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Abstract—The Electronic Product Code Information Service
(EPCIS) is a standard which defines interfaces enabling RFID
events to be captured and queried. The query interface, imple-
mented with WS-* Web services, enables business applications
to consume and share data within and across companies, to
form a global network of independent EPCIS instances. However,
the interface limits the application space to the rather powerful
platforms which understand WS-* Web services. In this paper
we propose seamlessly integrating this network into the Web by
designing a RESTful (REpresentational State Transfer) archi-
tecture for the EPCIS. Using this approach, each query, tagged
object, location or RFID reader gets a unique URL that can
be linked to, exchanged in emails, browsed for, bookmarked,
etc. Additionally, this paradigm shift allows Web languages like
HTML and JavaScript to directly use RFID data to fast-prototype
light-weight applications such as mobile applications or Web
mashups. We illustrate these benefits with a JavaScript mashup
platform that integrates several services on the Web (e.g., Twitter,
Wikipedia, etc.) with RFID data to allow managers along the
supply chain and customers to get comprehensive data about
their products.

I. INTRODUCTION

The EPC Network is composed of several standards address-
ing issues from the RFID (Radio Frequency IDentification)
tags themselves (EPC standard) to readers infrastructure and
the reading middleware [1]. The way tags are encoded, read
and aggregated through the whole supply chain is addressed
by these standards. Furthermore, to be able to query and use
recorded RFID data (i.e., traces), the EPCIS standard (Elec-
tronic Product Code Information Services) acts as a global
track and trace sharing infrastructure with several, potentially
interconnected, EPCIS servers distributed around the world.
The EPCIS provides a simple and lightweight HTTP interface
for recording EPC events. A different approach is taken to
querying for these traces by other applications because the
EPCIS specifies a standardized WS-* (i.e., SOAP, WSDL,
etc.) interface. The WS-* type of integration architecture
is well adapted to combine business applications [2], [3].
For example, it can be used to integrate EPCIS data about
the status of a shipment with an ERP (Enterprise Resource
Planning) application.

However, WS-* applications are complex systems with high
entry barriers and require developer expertise in the domain.
Hence, they are not well adapted for more light-weight and ad-
hoc application scenarios [2]. Furthermore, the WS-* protocols

are known to be rather verbose. Moreover, they do not fully
meet the requirements of resource-constrained devices such
as mobile phones and wireless sensor/actuator networks often
not providing WS-* server or even client stacks [4], [5]. As a
consequence, these shortcomings limit the type of applications
built on top of EPCIS servers to rather heavy-weight business
applications fully supporting the WS-* procotols. This is
unfortunate since track and trace applications are also relevant
beyond the desktop. As an example, providing an out of
the box mobile access to these data might be beneficial for
many users such as mobile workers. Similarly, providing direct
access to RFID traces to sensor and actuator networks could
enable those to react to RFID events. Finally, allowing light-
weight Web applications (e.g., HTML, JavaScript, PHP, etc.) to
directly access these data would enable the vast community of
Web developers to create innovative applications using RFID
traces.

In this paper we propose an additional integration interface,
or API (Application Programming Interface) for the EPCIS
upon which a different range of applications can be built. We
define the following as requirements for the new API:

1) It should lower the entry barrier for developers and
foster rapid prototyping. This allows a wider range
of developers, tech-savvy user (technologically skilled
people) or researchers to develop on top of the EPCIS
and contributes to helping the EPC Network developer
community grow.

2) It should offer a direct access to users. Users should
be able to access the data without the need for installing
another software than the EPCIS itself. They should
further have means to directly extract, share and save
EPC events.

3) It should offer a more light-weight access to the data.
This enables creating applications in which the EPCIS
data are directly consumed by resource-constrained
devices without requiring proxy or translation gateways.

