
11

A Template-Based Semi-Automatic Web Services
Composition Framework
Case Study of Smart Home Management

Abdaladhem Albreshne
PhD Student

Computer Science Department
University of Fribourg, Switzerland

abdaladhem.albreshne@unifr.ch

Jacques Pasquier
PhD Supervisor

Computer Science Department
University of Fribourg, Switzerland

jacques.pasquier@unifr.ch

Abstract— Recently, a range of industry languages and
frameworks solutions have been realized to enable web services
composition. Among these, we find the Business Process
Execution Language for Web Services (BPEL4WS) [1] and the
Semantic Markup Language for Web Services (OWL-S) [2]. But
there is still a need to propose a system which offers more
flexibility to compose and invoke services and which reinforces
the human-computer collaboration paradigm. This work aims to
explore the challenges of the current web services composition
solutions through a case study realized in the field of smart
homes environment and to propose a new approach based on
generic processes and semantic description in order to discover,
compose and invoke services in a changing environment. In other
words, it provides an assistance mechanism for the semi-
automatic composition of services where the composition is
gradually generated by using a declarative generic template
process.

Keywords- Web Services; Web Services Composition; Ontology;
Semantic Web; BPEL4WS; OWL-S; WSDL; Smart Homes

I. INTRODUCTION

Recently, a range of industry languages and frameworks
solutions have been realized to enable web services
composition. Among these, the Business Process Execution
Language for Web Services (BPEL4WS) [1] is probably the
most prominent. It provides a language for web services
composition where the flow of processes and the bindings
between services are known before the execution.
Unfortunately, BPEL4WS does not fully support dynamic
reconfiguration of a process, where for example a given service
must be replaced by another one with the same functionalities,
but a different binding type or a different set of methods
signatures. This prevents the user from selecting another
service afterwards, when many different services are available
to provide similar functional components.

Semantic web services composition constitutes another
aspect on which the Web community focuses. In order to be
able to describe the services, semantic web languages like the
Ontology Language for Web Services (OWL-S) [2], and the
Web Services Modeling Ontology (WSMO) [3] have been

proposed. They introduce an additional level of abstraction.
Instead of a syntactic description of a web service, a declarative
description of the service’s functionalities is given. Semantic
services description protects the programmer from the
complexity of the implementation and thus simplifies the
completion of complex tasks using these services. Semantic
could also add machine interpretable information to services’
content in order to provide intelligent access to distributed web
services. We compare these two approaches and discuss their
solutions and limitations regarding the problems of modeling,
composing and executing Web services. Additionally, we
discuss a new approach to overcome these limitations.

II. MOTIVATING EXAMPLE

A. Home Energy Saving Scenario

In this section, we explore the challenges of the current web
services composition through a case study realized in the field
of home environment. A smart home is a home equipped with
diverse networked sensors such as temperature and movement
detectors and devices such as alarms, heating systems, air-
conditioners, doors/windows/lights controllers, etc. The
interested reader is referred to [4] [5] [6] for a good
introduction and a thorough discussion in smart homes
themselves, for which an in-depth presentation is out of the
scope of this paper.

Jane controls her home environment in a way that allows
her to save energy and to adapt her environment to her habits
and living conditions. Jane knows that a well-planned home
energy control system can reduce the total energy consumption
of the home. Now, let us imagine that Jane’s house is equipped
with the following web enabled devices and sensors:

 Light switches - wall-mounted light switches typically
using WSN (Wireless Sensor Network) control
technology.

 Thermostats - heating/cooling can be adjusted
according to the program (for example, to adjust to
comfort settings upon arrival at home).

12

 Door/window controllers - used to open and close
doors and windows.

 Temperature sensors - used to measure the internal and
external temperature.

 Curtains controllers - used to open and close curtains.

 Movement detection sensor - used to detect objects’
movements.

To understand how these services can be orchestrated to
save energy, we define a simplified business process for a
home energy saving scenario (see Fig. 1). The process invokes
sensor services asynchronously in order to wait for the
incoming events. We assume that sensors have the capability to
provide asynchronous service invocations. Each time the
process receives an event, it starts to execute the necessary
tasks in order to save energy depending on the new changing
context. Then, the process is waiting for a new event to occur.

Figure 1. Home Energy Saving Scenario

B. Web Services Composition Requirements and Challenges

This scheme demonstrates the features necessary for a
home energy saving process which are as follows:

 The process should offer structured activities (while,
if, pick, flow, etc.), which allow for creating complex
home control scenarios.

