
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2002; 32:645–668 (DOI: 10.1002/spe.453)

MaDViWorld: a software
framework for massively
distributed virtual worlds

Patrik Fuhrer∗,†, Ghita Kouadri Mostéfaoui and Jacques Pasquier-Rocha

Department of Informatics, University of Fribourg, Switzerland, Site Regina Mundi, Rue P.A. de Faucigny 2,
CH-1700 Fribourg, Switzerland

SUMMARY

The MaDViWorld project represents an original attempt to define an appropriate software architecture for
supporting massively distributed virtual world systems. A non-massively distributed virtual world system is
typically engineered as a client–server application for which a single server or more rarely a small cluster of
servers contain all the world pertinent data and assume the world accessibility, consistency and persistence.
On the client side, many of them enable interaction with the other users and the various objects of the
world. The main originality of our approach resides in the fact that the server part of the proposed system
is no more limited to a few centralized servers, but can be distributed on arbitrarily many of them. Indeed,
MaDViWorld, the prototypal software framework already implemented using Java and RMI by our group,
allows for creating the rooms of a given world on several machines, each running the server application. It is
then possible to connect the rooms by way of simple doors and to populate them with active objects. Finally,
avatars managed by the client application visit the rooms and interact with the active objects either directly
on the remote host or locally by cloning or transporting them first to the client machine. This paper draws
from the experience gained with the development of our first prototype in order to discuss, both at the user’s
and the vi-world developer’s level, the main software engineering issues related to the implementation of
such massively distributed virtual world systems. Copyright  2002 John Wiley & Sons, Ltd.

KEY WORDS: virtual worlds; MUD; MOO; distributed software architecture; Java; RMI

1. INTRODUCTION

In today’s Internet technology, the distinction must be made between applications based on a document
paradigm versus those based on a virtual world paradigm, as follows.

• Within the document paradigm, documents, often active ones being able to react to various user
actions, are made available on one or several servers and client applications (e.g. Web browsers)

∗Correspondence to: Patrik Fuhrer, Department of Informatics, University of Fribourg, Switzerland, Site Regina Mundi,
Rue P.A. de Faucigny 2, CH-1700 Fribourg, Switzerland.
†E-mail: patrik.fuhrer@unifr.ch

Copyright  2002 John Wiley & Sons, Ltd.
Received 23 July 2001

Revised 20 December 2001
Accepted 7 February 2002



646 P. FUHRER, G. KOUADRI MOSTÉFAOUI AND J. PASQUIER-ROCHA

can be used in order to interact with them. Typically, each user copies the documents onto her
local machine and her interactions with them have no direct repercussions on the other connected
users. In particular, a user never directly‡ modifies the original document. The underlying
metaphor is the one of a huge cross-referenced book where each user browses through the pages
totally unaware of other users performing the same task at the same moment. All actions are
asynchronous and, thus, there is no need for a central server to coordinate user interactions with
the pages of the book or to take care of an event redistribution mechanism.
The main advantage of this approach is that it allows a really massively distributed architecture
with thousands of http servers interconnected all over the world. If a crash occurs, only the
pages hosted by the failed or the no longer reachable servers become momentarily unavailable.
The whole system is extremely robust and, since the connection of new decentralized servers is
always possible, there is no theoretical limit to its growth.

• Within the virtual world paradigm, multiple users and active objects interact in the same space
and therefore have a direct impact on each other. Within such systems, if a user interacts with an
object, the other connected users can see her and start a dialog with her. Moreover, it is possible
for a user to modify some properties of the world and all the other users present in the same
subspace (e.g. the same room) must immediately be made aware of it. Examples of the virtual
world paradigm range from simple graphical chat to sophisticated 3D virtual worlds used for
military simulations (see Section 2.2).
At the software architecture level, systems based on the virtual world metaphor are clearly the
more complex ones. Indeed, the users directly interact with the original objects of the system
and the resulting events must be correctly synchronized and forwarded in order to maintain the
consistency of the world. Therefore, most of them are based on a software architecture with
one central server containing all the world pertinent data and assuming the world accessibility,
consistency and persistence and many clients allowing interaction with the other users and
the various objects of the world. This approach has two main weaknesses. First, the whole
system depends completely on the central server robustness. Secondly, it does not scale well.
Just imagine what the World Wide Web would be today if all its contents would need to be
regrouped on a single server having to coordinate all of its users.

The goal of our research group is to define and test promising software solutions in order to
support the virtual world paradigm presented above, without making concessions to the single server
architecture. Actually, MaDViWorld, the acronym of the prototypal software framework presented
in this paper, stands for Massively Distributed Virtual World, since its subspaces (e.g. rooms) are
distributed on an arbitrarily large amount of machines. The only requirement is that each machine
containing a part of the world runs a small server application and is connected to other machines
through the Internet. This obligation is exactly the same as the one required by the World Wide Web
with all its advantages in terms of robustness and scalability. Note that the definition of prototypal
architectures for really distributed virtual worlds is a new active field of research tackled both by

‡An indirect outcome is, however, possible by means of techniques such as forms, CGI and servlets. For example, a document
that is generated on the fly by a program running on an http server depends often on data fetched from a database through HTML
forms by its users.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:645–668



MASSIVELY DISTRIBUTED VIRTUAL WORLDS 647

the vi-world community and the distributed software community. An interesting attempt to build a
highly distributed system has been made recently by the V-Worlds Group at Microsoft research as
an enhancement to their V-Worlds platform (see [1,2]). Each server manages a room and its content.
An SQL server hosted on one of the world server machines handles the synchronization mechanism.
Other proposals for completely distributed environments can be found in the following projects:
URBI ET ORBI [3], DIVE [4] and MASSIVE [5]. The NOMAD framework (see [6]) proposes an
interesting CORBA based approach that encourages the division of a vi-world into separate locations,
each running on its own server. Nevertheless, it still needs a central server for coordinating the whole
world. Another approach focused on the use of the CORBA platform as a middleware layer to support
distributed vi-worlds can be found in [7]. The latter, however, is based on a ‘single server—many
clients’ architecture.

As pointed out in the previous paragraph, this paper investigates possible solutions for the
creation of a highly distributed virtual world software framework. Furthermore, it concentrates on
our MaDViWorld prototypal implementation for illustrating the proposed solutions. In order to best
achieve this goal, the paper is structured as follows. Section 2 presents a brief definition and a historical
overview of the virtual world metaphor and introduces the reader to the accompanying terminology,
i.e. avatars, rooms and objects. Naturally, the overview part of the section is very much focused on the
goals of this paper and thus has not the ambition of being exhaustive. Section 3 summarizes, both at
the user level and at the vi-world developer level, the technological objectives that were the motivation
behind the project of creating the MaDViWorld framework. Section 4 concentrates on the dynamic
behavior of vi-worlds implemented on top of the MaDViWorld framework. It uses a simple example
in order to provide the reader with a feeling of how the mapping between a user’s mental model of
her vi-world and its concrete ‘physical’ realization takes place. Section 5 presents an overview of
the static software architecture of the current§ version of the MaDViWorld framework by sketching
the three layers of its class hierarchy. This section is the most technical of the paper and represents
its true contribution. For the interested reader, Section 6 of [8] presents the same material at a more
detailed level. Finally, Section 6 enumerates the main achievements we have drawn from our work,
while Section 7 contains some suggestions for improvements at various levels.