To fullfill these requirements, our first contribution is to
specify an API complentary to the WS-* interface and based
on the REST architectural style. REST is actually core to the
Web and uses URIs for encapsulating and identifying services
on the Web. Unlike WS-* services using HTTP only as a
transport protocol, the Web implementation of REST uses



HTTP as an application protocol. As a consequence RESTful
services are directly usable with well-known Web languages
(e.g., JavaScript, HMTL, PHP, Python, etc.) which lowers
the entry barrier for developers. The Web currently accounts
for one of the most active pools of developers1. Bringing
RFID data closer to the Web creates opportunities for new
applications. Just as tech-savvy users create Web 2.0 mashups
by integrating several Websites to create new applications,
they could re-use RFID events to create ad-hoc, innovative
applications.

Furthremore, RESTful services can be directly accessed,
tested, bookmarked, exchanged from the browser, a tool that
is ubiquitously available and understood (at least superficially)
by a vast number of people [6]. Finally, REST is known to
be more light-weight [4] than WS-* services and thus more
adapted to the vast majority of resource-constrained devices
which support it through simple HTTP client libraries or
higher-level REST client libraries.

In this paper we present the architecture and implementation
of this additional RESTful API as a pluggable software
component that can be deployed on top of any standard
implementation of the EPCIS without obfuscating the original
EPCIS WS-* interface.

Moreover, we want to illustrate how this paradigm shift
unveils a broader range of applications using EPCIS data.
Thus, our second contribution is the EPC Mashup Dashboard.
This Web mashup platform allows exploring EPC related data
and gathering timely information about tagged objects from
several Web services such as Twitter, Wikipedia or Google
Maps. Product or supply chain manager can use this tool as a
business intelligence platform, helping them to better under-
stand and visualize the supply chain. Likewise, customers can
better understand and visualize where the goods came from,
what they really are, what other people think about them, etc.

Finally, we evaluate the performance of the system. We look
at the overhead created by the RESTful module and show that
is it minimal.

Before looking at the architecture of the RESTful EPCIS,
we briefly introduce the idea of the EPC Network as well as
the basic concepts behind RESTful Web Services.

A. EPC Network and EPCIS

The EPC Network2 is a set of standards established by
industrial key players towards a uniform platform for tracking
and discovering RFID tagged objects and goods. Fifteen stan-
dards are currently composing the EPC Network addressing
every step required from encoding data on RFID tags to
reading them and sharing their traces. We will focus on two
of them as those are the most relevant in the context of this
paper.

The first standard is the EPC Tag Data Standard (TDS).
It defines what an EPC number is and how it is encoded
on the tags themselves. An EPC is a world wide unique

1http://langpop.com
2http://epcglobalinc.org/standards/architecture

number. Rather than identifying a product class, like most
barcode standards do, it can be used to identify the instance
of a product. The TDS specifies eight encoding schemes for
EPC tags. They basically contain three types of information:
the manufacturer, the product class and a serial number.
As an example in the tag (represented in its URI form):
urn:epc:id:gid:2808.64085.88828, 2808 is the manufacturer
ID, 64085 represents the type of product and 88828 an
instance of the product.

One of the goals of the EPC Network is to allow sharing
observed EPC traces. Thus, the network specifies a standard-
ized server-side EPCIS, in charge of managing and offering
access to traces of EPCs events. Whenever a tag is read it
goes through a filtering process and is eventually stored in an
EPCIS together with contextual data. In particular, these data
deliver information about:

• The “what”: what tagged products (EPCs) were read.
• The “when”: at what time the products were read.
• The “where”: where the products were read, in terms of

Business Location (e.g., “Floor B”).
• The “who”: what readers (Read Point) recorded this trace.
• The “which”: what was the business context (Business

Step) recording the trace (e.g., “Shipping”).
The goal of the EPCIS is to store these data to allow creating

a global network where participants can gain a shared view
of these EPC traces. As such, the EPCIS deals with historical
data, allowing, for example, participants in a supply chain to
share the business data produced by their EPC-tagged objects.

Technically speaking, a standard EPCIS is an application
that offers three core features to client applications:

1) First it offers a way to capture, i.e., persist, EPC events.
2) Then, it offers an interface to query for EPC events.
3) Finally, it allows to subscribe to queries so that client

applications can be informed whenever the result of a
query changes.

There exist several concrete implementations of EPCISs on
the market. Most of them are delivered by big software vendors
such as IBM or SAP. However, the Fosstrak [1] project offers
a comprehensive, Java-based, open-source implementation of
the EPCIS standard.