 Since the process is designed to control services and
devices which are not known at design time, there is a
need for a mechanism that allows for discovering
services and for involving them into the process.

 Providing semantic description for the involved
services helps users to configure the environments. In
the home energy saving context, the system needs to
understand and interpret the environment in order to
take decisions about which services can be involved.
Furthermore, it must enable interacting with the user in
order to configure the process. Semantic description of
involved services facilitates the service discovery and
configuration by giving meaning to services
parameters, inputs, outputs, operation names and non-
functional attributes, such as service name, service type
or service location.

 Processes should support events messages (an event
represents the occurrence of something interesting).
Event handlers allow processes to respond to the
expiration of timers or to events by executing a
specified set of operations independently from the rest
of the process. Event handlers help a process to react to
changing environments. In the home scenario,
movement detection or a temperature change can
happen at any moment. Providing an event handler
mechanism makes the process more aware of the
context.

 The final user should be capable of interacting with the
system to reconfigure the process according to his
needs. For example, in a home energy saving scenario,
the system needs to know from the user what the
interior comfort home temperature is when he is at
home or what is the preferred temperature for each air
conditioned room.

 The composition implementation should be hidden
from the user. This might imply that an abstract
generic process template is defined to achieve the
composition goal. Raising the level of abstraction of
composing web services facilitates normal user’s
interaction with the system.

 Since there can be many instances of the same process
running at the same time, message correlation
elements or a similar mechanism need to provide a way
to decide which process instance a specific message is
sent for.

 Finally, Asynchronous invocations are extremely
useful for home control environments in which a
process, such as an energy saving one, must react to
many events over a long period of time.

III. FIRST SOLUTION: WSDL+BPEL4WS

The role of BPEL4WS is to define a new web service by
composing a set of existing services through a process-
integration type mechanism with control language constructs. It
interacts with external partner services through a Web Service
Description Language Interface (WSDL) [7]. A BPEL4WS

13

process defines the order in which involved Web services are
composed. BPEL4WS allows for describing conditional
activities [1] [8]. An invocation of a Web service can for
example rely on the result of another web service’s invocation.
With BPEL4WS, it is possible to create loops, declare
variables, copy and assign values as well as to use fault
handlers. Additionally, BPEL4WS offers the possibility of
asynchronous invocation and supports event messages.

A. BPEL4WS Characteristics

In the following, we briefly describe the main elements of a
BPEL process as defined in [1]:

1) Partner Links Elements define the interaction of
participating services with the process.

2) Structured Activities are provided by the <sequence>,
the <while>, the <if> ,the <flow> (for executing activities in
parallel) and the <pick> constructs.

3) Primitive Activities are provided by the <invoke>, the
<receive>, the <reply>, the <assign>, and <throw> constructs.

4) Variable Elements allow for declaring variables in
order to receive, manipulate, and send data.

5) Fault Handlers determine the activity which the
process has to perform when an error occurs.

6) Correlation Sets enable several processes to interact in
stateful conversations.

7) Event Handlers allow the processes to respond to
events.

B. Home Energy Saving Scenario Implementation Using
BPEL4WS

Let us solve the services composition problem of the
energy saving scenario using the BPEL4WS solution. Fig. 2
shows an extract of the code of the process. Since the
BPEL4WS process communicates with other Web services, it
depends on the WSDL descriptions of the Web services
invoked by the process. In the following, we briefly comment
the code of Fig. 2:

 Namespaces: lines 1-20 define the target namespace to
access the partners’ WSDL description files.

 Import: lines 21-37 import the WSDL files for all
service providers and the process. Services providers
must be known a priori.

 Partner Links: lines 38-54 specify the partner links
which define different partners that interact with the
BPEL process. Each partner link is related to a specific
partnerLinkType that characterizes it.

 Variables: lines 55-82 declare the variables which are
used to store reformat and transform messages (e.g.
temperature, movement detection state, time).

 Correlation Sets: lines 83-86 declare the correlations
sets which enable partners to interact with the process
in stateful conversations. Because there can be many
instances of the process running at the same time,
message correlation elements provide a way to decide
which process instance a specific message is sent for.

