESTful & Messages types

Restful allows the realisation of applications without requiring any new format.

Resources can be represented by any format (i.e. HTML, GIF and PDF files). XML

can be used to transmit structured data.

4.4 RESTful Principles

The REST architectural style is based on four principles as presented in [Pau08]:

� Resource identification through URI. Resources are identified by URIs which

provide a service discovery mechanism.

� Uniform interface. A fixed set of four create, read, update, delete operations is

responsible for the manipulation of resources.

� Self-descriptive messages. Resources’ content can be presented in several formats

(e.g. HTML, XML, plain text, PDF or JPEG). Metadata about the resource can be

used to detect transmission errors and perform authentication or access control.

� Stateful interactions through hyperlinks. Stateful interaction can be achieved

using several techniques, for example rewriting URL, cookies or hidden form

fields.

4.5 RESTful Web Service HTTP methods

The examples below provided by [Bay07] show how the HTTP verbs are typically

used to implement a web service:

� GET method: listing the members of the collection. It lists for example all the

customers for a company.

GET Request: Figure 4.1 shows a GET request to display the customers list

Figure 4.1 Request a list of resources

GET Response: Figure 4.2 shows the response to the request according to Figure

 4.1.

25

Figure 4.2 Response after requesting a list of resources

� GET: retrieving the addressed member of the collection. It allows for example to

get details about the customer whose customer ID is 1.

GET Request: Figure 4.3 shows a GET request to display customer 1 details.

Figure 4.3 Requesting resource’s details

GET Response: Figure 4.4 shows the response to the request showed in Figure

 4.3.

26

Figure 4.4 Response after requesting resource’s details

� POST method: This method updates the addressed member of the collection with

a defined ID.

POST Request: Figure 4.5 shows a POST method to update the customer city

attributed to customer ID 1.

Figure 4.5 Updating a resource

POST Response: Figure 4.6 shows the response to the request in Figure 4.5.

27

Figure 4.6 Response after updating a resource

� PUT method: This method creates a new entry in the collection.

PUT Request: Figure 4.7 shows the PUT method to create a new customer with

customer ID 5.

Figure 4.7 Creating a new resource

PUT Response: Figure 4.8 shows the response to the request showed in Figure

 4.7.

28

Figure 4.8 Response after creating a new resource

� DELETE Method: This method deletes the addressed member of the collection.

DELETE Request: Figure 4.9 shows the delete method to delete the customer

whose customer ID is 18.

Figure 4.9 Removing a resource with HTTP Delete

DELETE Response: Figure 4.10 shows the response to the request according to

Figure 4.9.

29

Figure 4.10 Response after removing a resource

4.6 Advantages

RESTful has some aspects which can be viewed as positive, including the following

[Pau08]:

� RESTful Web services appear to be simple because REST applies many existing

well-known standards (HTTP, XML, URI, and MIME) and need only infrastruc-

ture that has already become ordinary.

� HTTP clients and servers are compatible with all programming languages and

operating system/hardware platforms, and the default HTTP port 80 is usually left

open by default in most firewall configurations.

� Only a small effort is needed to build a client of a Restful service. Services can

be tested using simply a mere web browser and the development of client

software becomes superfluous.

� REST allows discovering Web resources without any discovery or registry

repository.

4.7 Disadvantages

RESTful has also some aspects which can be viewed as negative, including the

following [Pau08]:

� Encoding a large amount of input data in the resource URI is impossible because

the server either refuses such requests or crashes

� It may also be challenging to encode complex data structures into URI as there is

no commonly accepted marshalling mechanism. Inherently, the POST method

does not suffer from such limitations.

30

� Unlike SOAP-based web services, which have a standard vocabulary to describe

the web service interface through WSDL, Restful web services currently have no

such grammar. Both the service consumer and service producer must have an out-

of-band agreement. Services can be described using Web Application Description

Language (WADL). It is an XML-based file format that provides a machine-

readable description of REST web services. WADL is not yet widely supported.

� While SOAP-based web services support a standard vocabulary to define the web

service interface by using WSDL, Restful web services at present do not define

such grammar. An agreement has to be established between the service consumer

and service producer.

4.8 RESTful Web Services Vs WS-*

[Pau08] proposes a good comparison of RESTful and WS-* which complies with the

architectural, conceptual and technology principles comparison.

� Protocol Layering

RESTful uses the Web to publish accessible information whereas WS-* uses the

web as transport medium for exchanging messages between web services.

