

Department of Informatics

University of Fribourg (Switzerland)

Modelling and Controlling
Smart Residential Environments

The GF4 SRE Software Framework and th e GPL 4SR E Domain

Speci f ic L angu ag e

T H E S I S

submitted to the Faculty of Science of the University of Fribourg (Switzerland)
in fulfilment of the requirements for the degree of Doctor Scientiarum Informaticarum

by

ABDALADHEM ALBRES HNE

from Agelat (Libya)

Thesis No. 1937

UniPrint , Fribourg

2015

 ii

 iii

Acknowledgements

This thesis is the result of several years of research in the area of software engineering. First

of all, I would like to express my heart-felt gratitude and thanks to professor Jacques Pasquier

for his advice and unremitting support during all the phases of my thesis research and for

giving me the chance to develop my own ideas. He trained me in how to do research and how

to write, and encouraged me not to be intimidated by difficult problems. He was very

generous with his time and ideas. I can never thank him enough for being an excellent mentor

and a wonderful supervisor.

My thanks also go to the informatics’ department staff for their generous support and the

department's friendly atmosphere. Finally, I am very thankful to my family and my friends for

their unconditional support and understanding during all my studies.

 v

Abstract

Today, research into smart environments represents new innovative work and interesting

challenges for pervasive computing. Remote services and miniaturized devices are becoming

more and more varied, affordable and important in our daily lives, but unfortunately, most of

these devices, and services are incompatible, isolated and cannot easily function cooperatively

with each other. The domain of smart residential environments (SRE) like smart homes

constitutes a typical example of an environment characterized by complex requirements with

regard to context awareness, heterogeneity, interoperability, discovery, appliance control and

orchestration, as well as easy service management for end users. Innovative development

paradigms have been suggested to meet these new demanding conditions. One is service

oriented computing, which has been proposed as a new solution for heterogeneous and

changing environments. As a consequence, service composition and orchestration research

explores ways to combine available services and smart objects to work together to solve

complex problems such as energy control, security, health care, etc.

In spite of a number of attempts concerning the control of smart environments, problems

remain. These are mainly related to issues of how to describe the smart environment and

devices that users, respectively, live in and interact with. There is also the problem of

interoperability, heterogeneity, discovery, and the orchestrating and executing of services in

SRE, allowing users to control it in both a transparent and abstract way.

To overcome these deficiencies and limitations, this thesis proposes a generic framework for

SRE (GF4SRE) architecture offering generic and flexible components that simplify the

development of control scenarios in smart environments. The main components consist first

in defining a generic Ontology for a Smart Residential Environment (Ont4SRE) and then in

using it within a Domain Specific Language (DSL) called Generic Process Language for

Smart Residential Environments (GPL4SRE) to build generic process templates oriented

toward users’ goals. Additionally, a translator is provided to convert the templates into

executable ones, and a process execution engine with the capability to execute them.

To address the challenges related to the interoperations between the physical world and digital

world across a heterogeneous hardware and software platform, the web services with semantic

annotations and their emerging technologies are used. They integrate low-level decoupled

services with high-level control processes by providing semantic awareness, and service

filtering capabilities.

vi Abstract

Concerning the discovery of the physical world (i.e. physical components like object, devices,

sensors), especially, how to identify the physical objects which provide the intended services

for our applications, a semantic-based discovery and lookup infrastructure that takes into

account the particular context of smart environments is proposed.

To evaluate the advantages of applying the proposed framework, the proposed architecture

has been implemented and tested through a case study realized in the field of smart residential

environments - in particular for security and energy saving scenarios.

 Keywords: Smart Residential Environments; Smart-entities, Objects and Appliances;

Sensors; Actuators; Web Services Composition and Orchestration; Ontology; Domain

Specific Language.

 vii

Résumé

De nos jours, les recherches sur les environnements intelligents représentent un nouveau défi

intéressant dans le domaine de l’informatique pervasive. Les objets connectés via un réseau

informatique avec des actuateurs et des senseurs sont de plus en plus variés, abordables et

importants dans notre vie quotidienne. Malheureusement, la plupart de ces objets, leurs

dispositifs et leurs services sont encore incompatibles, isolés et ne peuvent pas facilement

coopérer entre eux. Le domaine des environnements intelligents, comme les environnements

résidentiels intelligents (SRE), constitue un exemple typique qui se caractérise par des

exigences complexes en matière de sensibilité au contexte, d’hétérogénéité, d’interopérabilité,

de découverte des services, de contrôle, d’orchestration et de gestion conviviale pour les

utilisateurs. De nouveaux modèles informatiques sont récemment apparus pour répondre à ces

exigences. Un d’entre eux est l'architecture orientée services, qui a été proposée comme une

nouvelle solution pour les environnements hétérogènes et changeants. Ainsi, les recherches

sur la composition et l'orchestration de services représentent un nouveau chemin à explorer

pour combiner les services disponibles et les objets intelligents afin qu’ils puissent coopérer

pour résoudre des problèmes complexes tels que le contrôle de l'énergie, la sécurité, etc.

Malgré de nombreux progrès concernant le contrôle des environnements intelligents, des

problèmes subsistent. Ces derniers sont principalement liés aux points suivants: le premier

consiste à décrire l'environnement intelligent et les objets avec lesquels les utilisateurs,

respectivement, vivent et interagissent. Le second est lié à l'interopérabilité, l'hétérogénéité, la

découverte, l'orchestration et l’exécution des services dans un SRE, tout en permettant aux

utilisateurs de contrôler leur environnement d’une manière transparente et abstraite.

Pour surmonter ces limites, cette thèse de doctorat propose une structure logicielle

(Framework), offrant des composants génériques et flexibles, qui simplifie le développement

de scénarios de contrôle dans des environnements intelligents. La principale force du

Framework consiste à définir une ontologie générique pour environnement résidentiels

intelligents et à l'utiliser avec un langage dédié (DSL-Domain Specific Language) pour

construire des scenarios de contrôle génériques orientés vers les objectifs finaux de

l’utilisateur.

Pour relever les défis liés à l'interopérabilité entre le monde physique et le monde digital à

travers un matériel hétérogène et une plate-forme logicielle, les services Web avec

annotations sémantiques ont été adoptés. Ils permettent d’intégrer le bas niveau (objets et

services) avec le plus haut niveau (processus de contrôle). Pour répondre à la problématique

de la découverte des objets physiques (actuateurs, senseurs, etc.) capables d’offrir les services

viii Résumé

requis, une infrastructure de découverte, basée sur des annotations sémantiques, prenant en

compte le contexte particulier des environnements intelligents, est proposée.

Pour évaluer les avantages du Framework proposé, une architecture a été implémentée et

testée par une étude de cas réalisée dans le domaine des environnements résidentiels

intelligents pour la sécurité et l'économie d’énergie.

 Mots-clés: Environnements résidentiels intelligents ; Actuateurs ; Senseurs ;

Composition et orchestration de services web; Langage dédié; Ontologie.