2. VIRTUAL WORLDS: A BRIEF PRESENTATION

2.1. Terminology

In [9], virtual worlds are defined as ‘computer-based models of three-dimensional spaces of objects
with restricted interaction’. It is further asserted that multi-user worlds are distinguished by the fact that
several users (working on different machines) can move through the world and interact with one another
or with the objects at the same time. Finally, a virtual world is considered as distributed ‘if active parts
of it are spread throughout different computers in a network’.

The present article respects the above definitions on the condition of giving a rather permissive
interpretation to the expression ‘models of 3D spaces’. Indeed, we consider that a computer-based

§The 1.3 beta version.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:645–668



648 P. FUHRER, G. KOUADRI MOSTÉFAOUI AND J. PASQUIER-ROCHA

model of a given world should not necessarily respect a precise 3D, or even 2D topology. In a text-
based model, for example, it is not necessary to be precise about the coordinates of avatars and objects
present in a given room. A simple list that is automatically updated each time a change occurs in the
room and which allows one to interact with the user or the object of one’s choice, might represent a
suitable model for many purposes. The same is true for doors. It is certainly more realistic to place
them in a precise location within a 3D or 2D wall and to force the user to virtually open them in order
to move into another subspace. It is, however, also possible to present a list of available doors in a given
room and to automatically transfer the user in a new context (i.e. new room, with new users present
and new objects available), when she selects a given door. To summarize, we believe that the feeling of
being in a space with other users and objects can be achieved within a very simple topological model
(by only defining rooms, for example). Naturally, the underlying architecture of the world should be
conceived in such a way that the addition of a more realistic 2D or 3D topology remains a possible
option.

For a good comprehension of the present paper, the following three terms need to be explained in
more detail.

1. Avatars. Diehl [9] defines them as the ‘virtual representations of the users’. He then explains
various perspectives from which the user can look at the scenery (i.e. through the eyes of the
avatar, with a camera on top of it or with a camera behind it) and he finally states that in multi-
user worlds an avatar should also somewhat be the visual representation of its user.
Within this paper, we adopted the following close but nevertheless easier to apply definition.
An avatar is a tool that allows a given user to move through the world, to interact with its
inhabitants and objects and that lets the other users know where she is and what she is doing.
This definition does not contradict that of Diehl, but it also enables an avatar to be a simple client
text-based application broadcasting the actions of its user through simple messages to the users
of avatars sharing the same subspace.

2. Rooms. When a virtual world does not have a precise topology, it is very difficult to distinguish
between near and distant elements. Thus, it is essential to divide the world into subspaces where
the users might or might not enter and in which all interactions take place. Otherwise, the world
would not scale. In the present paper, we call such subspaces rooms, and an avatar can move from
one room to another either by using the doors available in a given room or by direct transfer if
she knows the address of the destination room.

3. Objects. In [10], the author distinguishes between three categories of objects as follows.

(i) Passive objects, which can only change if a human agent (through an avatar application)
interacts with them. These objects do not react to changes in other objects. A simple
whiteboard on which each user can write short messages is an example of such an object.

(ii) Reactive objects, which can change their states in response to changes in other objects.
These objects typically obey ‘physical’ laws of interaction. When hitting a wall, for
example, a ball will rebound at a given angle and velocity.

(iii) Active objects, which can transform themselves. A whiteboard, which would adapt its size
to the number of participants in a room, is such an object. An active object has a minimal
intelligence built into it.

We strongly think that a virtual world architecture should allow all three types of objects
mentioned above and that this can be achieved by modeling them as instances of software

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:645–668



MASSIVELY DISTRIBUTED VIRTUAL WORLDS 649

objects (i.e. the combination of a state and of methods that can be executed by the host machine).
Furthermore, in a distributed world, it should be possible to physically transport a given object
from a room on machine X to a room on machine Y (see Section 3).

2.2. Historical overview

The history of virtual worlds began with the first MUDs (Multiple-User Dimensions or Dungeons)
designed as role-playing adventure games in the mid-seventies. A MUD is a shared textual virtual
environment that can be explored by its users through a series of simple commands such as ‘look’,
‘go’ and ‘take’. As she moves within the world, a user runs across other users with whom she either
chats, collaborates for a given task or fights for resources. A detailed description of MUDs is given
in [11] and a huge amount of well-structured information and resources on actual MUDs (some having
evolved from a textual based representation to becoming sophisticated 2D or 3D models) can be found
on the Website [12].

In 1990, object-oriented features (i.e. the possibility to consider the entities of the world as instances
of programmable software objects) were added to the MUDs, which were renamed MOOs (MUDs
Object Oriented). LambdaMOO was the first and was officially opened at Xerox PARC by Pavel Curtis
in 1991 (see [13]). It was designed for social gatherings instead of role-playing. Note that each MOO
(or MUD) has its own creator (or God) who sets up all its rules and topology. Thus, it is always entirely
contained and managed by a single central server where the users can connect through more or less
sophisticated client applications. In that sense, MOOs are interesting for us from an end-user point of
view, but their software architectures present very little appeal in terms of robustness and scalability.
They are the opposite of being distributed. This limitation holds true for the first 2D and 3D chat
worlds, which appeared on the Internet around 1995, as well as for the first multi-user games and
VRML-based virtual worlds. An interesting listing of such applications, as well as an introduction to
their terminology and principal techniques (e.g. VRML¶), can be found in [9].

More recently, Microsoft developed its V-Worlds platform (see [14]) on top of COM, which is
still based on the concept of a central server, but plans exist to make it really distributed (see [2]).
The direction of research taken by the Microsoft V-Worlds group is typical of the most recent trend
in virtual worlds research. Researchers from the software engineering and distributed architecture
communities try to apply technologies such as DCOM, CORBA and Java to tackle the difficult
problem of defining standard protocols and of creating extensible software frameworks for supporting
distributed virtual worlds. We have already mentioned some of these projects in the introduction.
An interesting taxonomy of the problems one may encounter when dealing with large networked virtual
environments can be found in [15].

3. TECHNOLOGICAL OBJECTIVES

Section 2 has clearly demonstrated that the creation of an appropriate software environment for
supporting the development of multi-user distributed virtual worlds is both a new field of research

¶Virtual Reality Markup or Modeling Language. At the end of 1997 a revised version VRML97 became an official ISO-standard.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:645–668



650 P. FUHRER, G. KOUADRI MOSTÉFAOUI AND J. PASQUIER-ROCHA

and a very ambitious task. Thus, if one does not want to be overwhelmed by the complexity of
the work, one must absolutely follow a feasible strategy based on a few well-defined technological
objectives, which will be considered as having first priority. In the next two sections, we will state
these objectives more precisely in the context of the MaDViWorld framework. Section 3.1 considers
the point of view of a simple user (i.e. a person who explores and interacts with a world developed
on top of MaDViWorld), while Section 3.2 concentrates on the requirements of a system developer
(i.e. one who is ready to do some real programming in order to extend the framework or to create new
types of objects).

3.1. The user level

At the user level, the main idea is to keep the operations in the virtual world as intuitive and transparent
as possible. In MaDViWorld, this objective is reached by satisfying the following non-exhaustive list
of requirements.

• World topology. Rooms (as HTML pages for the World Wide Web) can be hosted on many
machines worldwide and doors topologically connect them. Avatars access a given room either
by specifying its name and the IP address of its host machine or by transparently crossing one of
its doors.