� Dealing with Heterogeneity
Both RESTful and WS-* allow to build applications over heterogeneous systems

using two different mechanisms. RESTful is based on HTTP protocol and WS-*

based on SOAP while both of them are platform independent.

� Defining Loose Coupling
RESTful and WS-* have loose coupling characteristics. Modifications can be

made to a Web service without affecting its clients.

� Contract Design
With RESTful web services, no decisions must be taken to define the available

operations (contract less) whereas with WS-*, there are Contract-First (begin the

development of the web services from the specification of its interface) and

Contract-last which implies the bottom-up approach (existing service implemen-

tation is published with automatically generated contract).

� Message Exchange Patterns
RESTful supports request-response message exchange (synchronous) whereas

WS-* supports both request-response (synchronous) and on-way (asynchronous)

methods. RESTful allows Resources to be represented by any format (i.e. HTML,

GIF and PDF files) while WS-* is XML-based data type.

� Transport Protocol
WS-* is transport-independent. SOAP messages can be exchanged using different

transport protocols. From the perspective of RESTful web services, there is no

choice but to use HTTP protocol.

� Service Identification
RESTful web services use the URL standard as the naming mechanism to address

resources. Recently, WS-addressing which represents addressing information in

WS-* has been introduced.

31

� Service Description
WS-* are based on the interface description language (WSDL) to describe their

services. For RESTful web services, developers must define their resources using

URLs. Web application description language (WADL) has recently been proposed

for RESTful web services.

� Services Composition
Several languages and tools have been developed to enable WS-* composition

(for example BPEL4WS). RESTful Web services composition can be achieved by

using Mashups.

� Reliability, Security, Transactions
The WS-* stack consists of several optional specifications related to the Quality

of Service of messages exchanged. The basic guarantees of protocols such as

HTTP (best effort) and HTTPS (point-to-point SSL security) are used by both

RESTful and WS-* Web services.

� Service Discovery
WS-* has Universal Description, Discovery and integration (UDDI) registries

which are used to register and discover services. RESTful has no such option. In

order to perform those tasks, there is no alternative to do-it-yourself for RESTful

web services.

� Implementation Technology
Both WS-* and RESTful Web services can be implemented in any programming

language and the client-side library for consuming web services is available to

both.

32

 5 Conclusion

In this paper we have described the nature and characteristics of web services and

have concentrated on their advantages. We have seen that web services constitute a

distinct group of automated services which communicate via Internet and rely on

open Internet-based standards. Web services are invoked using a network and

perform tasks, solve problems or conduct transactions for an application or user.

Web services allow composing pre-existing applications by invoking services via a

network which helps to use them more efficiently so as to reduce the need to create

new applications. A fundamental characteristic of web services is loose coupling.

This implies that the service requestor ignores any implementation or technical detail

of the service provider (e.g. programming language, platform). Services are invoked

by using messages instead of APIs or file formats. This works due to the

independence of the service interface part (WSDL) from the implementation part. We

have seen that web services hold great potential for improving efficiency and

broadening applications portfolios. Nevertheless, web services are at present subject

to limitations which include low performance, weak transaction management

facilities as well as insufficient support for business semantics. In addition, we note a

lack of homogeneity and coordination regarding the wide range of existing and

emerging standards.

RESTful web services have appeared as a lightweight alternative approach to design

web services. A central advantage of a RESTful API is its flexibility. Various

applications can be provided with system’s resources through data formatted in a

standard manner. This technology allows to abiding by integration requirements

which are crucial for the conception of systems enabling easy combination of data

(Mashups). However, RESTful also present several limitations. No common standard

exists for the formal REST service description and RESTful is not applicable for all

web services functions, like Transactions, Security, Addressing, Trust and

Coordination.

Many open questions remain in the field of web services and RESTful web services.

Firstly, there is the unanswered question of defining suitable abstractions for

representing web services and their behaviours. Another important challenge is to

find modeling techniques and tools which enable the semi-automatic composition

and analysis of web services taking into account there semantic and behaviours

properties. Moreover, an appropriate way to compose different web services has still

to be developed.

In Chapter 6 and 7, two case studies are introduced in order to illustrate various

concepts around web services and RESTful web services respectively. The scenario

of these case studies shows how to build a web service by using JAX-WS and JAX-

RS APIs.

