
The MaDViWorld Project
An Attempt to Apply a Collaborative Virtual World Paradigm to the Internet

Patrik FUHRER
Department of Informatics, University of Fribourg

1700 Fribourg, Switzerland
patrik.fuhrer@unifr.ch

and

Jacques PASQUIER-ROCHA
Department of Informatics, University of Fribourg

1700 Fribourg, Switzerland
jacques.pasquier@unifr.ch

ABSTRACT

MaDViWorld is an object oriented software framework sup-
porting the implementation of fully distributed virtual worlds
on the Internet. While the World Wide Web proposes a
document paradigm with HTTP servers containing docu-
ments consulted by users with the help of browser applica-
tions, MaDViWorld supports a much richer paradigm based
on room servers hosting spaces populated by full-fledged ob-
jects, that avatar applications can activate, move and share
transparently.

Within this context, the MaDViWorld project main goal is to
provide its users with the appropriate software environment
for creating all kinds of new collaborative objects and for
sharing them transparently with others. The present paper
illustrates this process with several examples from projects
recently accomplished at the DIUF (Department of Infor-
matics of the University of Fribourg, Switzerland).

Keywords: Virtual World, Collaborative Work, Mobile
Objects and Distributed Software Framework

1. INTRODUCTION

The Software Engineering Group at the DIUF has developed
an object oriented distributed framework supporting mas-
sively distributed virtual worlds, called MaDViWorld. The
general concepts have been introduced in [11] and an insight
of the global framework architecture is provided by [12]. The
theoretical foundation as well as a complete description of

more specific aspects such as the distributed events model,
code mobility or security are extensively discussed in [9].

The goal of this paper is to illustrate how MaDViWorld tech-
nology can be used on the Internet in order to apply a much
richer collaborative paradigm than the classical document
one proposed by the World Wide Web (WWW). The paper
is organized as follows. Section 2 reviews some of the main
virtual world concepts such as subspaces, avatars and ob-
jects and further explains the paradigm shift between clas-
sical WWW browsing and MaDViWorld usage. Section 3
provides a sample of the objects that can be created within
MaDViWorld. Finally, Section 4 wraps up the paper by de-
scribing future possible collaborative worlds based on MaD-

ViWorld technology.

2. BASIC VIRTUAL WORLD CONCEPTS

For the further comprehension of this paper, the following
four terms need to be briefly explained:

1. Avatars are the virtual representation of the users.
Concretely, an avatar is a tool that allows a given user
to move through the world, to interact with its inhab-
itants and objects and that lets the other users know
where she is and what she is doing. Among people
working on virtual reality and cyberspace interfaces
(see [5, 18, 19]), the word Avatar is used to describe
the “object” (icon, two or three-dimensional photo,
design, picture or animation) representing the user in
a shared virtual reality. In other words, an avatar is
an instantiation of the user’s body in the computer-
ized medium. In text-based virtual realities, such as
MUDs1 and MOOs2 (see [4, 17]), avatars consist of a
short description which is displayed to the users whose
avatars “look” at them.

1MUD stands for Multi User Dungeon.
2MOO is the acronym for MUD Object-Oriented.



2. In order to distinguish between near and distant ele-
ments, it is essential to divide the world into subspaces
where the users might or might not enter and in which
all interactions take place. Let us call such subspaces
rooms.

3. Rooms are connected by doors, which an avatar can
use for moving from one room to another.

4. Objects populate the rooms. They are not just simple
passive data objects, but full-fledged objects (single or
multi user) avatars can execute and share (e.g. games,
whiteboards). Furthermore, in a distributed world, ob-
jects should be “physically” mobile, i.e. transparently
movable from one room on a given server to another
room hosted on a different machine. In MaDViWorld,
mobility is either performed autonomously by the ob-
ject itself or passively with the help of the avatar trans-
porting it in her bag.

The conceptual model, that emerges from these considera-
tions is illustrated below with the help of a simple typical
scenario.

A Typical Scenario
The starting point is a virtual world composed of two rooms,
R1 and R2, hosted on two different machines. Let us com-
ment, step by step, the scenario illustrated by Figure 1.