• Interactions. A soon as she has entered a room, a user is able to interact with other users and/or
objects present in it. In principle, the users are informed of her actions.

• Active/mobile objects. Initially, each room is populated by a set of objects. These objects can be
executed either on the remote machine where they are located or on the local machine of the user.
They can also be copied (cloned), removed or simply ‘physically’ transported by an avatar and
moved to other rooms. It is further possible to provide these objects with sophisticated graphical
user interfaces, which are always transparently executed on the local machine of the user.

• World creation and extension. A set of simple applications (wizards) must allow a user to
effortlessly introduce newly programmed objects into the rooms of her choice, as well as to
easily extend the global virtual world by creating and managing new active parts (rooms) on
any machine running the appropriate server application. Actually, this task is very similar to that
of creating new HTML documents and then making them available to other Internet users by
running an http server.

• Persistence and recovery. The concept of persistence must be implemented. Either a part of
the active world (i.e. the one existing on a given machine) or an avatar can be deactivated, its
state stored on a local file and then reactivated. This must work both in the case of a voluntary
interruption and in the case of a software or hardware failure.

• Security. An appropriate security policy must be enforced both at the machine and at the vi-world
level. In the first case, it means that the operating and file systems of the host machines for the
client (avatar) and the server (rooms) applications must be protected from potentially dangerous
operations (e.g. through a sandbox model). In the second case, rights within the vi-world itself
must be defined and enforced (e.g. not every avatar should be allowed to enter any room, nor to
interact with, delete, move or copy any objects).

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:645–668



MASSIVELY DISTRIBUTED VIRTUAL WORLDS 651

Note that the possibility of creating 3D worlds and/or using audio or video interfaces, although not
excluded, is not on our first priority list.

3.2. The vi-world developer level

At the vi-world developer level, the key factor for success is to propose an open architecture, allowing
a knowledgeable programmer to easily extend or ameliorate the current version of the framework.
Section 5 describes the technical choices (e.g. adoption of a layered class architecture, separation
into well-defined packages, etc.) implied by this objective. The non-exhaustive list below provides
the reader with a preview of these requirements.

• The developer who wishes to add new types of objects to the world must be able to do so (1) by
using a standard technology and (2) by respecting a small set of rules. An acceptable solution
would be to require her to use the Java programming language and to offer her a structured set of
abstract interfaces and concrete classes that have to be implemented and inherited, respectively,
in order for an object to be ‘vi-world compatible’.

• Although not trivial, the programming of a new avatar should be accessible for an average
programmer. This implies that the concrete avatar implementation must be well separated from
the other parts of the system (e.g. encapsulated in a Java package) and that the set of minimal
conditions it has to respect must be regrouped in a somewhat abstract level (e.g. a Java interface
class).

• Finally, the programming of new types of rooms, with more features or special behaviors than
the standard ones, must also be possible for a developer who is willing to put some effort into
understanding the philosophy behind the code of the existing framework. This can be achieved by
offering an abstract definition of room properties at the highest possible level. These properties
must always be respected (implemented), but they can also be extended or redefined through an
object-oriented language inheritance mechanism.

4. THE MaDViWorld DYNAMIC BEHAVIOR

After the general considerations of the preceding sections, it is time to concentrate on our research
group’s concrete contribution: the MaDViWorld software framework for massively distributed virtual
worlds. Before going into the details of the framework’s software architecture in Section 5, we focus
first on the concrete dynamic behavior of a vi-word based on our technology. In order to achieve this
goal, we consider first an example that is at the same time complete and simple. It is complete in the
sense that it is sufficient in order to illustrate all the major features of the framework (object mobility,
physical distribution of the different parts of the world, avatar interactions, etc.) and remains simple,
since it is composed of only two rooms and one active object running on two different machines and
since it is visited by only three avatars running on three different machines. The example chosen is not
very attractive, but it has the advantage of helping the comprehension of many interesting concepts,
without overwhelming the reader. Section 4.2 shows how the physical distribution of such a vi-world
is kept transparent to the end-users and discusses the framework’s potential for massively distributing

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:645–668



652 P. FUHRER, G. KOUADRI MOSTÉFAOUI AND J. PASQUIER-ROCHA

more complex worlds. Finally, Section 4.3 provides the reader with an insight into richer on-going
projects based on MaDViWorld.

4.1. A simple virtual world

This section presents a sample user session with a very simple‖ MaDViWorld-based virtual world.
Its purpose is to illustrate some of the main functionalities of our actual prototype, without entering
into its more complex technicalities. In order to best achieve this goal, we consider a typical scenario
decomposed into seven major steps.

Launching a server and setting up a room

Step 1. Sylvia launches the MaDViWorld server application on her machine. Then she uses the wizard
in order to create a new room ‘R1’ and for adding a new TicTacToe active object in it. She furthermore
decides that every other user can enter R1 and play the TicTacToe game.

Launching an avatar

Step 2. By launching the MaDViWorld avatar application, Sylvia enters the virtual world. She chooses
an avatar name (actually Sylvia) and specifies the access path of the room she wants to be connected∗∗
with (i.e. //134.21.9.252/R1).

Step 3. Another user, James, launches the avatar application from his machine and enters R1. The avatar
application displays all the rooms connected with doors to the current one as well as the lists of all the
users and objects in the room.

Using objects

Step 4. James sees that Sylvia is in R1. He invites her to play the TicTacToe game by sending her a
message via the chat window (see Figure 1). She accepts and both users launch the TicTacToe user
interface by selecting ‘TicTacToe’ from the objects list and clicking on the ‘Start’ button.

The game object recognizes the first and the second connected player (see Figure 2) and after each
move waits for the right player to take her or his turn. Each game update is automatically reported on
both clients.

Step 5. A third user, Hans, also enters R1 and launches the TicTacToe object. Since this game does not
accept more than two players, Hans is prevented from interacting with it. He can, however, observe the
game evolution.

‖It is composed of only two rooms R1 and R2 on two different machines, one simple active TicTacToe object and three users:
Sylvia, James and Hans.
∗∗It is also possible to access the corridor (i.e. //134.21.9.252/corridor), which is the default room on any machine
running the server application. This is useful when a client does not yet know the existing rooms.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:645–668



MASSIVELY DISTRIBUTED VIRTUAL WORLDS 653

Figure 1. Avatar client application.

Figure 2. TicTacToe game interface.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:645–668



654 P. FUHRER, G. KOUADRI MOSTÉFAOUI AND J. PASQUIER-ROCHA

Objects mobility

Step 6. Sylvia and James decide to transport the game to another room and play the revenge there.
James launches the server application and creates a new room ‘R2’ on his machine. Then he connects
it with R1 by creating a door between the two rooms.

Accessing a room via a door is easy, since each avatar automatically displays each new connected
room with the current one.

Step 7. In order to move the TicTacToe game to room R2, Hans selects the object and clicks on ‘take’.
The object is automatically put into his avatar’s bag (see Figure 1). Then he enters R2 and clicks
on ‘put’. Sylvia joins R2 and both users replay the game. Note that the TicTacToe object has been
‘physically’ moved from room R1 to room R2 and that it is no longer available in R1. If James had
copied it instead of taking it, there would now be two distinct TicTacToe instances, one still in R1 and
the other in R2.