33

 6 Web Services Case Study

This example demonstrates the basics of using Java technology to develop a JAX-WS

[Sun091] web service (Java API for creating web services. It is part of the Java EE

platform from Sun Microsystems). After we create the web service, we develop a

client that uses the web service over a network, which is called "consuming" a web

service. The client could be either a Java class in a Java Standalone application, or a

Servlet, or a JSP (Java Server Page) in a web application. For our example we will

use a standalone client type. The code resources for this example are available for

download from [Adh09].

To realize this example, we need the software and resources enumerated in Table

 6.1.

Software or Resource Version Required

Java Development Kit (JDK) [Sun092] Version 5

Web or application server [Net09] Glassfish application (it is bundled with the

NetBeans IDE)

Ant [Apa09] Version 1.7.0

JAX-WS APIS [Sun091]

Table 6.1 Software Resources

Preparing the environment

� Install Ant.

� Install Java Development Kit 1.5.

� Install Glassfish Server.

� Set the path to java bin directory.

� Add glassfish/bin to the CLASSPATH.

Creating a web service

Building a JAX-WS style web service using the Java EE 5 platform involves the

following steps:

1. Create the application package

To get started, we create a directory of our choice. For this example, we created

a wsapp directory and three subdirectories of wsapp called build, lib and src.

The lib directory contains the JAX-WS APIs package. The src directory

contains the com directory which contains the java source files, and the build

34

directory contains the compiled files .class, as well as other files that will be

automatically generated.

2. Design and code the web service endpoint

The web service which we will develop provides a summation service for adding

two numbers. In the next steps we demonstrate how to develop, deploy, and use

web services. The code of the web service implementation (see Listing 6.1)

shows the service endpoint interface which is a regular Java class.

Note: JAX-RPC 2.0 no longer requires that a Web service bean implements an

interface. Thus, we do not need to declare a service interface, but we can start

coding a Web service directly as a simple Java class.

The CalculatorSum class declares one method, add, which takes two integer

values and returns an integer value representing the sum of the two integer

parameters.

1 package com;

2 import javax.jws.WebMethod;

3 import javax.jws.WebParam;

4 import javax.jws.WebService;

5 @WebService()

6 public class CalculateSum {

7 @WebMethod(operationName = "add")

8 public Integer add(@WebParam(name = "param1")

9 int param1, @WebParam(name = "param2")int param2) {

10 return param1+param2;}

11 }

Listing 6.1 Web service implementation

3. The endpoint as a web application

The web service endpoint is deployed as a web application. web.xml and sun-

web.xml deployment descriptors (describe how a web application should be

deployed) shown in Listing 6.2 and Listing 6.3 must be created.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <!DOCTYPE sun-web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Application Server 9.0

3 Servlet 2.5//EN" "http://www.sun.com/software/appserver/dtds/sun-web-app_2_5-0.dtd">

4 <sun-web-app error-url="">

5 <context-root>/sumwsexample</context-root>

6 <class-loader delegate="true"/><jsp-config>

7 <property name="keepgenerated" value="true">

8 <description>Keep a copy of the generated servlet class' java code.</description>

9 </property>

10 </jsp-config>

11 </sun-web-app>

Listing 6.2 sun-web.xml descriptor file

1 <?xml version="1.0" encoding="UTF-8"?>

2 <web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

4 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

5 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

6 <session-config>

7 <session-timeout>30</session-timeout>

8 </session-config>

9 <welcome-file-list><welcome-file>index.jsp</welcome-file>

10 </welcome-file-list>

11 </web-app>

Listing 6.3 web.xml descriptor file

35

4. Compile

Now, we compile the .java files by using build.xml (download from [Adh09]).

The java class generated by the compiler will be written to the build directory

created above. We used the ant task to compile:

Prompt> ant build

5. Packaging the Service with ant

The web service is implemented as a Servlet. Because a Servlet is a web

component, we need to build the application in a war archive and then deploy it

on the glassfish server. During this process the ant creates a war archive and add

the deployment descriptors (web.xml, sun-web.xml) and java classes to the war

archive:

Prompt> ant buildWar

6. Deploy the application

To deploy the web application at first we have to define the glassfish.deploy

property in build.xml. glassfish.deploy property points to the auto-deploy

directory of the domain of glassfish server. We copy the war archive to the auto-

deploy directory of the server using the following command:

Prompt> ant deploy

The Glassfish server can be started using the following command line:

Prompt> asadmin start-domain domain1

Consuming the Web Service

The web service client programming model for Java EE is about accessing a remote

web service from a Java EE component. Remember that with web services the client

and the server are fundamentally disconnected. There are server side issues and

client side issues. In other words, if you setup a web service endpoint any client that

adheres to the abstract contract of its WSDL can talk to that endpoint.