II. RELATED WORK

The great potential of the EPC network for researchers in the
ubiquitous computing field has led to a number of initiatives
trying to make it more accessible and open for prototyping.
The authors of [1] initiated the Fosstrak project, which is to
date the most comprehensive open-source implementation of
the EPC standards. The Fosstrak EPCIS is an open-source
implementation of a fully-featured EPCIS. This project is
suitable for prototyping [1] but it implements the standard WS-
* interface which closes the EPCIS to a number of interesting
use cases such as direct use from simple Web languages or
usage on resource constrained devices.

To overcome these limitations, researchers started to create
translation proxies between the EPCIS and their applications.



Fig. 1. Architecture of the RESTful EPCIS based on the Jersey RESTful
framework and deployed on top of the Fosstrak EPCIS.

In [7] the authors present an implementation of such a proxy.
The “Mobile IoT Toolkit” offers a Java servlet based solution
that allows to request some EPCIS data using URLs which
are then translated by a proxy into WS-* calls. This solution
is a step towards our goal as it enables resource-constrained
clients such as mobile phones to access some data without
the need for using WS-* libraries. Nevertheless, the proxy is
directly built on the core of Fosstrak and thus does not offer a
generic solution for all EPCIS compliant system. Furthermore,
the protocol used in this implementation as well as the data
format is proprietary which requires developers to learn it first.

In the “REST Binding” project3 a translation proxy is
implemented, similarly to [7] it proposes using URLs for
accessing the EPCIS data but these data are provided using
the XML format specified in the standard. While this is
an important improvement, the proposed protocol does not
respect the REST principles but implements what experts
sometimes call a REST-RPC style [8]. As the connectedness
and uniform interface properties do not held, an EPCIS using
this interface is not truly integrated to the Web [3], [8]. For
instance, it does not offer alternative representations (e.g.,
JSON) and resources can’t be browsed for.

III. RESTFUL EPCIS
The architectural principle that lies at the heart of the Web

is the Representational State Transfer (REST) as defined by
Roy Fielding [9]. It shares a similar goal with more well
known integration techniques such as WS-* Web services
(SOAP, WSDL, etc), which is to increase interoperability for a
looser coupling between the parts of distributed applications.
However, the goal of REST is to achieve this in a more
lightweight and simpler manner. In particular, REST uses the
Web as an application platform and fully leverages all the
features inherent to HTTP such as authentication, encryp-
tion, scalability and caching. REST brings services “into the
browser”: resources can be linked and bookmarked and the
results are visible with any Web browser, with no need to
generate complex source code out of WSDL files to be able
to interact with the service.

Traditionally, REST has been used to offer APIs on top of
Websites. More recently it has been used to integrate real-
world data such as data coming from sensors to the Web [10],

3http://autoidlabs.mit.edu/CS/content/OpenSource.aspx

[5]. This type of research is often clustered under the concept
of “Web of Things” [11]. The core concept of these projects
is to re-use and adapt Web standards and architectures to the
needs of the physical world in order to create a “universal
API for things”. Most of these projects build upon and adapt
the principles of Resource Oriented Architectures (ROAs) [8]
which is a service architecture using REST and the HTTP
protocol.

The goal of the project described in this paper is to create a
Resource Oriented Architecture for the EPCIS. In this section
we describe the core architecture supporting a large-scale
Web-enablement of the EPCIS features taking a top-down
approach. There are basically two ways to achieve this: either
by creating a RESTful interface directly as part of a particular
implementation of an EPCIS such as Fosstrak, or by creating
a software module that can be plugged on top of existing
EPCISs. Both architectures present advantages and drawbacks.
We decided to create an independent software module as this
allows the RESTful EPCIS to work on top of any standard
EPCIS implementation. The direct drawback of this approach
is that it creates a communication overhead. We will discuss
this issue in greater details in Section V.