 ix

Table of Contents

1 Introduction 1

 Motivation and Problem Statement ... 1 1.1

 Main Contributions .. 2 1.2

 Thesis Outline ... 3 1.3

 Notation and Conventions ... 4 1.4

2 Smart Residential Environments: Definitions, Properties, and Features 5

 Definition of a Smart Environment .. 6 2.1

 Actuation and Sensing ... 7 2.2

 Networking Physical Components .. 9 2.3

 Decision Making Algorithms ... 10 2.4

 Co-ordination Interactions ... 11 2.4.1

 Human Interactions .. 11 2.4.2

 Decision Algorithm Techniques (Programming Techniques) 12 2.4.3

 Example Domains of Smart Environments ... 13 2.5

 Smart Residential Building Environment .. 13 2.5.1

 Smart Cities and Public Environments .. 14 2.5.2

 Smart Vehicle Environment ... 16 2.5.3

 Example Scenarios of Living in a Smart Environment 17 2.5.4

 Formalization ... 19 2.6

3 Smart Residential Environments: Technologies, Software Architecture 21

 Introduction .. 21 3.1

 Service Oriented Architecture for SE .. 23 3.2

 Service Layer .. 25 3.3

 RESTful Web Services .. 25 3.3.1

 OSGi .. 27 3.3.2

 Big Web Services (WS-*) .. 27 3.3.3

 Semantic Web Services.. 35 3.3.4

 Discovery and Registry Layer ... 43 3.4

 Syntactic Discovery ... 43 3.4.1

 Semantic-based Services Discovery .. 45 3.4.2

 Application Layer .. 46 3.5

x Table of Contents

 Orchestration .. 47 3.5.1

 Choreography ... 50 3.5.2

 Ontology for a Semantic Web ... 50 3.6

 RDF .. 50 3.6.1

 OWL .. 51 3.6.2

 Challenges of Managing SRE .. 54 3.7

 Motivating Scenario ... 54 3.7.1

 Requirements and Challenges .. 56 3.7.2

 Summary ... 57 3.8

4 A Framework for Controlling Smart Residential Environments 59

 Related Work .. 60 4.1

 The GF4SRE Framework ... 61 4.2

 The Global Software Architecture ... 63 4.3

 The Ont4SRE Ontology for SRE .. 64 4.4

 Ont4SRE Concepts .. 64 4.4.1

 Ont4SRE Properties and Restriction Types ... 71 4.4.2

 Key Benefits of the Ont4SRE Ontology .. 74 4.4.3

 Ontology Mapping ... 77 4.4.4

 Services Accessibility (Context) .. 77 4.5

 Web Services (WS-*) .. 78 4.5.1

 Semantic Annotations of the Web services ... 80 4.5.2

 Implementation of the Smart Residential Environment (Context) 82 4.5.3

 Registry and Discovery Engine ... 83 4.6

 Services Registry ... 84 4.6.1

 Services Discovery... 87 4.6.2

 Key Benefits of Discovery & Registry Engine .. 91 4.6.3

 Implementing the Registry and Discovery Engine 92 4.6.4

 The GPL4SRE Language: Overview ... 93 4.7

 GPL4SRE Program Structure .. 94 4.7.1

 Main Constructs ... 96 4.7.2

 Key Benefits of the GPL4SRE Language .. 99 4.7.3

 Process Generator .. 100 4.8

 Benefits of Using the Process Generator ... 101 4.8.1

 Software Implementation of the Process Generator 102 4.8.2

 Process Execution Engine .. 102 4.9

 The Process Lifecycle .. 103 4.9.1

 Installing the Process Execution Engine .. 103 4.9.2

 Process Template Tool ... 104 4.10

Table of Contents xi

 Client User Interface .. 105 4.11

 Discussion and Summary .. 105 4.12

5 The GPL4SRE Domain Specific Language 109

 GPL4SRE Program ... 110 5.1

 The Process Heading .. 111 5.2

 Declaration Section .. 111 5.3

 Entities Declaration Parts ... 111 5.3.1

 Event Registration Part .. 113 5.3.2

 Variable Declaration Part ... 113 5.3.3

 Execution Section ... 115 5.4

 User Preferences Setting Part... 115 5.4.1

 The Main Thread Part .. 116 5.4.2

 Event Handlers Part ... 117 5.4.3

 Control Flow Constructs ... 118 5.5

 Conditional Statement (If) ... 118 5.5.1

 Repetitive Execution Statement (While) ... 118 5.5.2

 Repetitive Execution Statement (For) .. 119 5.5.3

 Execution Constructs ... 119 5.6

 Sequence Execution (sequence) .. 120 5.6.1

 Parallel Execution (flow) ... 120 5.6.2

 Pick Statement ... 121 5.6.3

 Services Interaction Constructs .. 121 5.7

 Action Construct .. 122 5.7.1

 Query Construct ... 122 5.7.2

 onEvent Construct .. 123 5.7.3

 Other Useful Constructs .. 123 5.8

 Wait Statement ... 123 5.8.1

 Terminate Statement .. 124 5.8.2

 Empty Statement .. 124 5.8.3

 Assignment Statement ... 124 5.9

6 Case Study: Smart Home Scenarios 127

 Smart Home Environment .. 127 6.1

 Making-Ready the Smart Home ... 130 6.2

 Making-Ready the Smart Entities .. 130 6.2.1

 Instantiating the Smart Home Ontology .. 131 6.2.2

 Making-Ready the Registry and Discovery Engine 132 6.2.3

 Example Scenarios ... 133 6.3

xii Table of Contents

 Energy Saving Scenario ... 133 6.3.1

 Security & Safety Scenario .. 142 6.3.2

 Discussion and Evaluation... 149 6.4

 Scenarios Evaluation .. 150 6.4.1

 Lessons learnt and Good Programming Styles for GPL4SRE................... 154 6.4.2

 Summary ... 157 6.5

7 Conclusion and Future Work 159

 Contributions .. 159 7.1

 Open Challenges and Future Work ... 161 7.2

Appendices 163

A Abbreviations ... 163

B GPL4SRE: Types, Reserved Words, Operators, Methods 165

C GPL4SRE: EBNF Syntax .. 167

D GPL4SRE: Syntax Diagram ... 171

References 185

Curriculum Vitae 197

 xiii

List of Figures

Figure 2.1: Examples of industrial sensors and actuators (taken from [23]) 8

Figure 2.2: Decision making complication .. 11

Figure 2.3: Smart building ... 14

Figure 2.4: Smart city dimensions (taken from [21, 22]) .. 15

Figure 3.1: Basic smart environments architecture (inspired from [35]) 22

Figure 3.2: SOA principle roles (adapted from [40]) ... 24

Figure 3.3: SOA-Based architecture for smart environment (inspired from [34]) 24

Figure 3.4: The web services communication and messaging network (taken from [43]) 28

Figure 3.5: Marvell software development kit (taken from [68]) .. 29

Figure 3.6: WSDL document structure (adapted from [40]) .. 31

Figure 3.7: A confirmation of web service invocation on behalf of the client side 34

Figure 3.8: Web services notification methods (inspired from [40]) 35

Figure 3.9: SAWSDL elements (adapted from [73]) ... 36

Figure 3.10: (a) Using Lifting and Lowering transformations and (b) XML data mediation

(Taken from [73]) ... 37

Figure 3.11: The top level of OWL-S ontology (taken from [70]) .. 39

Figure 3.12: Mapping between WSDL and OWL-S (taken from [70]) 40

Figure 3.13: Interaction between web services partners (adapted from [43]) 45

Figure 3.14: Semantic web services matchmaking .. 46

Figure 3.15: An RDF graph with Subject, Object nodes and a triple connector (Predicate) ... 51

Figure 3.16: (a) Class presentation; (b) Representation of instances 51

Figure 3.17: Representation of ObjectProperty .. 52

Figure 3.18: Result of SPARQL query .. 54

Figure 3.19: Smart home scenario .. 55

Figure 4.1: Orchestration techniques ... 61

Figure 4.2: GF4SRE framework architecture .. 63

Figure 4.3: Mapping between formalization & ontology presentation 65

Figure 4.4: Smart residential environment ontology .. 66

Figure 4.5: A presentation of Object subclasses .. 67

xiv List of Figures

Figure 4.6: A presentation of Person and Location subclasses .. 68

Figure 4.7: A presentation of Sensor, Actuator, and Publisher subclasses 69

Figure 4.8: Examples for action, query, and event subclasses ... 70

Figure 4.9: A presentation of Ont4SRE object properties [138] .. 71

Figure 4.10: Some of Ont4SRE data type properties ... 72

Figure 4.11: The relationship between the switchState property and related classes 73

Figure 4.12: An example of Lamp entity relationships .. 74

Figure 4.13: SPARQL query result .. 76

Figure 4.14: Service layer based on WS-* web service and OWL-S semantic description 78

Figure 4.15: Operation types for a web service ... 78

Figure 4.16: Event notification process .. 79

Figure 4.17: Ontology-based semantic annotation for web services 82

Figure 4.18: Smart home simulation .. 83

Figure 4.19: Registry and discovery layer and related components .. 84

Figure 4.20: Ontology required information for the instantiation of each smart entity 85

Figure 4.21: Service registry and discovery units: physical model .. 92

Figure 4.22: GPL4SRE elements structure .. 94

Figure 4.23: Recognizer operations ... 101

Figure 4.24: Grammar development environment for building the GPL4SRE translator 102

Figure 4.25: Oracle SOA Suite main installed components ... 104

Figure 4.26: Process Template Tool .. 104

Figure 4.27: Client User Interface .. 105

Figure 5.1: GPL4SRE Structure ... 110

Figure 6.1: Smart home plan .. 128

Figure 6.2: Smart home simulator .. 130

Figure 6.3: Smart home instantiation using a protégé tool .. 131

Figure 6.4: Visualization of the smart entities occupying a SRE ... 132

Figure 6.5: User preferences setting in energy saving scenario ... 140

Figure 6.6: User preferences setting in security and safety scenario 148

Figure 6.7: An example of using pick construct to avoid code duplication 155

Figure C.1: EBNF grammar sub-rules (taken from [156])... 167

 xv

List of Tables

Table 2.1: Environments properties (adapted from [2]) ... 7

Table 3.1: Comparison between composition programming methods 47

Table 3.2: Energy saving scenario ... 55

Table 5.1: Example of variables Assignments ... 125

Table 6.1: Smart Entities occupying the smart home ... 128

Table 6.2: Smart entities, their devices, and services according to the Ont4SRE definitions 129

Table 6.3: An extract of the execution history of the saving energy scenario 141

Table 6.4: An extract of the execution history of security and safety scenario 149

Table 6.5: A comparison of constructs and syntax of GPL4SRE and BPEL4WS language . 151

Table 6.6: An evaluation of the number of keywords used in the two scenarios 154

 xvii

List of Listings

Listing 3.1: SOAP message structure ... 29

Listing 3.2: WSDL elements .. 32

Listing 3.3: SOAP request message ... 33

Listing 3.4: SOAP response message ... 34

Listing 3.5: Using modelReference for semantically annotating a WSDL web service 37