4.2. Conceptual versus physical model

The aim of this section is to carry out what is possibly the most important benefit of the MaDViWorld’s
approach, namely what we call ‘massive’ distribution. In order to achieve this goal, we must carefully
study how the different parts of a MaDViWorld based vi-world are distributed, both from the end-user’s
perspective and from that of the physical machines running the system.

Let us reconsider the state of the preceding simple example’s vi-world at the end of Step 7. The users
James, Sylvia and Hans perform their tasks with a fairly simple mental model of the world in their
minds: each one’s avatar is in a given room, possibly with other avatars; the room is likely to contain
objects with which the present avatars can interact; and finally the room most probably has one or
several doors, that the present avatars can use in order to move to other rooms. Figure 3 summarizes
this vision and can be considered as an appropriate representation of our simple vi-world conceptual
model. In other words, for the end-user, there are rooms and doors her avatar can go through and she
can use the latter in order to explore the world transparently, without knowing on which machine the
room her avatar is currently visiting runs on. Note that an avatar can also reach a given room directly
under the condition that her user knows its corresponding address††.

Behind the scene, however, at the concrete level of the computers supporting the system, things are
more complicated. As it is graphically outlined within the physical model shown in Figure 4, there
are two room server applications and three avatar applications all running together on three different
machines. Each machine maintains a naming service (rmiregistry) for the virtual rooms and the
avatars running directly on it. Finally, the relations (methods firing, events distribution, etc.) between
the objects contained within a given room and the avatars connected to it are managed by the room
itself.

††In the current version of the framework, the address consists of the name of the room appended to that of the physical machine
it runs on. In Section 7.2, we shall hint how a next version might provide both a simpler and a more powerful mechanism to find
such an address.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:645–668



MASSIVELY DISTRIBUTED VIRTUAL WORLDS 655

James
Sylvia

TicTacToe

R2

corridor

Hans

R1

corridor

Figure 3. Simple world’s conceptual model.

R1

R2

rmi://134.21.9.252:1099/corridor
rmi://134.21.9.252:1099/R1
rmi://134.21.9.252:1099/Sylvia

Room Server

Room Server

TicTacToe

Sylvia's machine
(134.21.9.252)

rmiregistry

Sylvia

Avatar

James' machine
(134.21.9.255)

James

Avatar

rmi://134.21.9.255:1099/corridor
rmi://134.21.9.255:1099/R1
rmi://134.21.9.255:1099/James

rmiregistry

rmi://134.21.9.112:1099/Hans

rmiregistry

Hans

Avatar

Hans' machine
(134.21.9.112)

"134.21.9.255:1099/James"
"134.21.9.252:1099/Sylvia"

"134.21.9.155:1099/Hans"

LAN / WAN

"134.21.9.255/corridor"
"134.21.9.252:1099/R1"

"134.21.9.255:1099/R2"

"134.21.9.252:1099/corridor"
"134.21.9.255:1099/R2"

"134.21.9.252:1099/R1"
corridor

corridor

ARoom

A physical machine
(IP adress)

Avatar / Room server

An application

list of rooms sharing
doors with ARoom

objects contained in
ARoom

list of avatars connected
to ARoom

connection to the LAN/WAN

Figure 4. Simple world’s physical model.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:645–668



656 P. FUHRER, G. KOUADRI MOSTÉFAOUI AND J. PASQUIER-ROCHA

Naturally, a given room or the RMI naming service of a given machine might become bottlenecks,
if one either populates a room with too many objects and avatars or puts too many rooms on a single
server. Indeed, MaDViWorld’s main strength is not to optimize the interactions of many avatars and
objects within many rooms physically present on the same server, but rather to encourage a wide
physical distribution of the vi-world resources. We clearly do not encourage the kind of situations
where some rooms become central and have too great a relevance for the consistency of the world.
On the contrary, we want to support a World Wide Web type of organization, where each individual
server only maintains a very partial portion of the whole system. In that sense, we consider that the
MaDViWorld framework encourages massive distribution of the vi-worlds based on top of it. Figures 5
and 6 show how the distribution of a more complex example would look both at the conceptual and
physical levels.

4.3. Toward richer virtual worlds

As already mentioned at the end of Section 3.1, our framework does not exclude the creation of
vi-worlds offering sounds and video, as well as 2D or 3D representations. These aspects, however,
are not our first preoccupation and are rather considered as improvements that could be added later
within the system implementation layer of the framework (see Section 5.2). We nevertheless consider
that even the oversimplified world presented in the last two sections is still rich enough to inspire
potential developers to create attractive vi-world applications. Taken from on-going research projects
in our department, examples of such applications are briefly proposed below.

• The first one consists of a set of rooms full of active collaborative game objects, ranging from
single user arcade games to sophisticated multi-user ones (cards games for instance). After
having paid a fee, the users are allowed to visit the rooms; to watch other users play; to try
out some demo versions of the games; or even to join a game and to exchange their impressions
about it. Later, if she is interested, a user can even copy a given game object onto her own
machine by getting the right to clone it. A slightly modified version of this world would be to
replace the cloneable game objects by active pieces of art that would be unique in the sense that
one could only move them around, not copy them.

• A more ambitious project is to build up a distributed learning environment on the top of the
MaDViWorld framework. While Figures 5 and 6 sketch the conceptual and physical models of
such a world, its key elements are summarized below.

– Individual professors’ offices are used in order to receive students for private discussions.
We propose to physically decentralize them on the professors’ private machines.

– Assistants’ offices are rooms used by the assistants of a given professor in order to receive
individual students for questioning about their on-going homeworks. The functions of
these rooms are close to the former ones and we also propose to decentralize them.

– Conference rooms are associated to a professor’s group and are used by both the professor
and his assistants in order to have an open discussion with several students at once.
They can also serve for more classical ex-cathedra courses. These rooms can either be
decentralized on a machine associated with a given professor’s group or put on a larger
department’s server.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:645–668



MASSIVELY DISTRIBUTED VIRTUAL WORLDS 657

Employee

Entry Hall

Administration service

Auditorium A

Advisor's room

Auditorium B Advisor

Professor 1

Course 1

Professor's Office 1

Exercises 1

Assistants' office 1

Conference Room 1 Assistant 1a

"Turtle graphics" robots

Professor n

Course n

Professor's Office n

Exercises n

Assistant's office n

Conference Room n Assistant n

Pedagogical objects

Assistant 1b

Figure 5. Distributed learning environment conceptual model.

– Exercises rooms are the most interesting ones, since they contain the active pedagogical
objects associated with a given course. For instance, programmable drawing robots could
be used in order to teach algorithmic concepts. This idea is analogous to the turtle graphics
methodology adopted by Logo (see [16,17]). Adapted to a vi-world environment such a
learning strategy would lead to the following scenario. Each student clones the ‘exercise of
the day’ robot and takes it into her virtual office, running on her own physical machine. She
then tries to instruct the robot to do a given drawing. Once she is finished, the student puts
her programmed robot in another room for correction (the assistants’ office for instance).
A reasonable solution is to put these rooms on the same server as the conference ones.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:645–668



658 P. FUHRER, G. KOUADRI MOSTÉFAOUI AND J. PASQUIER-ROCHA

Professor n machine

LAN / WAN

Course n machine

Assistant n machine

Student m machine

Student 1 machineProfessor 1 machine

Course 1 machine

Assistant 1a machine

Assistant 1b machine

Advisor machine

Student 2 machine

Employee machine

Figure 6. Distributed learning environment physical model.