James

R1 R2

Sylvia Hans

James

R1 R2

Sylvia Hans

James

R1 R2

Sylvia
Hans

James

R1 R2

Sylvia Hans

b)

c)

d)

e)

James

BattleShip

R1

Hans

R2

f)

a)

James
Sylvia

BattleShip

R1

Hans

R2

Fig. 1: A typical scenario in MaDViWorld

• Figure 1a): The virtual world is shared by three avatars:

James, Sylvia and Hans, all present in the same room
R1. There is a battleship game object in this room.

• Figure 1b): Sylvia and Hans both launch the battle-
ship game and start playing it.

• Figure 1c): James also launches the battleship game.
As it is a two players game, he becomes an observer of
the game and can only watch how his two roommates
play.

• Figure 1d): Sylvia and Hans decide to finish their game
in room R2. Sylvia takes the battleship object and
puts it in her bag.

• Figure 1e): Sylvia and Hans move to the empty room
R2. Sylvia puts the game she had in her bag into the
room. Then both Hans and Sylvia reactivate the game
and go on from the point they stopped before. James
is now alone in room R1.

• Figure 1f): The game is finished and Sylvia logged off
the world. James and Hans are still inhabiting the
world, each in a different room.

Fig. 2: Hans’ avatar application and battleship object GUI

Although very simple, the preceding story reveals several
interesting points:

• MaDViWorld’s powerful remote event mechanism plays
an important role at two levels in the scenario. On the
one hand, thanks to it, the avatars are aware of their
environment. James immediately knows that Sylvia
and Hans left the room. Hans sees when Sylvia puts
the battleship object in room R2 (see Figure 2). On
the other hand, the event mechanism is used to update
the graphical user interface of the objects. This allows
each move to be displayed immediately on each logged
avatar’s board, player or observer.

• The battleship object has “physically” been carried
from room R1 to room R2 by the avatar Sylvia. Note



that R2 is hosted by another machine than R1 and
that the machine hosting R2 had no prior knowledge
of this kind of object.

• The state of the game has not been lost during its
transfer from R1 to R2.

Document versus Virtual World Paradigm
At this stage, it is worth comparing the virtual world paradigm
just presented above with the document one usually applied
when browsing the web:

• Within the document paradigm, documents, often ac-
tive ones able to react to various user actions, are made
available on one or several servers, and client applica-
tions (e.g., web browsers) can be used to interact with
them. Typically, each user copies the documents onto
her local machine and her interactions with them have
no direct repercussions on the other connected users.
In particular, a user never directly modifies the origi-
nal document. The underlying metaphor is the one of
a huge cross-referenced book where each user browses
through the pages totally unaware of other users per-
forming the same task at the same moment. All ac-
tions are asynchronous and, thus, there is no need for
a central server to coordinate user interactions with
the pages of the book or to take care of an event re-
distribution mechanism. The main advantage of this
approach is that it allows a truly distributed archi-
tecture with thousands of http servers interconnected
all over the world. If a crash occurs, only the pages
hosted by the failed or the no longer reachable servers
become momentarily unavailable. The whole system is
extremely robust and, since the connection of new de-
centralized servers is always possible, there is no limit
to its growth.

• Within the virtual world paradigm, multiple users and
active objects interact in the same space and there-
fore have a direct impact on each other. Within such
systems, if a user interacts with an object, the other
connected users can see her and start a dialog with
her. Moreover, it is possible for a user to modify some
properties of the world and all the other users present
in the same subspace must immediately be made aware
of it. It is worth noting that applications of the vir-
tual world paradigm range from simple textual chat
to sophisticated 3D virtual worlds (e.g. [1]) used for
military simulations.

Implementation
At the implementation level, systems based on a distributed3

virtual world metaphor are clearly the most complex ones.
Indeed, the users interact directly with the original objects
of the system and the resulting events must be correctly

3In the context of virtual worlds, “distributed” means that
the architecture must not be limited to a single central server
containing the whole virtual world and guaranteeing its con-
sistency with many clients connected to it. It is imperative
that distinct clusters of subspaces might be distributed on
separate servers for scalability purpose.

synchronized and forwarded in order to maintain the con-
sistency of the world. To face these issues, to support scala-
bility when the virtual world grows very large and to allow
for code mobility when objects are moving, virtual world
developers have to choose carefully an appropriate software
architecture. It is out of the scope of this paper to review the
abundant literature on the subject (see [15, 14]) or to present
in details the solution proposed by MaDViWorld. The inter-
ested reader is referred to [9] for an in depth presentation of
the MaDViWorld software architecture and to [13, 8, 6, 20]
for a discussion of other systems. It is however possible to
summarize MaDViWorld ’s mains choices as follows:

• Room server applications are set up on networked ma-
chines the same way as HTTP servers are for the web.
A room server application allows for creating an ar-
bitrary number of rooms with various properties on
a given machine and for connecting them with others
(including on different room servers) through doors.