Listing 3.6: Result of applying SPARQL to ontology ... 38

Listing 3.7: An XSLT sample that shows loweringSchemaMapping notion 38

Listing 3.8: Result of applying XSLT from Listing 3.7 to SPARQL result of Listing 3.6 39

Listing 3.9: A simplified OWL-S description of the setTemperature web service 42

Listing 3.10: A simplified BPEL4WS process for air conditioner control 49

Listing 3.11: A simplified OWL representation in RDF syntax .. 51

Listing 3.12: A simplified ObjectProperty example in RDF syntax .. 52

Listing 4.1: The restrictions declaration between a Lamp and its types of Actuators 73

Listing 4.2: A SPARQL query to get a list of the smart entities .. 75

Listing 4.3: Code extract of a smart lamp instantiation and its corresponding services 86

Listing 4.4: SOAP message sent by a LampController actuator .. 87

Listing 4.5: A SPQRL Full Query to discover all the smart lamps in the space 89

Listing 4.6: A simplified result of SPARQL full query for the discovered smart lamps 91

Listing 4.7: Room temperature control scenario .. 98

Listing 4.8: Multi-rooms temperature control scenario ... 99

Listing 4.9: Error messages generated by compiling a GPL4SRE program 101

Listing 6.1: Pseudo-code concerning the energy saving scenario .. 135

Listing 6.2: The energy saving program written in GPL4SRE .. 139

Listing 6.3: Pseudo-code concerning the security and safety scenario 144

Listing 6.4: The security and safety scenario written in GPL4SRE 147

Listing 6.5: A syntax comparison of service invocation using GPL4SRE and BPEL4WS ... 153

Listing 6.6: A generic scenario to control the light .. 157

 1

 1

Introduction

 Motivation and Problem Statement ... 1 1.1

 Main Contributions .. 2 1.2

 Thesis Outline ... 3 1.3

 Notation and Conventions ... 4 1.4

 Motivation and Problem Statement 1.1

he concept of an emerging world of Smart Environments (SE) has existed for

decades. In 1991, Weiser predicted “a physical world that is richly and invisibly

interwoven with sensors, actuators, displays, and computational elements, embedded

seamlessly in the everyday objects of our lives and connected through a continuous network.”

[1]. The SE concept is linked to many research areas such as ubiquitous computing (also

referred to as pervasive computing or ambient computing), context aware computing,

wireless, sensors networking, etc. [2].

Nowadays, from the SE technology viewpoint, a growing number of embedded sensor-based,

and control devices offer useful functionalities and services. They are becoming more and

more diverse and affordable as well as essential parts of our daily activities to improve urban

living conditions and make our environment smart. However, these devices and their

associated services cannot be easily integrated to create new composite applications, such as

controlling appliances and devices for saving energy or enhancing user comfort. Research

into SE constitutes a step forward in the design of smart buildings, utilities, industries, homes,

and automatic transportation systems. The interdisciplinary scope of the domain includes

aspects of smart object networking and software architecture for smart environments, event

prediction, and decision-making.

Recent projects and industry solutions in the domain of embedded devices have resulted in a

number of low power physical and network protocols such as Zigbee [3], and 6LoWPAN [4].

These initiatives integrate physical components and devices into distributed computer

networks. Many interoperability solutions involve an additional middleware layer [5] for

smart systems. Examples of such solution are: Web Service[6-8], RESTful Web Service [9-

T

2 1.2 Main Contributions

11] and Platform for Service-Oriented Computing Environment (OSGi) [12, 13]. This layer

can be integrated into control appliance activities, share data and capture events. It releases

users from needing to physically access appliances and devices while providing a service

abstraction and an application-programming interface to the physical objects to facilitate and

standardize their access according to application and development needs.

In the higher layer (application layer), suggestions concerning the control of SE have been

made [14-17] with the aim of integrating the physical components into the network layer to

help developers and users access, discover and control smart objects. However, both the

industrial and academic communities are still experiencing a number of challenges in the

control of SE. There are two main problems.

 The first is how to describe the environment and devices that users live in and interact 1.

with. Systems and programmers need to have a good understanding of the purpose and

the usage of smart objects as well as their associated services. There is the need for a

single, well-defined model for describing and linking smart objects, their locations, their

associated devices and the services they offer.

 The second is the problem of modelling, discovering, composing, orchestrating, and 2.

executing services in Smart Environments so that users can be in control. This challenge

involves:

- the comprehensive infrastructure necessary for the distributed computing that a smart

environment requires. This includes communication and network protocols,

middleware and so on.

- frameworks that consider the requirements and the particularity of smart

environments. For instance, interoperability, the dynamic discovery of smart objects,

context-awareness, composition and orchestration and human interaction.

- framework architecture that reduces the complexity of the underlying resources and

infrastructure based on modularization, abstraction, transparency, decomposability

(dividing the system into modules); understanding the ability of each model; ease

(facility) of changing and assembling modules.

- the context description, so software systems are aware of changes within their

environment. This includes the physical environment: location, time, temperature,

rainfall, light level, etc.; the human context in terms of identity, preferences, task

requirements; the virtual environment context: awareness of the smart components

and the services available internally and externally, locally and remotely, in the SE.

 Main Contributions 1.2

The main contributions are:

 An ontology for Smart Residential Environments 1.

1.3 Thesis Outline 3

The first contribution of this thesis is the definition of a generic model of smart space to

identify clearly the issues central to Smart Residential Environment (SRE) such as smart

objects, actuators, sensors, and services. This has resulted in a proposed Ontology for a Smart

Residential Environment (Ont4SRE) which can later facilitate the discovery of smart objects

as well as reduce the complexity related to managing SRE and orchestrating smart objects.

 A Generic Framework Architecture for SRE (GF4SRE) 2.

The second contribution is the definition of a framework software architecture based on the

proposed ontology to build complex control applications for SRE. In particular, the

framework supports the following features:

 Firstly, the Ont4SRE ontology is integrated into the framework for both discovering and

compositing services.

 Secondly, integrating a Services Discovery into a SRE occupied by numerous physical

components requires identifying the individual objects necessary for providing the

intended service. To solve this problem, a discovery and lookup infrastructure is

proposed, based on the Ont4SRE ontology and taking into account the particular context

of SRE.

 Thirdly, generic control scenarios in the form of templates to manage the SRE are

proposed. The templates are workflow-based and written by an original Generic Process

Language for Smart Residential Environments (GPL4SRE). Additionally, a Process

Execution Engine, which can execute these scenarios, is used.

 Finally, the framework should include pluggable modules to cleanly integrate the proven

technologies for modelling and controlling different SREs - home, school, hospital, etc.,

and it should be a generic software solution to transparently discover and use smart

objects within control scenarios.

 A Domain Specific Language for Smart Residential Environments 3.

The GPL4SRE language is an essential addition to complement the software architecture. It

is a process-oriented language for describing scenarios to control SRE using a precise

vocabulary without requiring program intricacies such as services grounding, and can be

translated transparently into a standard process language such as BPEL4WS [18] for

executing tasks.

 Thesis Outline 1.3

The structure of the thesis is as follows:

 Chapter 2 provides a basic introduction and definition of the SE and its properties and

features.

4 1.4 Notation and Conventions

 Chapter 3 gives the necessary background for understanding and for identifying the

general problems and limitations of managing SRE. It also analyses and compares the

various technologies and architectures within the SRE context used in the rest of this work

in terms of constraints and needs.

 Chapter 4 reviews the related research and presents the thesis proposal. It details the

requirements for a conceptual framework that can support the building of a SRE Control

System. The various software and hardware components, which together form the

framework, are outlined.

 Chapter 5 introduces the GPL4SRE proposed language. It shows the actual content and

basic syntactical elements of a program written in GPL4SRE.

 Chapter 6 describes the case study of two complex control scenarios using the proposed

framework to illustrate the usefulness of this approach.

 Chapter 7 contains a summary of the results and the conclusions drawn, with suggestions

for future research.

 Notation and Conventions 1.4

The following conventions are used in this thesis.

 Formatting conventions:

- Bold is used for Chapter, Section and Subsection headings and important titles.

- Keywords and definitions are denoted in Italics

- Important keywords are highlighted in both Bold and Italic (Bold).

- Courier New font is used for code Listings.

 This thesis is divided into chapters. Each chapter is divided into a hierarchy of sections,

within each of which are lower subdivisions - subsections - which may consist of several

paragraphs.

 Figures, examples, and listings are numbered sequentially according to the chapter they

appear in. For example, the second figure of the third chapter is numbered 3.2.