They will not overload this machine, since the real work will always take place on the
students’ individual machines.

– Administrative rooms provide various central services (registration, accreditation, etc.) and
would typically run on a larger department (or even university) server.

The interested reader is invited to follow the advancement of such projects on the MaDViWorld
official Web site (see Section 6).

5. THE MaDViWorld SOFTWARE ARCHITECTURE

MaDViWorld is a collection of 31 classes organized in eight packages representing more than 5000
lines of Java source code. The MaDViWorld platform was developed with the Java 2 platform

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:645–668



MASSIVELY DISTRIBUTED VIRTUAL WORLDS 659

MaDViWorld.WAvatar

WResult«interface»
WContainer

«interface»
Avatar

«interface»
Room

«interface»
RoomFactory

«interface»
UIFactory

«interface»
WObjectGUI

«interface»
WObject

-currentRoom : Room
-bag : Hashtable

AvatarImpl

«interface»
LAvatar

MaDViWorld.WRoomFactory

-connexions : Vector
-people : Vector
-objects : Hashtable

RoomImpl RoomFactoryImplActiveSetup

MaDViWorld.WObjects

#impl : WObject
#currentRoom : Room

WObjectGUIImpl

#container : WContainer

WObjectImpl

MaDViWorld.WWizard

RoomWizard

MaDViWorld.WObjects.MyWObj1

MyWObj1UIFactory MyWObj1Impl

-content : MyWObj1Panel

MyWObj1GUIImpl

-context : MyWObj1GUIImpl

MyWObj1Panel

MaDViWorld

S
ystem

 Im
plem

entation
S

pecification

Client Classes Server Classes Wizard Classes

«interface»
java.rmi.Remote

«interface»
java.io.Serializable

java.rmi.activation.Activatable javax.swing.JPanel

O
bject Im

plem
entation

Figure 7. Static UML diagram class of MaDViWorld.

Standard Edition (J2SETM version 1.3). The eight packages regroup all the classes needed by the three
deployment parts of MaDViWorld in order to setup, manage and use a virtual world. In Figure 7, which
illustrates the whole‡‡ static diagram of the MaDViWorld framework∗, these three parts are separated
by vertical dotted lines. From left to right, they correspond to the following independent applications.

• A client application, called an avatar, for exploring the world, as well as interacting with its
objects and other avatars;

• A room server, for creating, hosting and managing the rooms of the world on a given machine;

‡‡In this figure, only six packages can be counted. Indeed, two utility packages used by every deployment part are omitted here
for the sake of simplification. The presentation of these packages is out of the scope of this section but can be found in Section 6
of [8].
∗The classes in gray are not part of the MaDViWorld framework, but are important Java classes or interfaces that are extended
by the framework.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:645–668



660 P. FUHRER, G. KOUADRI MOSTÉFAOUI AND J. PASQUIER-ROCHA

• A room setup utility, called a room wizard, in order to remotely setup rooms and put objects into
them.

The packages are further distributed into three hierarchical layers, separated by horizontal dotted
lines in Figure 7:

• The MaDViWorld Specification layer;
• The MaDViWorld System Implementation layer; and
• The MaDViWorld Object Implementation layer.

This section provides a high level description of the MaDViWorld framework software architecture.
The interested reader should refer to Section 6 of [8], as well as to the javadoc documentation of the
MaDViWorld official Web site for more information on the precise role played by the many classes and
methods of the framework.

5.1. Specification layer

The MaDViWorld specification layer classes shown in the upper part of Figure 7 are illustrated to
a larger extent with all their methods signatures in Figure 8. The classes of this layer encapsulate
the conventions that each avatar, the room server and the room setup applications must respect in
order to function and communicate with one another properly. For example, a room object should
offer the names of all the objects it contains (the getObjectNames() method) to an avatar and
should allow it to add a new one (the setObject() method). Ideally, these 64 methods signatures
represent the minimal abstract protocol to be implemented in order to create a MaDViWorld compatible
virtual world. Actually, this protocol still lacks some features, presents some redundancies and is too
implementation oriented. It will be seriously revised in the next version of our prototype. Its main
characteristics are summarized below.

• The Avatar and Room interfaces both extend the java.rmi.Remote interface and
define all the methods that have to be remotely invoked on an avatar and a room object,
respectively. The subset of these methods, which are not concerned with the virtual world objects
management, essentially implements a MUD protocol as outlined in Chapter 16 of [18]. Note the
necessity of defining a RoomFactory interface in order to provide a clean way of installing
rooms on the many servers of our virtual worlds.

• The virtual world objects (including the doors special case) are always included within a
container (i.e. the room containing them or the avatar carrying them). Since it is often vital
for an object to know its container and to ask for the host machine it runs on, we have abstracted
these features in the WContainer interface that both the Avatar and Room interfaces must
extend.

• Within MaDViWorld, the rooms play a central role. Indeed, when an avatar wants to invoke a
method on a remote object, it must do it through the room containing the object. Reciprocally,
when the state of a WObject changes, it simply uses its containing room in order to
automatically inform all the avatars in its proximity. The object can even force the room to
save its state (thus indirectly also the ones of all the objects it contains) by merely setting up the
update field of the corresponding WResult wrapper object to true.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:645–668



MASSIVELY DISTRIBUTED VIRTUAL WORLDS 661

+changed_state() : Boolean
+getResult() : Object

-update : Boolean
-result : Object

WResult

+getHost() : String
+getName() : String
+ping() : void
+getInformation() : String

«interface»
WContainer

+getCurrentRoom() : Room
+getPermission(in person : String) : Boolean
+getType() : String
+PeopleMissing(in s : String) : void
+PersonEntered(in s : String) : void
+PersonLeft(in s : String) : void
+RoomConnected() : String
+RoomMissing(in s : String) : void
+say(in s : String) : void
+StateChanged(in s : String) : void

«interface»
Avatar

+broadcast(in msg : String) : void
+connect(in person : String) : Boolean
+disconnect(in person : String) : void
+getAllowedPeople() : String
+getConnexions() : Vector
+getDescriptionOf(in object : String) : String
+getKind() : String
+getObject(in name : String) : WObject
+getObjectNames() : Vector
+getObjects() : Hashtable
+getOwner() : String
+getPeople() : Vector
+getUIFactory(in object : String) : UIFactory
+hasAccess(in person : String) : Boolean
+invoke(in object : String, in args : Vector) : Object
+knock(in person : String) : Boolean
+removeObject(in avatarname : String, in objectname : String) : void
+say(in from_person : String, in to_person : String, in msg : String) : void
+setConnexion(in roomname : String) : void
+setObject(in o : WObject) : void
+shout(in person : String, in msg : String) : void
+updateLists() : void

«interface»
Room

+getRoomList() : Vector
+setRoom(in args : String[]) : Room

«interface»
RoomFactory

+getUI(in name : String, in i : WObject, in c, in c : Room, in av : String, in r : Boolean) : WObjectGUI

«interface»
UIFactory

+getAvatar() : String
+getobjectContainerName() : String
+getobjectDescription() : String
+getobjectHost() : String
+getobjectName() : String
+getSize() : Dimension
+getTitleDescription() : String
+getWObjectContainer() : WContainer
+getWObjectImpl() : WObject
+isRemoteInvocation() : Boolean
+invoke(in v : Vector) : Object

«interface»
WObjectGUI

+broadcast(in msg : String)
+execute(in args : Vector) : WResult
+getContainer() : WContainer
+getContainerName() : String
+getDescription() : String
+getHost() : String
+getName() : String
+getUIFactory() : UIFactory
+setContainer(in c : WContainer) : void
+setHost(in h : String) : void
+setName(in n : String) : void

«interface»
WObject

MaDViWorld

«interface»
java.rmi.Remote

«interface»
java.io.Serializable

Figure 8. MaDViWorld specification interfaces.