• Active objects are implemented as simple Java classes

with the only need of respecting a minimal set of con-
ventions4. Furthermore, a user-friendly setup wizard

application allows for installing newly programmed ob-
jects within a given room.

• Avatars are simple client applications, which can con-
nect to a given room, see its contents and interact with
its objects and other connected avatars. They basi-
cally play the same role as classical browsers within
the World Wide Web and they do not need to present
a sophisticated 3D interface.

3. MORE ON OBJECTS

The MaDViWorld framework provides a default implementa-
tion both for a simple avatar application (see Figure 2) and
for the room server application. These two default applica-
tions allow for a given amount of customization from their
users (e.g. by defining the rooms’ access rights and security
policy, by setting them up with one’s own collection of ob-
jects or by connecting them through doors). It would even
be possible for an experienced Java programmer to use the
carefully designed hooks of the framework in order to extend
or even to fully override the default implementation, intro-
ducing for example rooms with 2D or 3D representations.

It is, however, not the main goal of the MaDViWorld project
to go into this direction. We truly believe that the actual im-
plementation is sufficient in order to design exciting worlds
at the important condition of disposing of a rich enough va-
riety of objects to populate them. This is the reason why we
concentrated on facilitating as much as possible the process
of programming new types of object with the ultimate goal
of instigating a rich community of object creators. Further-
more, in order to bootstrap this process, we launched a series
of student projects5 with the only requirement of validating

4The interested reader is referred to the MaDViWorld’s of-
ficial web site [10], where she can both download the code
and consult a step by step cookbook guide to programming
MaDViWorld objects.
5Bachelor or Master level projects realized at the DIUF (see
[10]).



the framework by programming new “useful” objects. The
next subsections briefly present some of them.

Resource Sharing Objects
The objects are executed either on the machine hosting their
containing room or on the one where the avatar application
is running. This allows for resource sharing. Objects need-
ing a lot of computing power and memory are put in a room
hosted by a powerful computer and they are remotely con-
trolled by their thin GUIs launched by avatar clients. A
little example illustrating this feature is the fibonacci num-
ber calculator. Other ones can easily been imagined, for
example from mathematical topics such as fractal calcula-
tion, cryptography or linear programming solvers.

Collaborative Objects
The MaDViWorld framework offers all what is needed in
order to build collaborative objects. Indeed, objects can
easily be shared by several users and events transparently
broadcasted. This allows for the creation of a large vari-
ety of objects supporting collaboration among the virtual
world users. These objects range from simple shared white-
boards to sophisticated collaborative editors and “chat” util-
ities. The whiteboard object is an illustrative example from
the MaDViWorld programming cookbook guide, while pro-
totypes of a simple collaborative editor and of a powerful
chat object (see Figure 3) have been realized in two sepa-
rate projects.

Fig. 3: A chat object

Multi-player games are also part of this category of ob-
jects. Existing examples of multi-user games are the “bat-
tleship” game (see Figure 2), the “tic-tac-toe” game, the
“minesweeper” game6 and even a complex “Metal Panic”

6Essentially a single-user game. It might, however, range

game composed of three complementary inter-communicating

objects : robot factories, customizable fighting robots and
fighting arenas.

It would also be possible to imagine objects which would
sense their environments and adapt their states in order to
anticipate the needs of their users, e.g. a whiteboard which
would adapt its size to the number of avatars present in a
given room.

Inter-Communicating Objects
The remote event mechanism model can also be used in
order to make objects communicate with each other. A pos-
sible application consists in producing so called “social” ob-
jects. For example, one can create a virtual pets community.
The avatars owning these pets have to play with them, clean
or feed them in order to keep them healthy. If a member of
the community dies, the other pets living in the same room
are affected by the death of their friend and their “life cap-
ital” decreases. The GUI of such an object is illustrated by
Figure 5.

Fig. 4: A virtual pet in MaDViWorld

Other applications of the communication between objects
are the robots, factories and arenas of the “Metal Panic”
game, and MadTunes, an audio player accessing MusicRack
objects containing several music files.