� Create the Service Endpoint Interface

We create a client that accesses the Calculator service that we have just deployed.

A client invokes a web service in the same way it invokes a method locally. To

get started with client application, we create a directory under wsapp directory.

The same lib directory on which contains the JAX-WS APIs library will be used.

We use the wsimport command provided by the glassfish server library to

generate the required artifacts from the web service WSDL file:

Prompt> wsimport –d dest

http://localhost:8080/wsexample/CalculateSumService?wsdl

This command will generate a group of java classes under the dest directory

which will be used by the client to access web service methods (see Listing 6.4).

36

1 Com/CalculateSum.class

2 Com/CalculateSumService.class

3 Com/ObjectFactory.class

4 Com/Operation.class

5 Com/OperationResponse.class

6 Com/package-info.class

Listing 6.4 Generated java classes

We create a JAR archive which contains all the java classes that we have

generated in the previous step:

Prompt> ant buildclientlib

� Create the standalone client

Let us develop a client main class that calls the add method of CalculateSumSer-

vice (see Listing 6.5). It makes the call through a local object that acts as a client

proxy to the remote service. It is called a static stub because the stub is generated

before runtime by the wsimport tool.

1 /** * @author Albreshne Adhem*/

2 public class Main {

3 public static void main(String[] args) {

4 try { // Call Web Service Operation

5 com.CalculateSumService service = new com.CalculateSumService();

6 com.CalculateSum port = service.getCalculateSumPort();

7 int param1 = 400;

8 int param2 = 200;

9 java.lang.Integer result = port.add(param1, param2);

10 System.out.println("Result = "+result);

11 } catch (Exception ex) {

12 // TODO handle custom exceptions here

13 }

14 }}

Listing 6.5 Client implementation

� Compile the client Main java class:

Prompt> ant buildclient

� Run the client application:

Prompt> ant run

The result should be like this:

[java] Result=600

37

 7 RESTful Web Services Case Study

This example demonstrates the basics of using Java technology to develop a Restful

web service using JAX-RS (Java API for RESTful Web Services) [JAX09], This

JAX-RS specification defines a set of Java APIs for the development of Web services

built according to the Representational State Transfer (REST) architectural style.

After we create the RESTful web service, we consume the RESTful web service

using a simple browser. The code resources for this example are available for

download from [Adh09].

To realize this example, we need the software and resources enumerated in Table

 7.1.

Software or Resource Version Required

Java Development Kit (JDK)

[Sun092]

Version 5 or later

Web or application server [Net09] Glassfish application (it is included with NetBeans IDE)

Ant [Apa09] Version 1.7.0

JAX-RS APIs [JAX09]

Table 7.1 Software Resources

Preparing the environment

� Install Ant.

� Install Java development Kit 1.5.

� Set the path to java bin directory.

Creating a RESTful web service

Building a JAX-RS style web service using the JAVA EE 5 platform involves the

following steps:

1. Create the application package

To get started, we create a directory of our choice. For this example, we created

an rsapp directory and three subdirectories of rsapp called build, lib and src.

The src directory contains the helloWorld directory which contains the

HelloWorldResource java class. The lib directory contains the JAX-RS APIs.

The build directory contains the java compiled classes, as well as other

descriptor files.

2. Design and code the RESTful web service endpoint

The RESTful web service, we will develop, provides a “Hello World” service.

In the next steps we demonstrate how to develop, deploy, and use a RESTful

web service. The code in Listing 7.1 shows the service endpoint interface,

38

which is a regular Java class. The “HelloWorld” class declares the Get method

which returns “Hello World !”.