• The objects populating a MaDViWorld-based virtual world have two main properties. First,
they are always composed of two well-separated parts: (1) the object itself, which must respect
the WObject interface protocol; and (2) its user interface, which follows the WObjectGUI
interface protocol. Further details on how these two parts are installed and on how they work
together will be given in Section 5.3. Secondly, they are mobile objects. An avatar can take an
object from a given room, put it in its bag, go to another room on a different machine, put the
object in this new room and run it there. To allow this scenario, objects must be serializable
and thus implement the java.io.Serializable interface. Within the actual version of the
MaDViWorld prototype, object methods are not directly remote invocable. We made the choice
of using the rooms containing the objects as relays for that task. Furthermore, a transparent
code transport mechanism had to be developed in order to support objects and user interfaces
mobility.

• Finally, it is important to note that, although not directly enforced by the protocol of this
abstract specification layer, it will be necessary, at the implementation level, to focus on
providing a robust persistence mechanism. The first and second parts of Section 5.2 present
our solution to this problem for the client (avatar) and the server (rooms and objects),
respectively.

5.2. System implementation layer

This section is divided into three parts corresponding to the vertical separations of the system
implementation layer shown in the mid section of Figure 7. Note that the client, server and wizard

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:645–668



662 P. FUHRER, G. KOUADRI MOSTÉFAOUI AND J. PASQUIER-ROCHA

+addDoor(in room : String) : void
+copy(in objectname : String) : void
+disconnect() : void
+enter(in nextroom : String) : void
+invoke(in object : String, in b : Boolean) : void
+knock(in room : String) : void
+put(in objectname : String) : void
+remove(in objectname : String) : void
+sayto(in person : String, in msg : String) : void
+shoutto(in msg : String) : void
+take(in objectname : String) : void

«interface»
LAvatar

MaDViWorld.WAvatar

Figure 9. The MaDViWorld.WAvatar.LAvatar interface.

classes presented below represent only one possible implementation among many of the ideas that were
presented in Section 3 and then clarified by the specification layer protocol of Section 5.1. Our goal
is that any serious vi-world developer should be able to rewrite (or rather expand) these classes, by
simply respecting a small set of well-established rules.

Client classes

The MaDViWorld.WAvatar package contains the LAvatar interface and an implementation class
that, together with some graphical helper classes not shown in Figure 7, form the MaDViWorld client
avatar application. The latter could be seen as a remote console showing the virtual world through
the eyes of a virtual person (avatar) controlled by a human user. Note that the AvatarImpl class
concretely implements both the Avatar and the LAvatar interfaces. The former is part of the
MaDViWorld specification layer and has to be implemented imperatively in order to allow the avatar
to exchange vital information with other avatars and rooms. The latter contains methods that we
strongly recommend in order to implement a workable avatar. These methods are self-explanatory
and their signatures are summarized in Figure 9. In opposition to the methods of the Avatar
interface, they cannot be invoked remotely. Naturally, the look and feel of the user interface, as well as
the way these methods are concretely implemented, are the result of a lot of developers’ choices.
Therefore the AvatarImpl class could be greatly customized or extended by a knowledgeable
MaDViWorld developer. For example, within our actual prototype, we have made AvatarImpl
instances serializable. Thus, a user can save the state of her avatar and reactivate it whenever she
wants.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:645–668



MASSIVELY DISTRIBUTED VIRTUAL WORLDS 663

Server classes

The classes of the server layer are bundled in the WRoomFactory package and are used in order to
support the creation and the management of a virtual world active part (i.e. the rooms and indirectly
their contents). It is important to notice that the rooms are distributed on many machines each running
the room server application.

A room creation occurs when a wizard application asks a RoomFactoryImpl object to
create a proper RoomImpl instance. Although these two objects must fully respect the protocols
defined for them within the specification layer, they are both highly adaptable. Indeed, (1) the
setRoom() method of the RoomFactoryImpl class takes an array of strings as an argument,
which basically puts no restriction on the parameters that can be applied to set up a room; and
(2) every system developer is free to make her own choices in specifying the way the protection and
permission mechanisms of a room work by implementing her own version of critical methods such as
hasAccess(), knock(), removeObject() or setObject().

Within our actual prototype, we have made RoomFactoryImpl and RoomImpl instances
activatable and we have used the Java activation model in order to provide a robust
server persistence mechanism. This explains the presence of the ActiveSetup class in the
MaDViWorld.WRoomFactory package. For general considerations on the Java remote object
activation framework, the interested reader will find [19–21] worth studying.

Wizard classes

The role of the wizard layer classes is to allow users to install their own rooms with their own
custom objects on a previously known remote server machine. Within our actual prototype an ad hoc
RoomWizard graphic application collects the required information from a human user and then invokes
the setRoom() method of a remote RoomFactory object, as well as the setObject() method on
the newly created room with an instance of the custom object class to be added as argument. Note that
the server needs no prior knowledge of the objects that will be installed in its room, except that they all
implement the WObject interface. Each of these custom objects will also have to provide a graphical
user interface, for which the only restriction consists in implementing the WObjectGUI interface.
The concrete implementation of the objects and of their graphical user interfaces represents the topic
of the next section.

As this wizard application has no other constraints to respect, it offers a lot of extension possibilities
in the way the user interface is presented and in the way the pre-programmed objects are made available
to the users.

5.3. Object implementation layer

It is our main intent that any knowledgeable Java programmer might create new classes of objects and
then populate our virtual world with their instances. In order to gain a large community of such users,
we made this process both very simple and as little constraining as possible. Suppose a programmer
wants to add instances of a new class of objects named MyWObj1. She must merely respect the
following strategy: (1) she creates a MaDViWorld.WObjects.MyWObj1 package as shown in the
bottom right part of Figure 7; (2) once the newly created package has been successfully compiled

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:645–668



664 P. FUHRER, G. KOUADRI MOSTÉFAOUI AND J. PASQUIER-ROCHA

on her own machine, she uses the wizard application in order to create a local instance of the new
object type; and (3) she once again uses the wizard to install the newly created instance in any local
or remote room she may have access to. Other users can then copy and/or move this original instance,
thus populating the world with many copies of it, each having its own identity and state. Note that the
MaDViWorld.WObjects.MyWObj1 package is always composed of the four following classes,
each having a clearly defined role as follows.

• The MyWObj1Impl class implements the concrete methods that the object will be able to
execute.

• The MyWObj1Panel class contains the graphical user interface, which is totally separated
from the object implementation. We strongly suggest that this class extends the standard
javax.swing.JPanel class. This way, it will be possible to directly edit its graphic
components with any standard Java IDE†, like ForteTM.