The resulting architecture is shown in Figure 1. The REST-
ful EPCIS is a module which core is using the EPCIS WS-*
standard interface. It basically translates the incoming REST-
ful request into WS-* requests and takes care of reformatting
the results into several Web formats such as HTML and JSON.
As shown on the left of the picture, the typical clients of the
RESTful EPCIS are different from the business applications
traditionally connected to the EPCIS. The browser is the most
prevalent of these clients. It can either directly access the data
by means of URL calls or indirectly using scripted Web pages.

In the following sections we detail the architecture of the
RESTful EPCIS, focusing on the implementation of the REST
patterns and constraints.

A. RESTifying the Query Interface

As mentioned before, in the EPCIS standard, most features
are accessible through a WS-* interface. To specify the archi-
tecture of the RESTful EPCIS we systematically took these
WS-* features and applied the properties of Resource Oriented
Architectures.

1) Addressability and Connectedness: All the services of
a Resource Oriented Architecture are modeled with resources
which are components of an application worth being uniquely
addressed and linked to. Each resource gets a unique and
resolvable address in the form of a URL. Thus, the first step a
ROA design is to identify the resources an EPCIS should be
composed of and to make them addressable. Looking at the
EPCIS standard, we can extract a dozen resources. We focus
here on the four main types:

1) Locations (called “Business locations” in the EPCIS
standard): those are locations where events can occur,
e.g.,:“C Floor, Building B72”.

2) Readers (called “ReadPoints” in the standard): which are
RFID readers registered in the EPCIS. Just as Business



/location/{bizLocation}

/reader/{readPoints}

/time/{eventTime}

/event

/EPC /action /step

Fig. 2. Hierarchical representation of the browsable RESTful EPCIS
resources.

Locations, readers are usually represented as URIs:
e.g., urn:br:maxhavelaar:natal:shipyear:
incoming but can also be represented using free-form
strings, e.g.,: “Reader Store Checkout”

3) Events: which are observations of RFID tags, at a
Business Location by a specific reader at a particular
time.

4) EPCs: which are Electronic Product Codes identify-
ing products (e.g., urn:epc:id:sgtin:618018.
820712.2001), types of products (e.g., urn:
epc:id:sgtin:618018.820712.*) or companies
(e.g., urn:epc:id:sgtin:618018.*).

We first define a hierarchical clustering of resources based
on the following URI template:
location/{businessLocation}/reader/
{readPoint}/time/{eventTime}/event
More concretely, this means that the users begin by
accessing the Location resources. Accessing the URL
http://.../location/ with the GET method retrieves
a list of all Locations currently registered in the EPCIS. From
there, clients can navigate to a particular Location where they
will find a list of all Readers at this place. From the Readers
clients get access to Time resources which root is listing all
the Times at which Events occurred. By selecting a Time the
client finally accesses a list of Events.

Each event contains information like its type, event time,
Business Location, EPCs, etc. If a client is only interested
about one specific field of an Event, he can get this information
by adding the desired information name as sub-path of the
Event URI. For example EVENT_URI/epcs lists only all the
EPCs that were part of that Event. The resulting tree structure
is shown in Figure 2, and a sample Event in Figure 3.

Furthermore, in a ROA all resources should be discoverable
by browsing to facilitate the integration with the Web. Just as
you can browse for Web pages, we should be able to find RFID
tagged objects and their traces by browsing. Each representa-
tion of resources should contain links to relevant resources
such as parents, descendants or simply related resources. This
property of ROAs is known as “connectedness”.

To ensure the connectedness of the RESTful EPCIS, each
resource in the tree links to the resources below or to related
resources. The links allow users to browse completely through

the RESTful EPCIS where links act as the motor. Every
available action is deduced by the set of links included.
This way, people can directly explore the EPCIS from any
Web browser, simply by clicking on hyperlinks and without
requiring any prior knowledge of the EPCIS standard.