 5

 2

Smart Residential Environments:

Definitions, Properties, and Features

 Definition of a Smart Environment .. 6 2.1

 Actuation and Sensing ... 7 2.2

 Networking Physical Components .. 9 2.3

 Decision Making Algorithms ... 10 2.4

 Co-ordination Interactions ... 11 2.4.1

 Human Interactions .. 11 2.4.2

 Decision Algorithm Techniques (Programming Techniques) 12 2.4.3

 Example Domains of Smart Environments ... 13 2.5

 Smart Residential Building Environment .. 13 2.5.1

 Smart Cities and Public Environments .. 14 2.5.2

 Smart Vehicle Environment ... 16 2.5.3

 Example Scenarios of Living in a Smart Environment 17 2.5.4

 Formalization ... 19 2.6

Many physical world components have been designed to allow users to control them from

anywhere at any time through the internet and to effectively optimize their usage in order to

make their everyday lives more comfortable, easier and cheaper. Some components have no

processing ability but are coupled with miniaturized actuators and sensors to control, measure

or perceive their states. Sensors give the software systems the ability to monitor the status of

physical components and detect events that indicate changes in their state, e.g., a smoke

detector can detect a fire, or door sensors detect when people get closer to them. Similarly,

actuators give software systems the ability to control their states - turn lamps, air conditioners,

or heaters on and off, or open and close doors and windows. Other objects can be mobile and

have processing and data storage ability. They can have the capacity to sense their own

movements and determine their location (e.g. global positioning systems (GPS), intelligent

wheelchairs, mobile personal computers, and automobiles). Other elements can be portable,

such as laptop computers, communicators (phone/PDA) or be implanted or wearable, such as

6 2.1 Definition of a Smart Environment

accessories like watches, or medical instruments to support biological functions. Some objects

may be passive if they do not have the capacity to interact, and are not attached to any sensor

or actuator. Then, they can only be described [2].

The integration of the physical world into the digital one has resulted in the emergence of

smart environments. The remainder of this chapter presents some definitions, properties,

examples and features related to smart environments, summarised from the literature [2, 19-

22], whilst state of the art technologies, standards, and software architectures for SEs are

presented in Chapter 3.

 Definition of a Smart Environment 2.1

There are many definitions of a smart environment. Some are given below.

Definition 2.1: Smart is the ability to autonomously acquire and apply knowledge, while

environment refers to our surroundings [2].

Definition 2.2: Smart environments consist of devices, such as sensors, controllers, and

computers that are embedded in, or operate in, the physical environment, e.g., robots.

These devices are strongly context aware of their physical environment in relation to their

tasks, e.g., a robot must sense and model the physical world in order to avoid obstacles.

Smart environment devices can have an awareness of specific user activities, e.g., doors

that open as people walk towards them. They often act autonomously without any manual

guidance from users. These incorporate specific types of intelligence, e.g., robots may

build complex models of physical behaviour and learn to adapt their movements based

upon experience [19].

Definition 2.3: An object is called smart when it has the ability to describe its possible

interactions [20].

In this thesis, a Smart Environment is

Definition 2.4: an environment which consists of diverse individual smart physical

components (e.g. objects, devices, and appliances) that inhabitants use. These components

(also referred to as entities) are not smart in themselves. They are not smart in the sense

that they are autonomously intelligent, but in the sense that they can be linked to actuators

and sensors (Section 2.2) to control, measure or perceive their states so that they can be

networked (Section 2.3) in the digital world and be included in software computing units

with Decision Making algorithms (Section 2.4) executed by a multi-agent or centralised

system or whatever is required to make the environment reactive and smart.

A formal definition of a smart environment and its components is presented in Section 2.6.

Throughout this thesis, the terms “smart-object, entity, appliance” are used to distinguish

them from passive physical components.

2.2 Actuation and Sensing 7

 Actuation and Sensing 2.2

Sensors and actuators are electromechanical or electronic devices, built as distinct devices or

in large arrays. Actuators are designed to convert an electrical signal into a physical

phenomenon (e.g. heating, cooling, moving, controlling) while by contrast, sensors convert

physical phenomena (e.g. temperature, humidity) into electric signals. Table 2.1 lists some

examples of the properties of the environment that can be measured and converted into an

electrical signal, and vice versa.

Table 2.1: Environments properties (adapted from [2])

Properties Measured data

Physical properties pressure, temperature, humidity, flow

Motion properties position, speed, acceleration,

Contact properties strain, force, vibration

Presence contact, proximity, distance, motion, range, location

Biochemical Identification personal features, personal ID, biochemical agents

Electric properties switch on, switch off, frequency, brightness

Furniture properties open, close, lock, unlock

Sensors

Sensors provide input information about the state of the physical world [19]. Embedded

sensor-based devices are being increasingly implanted and spread about the physical world

environment to measure and collect data. They can sense room temperature, or inform users if

a door is opened or closed. Sensors such as fire detectors and motion detectors can be linked

to control devices to react to incoming events and alert people if an accident has occurred.

Sensors can also be a part of an embedded control system. Many other types of service can be

provided by sensors to support activities concerned with food and traffic monitoring, energy

and water leak detection, healthcare warnings, etc. Figure 2.1(a) gives some examples of the

available industry solutions for wireless sensors. According to [19], sensors can be

characterised in terms of:

 Physical characteristics: including power, mobility, and size: passive sensors take power

from a reader, while active sensors have their own power source; sensors have different

sizes, from nanometres upwards; sensors can be in a fixed location or mobile or can be

attached to a physical object -human or animal- which can carry them.

8 2.2 Actuation and Sensing

 Functional complexity: some sensors provide a simple functionality by converting a

physical phenomenon into data and others have the ability to automatically detect pre-

defined events. Sensors can be reconfigurable, self-configurable, and self-optimizing.

Multiple sensors can be used to combine the collective data, e.g., more than one fire

detection sensor is used in a building to detect fire. An event can be restricted to some

predefined threshold value or a period of time to be covered, e.g., after increasing the

temperature to a certain degree, a temperature changing sensor must fire an event.

Actuators

Actuators act in response to a control signal to convert energy (e.g. electrical, hydraulic

pressure) to move or control a mechanism such as drilling, locking, rotating, or switching.

They are usually attached to some objects like a door, fan, lamp, etc. Many actuators have

been developed to remotely control an inhabitant’s environment through wireless networks.

Figure 2.1(b) demonstrates some examples including:

 Wireless light actuator used to remotely turn a light or home appliance off or on.

 Fan controller for heating and cooling applications in order to switch multilevel fans or to

turn heating and cooling on/off.

 Wireless valve actuator to control a liquid’s flow, like water or fuel. They can be

equipped with an electric motor to open and close the valve.

 Linear actuator to produce motion in a straight line. They may be mounted on doors and

windows to open and close them remotely, or under a table to change its height.

Figure 2.1: Examples of industrial sensors and actuators (taken from [23])

2.3 Networking Physical Components 9

 Networking Physical Components 2.3

Networking smart entities (also referred to as Networking-Appliances - NAs) are not limited

to personal digital assistants, web pads or mobile phones, but include many other devices like

NAs-navigation systems, heater controllers, light adjusters, fridge, air conditioners, fire

detectors or smoke alarms attached to a wall in a room. NAs have already been used in a

variety of domains and will emerge in others in the near future.

Integrating these physical components into a distributed network can help them to

interoperate and share data. Such tasks include, for example, home automation (e.g. motion

sensors could co-operate with a lighting system to control it), security systems (e.g. fire and

infraction sensors could co-operate with alarm systems), transport and logistics facilities (e.g.

travellers could be informed about their schedules, goods remotely tracked), and healthcare

systems (e.g. assisting elderly people, person aware systems).

To enable these activities, recent technologies in the domain of embedded devices have

created a number of low power physical and transport network protocols such as Zigbee (over

IEEE 802.15.4) [3], IPSO [24], 6LoWPAN [4], and Bluetooth (over 802.15.1) [25], to

connect and control devices and appliances in the networks [19].

Many types of network are becoming available and they are distinguished according to their

infrastructure, network, and frequency ranges.

 Wireless Networks: Wireless LANs (also referred to as WLANs) are local area wireless

networks based on the IEEE 802.1l set of ratified standards that support different

frequency ranges and message transfer rates up to 54 Mbps. In traditional WLAN

networks, computers and devices are connected to the network via WLAN cards, which

are connected to the Internet via an access node.

 Power Line Communication (PLC) is a wired network that shares network electrical

energy as a channel to send data, audio and video information. For instance, it can be used

in the home to control lighting and appliances remotely rather than using wiring control

systems. Home-Plug and X10 Alliances specify various power line communication

standards [26, 27] to support networking over electrical networks. Electric buses, trains,

and trams are other typical examples of networks using electricity which could be used as

data networks.

 Body Area Network (BAN) is used to connect computers to devices or sensors that are

wearable or implanted in the human body. BAN applications are often used to store and

monitor data related to human bodily health and performance [28].

 The Personal Area Network (PAN) specified by the IEEE 802.15 working group is a

specific type (subset) of local area networks (LAN) designed for one person rather than a

group. It enables computers to be connected to the NAs close to the user. It typically

involves mobile phones, personal digital assistants (PDA), headphones, microphones,

10 2.4 Decision Making Algorithms

laptop PCs, medical sensors, body area sensors, cameras, and other devices which provide

facilities for the individual. For example, a person working with a laptop could

interconnect with wearable devices to exchange human body performance using wireless

technology. Protocol like Bluetooth and Zigbee can be used to implement a PAN [29].