 Process logic definition: lines 87-259 specify the
process main body which defines the order in which
the partner Web services are invoked. The work flow
structure is divided into two groups: events and
services. An event represents the occurrence of a
sensor while a service represents the interaction
process in response to that event. The first group
consists of a pick activity which executes only the first
event handler fired. BPEL provides an <onMessage>
element for event declaration. When an event is fired,
the process then executes the second group of
structures through different scenarios depending on the
events’ received messages in order to save home
energy. Structured and basic activities (invoke, flow, if,
while, etc.), are implemented in order to define a
complex scenario. Finally, the process is waiting
through a while loop statement for a new event to
occur.

Figure 2. Code Extract of the Home Energy Saving BPEL Process

IV. SECOND SOLUTION: SEMANTIC WEB (OWL-S)

Most web services provide isolated functions and lack a
real capacity to automatically collaborate among each other. To
help solving this problem, there is a necessity to use semantic
technology. Semantic and ontology facilitate interpreting web
services by providing semantic awareness and services filtering
capabilities.

14

Semantic Web Services aim to improve automatic services
composition, service discovery and service invocation. In
consequence, this assures interoperability and collaboration
between different business processes and service partners. A
number of solutions have been proposed by the software
industry [9]. One of them is OWL-S. It is a framework based
on the W3C OWL Web Ontology Language, proposed to help
service requestors to search, discover, invoke, compose and
monitor Web services. OWL-S allows for describing Web
services’ features as well as for providing construct activities
such as Sequence, Split, Split + Join, If-Then-Else, Repeat-
While, and Repeat-Until. In contrast to BPEL4WS, OWL-S
does not provide asynchronous invocation, fault and event
handlers [8].

A. OWL-S Characteristics

OWL-S consists of three Models: Service Profile, Process
Model and Grounding, used to represent different aspects of a
service. The Service Profile Model describes the service
features to other services or agents that want to use it. It defines
the service with regards to its inputs, outputs, effects and
precondition parameters. The Process Model is the essential
model of the OWL-S architecture. It specifies how the process
is used. Services can be composed using a combination of
atomic, simple or composite services. Additionally, the Process
model defines the order in which involved Web services are
composed, either in sequence or in parallel. It allows for
describing conditional activities. With the Process Model, it is
possible to create loops and declare variables. Finally, the
grounding Model defines how to interact with the service by
providing the necessary concrete details related to the transport
protocol and message format [2] [10]. In the following, we
briefly describe the main elements of the OWL-S process as
defined in [2]:

1) The Service Profile describes a service as a function of
three basic types of information:

a) the provider information, which consists mainly of
the <serviceName> and the <textDescription> (a brief
description of the service);

b) the functional description, which consists of the
<hasInput>, <hasOutput>, <hasPrecondition> and
<hasResult> constructs;

c) the properties description, which allows for the
description of a host of properties that are used to describe
features of the service for example its category.

2) The Process Model consists of the <composedOf>, the
<Perform> (for invoking other processes), the <Sequence>,
the <Split> (for parallel processing) and the <If-Then-Else>
constructs.

3) The Grounding model refers to specific elements within
the WSDL specification by using a set of constructs such as
the <wsdlDocument>, wsdlOperation>, <wsdlInput>, etc.

B. Home Energy Saving Scenario Implementation Using
OWL-S

Let us now try to solve the service composition problem of
the energy saving plan from a Semantic Web perspective. Fig.

3 shows an extract of the code of the process. It is briefly
commented below:

 Service Profile: lines 20-64 define the service profile
information as mentioned in the previous section.

 Process Model: Lines 64-237 specify the process main
body which defines the order in which the partner Web
services are invoked. The work flow structure starts
gathering temperature and movement detection data.
Then the process is executed through different
scenarios depending on the received data in order to
save energy. Finally, the process repeats the previous
steps through a while loop statement.

 Grounding: lines 237-278 define the grounding model
of the process which maps the elements of the WSDL
and OWL-S documents. It provides necessary concrete
details related to the transport protocol and messages
format.

Figure 3. Code Extract of the Home Energy Saving OWL-S Process

V. SOLUTIONS COMPARISON

BPEL4WS and OWL-S provide different solutions to
compose web services. However, many concepts that are
implemented in these two approaches are similar. Below is a
high level summary comparing the features and characteristics
of the two approaches:

15

 Primitive and Structured Activities: Both OWL-S and
BPEL4WS allow for invoking, receiving messages or
replying to external web services and partners.
Structured activities are provided by BPEL4WS as
well as OWL-S and they allow for executing services
in sequence or in parallel in order to build complex
scenarios. The While (BPEL4WS) and the Repeat-
While (OWL-S) structures have similar functionalities.
OWL-S offers Split+Join and BPEL4WS uses Flow
activity for concurrency invocation [10].