To ensure that the browsable EPCIS interface did not
become too complicated, we limited the number of available
resources and parameters. For more complex queries we
provide a second, hierarchical, interface for which we map
the EPCIS WS-* query interface to uniquely identifiable
URIs. Each query parameter can be encoded and combined as
a URI query parameter according to the following template
/eventquery/result?param1=value1&...
&paramN=valueN
Query parameters restrict the deduced result set of matching
RFID events. The RESTful EPCIS supports the building of
such URIs with the help of an HTML form. If for example
a product manager from Max Havelaar is interested in the
events that were produced in Palmas, the following URL lists
all events that occured at this business location:
http://.../eventquery/result?location=urn:
br:maxhavelaar:palmas:productionsite
To further limit possibly very long search results, the query
URI can be more specific. The manager might be interested
only about what happened on that production site on the 4th

of November 2009, which corresponds to the following URL:
http:/../eventquery/result?location=urn:
br:maxhavelaar:palmas:productionsite&time=
2009-11-04T00:00:00.000Z,2009-11-04T23:
59:59.000Z
The HTML representation of this resource is illustrated in
Figure 3.

To keep the full connectedness of the RESTful EPCIS,
both the browsable and the query interface are interlinked.
For example, the EPC urn:epc:id:sgtin:0057000.
123430.2025 included in the event of Figure 3, is also a
link to the query which asks the EPCIS for all events that
contain this EPC.

By implementing the addressability property we allow
greater interaction with EPCIS data on the Web. As an
example, since queries are now encapsulated in URLs, we
can simply bookmark them, exchange them in emails and
consume them from JavaScript applications. Furthermore, by
implementing the connectedness property we enable users to
discover the EPCIS content in a simple but yet powerful
manner.

2) Uniform Interface: Finally, in a ROA, the resources
and their services should be accessible using a standard
interface defining the mechanisms of interaction. The Web
implementation of REST uses HTTP for this purpose. We
particularly focus on two aspects of the uniform interface
here: the representation of resources, and the communication
of errors.

a) Multiple Representation Formats: A resource is rep-
resentation agnostic and hence should offer several representa-
tions (e.g., XML, HTML). HTTP provides a way for clients to



Fig. 3. HTML representation of an EPC event as rendered by a Web browser.
Every entry is also a link to the sub-resources.

retrieve the most adapted one. The RESTful EPCIS supports
multiple output formats to represent a resource. Each resource
first offers an HTML representation as shown in Figure 3
which is used by default for Web browser clients.

In addition to the HTML representation, each resource
has also an XML and a JSON (JavaScript Object Notation)
representation, which all contain the same information. The
XML representation complies with the EPCIS standard and
is intended to be used mainly for business integration. The
JSON representation can be directly translated to JavaScript
objects and is thus intended for mashups, mobile applications
or embedded computers.

The choice of what representation to use is left to clients
who can request it through the HTTP “content negotiation’
mechanism4. Since content negotiation is built into the uni-
form interface, clients and servers have agreed-upon ways to
exchange information about available resource representations,
and the negotiation allows clients and servers to choose the
representation that is the best fit for a given scenario.

b) Error Codes: The EPCIS standard defines a number
of exceptions that can occur while interacting with an EPCIS.
HTTP offers a standard and universal way of communicating
errors to clients by means of “status codes”. Thus, to enable
clients, especially machines to make use of the exceptions
defined by the EPCIS specification, the RESTful EPCIS maps
the exceptions to HTTP status codes. An exhaustive list
of error codes and their meanings for Resource Oriented
Architectures can be found in [8].

B. Web-Enabling the Subscriptions

As mentioned before, standard EPCISs also offers an inter-
face to subscribe to RFID events. Through a WS-* operation,
clients can send a query along with an endpoint (i.e., a URL)
and subscribe for updates. Every time the result of the query
changes, an XML packet containing the new results is sent to
the endpoint. While this mechanism is practical, it requires for
clients to run a server with a tailored Web applications that
listens to the endpoint and thus cannot be used by all users or
cannot be directly integrated to a Web browser. To improve

4http://tinyurl.com/y89n7uk

this, the RESTful EPCIS offers a RESTful subscription inter-
face and a Web feed of the updates.

For this we use Atom. The Atom Syndication Format is an
XML language specifying the syntax of Web feeds. Atom also
specifies a RESTful protocol for publishing feed entries, the
AtomPub protocol.