1 package helloworld;

2 import javax.ws.rs.Path;

3 import javax.ws.rs.PathParam;

4 import javax.ws.rs.GET;

5 import javax.ws.rs.PUT;

6 import javax.ws.rs.POST;

7 import javax.ws.rs.DELETE;

8 import javax.ws.rs.Produces;

9 import javax.ws.rs.Consumes;

10 import javax.ws.rs.core.Context;

11 import javax.ws.rs.core.UriInfo;

12 /**

13 * REST Web Service

14 */

15 @Path("/helloWorld")

16 public class HelloWorldResource {

17 @Context

18 private UriInfo context;

19 /** Creates a new instance of HelloWorldResource */

20 public HelloWorldResource() {

21 }

22

23 /**

24 * Retrieves representation of an instance of helloworld.HelloWorldResource

25 * @return an instance of java.lang.String

26 */

27 @GET

28 @Produces("text/html")

29 public String getXml() {

30 return "<html><body><h1>Hello World !</body></h1></html>";

31 }

32 }

Listing 7.1 Web service implementation

3. The endpoint as a web application

The web service endpoint is deployed as a web application. We create the War

archive which is constructed as following:

1 -class

2 -helloWorld

3 -HelloWorldResource.class

4 -sun-web.xml

5 -web.xml

6 -index.jsp

Listing 7.2 War archive components

web.xml and sun-web.xml deployment descriptors shown in Listing 7.3 and

Listing 7.4 must be created.

1 <!DOCTYPE sun-web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Application Server 9.0

2 Servlet 2.5//EN" "http://www.sun.com/software/appserver/dtds/sun-web-app_2_5-0.dtd">

3 <sun-web-app error-url="">

4 <context-root>/HelloWorld2</context-root>

5 <class-loader delegate="true"/>

6 <jsp-config>

7 <property name="keepgenerated" value="true">

8 <description>

9 Keep a copy of the generated servlet class' java code.

10 </description>

11 </property>

12 </jsp-config>

13 </sun-web-app>

Listing 7.3 sun-web.xml descriptor file

39

1 <web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"

2 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

3 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

4 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

5 <servlet><servlet-name>ServletAdaptor</servlet-name>

6 <servlet-class>com.sun.jersey.spi.container.servlet.ServletContainer</servlet-class>

7 <load-on-startup>1</load-on-startup>

8 </servlet>

9 <servlet-mapping>

10 <servlet-name>ServletAdaptor</servlet-name>

11 <url-pattern>/resources/*</url-pattern>

12 </servlet-mapping>

13 <session-config><session-timeout>30</session-timeout></session-config>

14 <welcome-file-list><welcome-file>index.jsp</welcome-file></welcome-file-list>

15 </web-app>

Listing 7.4 web.xml descriptor file

4. Compile

Now, we compile the HelloWorldResource java class. The java class generated

by the compiler will be written to the build directory created above. We used

Ant task to compile:

Prompt> ant build

5. Packaging the Service with ant

The web service is implemented as a Servlet. Because a servlet is a web

component, we need to build the application in a War archive and then deploy it

on the glassfish server (it could indifferently be any other server).

During this process the ant creates a War archive and adds the deployment

descriptors (web.xml, sun-web.xml) and java classes to the War archive:

Prompt>ant buildWar

6. Deploy the application

To deploy the web application at first we have to define the glassfish.deploy

property in build.xml. glassfish.deploy property points to the autodeploy

directory of the domain of glassfish server. We copy the war archive to auto-

deploy directory of the server using the following command:

Prompt> ant deploy

Glassfish server can be started using the following command line:

Prompt>asadmin start-domain domain1

Consuming the Web Service

Because RESTful web services are using the standard HTTP protocol and methods,

they can be easily accessed from browsers as following:

URL Request:

http://localhost:8080/rsexample/resources/helloWorld

Response:

Hello World !

40

References

[Erl06] Erl, Thomas. Service-Oriented Architecture, Concepts, Technology, and

Design. s.l. : Prentice Hall Indiana, 2006. 0-13-185858-0.

[Mye09] Myerson, Judith. Web Services Architectures.

[Pap08] Papazoglou, Michael. Web Services: Principles and Technology. s.l. : Prentic

Hall, 2008.

[Sin05] Singh, Munindar et Huhns, Michael. Service-Oriented Computing. s.l. :

Wiley, 2005.

[Ric07] Richardson, Leonard et Ruby, Sam. RESTful Web Services. s.l. : O'Reilly,

2007.

[Pau08] Pautasso, Cesare, Zimmermann, Olaf et Leymann, Frank. RESTful Web

Services vs. “Big” Web Services. Beijing : IW3C2, 2008.

[Fie00] Fielding, Roy Thomas. Architectural Styles and the Design of Network-based

Software Architectures. s.l. : University of California, 2000.

41

Referenced Web Resources

[OMG09] OMG. Corba. http://www.corba.org/ [Accessed 07 20, 2009].

[Sun09] Sun. Remote Method Invocation Home.

http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp [Accessed 07

20, 2009].