 Service Discovery: The energy saving scenario shows
the necessity of a mechanism which allows for
discovering involved services. OWL-S can help to find
services that match with a service request based on
semantic service description [11]. BPEL4WS just
enables composing explicit web services into
composite processes without providing capabilities of
semantic service discovery.

 Semantic Description: Home devices are isolated and
provide concrete functions but they lack a real capacity
to describe themselves. OWL-S describes the features
of the service through its service profile model. The
latter contains information such as the service’s name,
inputs, outputs, enterprise contacts and category. By
describing a service through its semantic features, the
OWL-S approach helps web services discovery and
composition. Conversely, BPEL4WS does not allow
that. There are, however some propositions for
increasing the semantic features of BPEL4WS [12].

 Event Handler: Events are essential to inform the
process about any new change which may occur. The
event handler is a BPEL4WS characteristic. OWL-S
does not have yet a concept of an event handler. Thus,
in our home saving scenario, we had to go around this
limitation by using loops for checking permanently the
temperature sensors and movement detection services.

 User Involvement: In the home energy saving scenario,
it is a challenging problem to search and select the
concrete services and involve users to adjust them in
order to achieve their desired goals. Neither BPEL nor
OWL-S does directly support human involvement
since the user must tell the system what to do during
the development of the composition process (i.e.
before its execution).

 Abstract Process Definition: The end-users expect a
high-level of abstraction in a service composition
process. They are not able to use very technical and
complex tools. Therefore, the composition
implementation should be hidden from them. This
implies that an abstract process should be defined to
perform the composition goal. This can be achieved
using semantic service description and defining generic
process templates which contain the involved services
as well as the interaction between the user and the
system in order to adapt the process to the user’s needs.
BPEL4WS only addresses the syntactical aspects of

web services, which prevent involving semantic web
service description in the process [13].

 Message Correlation: Message correlation is the BPEL
feature which enables several processes to interact in
stateful conversations. OWL-S does not provide such a
feature.

 Asynchronous Invocation: OWL-S does not support
asynchronous web services invocation and process
persistence. This limits its ability to manage both
atomic transactions as well as long-running business
transactions. Conversely, BPEL4WS supports both
asynchronous and synchronous invocation
mechanisms.

 Dynamic Composition: Composition of web services
using languages like BPEL or OWL-S is normally
generated off-line. Modifying any part of a process
may result in the reconfiguration and redeployment of
the whole process. Currently, only BPEL supports
(partially) fail-over and dynamical redesign [9] [14].

VI. PROPOSING A COMBINED APPROACH

To have a complete and efficient system for web services
composition, there is a need to propose a semantic-based
framework which offers flexibility to integrate services and
reinforces the human-computer collaboration paradigm. We
propose a template based composition technique to facilitate
the discovery and the semi-automatic composition of web
services. It is not up to the user to tell the system what to do but
rather to establish and negotiate about goals and how to
accomplish them. When possible, the system must involve the
user in selecting the appropriate services and actions, which
both respect the context (i.e. the available discovered services)
and the initial objectives (i.e. the process generic template).
This demands understanding the capabilities of those services
as well as the conditions and requirements which must be met
to accomplish the composition goal.

Figure 4. Semi-automatic Service Composition Framework

Fig. 4 gives an overview of our approach for semi-
automatic services composition. The user can choose a
recommended generic process template from the process

16

repository. The generic process template acts as a configurable
module. It defines generic participating activities and the
control flow. We are still investigating the best way (language)
to describe such templates. Indeed, this question will be one of
our major research focuses. It is possible that arbitration will be
required between being totally open to all domains or being
more adapted to specific tasks (e.g. smart homes).

The Process Generator component captures the generic
activities’ characteristics in the process template and sends
them to the Service Discovery Engine as services queries. Web
services are usually published in registries (Discovery Engine).
Consumers can request available services by a keyword-based
search engine (e.g. expedia.com, google.com) or by looking it
up in a web services registry (e.g. UDDI – Universal
Description, Discovery and Integration Registry) [15].
Improving service discovery involves adding a semantic
research mechanism [12]. The requestor can provide the inputs
and outputs of the required service. Then the discovery process
finds any service which matches these semantic requirements.
In our framework, service discovery is based on the semantic
description of services and of the domain ontology.