 Decision Making Algorithms 2.4

Enabling physical components to co-operate and share data is not enough to make the

environment reactive and smart. Physical components acquire only limited information and

have a partial view of their environment due to their insufficient resources or inability to

access global knowledge. By taking advantage of information exchanges between devices and

with the help of an intelligent software algorithm existing somewhere (e.g. centralised

computing unit, computing agent), it is possible for intelligent software unit(s) to perform

decision-making tasks, either autonomously or through human intervention, and in

consequence, make the environment reactive and smart. The decision making process

depends on collecting the necessary information about the environment, governing dynamic

actions, human interactions to make operationally strategic decisions in order to achieve a

specific goal.

The decision making task is defined as “the process of determining the action that should be

taken by the system in the given situation in order to optimize a given performance metric”

[2]. Within smart environments, this course of action can take multiple forms as shown in

Figure 2.2. It can be a Single Decision based on a limited set of information. Another type of

decision involves a Feedback Control System that adjusts to a particular circumstance in order

to accomplish and maintain certain conditions for a particular component. An example of

such a component is a heating control system where the room temperature is to be held at a

particular level.

The third kind of decision problem common in smart environments is a sequence of actions

that need to be performed in order to achieve the final goal such as home security, inhabitant

comfort, or energy saving. In contrast to the preceding two decision types, this kind of

decision is the most complex and requires co-ordination between the smart entities populating

the environment. For example, in a scenario where an occupant leaves home, the decision

maker could determine that it should turn off all the lights and reduce the temperature of the

heating system. To obtain the optimal combination of actions to be performed in a given

scenario, a decision algorithm is run by the software system at regular intervals to determine

what action to perform, whether (time-driven) or is fired only when an event is produced by

the occupant’s action or a change in the sensors’ values (event-driven) [2].

2.4 Decision Making Algorithms 11

Figure 2.2: Decision making complication

The decision-making properties are classified into different groups: co-ordination interactions,

human interactions, and programming techniques. A brief overview follows of each group.

 Co-ordination Interactions 2.4.1

There are two types of decision co-ordination.

 Orchestration (use of a central coordinator). The different partners (smart objects,

services) are under the control of a single endpoint central unit called a process. The latter

controls the logic of the execution and the interaction with other partners.

 Choreography (use of distributed coordinators). In contrast to orchestration,

choreography does not depend on a centralized unit but on the distributed and cooperative

components (participators). Each participator has to know exactly when to become active

and with which component to interoperate.

 Human Interactions 2.4.2

Smart environments are often designed to minimize human/device interactions. Human

interactions can be classified into three main kinds: automatic, semi-automatic, or manual,

according to the level the user interacts with the system. Below is a brief definition of each

kind.

 Automatic (autonomous): “autonomous systems are defined as systems that are self-

governing and are capable of making their own independent decisions and carrying out

actions” [19]. The user only specifies the high-level goals and tasks rather than defining

12 2.4 Decision Making Algorithms

and controlling each low-level task interaction. The system or the agent itself

automatically determines what the necessary decisions and actions are and schedules them

automatically to achieve the final goal. A software multi-agent system is often

characterized as an autonomous system.

 Semi-automatic (partially automatic): the aim of this type is to reduce and minimize user

tasks. The system usually helps the user to find, filter, integrate, and automatically make

the desired resources interact, while the programmer’s job is to define the control

workflow or predefined plan. In addition, end-users can interact with the system during

execution.

 Entirely human-based (manual): the user programs and tells the system which operations

and decisions to perform, which resources to use, or which actions to take during the

development and execution steps. The user defines and controls each low-level task

interaction.

 Decision Algorithm Techniques (Programming Techniques) 2.4.3

Many programming style techniques are used for carrying out decision-making algorithms

(see Subsection 3.5.1). Some of these are:

 Planning-based techniques take a programming approach that defines a problem, rather

than giving a solution, by describing the computational logic without saying how to

compute. It permits the system to obtain autonomously the best combination of actions

based on the environment description and the effects of the available actions. Finally, the

system generates a plan describing the set of actions to be taken to achieve the desired

goal.

 Rule-Based techniques mean decisions are taken by using a set of facts and rules based

on the state of the environment and the occupants, together with a set of condition-action

subroutines written in a declarative logical programming language. A rule is executed if

all the conditions are evaluated as necessary to fulfil. For instance, when a rule encodes if

the occupants leave the home, turn off the heater, this leads to a control system turning off

the heater each time an occupant leaves the home. This programming style usually implies

an automatic approach.

 Learning-based techniques: learning algorithms aim to enable decision makers to

improve their performance through training and experience in order to make decisions that

are similar to those defined in a training set. This permits the system to apply what has

been learned from experience to any new situation and so reduces the time required to

achieve the goal.

 Workflow-based techniques style is generally used when the programmer needs to tell the

control system what to do during the execution steps. It follows an imperative procedural

2.5 Example Domains of Smart Environments 13

programming style. The workflow defines a sequence of commands for the system to

perform a composition of several activities (e.g. interaction with partners) linked to

control flow (loops, if, etc.), and execution constructs (computing in sequence or in

parallel, etc.). This programming style is usually adopted in manual and semi-automatic

interaction approaches.

 Example Domains of Smart Environments 2.5

Smart environments can be any environment where a network is available, and smart physical

components are connected. Some examples illustrate what could be considered as smart

environments.

 Smart Residential Building Environment 2.5.1

A smart residential building (e.g. home, school, hospital) is one populated with diverse

networked devices and smart objects such as alarms, a washing machine, home heating

system, air-conditioners, cameras, door controllers, home-environment sensors, etc. In a

future smart building, data from these smart devices and appliances can be easily exchanged

to provide a range of smart building services to make the inhabitants' lives easier, cheaper,

and more comfortable. These services include energy and safety management, security

monitoring, entertainment, health care, and support for the elderly, and other services.

Figure 2.3 shows some examples of smart objects and examples of their utility:

 A Smart Room could contain a diverse range of sensors in order to measure or detect any

change in the state of the environment (e.g. temperature, motion, and humidity). These

sensors may include temperature sensors, motion detectors, or fire detectors.

 A Smart Fridge is equipped with a set of sensors and scanners that allow its user to view

and monitor the current stock of food items without opening the door, to check for expired

food dates and it alerts users when food items are low so they can prepare shopping lists,

or can suggest possible recipes based on what is stored in the fridge.

 Smart Door/Window/Curtain are attached to controller devices (actuators) in order to be

opened/closed or locked/unlocked.

 Smart HVAC (Heater/Ventilation/Air Conditioner) allow users to personalize their air

conditioner and heater systems remotely via a network in order to control temperature,

humidity or switch them on or off.

 Smart Lamps contain actuators, which enable them to turn the light on and off or dim to

control brightness.

 Smart mirrors contain a controller to optimize the field of vision.

14 2.5 Example Domains of Smart Environments

 A smart pillow contains sensors to detect inhabitant behaviour. It can be connected to

smart systems which can read a book or play music at bedtime and turn off when the

inhabitant goes to sleep.

 A smart bed can remember your favourite music, your preferred light, and temperature

settings to gently wake you up and give you a smooth start to the day.

 Smart clocks can provide context information such as where you are, or what the weather

is like at a specific moment in time.

 Smart chairs are equipped with a number of sensors to take information about a sitter’s

behaviour and, a number of mechanical motors so the chair can adapt to them.

 Smart Washer and Dryer Machines are equipped with a number of sensors and actuators

that can be controlled remotely from a smart application. For example, controlling their

start time, notifying the status of the washing and drying, or sending a message when the

cycle is complete.

Figure 2.3: Smart building

 Smart Cities and Public Environments 2.5.2

Different smart equipment (often also referred to as street furniture) can be installed in streets,

parks, parking, and in commercial buildings, and includes such things as public benches and

bollards, traffic lights, toilets, sensors nodes to measure pollution, traffic, or noise, to create

what are called smart cities. In Figure 2.4, a smart city is classified within six areas: Smart

Economy, Smart People, Smart Governance, Smart Mobility, Smart Environment, and Smart

Living. These six concepts constitute a forward step in identifying different characteristics,

factors and domains which describe areas of a smart city [21].

2.5 Example Domains of Smart Environments 15

Figure 2.4: Smart city dimensions (taken from [21, 22])

In [22], Luis et al. gathered some domain examples that could increase the importance of

smart cities of the future:

 Developing E-Government Services to enable citizens to communicate and interact with 1.

public administration services via the internet using smart applications, or have video

conversations in an efficient and cost effective manner rather than using the traditional

boring methods like the mailing services or being present in person.

 Health Inclusion and Assisted Living Services can offer a good quality of life for elderly 2.

people, help people to monitor their health at home or to be connected with a hospital if

they become ill.

 Intelligent Transportation Services would mean vehicles could sink and raise bollards 3.

remotely to guarantee secure access control of special roads and streets for buses. Traffic

lights can be programmed in term of traffic density rather than a time scheduler.

 Energy Efficiency and Environment Issues to lower energy consumption, reduce pollution 4.

and climate change are the main concerns and backbone issues in smart city

environments. For example:

- Pollution alert systems can monitor the level of pollution in each street of the city or

warn if pollution increases above a certain level.