• The MyWOjb1UIFactory and MyWObj1GUIImpl classes are lightweight classes, which
could be automatically generated. While the first one simply delegates the job of concretely
creating the graphic user interface to the MyWObj1Panel class, the second implements the
getUI() method of the UIFactory interface. The reasons behind this apparently complex
architectural option are extensively discussed in [8]. Nevertheless, the general idea is simple.
Each object (local or remote) is controlled through a graphical user interface that always has
to run locally. Therefore, the latter has to be dynamically downloaded from the room server
machine to the client avatar machine. To transparently achieve this goal, we use the factory
pattern (see [22]) twice. The first factory, WObject, generates UIFactory objects, which
themselves are WObjectGUI objects factories. This approach was inspired by one of the first
successes of the Jini.org Jini Community process, the ServiceUI project, led by Bill Venners of
Artima Software [23].

6. ACHIEVEMENTS

Considering the actual version of the MaDViWorld prototype, its main benefits are commented upon
in a few words as follows.

• MaDViWorld is written in pure Java and benefits from all the related advantages. Particularly, it
is platform independent and every computer with the standard JRE installed can use it.

• An original and powerful use of Java RMI and of its basic facilities, essentially object
serialization and dynamic class loading, provides the cornerstone of MaDViWorld.

• MaDViWorld is for a large audience. There are no other material requirements besides a standard
personal computer with a connection to a local network or the Internet.

• Virtual worlds built over the MaDViWorld framework are really distributed. Their rooms are
spread over several computers connected via a network, and there is no need for a single host to
have full knowledge of the world.

†Integrated Development Environment.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:645–668



MASSIVELY DISTRIBUTED VIRTUAL WORLDS 665

Table I. Comparison between MaDViWorld and some of the main Java technologies.

MaDViWorld Applets Java Web Start RMI JINI JavaSpaces

Methodsa can be executed locally × × × × ×
Methodsa can be executed remotely × × ×
Persistence × × ×
GUI of service/objects × × ×
Class mobilityb × × ×
Object mobility (from host to host) × ×c ×c ×c

aOf the objects/services provided.
bClass mobility is not just dynamic class loading, but the physical downloading of class files.
cOnly under the condition that the HTTP server initially referenced by the object’s codebase is up and running. This is not
necessary in MaDViWorld.

• MaDViWorld offers a very effective persistence mechanism. Each server guarantees the
persistence of the part of the world it manages.

• Our framework is extensible. By merely respecting some standard interfaces, any Java
programmer can customize and extend MaDViWorld or create her own classes of objects. Then,
the end-user can add these completely new objects to the world while the system is running.

• MaDViWorld offers class and object mobility facilities. Objects are installed and moved around
transparently, without the user or even the vi-world developer having to worry about the
peculiarities of these tasks. Within MaDViWorld the avatar client applications automatically
download all the code needed to interact with the objects selected by its user. This is a vital
requirement for a flexible and extensible distributed virtual world, since the client application
does not know a priori the particular implementation of the objects it will handle.

• All avatars in a common room share the same objects hosted on the server, which has the sole
responsibility for managing their states and persistence. So the clients do not need to locally
cache a part of the world and it is the task of the server to manage events distribution.

• Under the virtual world metaphor, MaDViWorld tackles many interesting and very technological
issues. MaDViWorld is at the crossroad of many Java products: applets, Java Web Start, RMI,
Jini and Javaspaces. It has characteristics of each of these and thus represents an original
combination of their features. Table I shows a comparison of MaDViWorld and these other
technologies.

Finally, note that the goal of MaDViWorld was to implement a really distributed virtual world only
using Java remote method invocation distributed technology and some basic Java features, and our
prototype shows that this is feasible in many interesting ways. So we clearly decided that MaDViWorld
would not be a new Java middleware system, like FlexiNet [24] and we chose not to use a legacy
middleware platform that supports mobile services like Voyager [25]. We also ruled out working
with one of the many ‘agent’ systems available, because the majority of these systems basically
consist of mobile script platforms that allow scripted agents to move around in a distributed network.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:645–668



666 P. FUHRER, G. KOUADRI MOSTÉFAOUI AND J. PASQUIER-ROCHA

Examples of these systems include Aglets [26]. Nevertheless, in order to have all the pieces of this
‘puzzle’ fit together, we needed some ‘glue’. Object providers and their users (rooms and avatars) have
to agree upon a general collection of interfaces defining a standard protocol. The clearly defined and
well-separated MaDViWorld specification level with its interface files shared between avatars, wizards
and servers provides us this ‘glue’.

To conclude this chapter, let us mention the official website of the MaDViWorld project
(http://diuf.unifr.ch/sde/projects/madviworld/). This site provides the following:

• the whole source code of the latest MaDViWorld version, which can be freely downloaded;
• an installation guide;
• the up-to-date javadoc documentation of the framework;
• actual publications and links to on-going projects related to MaDViWorld.

7. FUTURE WORK

The current version of MaDViWorld is a functional one and is currently being extensively used
by some of our students within their yearly computer science projects (see Section 4.3). It is,
however, the framework’s first stable version. Therefore, many improvement efforts are still needed.
These improvements will clearly be divided into two directions: (1) a revision of the specification
protocol under the condition of remaining fully backward compatible; and (2) improving the concrete
implementation.

7.1. Specification aspects

The specification protocol of MaDViWorld has to be reviewed in more detail. The methods that have
to be offered in the interfaces of the specification layer need to be refined. Some of the aspects that
should be considered but are still not present in the current version of MaDViWorld are listed below.

• The RoomFactory should be much closer to a room manager. A removeRoom() method,
for instance, is required.

• The security model of the world, i.e. of the rooms, is not well-defined. The actual prototype
just provides a minimal ad hoc security model. In a more elaborated version, rooms
should have a password associated with them and thus the new methods setPassword()
and changePassword() should be available so the room would be able to give
access to methods like changePermission(), changeKind(), changeOwner(),
changeTopology() only to the owner.

• The object concept is still too poor and should be extended. Objects should interact with each
other: changes in a given object should be allowed to induce changes in other objects of the
room. For instance, if we have a box and we put objects into this box, then moving the box
implies that we also move all the objects in the box. This concept implies that some objects
are containers of other objects (e.g. boxes, tables, bookshelves, etc.) and naturally, these new
objects induce an object visibility concept. There would be closed (a box) and open (a box, a
table) objects and their visualization would be treated differently. The interested reader can find
in [14] an extensive discussion of such a model.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:645–668



MASSIVELY DISTRIBUTED VIRTUAL WORLDS 667

• Avatars, objects, rooms and their doors should have concrete topological and geometrical
attributes like size, color, coordinates, etc. Constraints induced by such information
should be managed by the world. So the definition of ‘moving’ will change. In the actual version
avatars and objects move only when they change container.

7.2. Implementation aspects

On the implementation side there are still many improvements to be made. Some of them are the direct
consequence with respect to the additional specifications we have just mentioned. Below, we give a
non-exhaustive list of what these challenges may be.

• MaDViWorld uses the java security model and its security policy files. In the future, we will have
to provide specific policy files adapted for room servers, avatars and so on.

• Actually, firewalls may prevent the use of our framework on the Internet global network, but
the application of the widely used HTTP tunneling method (see [27]) can be used to solve this
problem.

• The Jini Discovery and Lookup services should be used as a naming service for RMI in order to
replace the classic rmiregistry, which has two major limitations: its ‘flat’ name space and lack of
persistence. First, this solution would allow avatars to look up rooms by other means than their
names, namely by a matching mechanism on service types and attributes (see [28]). The user
could then easily find all the ‘arcade game rooms’ or ‘spanish chat rooms’ for instance. Secondly,
it would allow a looser relation between the rooms and the server hosting them. One will then
be able to create a room on a first machine of the LAN/WAN and, after a crash, relaunch it on
another machine.