In the RESTful EPCIS, we propose an alternative interface
for subscribing to RFID events using Atom as shown on the
leftmost side of Figure 1. This way, end-users can formulate
queries by browsing the RESTful EPCIS and get updates
in the Atom format which most browsers can understand
and directly subscribe to. As an example a product manager
could create a feed in order to be automatically notified in
his browser or any feed reader whenever one of his products
is ready to be shipped from the warehouse. More concretely,
this would result in sending an HTTP PUT request to
http://.../eventquery/subscription?
reader=urn:ch:migros:stgallen:warehouse:
expedition&epc=urn:epc:id:sgtin:0057000.
123430.*
Or, for a human client, clicking on the “subscribe’ link
present at the top of each HTML representation of query
results. The product manager could then use the URI of the
feed in order to send it to his most important customers for
them to follow the goods progress as well. A simple but very
useful interaction which would require a dedicated client to
be developed and installed by each customer in the case of
the WS-* based EPCIS.

C. Implementation

As shown in Figure 1, the core of the RESTful EPCIS
is based on the Jersey5 framework. Jersey is a software
framework for building RESTful applications. It is especially
interesting since it complies with the JAX-RS6 (JSR 311)
standard for building RESTful Web services.

Jersey is responsible for managing the resources’ represen-
tations and dispatching HTTP requests to the right resource
depending on the request URL. When correctly dispatched
to the RESTful EPCIS Core, every request on the querying
or browsing interface is translated to a WS-* request on the
EPCIS. This makes the RESTful EPCIS entriely decoupled
from any particular implementation of an EPCIS. However,
for our tests we used the Fosstrak EPCIS.

For the subscription interface we used Apache Abdera,
which is an open-source implementation of an Atom-Pub
server. Thus, every time a client subscribes to a query, the
RESTful EPCIS checks whether this feed already exists by
checking the query parameters, in any order. If it is not the
case it creates a query on the WS-* EPCIS and specifies the
address of the newly created feed. As a consequence every
update of the query is directly POSTed to the feed resource
which creates a new entry using Abdera and stores it in an
embedded SQLite7 database.

5https://jersey.dev.java.net
6http://jsr311.dev.java.net
7http://www.sqlite.org



Jersey, Abdera and SQLite are packaged with the RESTful
EPCIS core in a WAR (Web Application Archive) that can be
deployed in any Java compliant Web or Application Server. We
tested it successfully on both Glassfish8 and Apache Tomcat9.

IV. THE EPC DASHBOARD MASHUP

To better illustrate the new type of applications the RESTful
EPCIS unveils we created the EPC Dashboard Mashup, an
innovative Web mashup, that helps product, supply chain and
store managers to have a live overview of their business at
a glance. It can further help consumers to better understand
where the goods are coming from and what other people think
about them. The EPC Dashboard is based on the concept of
widgets in which the event data are visualized in a relational,
spacial or temporal manner.

The EPC Dashboard consumes data from the RESTful
EPCIS. Usually these data are hard to interpret and integrate.
The dashboard makes it simple to browse and visualize the
EPC data. Furthermore, it integrates the data with multiple
sources on the Web such as Google Maps, Wikipedia, Twitter,
etc. To better understand the use of such a tool, let us first
introduce two use-cases before looking at the applications’
architecture.

A. Use Cases

Fig. 4. The Maps widget is following the route of the banana tagged with
the EPC urn:epc:id:sgtin:0057000.123430.2025.

Rachel, a customer, just bought Max Havelaar Bananas and
Lindt Chocolate from a retail store “M” in Switzerland. She
wants to know more about the Bananas. For that purpose,
she opens the EPC Dashboard in her preferred browser. She
activates the Product Description Widget and enters the EPC of
the article. The EPC Dashboard now shows her a description
of bananas and Max Havelaar extracted from Wikipedia.
Likewise, the Product Video Widget provides her with video
about planting of these bananas. She is further interested to
know about where this particular banana has grown. Rachel

8http://glassfish.org
9http://tomcat.apache.org

activates the Map Widget and she can see on the map of
Figure 4 where her banana originates from. In addition she
also sees the route that the banana has taken from its origin
to the M retail shop. She further prepares a Banana Split with
the chocolate she just bought and shares the recipe on Twitter
through the Product Buzz Widget.