- Lighting can be used to optimize the utilization of electricity by controlling remotely

the lighting of parks and streets.

- Public services infrastructure can detect water leaks and obtain a noise maps or send

an alarm when rubbish bins are full.

However, many research challenges need to be addressed in order to achieve all the goals of

smart cities. According to [22], these challenges can be grouped into two categories:

16 2.5 Example Domains of Smart Environments

 Privacy, Security and Trust Issues 1.

- How will people identify themselves electronically via networks to applications and

services providers in a standard and secure manner?

- How can the security issues in complex and distributed systems be handled?

- How can interoperability issues between identity management systems be solved?

- How can diverse security techniques like encryption, access control, and intelligent

data aggregation be offered?

 Technical Requirements 2.

- How can the complexity of the interaction and collaboration between systems, which

are used for different purposes (e.g. transport control and energy management), be

reduced?

- Different operators often provide wireless and citywide networks technologies, so

how can public and private networks be given equal access to both technical

developments and regulatory changes?

- There is a need for active integrated networks to link people, businesses,

governments, and infrastructures.

- How can the increasing volume of data collected be handled?

- Many smart applications require personalized and location-based service

infrastructures.

This thesis focuses on Smart Residential Building Environments (SRE) - defined in

Section 2.5.1 - where security and privacy are considered a less complex issue and where a

homogenous infrastructure and technical requirements can be achieved.

 Smart Vehicle Environment 2.5.3

Smart vehicles constitute another example of a smart environment. Nowadays, vehicles are

increasingly equipped with embedded smart systems to assist the vehicle operator and to

improve and automate control operations such as parking assist systems, cruise speed control,

traffic sign recognition, climate regulation, collision avoidance through automatic braking,

etc. Some of these systems can be connected via the internet to provide more functions and

utilities. Below are examples of smart equipment.

 Smart doors, seats, and steering wheel controllers can be embedded in doors and seats,

and be unlocked remotely and automatically. The seat and steering wheel can be adjusted

to suit the driver as (s)he sits down.

 Location determination systems enable the tracking of vehicles and goods remotely and

inform of their delivery schedules.

2.5 Example Domains of Smart Environments 17

 Stations schedule services allow train, flight, and bus services to be connected to the

internet or transport central to inform passengers of their arrival and departure schedules.

Passengers can use their mobile devices to show their transport tickets or to buy them

remotely.

 A head-up display (HUD) provides for drivers a transparent display that presents

information without looking away from the road.

 Example Scenarios of Living in a Smart Environment 2.5.4

Smart Environment where people live, visit and work could mark a powerful shift in people's

life styles, creating a world where people are surrounded by smart things and a computing

infrastructure supporting humans in everything they do. To imagine how people's lives would

be, here are some possible scenarios.

 Daily Life Scenario 1.

In [2], Cook et al. describe an example scenario of a smart office, home, and vehicle.

Dave prepares to leave the office a little earlier than usual, since he managed to get some work wrapped up

more quickly than expected. As he heads out of the door, his pc automatically locks and switches over the

screensaver, the office lights dim, the air conditioner switches off, and the door locks shut behind him(PAN

device as personal talisman integrated with PC and office environmental systems). As he walks out of the

building his status on the corporate phone directory automatically changes to out (PAN locating tracking).

Reaching his car, he hits a key on his phone. The door unlocks automatically and the engine starts. The seat

and steering wheel adjust to suit him as he sits down (his wife gave him a lift to work this morning, so the

seat was set for her). (Automobile and PA integration). He notes that he needs gasoline and should get it on

the way home. He calls his wife to let her know he has set off for home; using the hands-free capability

build into the car stereo and the phone that’s still in his pocket (PAN dynamic integration with automobile).

When he reaches the gas station , he gets out to use the pump, as he steps out of the car, he notices that his

music collection is being updated using the local wireless fidelity (WiFi) that exists around the

pumps(automobile dynamic network integration with WiFi). He wonders if they will send a software update

for that irritating display bug in the car (dynamic software update). After he gets the gas and drives of (PAN

talisman for payment applications), he arrives home to see the garage door rising just as he pulls around the

corner. He parks the car and walks to the front door and a warm, pleasant house with the smell of dinner

wafting from the kitchen. It started cooking before he left the office, and the central heating turned on when

he was about a mile away from home (home environment and device control). His car, in the garage, syncs

the music it got at the gas station with the other media devices in the house (automobile and home

networking integration) and he settles down in front of the TV with his dinner).

 Comfort Scenario 2.

In [30] Sang Hyun et al. discuss range ideas for smart homes.

18 2.5 Example Domains of Smart Environments

The smart wardrobe digitally looks up the weather forecast for the user so that they can comfortably and

adequately coordinate what they wear with the outside environment before they leave the house. A smart

bed can be programmed to remember your preferred sound, smell, light, and temperature settings to gently

wake up all your senses and give you a good start every morning. A smart pillow can read any books of your

choice to you at bedtime and can play your favourite music to drift off to when you start to get sleepy. Once

your body goes into deep sleep, it will automatically check the condition and quality of your sleep, gradually

reducing the volume of the music accordingly and, eventually, turning it off completely. A smart mat

situated at the entrance of every home can be used to sense the body weight and footprint of the users,

enabling the smart mat to perhaps differentiate and recognise who is stepping on the mat. A smart sofa can

enhance your experience when watching the television or playing video games. Depending on the visuals

and the sounds on the screen, it uses vibrations to enhance the viewing experience in action scenes.

 Energy Saving Scenario 3.

Jane controls her home environment in a way that allows her to save energy and to adapt her

environment to her habits and living conditions. She knows that a well-planned energy control

system can reduce the total energy consumption of the home. Experts and the experience of

saving energy indicate that total energy consumption could be reduced in the following ways:

 Reducing wastage: lighting, and air-conditioning (HVAC), and other systems can be

turned off when not needed. When occupants leave the home, the system can turn all the

lights off. When a room or level of the home is not being used, the lights can be turned

off. Similarly, the heating for the swimming- pool or garage can be turned off when not in

use or on when needed.

The energy saving scenario programmer has used the recommendations described above in

order to create an energy control system for the final user, proposing the following:

The system knows what time of day it is, and when darkness occurs.

Case I: When the house’s occupants are outside

- Turn off the lights.

- Turn off the air-conditioners (AC).

- Turn off the TVs and Radios.

Case II: When the house’s occupants are at home

 Daylight and lights hours 1.

- Turn off the lights in rooms, which are not occupied.

- Turn off the AC if the outside temperature is less than x°. User selects which AC and

the target temperature.

- Set AC temperature. User determines which AC and what temperature.

- Close windows if AC is turned on. User chooses which windows.

2.6 Formalization 19

- Close curtains if AC is turned on. User defines which curtains.

- Turn off the TV if nobody has been watching it for 20 minutes.

 Shower use 2.

- Stop shower water when use exceeds 10 minutes. User defines time limit.

- Stop shower water heating during absence.

 Dishwasher use 3.

- Turn the dishwasher on when it is ready during low energy cost hours.

 Formalization 2.6

This section gives a formal definition of SRE and its meanings by clearly describing the smart

physical components and by presenting their relationship with the actuators and sensors, they

are attached to, together with the services that they might provide. This definition results in

the proposed Ont4SRE ontology, which will be described in details in Section 4.4.

As mentioned in Definition 2.4, an entity is a real world object, location, or person. An entity

is said to be smart when associated with a set of sensors and/or actuators. A residential

environment is smart when it embodies smart entities. More formally, an entity, a smart

entity, and a residential environment are defined below (see also [31]).

Definition 2.5 (Entity): An Entity is a 2-tuple E = <c, P>, where:

- c is the category of the Entity;

- P is a set of parameters.

The category is an object, a location, or a person. P has required and optional parameters. The

required ones are {entityID, entityName}.The optional parameters depend on the category. At

a given point in time, the parameter values give information about the entity. They represent

the entity state.

Definition 2.6 (Smart Entity): A Smart Entity is an entity with sensors and/or actuators. It

is a 4-tuple SE = < c, P, S, A>, where:

- c is the category;

- P is a set of parameters;

- S is a set of sensors;

- A is a set of actuators.

Definition 2.6.1 (Sensor): A sensor makes available smart entity parameters at a given point

in time. It might have associated publishers. It is a 3-tuple S = <P, Q, U>, where:

20 2.6 Formalization

- P is a set of parameters;

- Q is a set of queries;

- U is a set of publishers.

P has required and optional parameters. The required ones are: {sensorID, sensorName}.

Definition 2.6.1.1 (Query): A query is a service provided by a sensor. In order to execute a

query, a sensor gets the parameter values of the associated smart entity.

 It is a 2-tuple q= <Qname, Qout >, where:

- Qname is the query name;

- Qout is a set of query result parameters.

Definition 2.6.1.2 (Publisher): A publisher produces a set of events.

Definition 2.6.1.2.1 (Event): An event occurs when the parameter value of a Smart Entity

changes. An event is detected by a sensor and published by a publisher associated with this

sensor. It is a 2-tuple e= <Ename, Ein >, where:

- Ename is the event name;

- Ein is a set of the data received from the event.