[Got09] Gottschalk,Karl. Web Services Architecture Overview. 2000.

http://www.ibm.com/developerworks/webservices/library/w-ovr/ [Accessed 07 20,

2009].

[NWG88] Network Working Group, Sun. RPC: Remote Procedure Call. 1988.

http://tools.ietf.org/html/rfc1057 [Accessed 07 23, 2009].

[Mic09] Microsoft. Distributed Component Object Model (DCOM) Remote Protocol

Specification. 2009. http://msdn.microsoft.com/en-us/library/cc201989.aspx

[Accessed 07 20, 2009].

[Cer02] Cerami, Ethan. Top Ten FAQs for Web Services. 2002.

http://webservices.xml.com/lpt/a/1130 [Accessed 07 21, 2009].

[IBM09] IBM. WebSphere Business Integration Adapters.

http://publib.boulder.ibm.com/infocenter/wbihelp/v6rxmx/index.jsp?topic=/com.ibm.

wbia_adapters.doc/doc/webservices/webservices17.htm [Accessed 05 15, 2009].

[Wha09] Point, Tutorials. What are Web serivces.

http://www.tutorialspoint.com/webservices/what_are_web_services.htm [Accessed 07

22, 2009].

[Dmr02] David, M. Rubin. Intro to Web Services. 2002. http://www.softstar-

inc.com/Methodology/Softstar%20Web%20Services%20Presentation.ppt [Accessed 07

22, 2007].

[NWG99] Group, Network Working. Hypertext Transfer Protocol -- HTTP/1.1. 06

1999. http://www.w3.org/Protocols/rfc2616/rfc2616.html [Accessed 07 18, 2009].

[Wik092] Wikipedia. Simple Mail Transfer Protocol.

http://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol [Accessed 07 22,

2009].

42

[W3C08] W3C. Extensible Markup Language (XML). 2008. http://www.w3.org/TR/REC-

xml/ [Accessed 07 22, 2009].

[IBM04] IBM, Systems, BEA and Microsoft. Web Services Transactions

specifications. 11 2004.

http://www.ibm.com/developerworks/library/specification/ws-tx/ [Accessed 06 20,

2009].

[Wik09] Wikipedia. Web service . http://en.wikipedia.org/wiki/Web_service [Accessed

06 22, 2009].

[W3C09] W3C. Web Service Description Language (WSDL) 1.1.

http://www.w3.org/TR/wsdl [Accessed 07 10, 2009].

[Act09] active endpoints. In Depth. http://www.activevos.com/ [Accessed 07 28, 2009].

[ebX08] ebXML. Enabling A Global Electronic Market. http://www.ebxml.org/

[Accessed 07 17, 2008].

[Tut09] Tutorials Point. eXML Introduction.

http://www.tutorialspoint.com/ebxml/ebxml_introduction.htm [Accessed 08 04,

2009].

[SUN05] SUN. Effective SOA Deployment Using An SOA Registry Repository. 09

2005. http://www.sun.com/products/soa/registry/soa_registry_wp.pdf [Accessed 07

29, 2009].

[Elk09] Elkstein,M. Learn REST: A Tutorial. 09. http://learn-

rest.blogspot.com/2008/02/what-is-rest.html [Accessed 07 18, 2009].

[Wik091] Wikipedia. Representational State Transfer. http://en.wikipedia.org/wiki/REST

[Accessed 06 25, 2009].

[Bay07] Bayer, Thomas. sqlrest. http://www.thomas-bayer.com/sqlrest [Accessed 07 23,

2007].

[Sun091] Sun. JAX-WS Reference Implementation. https://jax-ws.dev.java.net/

[Accessed 07 20, 2009].

[Adh09] Albreshne, Abdaladhem. Home Page. http://diuf.unifr.ch/people/albreshn/

[Accessed 07 20, 2009].

[Sun092] Sun. Java JDK 5. http://java.sun.com/javase/downloads/index_jdk5.jsp [Accessed

07 20, 2009].

[Net09] NetBeans. Home Page. http://www.netbeans.org/ [Accessed 07 15, 2009].

[Apa09] Apache. The Apache Ant Project. http://ant.apache.org/ [Accessed 07 22,

2009].

43

[JAX09] JCP. JAX-RS: The Java API for RESTful Web Services.

http://jcp.org/aboutJava/communityprocess/final/jsr311/index.html [Accessed 06

16, 2009].