Fig. 5. The Stock History widget allows for looking at the flows of goods
through the supply chain. Here the manager can see that all the available
Lindt chocolate has been transfered to the shop, leaving an empty stock.

In the M store in Zurich, Andy, the product manager
of chocolate products wants to check the recent inventory
levels of the Lindt Chocolate. He also browses to the EPC
Dashboard Mashup and opens the Stock History Widget with
the corresponding inventory RFID reader. According to Figure
5, he discovers that there had been an increase demand for
Lindt Chocolate and that the chocolate has almost entirely
been transfered from the stock to the shop. He directly orders
larger shipping contingents. He also subscribes to the feed
listing the arrival of Lindt products in the stock using the
entry gate reader. This way, a feed reader on his mobile phone
and in his favorite browser will inform him when the ordered
products have arrived. He is further interested in knowing why
the Lindt products are so popular recently. Andy activates the
Product Buzz Widget and sees the current Twitter messages
related to Lindt Chocolates as shown in Figure 6, including
Rachel’s recipe. He can use this information for marketing
analysis.

B. Mashup Architecture

The EPC Dashboard integrates several information sources.
This information is encapsulated in small windows called
widgets. The widgets combine services on the Web with
traces coming from the RESTful EPCIS. The EPC Dashboard
Mashup currently offers 12 widgets using different APIs and
services. As an example, the Map Widget is built using the
Google Maps Web API (see Figure 4), the Product Buzz
Widget uses the Twitter RESTful API (Figure 6) and the Stock
History Widget uses the Google Visualization API (Figure 5).

All widgets are connected to each other which means that
actions on a given one can propagate the selection to the other



Fig. 6. The Product Buzz Widget extracts live opinions and information
about particular products (here Lindt Chocolate) from Twitter.

widgets and changes their view accordingly. As such, widgets
listen to selections and can make selections. This interaction is
implemented using the observer pattern [12] where consumers
(i.e., the widgets) register to asynchronous updates of the
currently selected Locations, Readers, Time or EPCs. This
architecture allows the creation and integration of other Web
widgets with very little effort. The EPC Dashboard itself is a
JavaScript application built using the Google Web Toolkit10, a
framework to develop rich Web clients. This has been possible
because having a RESTful Interface upon the EPCIS which
eases the development of mashups.

V. EVALUATION
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Fig. 7. Average RTT and processing time when using the WS-* interface and
the REST interface for three types of requests each run 100 times. Standard
deviations are as follow: 49, 77, 39, 11, 38, 12 ms.

As mentioned before, the RESTful EPCIS is an add-on to
the standard EPCIS where each REST request is eventually
translated to a (local) WS-* request. This results in an over-
head that we evaluate here.

10http://code.google.com/intl/en/webtoolkit

The experimental setup is composed of a Linux Ubuntu
Intel dual-core PC 2.4 GHz with 2 GB of ram. We deploy
Fosstrak and the RESTful EPCIs on the same instance of
Apache Tomcat with a heapsize of 512 MB. We evaluate
three types of queries all returning the standard EPCIS XML
representation.

The first query (Q1, “Many Results” in Figure 7) requests
all events recorded by the EPC, i.e., a small request returning
a document of 30 KB with 22 events each composed of
about 10 EPCs. In the second test (Q2, “Few Results”), is a
query returning a document of 2.2 KB with only two results.
The last test (Q3, “Complex Query”) is a query containing
a lot of parameters and returning 10 events. We test each
of these queries asking for the standard XML representation.
All queries are repeated 100 times from a client located on a
machine one hop away from the server with a Gigabit ethernet
connectivity. The client application is programmed in Java and
uses a standard JAX-WS client for the WS-* calls and the
standard Apache HTTP Client and DOM (Document Object
Model) library for the REST calls.