After the services have been discovered, the user interacts
with the system in order to make the appropriate choices.
When a service is put into the composition, the information
about inputs, outputs, preconditions and effects (IOPE) is
checked automatically to assure that all needed input data are
provided; that all operations can be executed; and that all links
are established. The process can now be converted into an
executable process by the Process Generator. Finally, the
Process Execution Engine executes the generated process using
an execution language. We are still investigating the best
solution for such an engine, but it will most probably be similar
to BPEL4WS with the addition of some OWL-S features.

To validate our approach, we intend to develop such a
prototypical semi-automatic composition framework in the
domain of smart homes. We also intend to base the framework
on pluggable generic components (the darkened elements in
Fig. 4), which will allow to change its domain (e.g. hospital,
university environments).

VII. RELATED WORK

Manual composition approach is generally used in the
situation where the requestor has a well-defined process model.
Processes are defined using a process execution language like
BPEL or OWL-S. The problem with such an approach is that it
demands too much knowledge on the part of the user and it
becomes more and more difficult with the explosion of web
services resources. Automatic composition (without human
involvement) is used when the requestor has no process model
but has a set of constraints and preferences. Several approaches
for automatic service composition have been introduced,
including solutions based on Hierarchical Task Network
(HTN) [16], Goal Description Languages for Services
Composition [17], Artificial Intelligence planning [18] or Rule-
Based planning [19]. However, automatic composition is still
viewed as a task of high complexity because of the rapid
proliferation of available services to choose from and, the
heterogeneity of the data formats they offer. Finally, the

composition result risks to differ from the user’s original goal.
The third approach (closed to our views) is called semi-
automatic or interactive composition. In this kind of
composition, the system usually helps users to find, filter, and
integrate automatically the desired services by matching the
users’ requests with the available services. Moreover, it enables
end-users to intervene continuously during the composition
process. Some efforts like OWL-S, METEOR-S [27] used
semantic description of web services to aide in improving
discovery and composition processes.

 [11] [12] [20] [21] [26] provide mechanisms for semantic
annotation of existing services, services discovery and arbitrary
service composition. Others approaches have emerged to
support specifically end-users in the service composition
process. These approaches for example [22] [23] [24] [25]
focus mainly on using techniques for involving users to
compose services or inform the user about issues to be
addressed in the current workflow. These approaches are
applicable for some type of implementation. We argue that
some problems still exist in current semantic services
composition frameworks. In particular, there is a lack of a good
generic process template language which involves generic
services and user preferences to reach a specific goal.

CONCLUSION

We have explored a few emerging concepts in the area of
web services composition, business process and workflow. A
set of open, standards-based technologies like BPEL4WS and
OWL-S are available for designing and executing interactions
between numerous web services. Our home energy saving
scenario demonstrates several challenges, which need to be
addressed in order to build a flexible and generic web services
composition framework. One problem is certainly the
definition of a simple, yet flexible, language in order to
describe generic process templates for various rich scenarios
given specific domains ontologies, (e.g. energy saving scenario
or maximum security scenario for a smart homes domain).
Another interesting challenge consists in the creation of a
process generator engine able to appropriately transform a
generic scenario into an executable one with the help of both
the end-user and of a powerful semantic discovery mechanism.
Finally, the selection (or creation) of an execution engine,
which will be able to react to a changing context, represents
another non trivial task.

REFERENCES
[1] OASIS, “Web services business process execution language,”

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html,
[Accessed 05 20, 2011]

[2] W3C, “OWL-S:semantic markup for web services”,
http://www.w3.org/Submission/OWL-S/, [Accessed 05 15, 2011].

[3] W3C, “Web service modeling ontology (WSMO),”
http://www.w3.org/Submission/WSMO/, [Accessed 05 22, 2011].

[4] AMIGO, “Ambient Intelligent for the Networked Home Environment,”
http://www.hitech-projects.com/euprojects/amigo [Accessed 05 31,
2010].

[5] André Botaro, Anne Gérodolle, Philippe Lalanda, “Pervasive Service
Composition in the Home Network,” proceedings of 2007 21th
International Conference on Advanced Nteworking and Applications.

17

[6] Thinagaran Perumal, A.R.Ramli, Chui New Leong, “Design and
Implementation of SOAP-Based Residential Management for Smart
Home Systems,” IEEE Transactions on Consumer Electronics, 2008, pp.
453-559.

[7] W3C, “Web services description language (WSDL) 1.1. 2001.
http://www.w3.org/TR/wsdl [Accessed 05 25, 2011].

[8] Milanvoic, Nikola et Malek, Miroslaw, “Current solutions for web
services composition,” IEEE Computer Society, 2004.