Definition 2.6.2 (Actuator): An actuator allows the modification of smart entity parameters

at a given point in time. It is a 2-tuple A = <P, C>, where:

- P is a set of parameters;

- C is a set of actions.

P has required and optional parameters. The required ones are: {actuatorID, actuatorName}.

Definition 2.6.2.1 (Action): Actions are services provided by actuators. In order to execute

an action, an actuator modifies the parameter values of the associated smart entity. It is a 2-

tuple Action= <Actionname, Actionin >, where:

- Actionname is the action name;

- Actionin is a set of action input parameters.

Definition 2.7 (Smart Residential Environment): A Smart Residential Environment SRE

is a set of smart entities coordinated by some kind of algorithm.

 21

 3

Smart Residential Environments:

Technologies, Software Architecture

 Introduction .. 21 3.1

 Service Oriented Architecture for SE .. 23 3.2

 Service Layer .. 25 3.3

 RESTful Web Services .. 25 3.3.1

 OSGi .. 27 3.3.2

 Big Web Services (WS-*) .. 27 3.3.3

 Semantic Web Services.. 35 3.3.4

 Discovery and Registry Layer ... 43 3.4

 Syntactic Discovery ... 43 3.4.1

 Semantic-based Services Discovery .. 45 3.4.2

 Application Layer .. 46 3.5

 Orchestration .. 47 3.5.1

 Choreography ... 50 3.5.2

 Ontology for a Semantic Web ... 50 3.6

 RDF .. 50 3.6.1

 OWL .. 51 3.6.2

 Challenges of Managing SRE .. 54 3.7

 Motivating Scenario ... 54 3.7.1

 Requirements and Challenges .. 56 3.7.2

 Summary ... 57 3.8

 Introduction 3.1

Using pluggable devices like actuators with simple power-lines or remote controllers can help

turn lamps, heaters, and other appliances on or off, but the majority of these devices are

isolated, incompatible and provide a single function. As mentioned in Section 2.3, a number

22 3.1 Introduction

of low power physical and transport network protocols such as Zigbee, IPSO, and 6LoWPAN

have been created to integrate physical components into the digital network. Furthermore,

integrating the physical world into distributed networks has resulted in a number of paradigms

such as context awareness [32], events management [33], prediction and decision making

techniques [2]. This means, software architecture for smart components distributed over

networks must contain these different elements.

In [34], Degeler et al. summarize some of the proposed smart environment architectures. The

main components of SE Architectures are shown in Figure 3.1. Automation in a smart space

can be achieved by perceiving, describing, and analysing the state of the environment, using

the collected surrounding information to deduce the environment situation and take the

suitable smart actions to change that state. Smart computing systems generally follow bottom-

up design methodologies. Sensors monitor the environment by collecting information from

physical components (Physical Layer) and then route this information via the Communication

Layer. Physical and communications layers consist of hardware components including

sensors, actuators, and the underlying low-level network protocols. Context and Event

management components in the Information Layer collect the received information and

transform it into high-level domain knowledge. Depending on the information collected and

stored in the database (knowledge Base), the Decision Maker on the Application Layer takes

and executes the appropriate actions in a top-down process. Actions are sent to the physical

components via the communication layer to actuators in order to change the state of the

physical components [35].

Figure 3.1: Basic smart environments architecture (inspired from [35])

Recently, some automation-building systems have been developed by commercial companies

to use information technologies and microcontroller-based networks to control home

appliances and features (e.g. heating, lamps, and doors). Some like KNX [36], BACnet [37],

and EnOcean [23] implement their own exclusive protocols commonly based on the OSI

3.2 Service Oriented Architecture for SE 23

model. They define their own data presentation system and how to structure and interpret the

data inside telegrams to guarantee the interoperability between different sensors and actuators.

Function blocks are used to describe device functionalities while complex control programs

are implemented in a central unit.

However, from the smart environment control and physical components discovery point of

view, hardware components still need more mechanisms to describe themselves and their

functionalities in order to be identified (discovered) and used efficiently. Developing systems

using their own set of low-level protocols and data models make coexistence hard to achieve

and require users to have expert knowledge of each device platform. Several other challenges,

which are still being explored, include heterogeneity, accessibility, invisibility, services

discovery (fundability), and the ability to model inhabitant behaviour through appliance and

object orchestration.

From these perspectives, middleware technologies and languages have been proposed on top

of the communication and network layers such as those based on Service Oriented

Architecture (SOA) [38], including Big web services (WS-*) [6, 7], RESTful [10, 11] and

OSGi [13, 39] technologies. A middleware layer is additionally integrated to provide a service

abstraction and an application-programming interface for those physical entities (see

Figure 3.3).

 Service Oriented Architecture for SE 3.2

Service oriented architecture has been proposed as a middleware solution for heterogeneous

and changing environments like smart environments [38, 40-42]. The idea behind service

oriented computing is to distribute services over the network and to make them available to

clients using open standards. These services can be implemented with any language and can

be discovered or invoked as well as composed to build complex scenarios. Applications

interact with services through an interface endpoint and not at the implementation level. Thus,

applications become more flexible due to their ability to interact with any implementation of a

contract [43].

SOA Main Roles

The SOA has three major roles (see Figure 3.2).

 Service provider builds the service and offers it on the Internet for consumers;

 Service requestor invokes an existing service by opening a network connection and

sending a request;

 Service registry & discovery is a central place where providers or developers publish new

services or find existing ones.

24 3.2 Service Oriented Architecture for SE

Figure 3.2: SOA principle roles (adapted from [40])

In the smart environment context, several approaches based on SOA have been introduced [5,

42, 44]. The architecture varies from one approach to another. Figure 3.3 illustrates a global

SOA architecture upon which smart environments are generally based. The next sections

explain the main additional layers: Service and Discovery & Registry as well as the services

Orchestration and Choreography in the Application Layer.

Figure 3.3: SOA-Based architecture for smart environment (inspired from [34])

3.3 Service Layer 25

 Service Layer 3.3

Developing software systems using smart entities (appliances, objects) through their

associated sensors or actuators where users have to manage the complexity of the underlying

sources of functionality, protocols, and libraries is still a complex, error-prone task and needs

expert knowledge of each embedded device platform. The goal of the Service Layer is to

avoid users having to deal with these complexities. As a middleware layer, it provides a

service abstraction and application-programming interface to the physical components, which

facilitates and standardizes their access by applications and developers. Smart components

expose their capabilities through web services. [43] gives a definition of what a web service

is.

Definition 3.1: A web service is a self-describing, self-contained software module

available via a network, such as the Internet, which completes tasks, solves problems, or

conducts transactions on behalf of a user or application. Web services constitute a

distributed computer infrastructure made up of many different interacting application

modules trying to communicate over private or public networks (Including the Internet

and WEB) to form virtually a single logical system.

The client requests a web service often by sending a XML message and receiving a

corresponding XML response. In this way, different operating systems and programming

languages can talk to each other. For example, Java can talk with C# and Windows

applications can talk with Linux applications [45].

There are three widely accepted standards for developing services for service-oriented

paradigms- RESTful Web Services [46], the Open Service Gateway Initiative (OSGi) [12],

and Big Web Services (WS-*) [47]. The remainder of this section gives a brief introduction to

these three technologies, whilst other service-oriented technologies like UPnp and Jini are

briefly introduced in Section 3.4.

 RESTful Web Services 3.3.1

Representational State Transfer (REST) designates an architecture style of networked

applications. The terms "representational state transfer", and "REST" were first introduced in

2000 in the doctoral thesis of Roy Fielding [48]. REST (also referred to as RESTful) uses a

stateless, client-server, cacheable communications protocol which is almost always the HTTP

[49] protocol. Its original feature uses HTTP as its application protocol to communicate and

send messages between machines instead of using complex middlewares such as CORBA

[50], and RPC [51]. RESTful web services are a lightweight alternative approach to the

design of web services [52].

26 3.3 Service Layer

3.3.1.1 RESTful & Resources

The main feature of Restful web services technology is its representation of information

elements as resources. Information exchanged is considered a set of resources identified by

global identifiers URLs [49]. Restful applications use HTTP operations (CRUD) to create,

update, read, and delete data. In order to interoperate with a resource, an application must

possess both the resource’s identifier and the required method. There is no need to know the

service implementations or system configuration, i.e. whether there are caches, firewalls,

gateways, or proxies between the application and the server which host the resources.

However, the application must be capable of interpreting the data format (representation)

returned from the resource, usually described in an HTML, JSON or XML document form,

though it may also be an image, plain text, or any other content format [52, 53].

3.3.1.2 RESTful Principle

To summarise, RESTful architectural style is based on four principles as presented in [52,

53].

 Resource identification through URI. Resources have URI identifiers used as global 1.

addresses for resource and services discovery.

 Uniform interface. Four operations (create, read, update, delete) are responsible for the 2.

manipulation of resources. They correspond to the HTTP verbs (PUT, GET, POST, and

DELETE).

 Self-description. Resource content can be presented in several formats (e.g. XML, 3.