Agent Objects
The MaDViWorld framework also allows for the creation of
so-called mobile software agents (see [7, 3]). At the soft-
ware engineering level (design, programming and especially
debugging), these objects are some of the most difficult to
deal with. Nevertheless, two prototypical agents have suc-
cessfully been developed with the help of the framework fa-

in the collaborative objects category if one considers the
avatars watching how someone else plays.



cilities: The first one is an agent called “Explorer” that
draws a sophisticated interactive map7 of a given virtual
world by visiting all its rooms. The second one is an agent
called “Matchmaker” that fixes meeting with other agents
of the same type on behalf of their respective owners (see
Figure 5).

Fig. 5: Screenshot of a “Matchmaker” agent

Summary
Our experience within the various projects partially described
in the preceding subsections proved that it is rather simple
for an average Java programmer using the framework to de-
velop her own objects with the freedom of deciding if her
new object will:

• be stateful or stateless, determining if the internal state
of the object is carried around when the objects moves
or not;

• be single- or multi-user;

• take advantage of the distributed event mechanism in
order to “inter-communicate” with other objects or
not;

• take advantage of their intrinsic mobility in order to
behave as mobile agents or not;

• be rather specific (for example a given game) or very
generic (e.g. a chat, a witheboard or a collaborative
editor, which could then be installed by default in ev-
ery room).

4. CONCLUSION

The current version of MaDViWorld is a fully functional
one and has been extensively tested within various student
projects. Furthermore, a small set of generic objects are
already available. The next step would be to integrate the
work already done within a coherent and “interesting” world.
Two possible candidates are sketched below: the first one

7The map appears as a graph, where the vertices express ei-
ther the room server hosts, the rooms, the connected avatars
or the objects in the rooms, while the edges represent either
inclusion (e.g. an object in a room) or connection relation-
ships (e.g. rooms linked by a door).

ranges in the area of entertainment and the second one deals
with e-learning.

Gameworld
This virtual environment consists of a set of rooms full of
active collaborative game objects, ranging from single user
arcade games to sophisticated multi-user ones (card games
for instance). After having paid a fee, the users are allowed
to visit the rooms; to watch other users play; to try out some
demo versions of the games; or even to join a game and to
exchange their impressions about it. Later, if she is inter-
ested, a user can even copy a given game object onto her own
machine by getting the right to clone it. A slightly modi-
fied version of this world would be to replace the cloneable
game objects by active pieces of art that would be unique in
the sense that one could only move them around, not copy
them.

Eduworld
A more ambitious project is to build up a distributed learn-

ing environment on the top of the MaDViWorld framework.
While Figure 6 sketches the conceptual model of such a
world, its key elements are enumerated below.

Employee

Entry Hall

Administration service

Auditorium A

Advisor's room

Auditorium B Advisor

Professor 1

Course 1

Professor's Office 1

Exercises 1

Assistants' office 1

Conference Room 1 Assistant 1a

"Turtle graphics" robots

Professor n

Course n

Professor's Office n

Exercises n

Assistant's office n

Conference Room n Assistant n

Pedagogical objects

Assistant 1b

Fig. 6: Distributed learning environment conceptual model

• Individual professors’ offices are used in order to re-
ceive students for private discussions. We propose to
physically decentralize them on the professors’ private
machines.

• Assistants’ offices are rooms used by the assistants of a
given professor in order to receive individual students
for questioning about their on-going homework. The
functions of these rooms are close to the former ones
and we also propose to decentralize them.

• Conference rooms are associated to a professor’s group
and are used by both the professor and his assistants



in order to have an open discussion with several stu-
dents at once. They can also serve for more classical ex

cathedra courses. These rooms can either be decentral-
ized on a machine associated with a given professor’s
group or put on a larger department’s server.

• Exercises rooms are the most interesting ones, since
they contain the active pedagogical objects associated
with a given course. For instance, programmable draw-
ing robots could be used in order to teach algorithmic
concepts. This idea is analogous to the turtle graph-
ics methodology adopted by Logo [16, 2]. Adapted to
a virtual world environment such a learning strategy
would lead to the following scenario. Each student
clones the ‘exercise of the day’ robot and takes it into
her virtual office, running on her own physical ma-
chine. She then tries to instruct the robot to do a
given drawing. Once she is finished, the student puts
her programmed robot in another room for correction
(the assistants’ office for instance). A reasonable solu-
tion is to put these rooms on the same server as the
conference ones. They will not overload this machine,
since the real work will always take place on the stu-
dents’ individual machines.