As shown on Figure 7, for Q1 the RESTful EPCIS has
an average overhead of 30 ms due to the computational
power required to translate the requests from REST to WS-
* and vice-versa. For Q2 and Q3 the REST requests are
executed slightly faster (about 20 ms) than the WS-*. This is
explained by three factors. First, since there are fewer results,
the local WS-* request from the RESTful EPCIS is executed
faster. Then, REST packets are slightly smaller as there is
no SOAP envelope [4]. Finally, unmarshalling WS-* packets
(using JAXB) on the client-side takes significantly longer than
for REST packets with DOM. For Q3, similar results are
observed. Overall, we can observe that the RESTful EPCIS
creates a limited overhead of about 10% which is compensated
in most cases by the relatively longer processing times of
WS-* replies. This becomes a particularly important point
when considering devices with limited capabilities such as
mobile phones or sensor nodes as well as for client-side (e.g.,
JavaScript) web applications.

It is worth mentioning that the WS-* protocol can be opti-
mized in several ways to better perform, for example by com-
pressing the SOAP packets and optimizing JAXB. However as
the content of HTTP packets can also be compressed this is
unlikely to drastically change the results. Furthermore, because
they encapsulate requests in HTTP POST, WS-* services
cannot be cached on the Web using standard mechanisms. For
the RESTful EPCIS however, all the queries are formulated
as HTTP GET requests and fully contained in the request
URL. This allows to directly leverage from standard Web
caching mechanisms [9] which would importantly reduce the
response times [4]. However a discussion on caching strategies
is outside the scope of this article and left for future work.

VI. CONCLUSION AND FUTURE WORK

In this paper we propose to extend the existing EPCIS
architecture with a RESTful module. This literally bring RFID
traces to the Web, every tagged product, reader, location,



etc. become fully addressable resources. Using the HTTP
protocol tagged objects can be directly searched for, indexed,
bookmarked, exchanged and feeds can be created by end-users.
Furthermore, this enables exploring the EPCIS data simply by
browsing them, which helps making sense of the data. We
argue that this adds more flexibility to the types of applications
that can be built on top of an EPCIS and opens the EPCIS API
for fast-prototyping to the very large and active community of
Web and mobile developers. We illustrate this by means of
a JavaScript Mashup: the EPC Dashboard which is an easily
extensible business intelligence interface for managers that re-
uses a number of Web APIs.

We further show that this added flexibility does not nec-
essarily have to hinder the overall performances, deploying
the RESTful EPCIS on the same machine as the WS-* EPCIS
leads to satisfactory results while preserving the EPCIS-vendor
independence.

However, there are still a number of challenges to tackle
towards a global network of Web-enabled EPCIS. First of all,
although global sharing is the vision of the EPC Network,
very few real-world companies are willing to share their
data beyond their own boundaries [13]. Thus, for a realistic
global deployment there is a need for a more comprehensive
and flexible sharing framework that allows a thinner-grained
selection of the partners the data are shared with. Fortunately
enough, this topic has been identified as an important issue
and is currently being actively researched on and a standard
at least partially addressing this issue is currently written by
EPC Global11. This new standard, currently called “Discovery
Services” is also expected to solve another important problem
to enable global sharing: the need for a discovery service that
allows looking for product traces accross several instances of
EPCISs.

Since open-APIs for smart things such as the RESTful
EPCIS emphasize the need for trust, access control and fine-
grained sharing mechanisms, several Web of Things related
projects move forward tackling these goals and the RESTful
EPCIS could benefit from this research. In [14] the authors
propose an architecture for sharing and controlling access
to REST-enabled smart things based on Web-authentication
through social networks. Such an architecture could also be
applied to the RESTful EPCIS. This would enable companies
to share their data through Web APIs only to their trusted
networks of partners and customers. Nevertheless, while the
RESTful EPCIS gains value as the EPC network grows, the
presented solution can also be used on a local basis, connected
to a limited number of EPCISs, for instance within a single
company.

Contacts with the Fosstrak development team have led to
positive feedback and we will release the RESTful EPCIS
software and specification as an open-source module of the
Fosstrak project, under the name of epcis-restadapter12. This
will provide us with very valuable information on how to im-

11http://www.epcglobalinc.org/standards/discovery
12http://www.webofthings.com/rfid

prove the software and a better overview of the performances
and stability in the long run. It is also a good chance to
create greater community of developers using the EPCIS and
its RESTful API for their future Internet/Web of Things or
Mobile prototypes and products.
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