[9] I. Smeureanu, A. Diosteanu, “Knowlegde Dynamics in semantic web
services composition for supply chain management applications,”
Journal of Applied Quantitative Methods, 2005.

[10] D. Barreiro Claro, P. Albers. “Approaches of web services composition
comparison between BPEL4WS and OWL-S,” Miami-USA : In
Proceedings of ICEIS’05, 2005, pp. 208-213.

[11] B. Fries, M. Klusch and P. Kapahnke, “Hybrid OWL-S web service
matchmaker” 2008, http://www-ags.dfki.uni-sb.de/~klusch/owls-
mx/index.html [Accessed 03 20, 2010].

[12] D. Karastoyanova, T. van Lessen,F. Leymann, J. Nitzsche and D.
Wutke, “WS-BPEL Extension for semantic web services
(BPEL4SWS),” Stuttgart, Germany : Institut für Architektur von
Anwendungssystemen, 2008.

[13] P. Martinek, B. Szikora, “Semantic Execution of BPEL Processes,”
Advances in Information Systems Development, 2008, pp. 361-367.

[14] J. Dong, Y. Sun, S. Yang & K. Zhang, “Dynamic web service
composition based on OWL-S,” in China Press co-published with
Springer, Science in China Series F: Information Sciences, 2006, vol.49,
No.6, pp. 843-863.

[15] UDD, “UDDI Committee Specification,” http://uddi.org/ [Accessed 31
05, 2011].

[16] Incheon, Paik and Daisuke, Maruyama, “Automatic Web Services
Composition Using Combining HTN and CSP,” Aizu-Wakamatsu City,
Fukushima, Japan : 7th IEEE International Conference on Computer and
Information Technology (CIT 2007), 2007. pp. 206-211.

[17] Manshan Lin, Heqing Guo, Jianfei Yin, “Goal Description Language for
Semantic Web Service Automatic Composition,” Washington, USA :

Proceedings of the The 2005 IEEE, Symposium on Applications and the
Internet, 2005. pp. 190 – 196

[18] Luciano A. Digiampietri, José J. Pérez-Alcàzar, Claudia Bauzer
Medeiros, “AI Planning in Web Services Composition: a review of
current approaches and a new solution,” Anais do XXVII Congresso da
SBC, ENIA VI Encontro Nacional de Inteligenia Artificial , Rio de
Janeiro, 2007. pp. 983 - 992

[19] Hui, Li, Haiyang, Wang and Lizhen, Cui, “Automatic Composition of
Web Services Based on Rules and Meta-Services,” Melbourne, Australia
:Proceedings of 11th International Conference on CSCW in Design,
2007. pp. 496-500.

[20] H. Janqiang, “SWSCF:_ A semantic-based web service composition
framwork”, Journal of networks, vol. 4, June 2009, pp. 290-297.

[21] S. Bleul, T. Weise, and M. Kirchhoff, “Semantic web service
composition for service-oriented architectures,” Washington, USA :
Proceedings of the 2008 10th IEEE Conference on E-Commerce
Technology, 2008, pp. 355-358.

[22] E. Toch, I. Reinhartz-Berger, A. Gal and D. Dori, “Generating and
optimizing graphical user interfaces for semantic service compositions,”
Barcelona, Spain : Springer, 2008, vol 5231, pp. 528–529.

[23] P. Xiaoming, F. Qiquing, H. Yahui, Z. Bingijan, “A user requiremnts
oriented dynamic web serivce composition framwork,” Internaional
Form on Information Technology and Applications IEEE, 2009, pp.
173-177.

[24] E. Sirin, J. Hendler and B. Parsia, “Semi-automatic composition of web
services using semantic descritpitons,” Angers, France : workshop in
conjunction with ICEIS, 2003.

[25] OASIS, “WS-BPEL Extension for People (BPEL4People) Specification
Version 1.1,2009” http://docs.oasis-open.org/bpel4people/bpel4people-
1.1-spec-cd-06.pdf, [Accessed 05 31, 2010].

[26] PonHarshavardhan, J. Akilandeswari, M. Manjari, “Dynamic web
service composition problems and solution - a survey,” MES Journal of
Technology and Management, 2011, vol. 2, issue 1, pp. 1-5.

[27] LSDIS, “METEOR-S: Semantic Web Services and Processes,”
http://lsdis.cs.uga.edu/projects/meteor-s/, [Accessed 08 21, 2011]