• Administrative rooms provide various central services
(registration, accreditation, etc.) and would typically
run on a larger department (or even university) server.

It is our hope that such worlds will be built in the near
future.

5. REFERENCES
[1] Paradise project web site. [online].

http://www.dsg.stanford.edu/paradise.html (accessed

January 14, 2004).

[2] H. Abelson and A. A. diSessa. Turtle Geometry: The

Computer as a Medium for Exploring Mathematics.
MIT Press, September 1986.

[3] J. M. Bradshaw. Software Agents. AAAI Press, 1997.

[4] L. P. Burka. The MUDdex. [online], 1993.
http://www.linnaean.org/∼lpb/muddex/ (accessed

November 26, 2004).

[5] J.-C. H. (ed.). Virtual Worlds: Synthetic Universes,

Digital Life, and Complexity. Perseus Books, Reading,
Massachusetts, USA, 1999.

[6] V. N. et al. The COVEN project: Exploring
applicative, technical, and usage dimensions of
collaborative virtual environments. Presence,
8(2):218–236, 1999.

[7] S. Franklin and A. Graesser. Is it an agent, or just a
program?: A taxonomy for autonomous agents. In
Proceedings of the Third International Workshop on

Agent Theories, Architectures and Languages.
Springer-Verlag, 1996.

[8] E. Frécon and M. Stenius. DIVE: A scalable network
architecture for distributed virtual environments.
Distributed Systems Engineering, 5(3):91–100,
September 1998.

[9] P. Fuhrer. Distributed Virtual Worlds - Abstract Model

and Design of the MaDViWorld Software Framework.
PhD thesis, Department of Informatics, University of
Fribourg, Switzerland, Nr. 1458, September 2004.

[10] P. Fuhrer. MaDViWorld (Massively Distributed Virtual
Worlds). [online], 2004.
http://diuf.unifr.ch/softeng/projects/madviworld/ (accessed

November 26, 2004).

[11] P. Fuhrer, G. K. Mostéfaoui, and J. Pasquier-Rocha.
MaDViWorld : a software framework for massively
distributed virtual worlds. Software - Practice And

Experience, 32(7):645–668, June 2002.

[12] P. Fuhrer and J. Pasquier-Rocha. Massively
distributed virtual worlds: A framework approach. In
E. A. Nicolas Guelfi and G. Reggio, editors, Scientific

Engineering for Distributed Java Applications, volume
2604 of Lecture Notes in Computer Science, pages
111–121. International Workshop, FIDJI 2002
Luxembourg-Kirchberg, Luxembourg, November 2002,
Springer-Verlag, March 2003.

[13] C. M. Greenhalgh. Awareness-based communication
management in the massive systems. Distributed

Systems Engineering, 5(3):129–137, September 1998.

[14] R. Kazman. Load balancing, latency management and
separation of concerns in a distributed virtual world.
In A. Y. Zomaya, editor, Parallel Computing:

Paradigms and Applications. International Thomson
Publishing, November 1995.

[15] K. L. Morse, L. Bic, and M. Dillencourt. Interest
management in large-scale virtual environments.
Presence, 9(1):52–68, 2000.

[16] S. A. Papert. Mindstorms: Children, Computers and

Powerful Ideas. Basic Books, 2nd edition, March 1999.

[17] E. Reid. Cultural Formations in Text-Based Virtual

Realities. Masters thesis, English Department,
University of Melbourne, January 1994.

[18] S. Singhal and M. Zyda. Networked Virtual

Environments: Design and Implementation.
Addison-Wesley, 1999.

[19] J. Smed, T. Kaukoranta, and H. Hakonen. A review
on networking and multiplayer computer games.
Technical Report Technical Report 454, Turku Centre
for Computer Science, April 2002.

[20] R. C. Waters, D. B. Anderson, J. W. Barrus, D. C.
Brogan, M. A. Casey, S. G. McKeown, T. Nitta, I. B.
Sterns, and W. S. Yerazunis. Diamond park and
spline: Social virtual reality with 3D animation,
spoken interaction and runtime extendability.
Presence, 6(4):461–481, August 1997.