• Some implementation details should be optimized. For instance, we use the serialization classes
of java.io to store the states of the rooms, of the avatars and of the room factory into files.
It would be conceivable to use the compression classes of java.util.zip to keep the size
of these files as small as possible. Furthermore, the MaDViWorld packages, as well as the object
packages, could be stored into JAR files to improve class downloading.

• The getInformation()method of the WContainer interface should not just return a short
description string. An XML file containing all the topological, geometrical and other relevant
information would perhaps be the best alternative. The client applications should then show
other avatars, objects and the rooms in a more sophisticated graphical model (2D or 3D) and the
rooms should provide an adapted events broadcasting mechanism.

• For communications implying real-time audio or video, a streaming mechanism (UDP, RTP)
should be provided. An appropriate strategy within the MaDViWorld framework could be
the following. First we provide a set of standard methods allowing the vi-world objects to
open communication channels. The WObjectImpl class (see Figure 7) is clearly a first
choice candidate where these methods could be implemented. Secondly we extend the avatar’s
capabilities in such a way that it can be told to connect to such channels. This extension implies
adding the appropriate methods to the Avatar remote interface.

• Using Java ORB over RMI could give the potential to access objects written in other languages
(e.g. C++) and to exploit CORBA services (see [6]).

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:645–668



668 P. FUHRER, G. KOUADRI MOSTÉFAOUI AND J. PASQUIER-ROCHA

ACKNOWLEDGEMENTS

We would like to thank the anonymous referees for their detailed and insightful comments on earlier versions of
this paper.

REFERENCES

1. Microsoft Corporation. Virtual Worlds Group. http://www.vworlds.org [4 February 2002].
2. Eames R. The Future of the Virtual Worlds Platform. http://vworlds.research.microsoft.com/Docs/Future/VWFuture.htm

[1999].
3. Fabre Y, Pitel G, Soubrevilla L, Marchand E, Géraud T, Demaille A. A framework to dynamically manage distributed

virtual environments. Virtual Worlds, Proceedings of the Second International Conference, VW 2000, Paris, France, 5–7
July. Springer: Berlin, 2000; 54–64.

4. Frécon E, Stenius M. DIVE : A scaleable network architecture for distributed virtual environments (special issue on
Distributed Virtual Environments). Distributed Systems Engineering Journal 1998; 5(3):91–100.

5. Greenhalgh C, Benford S. MASSIVE: A distributed virtual reality system incorporating spatial trading. Proceedings 15th
International Conference on Distributed Computing Systems. IEEE Computer Society Press: Vancouver, Canada, 1995,
27–34.

6. Wilson S, Sayers H, McNeill MDJ. Using CORBA middleware to support the development of distributed virtual
environment applications. Proceedings of the 9th International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision 2001 (WSCG’2001), Plzen, Czech Republic, February 5–9, 2001.

7. Deriggi FV, Kubo MM, Sementille AC, Brega JR, dos Santos SG, Kirner C. CORBA platform as support for distributed
virtual environments. Proceedings IEEE Virtual Reality. IEEE Computer Society Press: Los Alamitos, CA, 1999, 8–13.

8. Fuhrer P, Kouadri Mostéfaoui G, Pasquier-Rocha J. The MaDViWorld software framework for massively distributed virtual
worlds: Concepts, examples and implementation solutions. Department of Informatics Internal Working Paper No 01-23,
University of Fribourg, Switzerland, July 2001.

9. Diehl S. Distributed Virtual Worlds: Foundations and Implementation Techniques Using VRML, Java and CORBA.
Springer: New York, 2001.

10. Kirsh D. Adaptive rooms, virtual collaboration, and cognitive workflow. Cooperative Buildings—Integration Information,
Organization, and Architecture (Lecture Notes in Computer Science), Streitz N (eds.). Springer: Heidelberg, 1998; 94–106.

11. Reid E. Cultural formations in text-based virtual realities. Masters Thesis, English Department, University of Melbourne,
1994.

12. The Mud Connector. http://www.mudconnector.com [4 February 2002].
13. Pavel C. Mudding: Social phenomena in text-based virtual realities. Proceedings of the 1992 Conference on Directions and

Implications of Advanced Computing, Berkeley, May 1992; 26–34.
14. Vellon M, Marple K, Mitchell D, Drucker S. The architecture of a distributed virtual worlds system. Proceedings of the

4th USENIX Conference on Object-Oriented Technologies and Systems (COOTS), Santa Fe, New Mexico, April 27–30.
Usenix Association: Berkeley, CA, 1998.

15. Macedonia MR, Zyda MJ. A taxonomy for networked virtual environments. IEEE Multimedia 1997; 4(1):48–56.
16. Papert S. Mindstorms: Children, Computers, and Powerful Ideas. Harpercollins: New York, 1999.
17. Abelson H, Disessa AA. Turtle Geometry: The Computer as a Medium for Exploring Mathematics. MIT Press: Cambridge,

MA, 1986.
18. Flanagan D. Java Examples in a Nutshell (2nd edn). O’Reilly and Associates: Sebastapol, CA, 2000.
19. Flanagan D, Farley J, Crawford W, Magnusson K. Java Enterprise in a Nutshell. O’Reilly and Associates: Sebastapol, CA,

1999.
20. Li S. Professional Jini. Wrox Press Ltd.: Birmingham, 2000.
21. Oaks S, Wong H. Jini in a Nutshell. O’Reilly and Associates: Sebastapol, CA, 2000.
22. Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-

Wesley Professional Computing Series: Reading, MA, 1995.
23. Jini ServiceUI Project. http://developer.jini.org/exchange/projects/serviceui/ [4 February 2002].
24. Herbert AJ, Hayton RJ, Bursell M. Mobile Java objects. BT Technology Journal 1999; 17(2). Networked distributed

systems, http://www.bt.com/bttj/.
25. Recursion Software. Recursion Software: Products – Voyager 4.5.

http://www.objectspace.com/products/voyager/ [4 February 2002].
26. IBM. IBM Aglets Software Development Kit. http://www.trl.ibm.com/aglets/ [4 February 2002].
27. Grosso W. Java RMI. O’Reilly and Associates: Sebastapol, CA, 2002.
28. Pitt E, McNiff K. java.rmi : The Remote Invocation Guide. Addison-Wesley: Harlow, 2001.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:645–668


	1 INTRODUCTION
	2 VIRTUAL WORLDS: A BRIEF PRESENTATION
	2.1 Terminology
	2.2 Historical overview

	3 TECHNOLOGICAL OBJECTIVES
	3.1 The user level
	3.2 The vi-world developer level

	4 THE MaDViWorld DYNAMIC BEHAVIOR
	4.1 A simple virtual world
	Launching a server and setting up a room
	Launching an avatar
	Using objects
	Objects mobility

	4.2 Conceptual versus physical model
	4.3 Toward richer virtual worlds

	5 THE MaDViWorld SOFTWARE ARCHITECTURE
	5.1 Specification layer
	5.2 System implementation layer
	Client classes
	Server classes
	Wizard classes

	5.3 Object implementation layer

	6 ACHIEVEMENTS
	7 FUTURE WORK
	7.1 Specification aspects
	7.2 Implementation aspects