HTML, JSON, PDF, or JPEG). Metadata about the resource help find transmission errors

and provide access control and authentication.

 Stateless interactions. Interactions between resources are stateless. 4.

The core advantage of a RESTful API is its flexibility. Various applications can be provided

with a system’s resources through data formatted in a XML document. However, RESTful

present several limitations. According to [52, 53], unanswered questions remain for RESTful:

(i) from the beginning, there is no common standard for the formal REST service description;

(ii) RESTful has no common standards applicable for all web services functions, like Events

and Notifications, Transactions, Security, Addressing, Trust and Orchestration.

3.3.1.3 Web of Things (WoT)

Internet of Things (IoT) [54, 55] and Web of Things (WoT) [52, 56] initiatives represent an

example of bringing RESTful web services technologies into resources constrained devices

by relying on IP addressing. The Internet of Things allows objects to communicate from a

network point of view but it does not support the application layer, so things are still isolated

and incompatible to understand each other. For this reason, the Web of Things has been

suggested to overcome this limitation and to provide an application layer to help the creation

3.3 Service Layer 27

of Internet of Things applications. In spite of this possibility, integrating the WoT patterns

from developers’ viewpoints is still a rigid process and lacking framework architectures to

facilitate their integration based on modularization and separation of concerns, so is still a

problem as far as this thesis is concerned.

In this thesis, WS-* technology is adopted to control the smart environment using Event

notification and orchestration strategies. The interested reader is referred to [10, 11, 46, 52]

for a good introduction and a thorough discussion of RESTful technology and Web of Things

since an in-depth analysis of this topic is outside the scope of this work.

 OSGi 3.3.2

OSGi defines another standard that assures interoperability for applications and devices at the

service level. OSGi is based on Java Virtual Machine (JVM) running on the device. The main

part of the OSGi Service Platform specification is composed of so-called bundles. They are

executed together in the same JVM. Each bundle has an API to access any other bundle

function [57]. The OSGi solution provides high flexibility where devices and applications

change over time. Unfortunately, OSGi-based applications need a java virtual machine in

order to run. Additionally, the OSGi framework needs too much knowledge to design, build,

implement, deploy, and maintain such service-oriented applications. Thus, most programmers

do not take full advantage of the OSGi facilities. For further reading, review of OSGi

techniques for ambient computing is given by [13, 58-60] as an in-depth presentation of OSGi

is outside the scope of this work.

 Big Web Services (WS-*) 3.3.3

The other standard is that of the Big Web Services (also referred to as WS-*). These are built

using a specific programming language and published using a Web Service Description

Language (WSDL) interface [61]. Web services are presented to clients as a set of operations

that provide business logic on behalf of the provider. They must be deployed on a server

container to be available for consumers.

The remainder of this subsection gives a brief introduction of WS-*-definition,

characteristics, and standards summarised from [40, 43, 47, 61] where an in-depth discussion

of WS-* is provided.

W3C working group [47] defines WS-* as follows.

Definition 3.2: A web service is a software system designed to support interoperable

machine-to-machine interaction over a network. It has an interface described in a

machine-processable format (specifically WSDL). Other systems interact with the web

service in a manner prescribed by its description using SOAP messages, typically

28 3.3 Service Layer

conveyed using HTTP (Hypertext Transfer Protocol) with an XML serialization in

conjunction with other Web-related standards.

3.3.3.1 SOAP: Simple Object Access Protocol

The messaging protocol currently used by WS-* is SOAP [62]. SOAP is designed to enable

separate distributed computing platforms to interoperate. Figure 3.4 shows that SOAP

messages can be built using different protocols such as HTTP to transport messages. SOAP

defines how a message is formatted but not how the message is delivered. HTTP is the most

commonly used transport protocol. However, other protocols, such as SMTP or FTP may be

used. SOAP features include: simplicity, flexibility, firewall friendliness, platform neutrality

as well as XML based messaging [43].

Figure 3.4: The web services communication and messaging network (taken from [43])

The structure of SOAP messages is relatively simple. It consists of a header and a body with

some fault sections, all defined in an envelope, as shown in Listing 3.1.

 Envelope is a mandatory root element which defines the beginning and the end of the

message. All elements of a SOAP envelope are defined using W3C XML schema.

 Header is an optional element to host additional features and functionalities, e. g.,

security, transactions, QoS attributes without modifying the specification.

 Body is a mandatory element which envelopes the message to be sent in XML format.

This element holds the requested/response data or an error message (fault). Requested

data can be XML data or parameters to a method call. Inside the SOAP body, the

operation’s name and its related arguments are given.

 Fault is an optional element that provides information about errors that may occur while

processing the message.

3.3 Service Layer 29

1 <Envelope xmlns="http://www.w3.org/2001/12/soap-envelope">

2 <Header>

3 ...

4 </Header>

5 <Body>

6 ...

7 <Fault>

8 ...

9 </Fault>

10 </Body>

11 </Envelope>

Listing 3.1: SOAP message structure

3.3.3.2 Web Services for Embedded Devices

Integrating and adapting WS-* technology to embedded devices has been realized in many

industrial and research processes [6, 63, 64] in spite of these devices limited computational

memory, code space and communication bandwidth. There are two basic requirements.

(i) Using a TCP/IP protocol generally over a IEEE 802 (Ethernet) or IEEE 802.11 for WiFi

network; and

(ii) Implementing an embedded web server which supports the HTTP protocol.

Further, many optimization techniques like in [8, 65-67] are used to implement web services

on sensor nodes in order to be efficient in term of message, and memory size. Figure 3.5

illustrates a typical example of a software development kit developed by [68] which enables

devices to host an embedded web server with web service framework over an HTTP protocol.

This kind of kit is designed for a wide range of smart devices like thermostats air

conditioners, sensors, etc.

Figure 3.5: Marvell software development kit (taken from [68])

Device Profile for Web Service (DPWS) [7] and Web Services for Devices (WS4D) [6, 69]

initiatives represent other examples of bringing WS-* technologies into resources constrained

devices. It is built on the core of the WS-* standards, e.g., WSDL 1.1, XML Schema, SOAP

30 3.3 Service Layer

1.2 etc. and enables the minimum set of web service specifications to provide secure

messages transmission, dynamic discovering capabilities, subscribing and receiving events to

and from a web service.

3.3.3.3 Describing Web Services with WSDL

W3C in [61] give a definition of what a WSDL is.

Definition 3.3: WSDL is an XML format for describing network services as a set of

endpoints operating on messages containing either document-oriented or procedure-

oriented information. The operations and messages are described abstractly, and then

bound to a concrete network protocol and message format to define an endpoint. Related

concrete endpoints are combined into abstract endpoints (services). WSDL is extensible to

allow description of endpoints and their messages regardless of what message formats or

network protocols are used to communicate.

A WSDL document provides all the necessary information for a client to invoke the

operations of a web service. According to [40] a WSDL description interface, as shown in

Figure 3.6, has two parts.

 Abstract description (Interface Definition) 1.

An abstract description portion describes the web service characteristics without any

description or details concerning the technology used to implement it. It consists of

several parts:

- Datatype is used as a container to include all used data types;

- Messages specify the payload of the incoming and outgoing messages; and

- Port type includes methods (referred to as operations) names supported by the service

and their signatures (input and output parameters).

 Concrete description (Implementation Part) 2.

The concrete description portion of the WSDL file defines the connection to the real

implementation of the web service. This description contains two parts: Binding, and

Service. These define the Internet transport protocols and message formats used for each

operation and the URL network address to access the web service implementation.

3.3 Service Layer 31

Figure 3.6: WSDL document structure (adapted from [40])

Example 3.1

Consider a smart object like an air conditioner coupled with an actuator to offer a web service

named setTemperature, for adjusting a room’s target temperature. The syntactical

implementation of WSDL elements are shown in Listing 3.2 and defined according to [40] as

follows:

 The definitions element encapsulates the entire WSDL document and usually contains

several namespaces definitions used in the remainder of the document.

 The types element serves as a container for all the abstract data types. It can contain

XML schema that define other data types. In this example, it is not used because there is a

single data type.

 The message and part elements: The message element determines the payloads of

messages, which are sent or received by a web service. Messages are composed of part

elements. Each part stands for an instance of a particular type. Line 4 specifies a part as

follows. <part name="parameter" type="xsd:float"/>.

 The portType and operations elements: The portType element represents several

abstract operations with the outgoing and incoming messages while operations define

the actions supported by the web service. There is one operation setTemperature

declared (see line 10) as follows. <operation name="setTemperature">.

 The input and output elements: For every operation, there are optional input and output

child elements. An operation uses inputs as method arguments and outputs for the

returned messages (see lines 11-12).

32 3.3 Service Layer

 The binding element determines which communications protocol (e.g. SOAP protocol)

can be used in order to invoke the web service (see lines 15-26).

 The service and port elements: The service element provides the physical address of

the service. It contains the port element that defines the physical location. It defines

where the service is located or to which network address the message has to be sent (see

lines 27-31).

1 <definitions targetNamespace="http://ws.diuf/..." >

2 <types/>

3 <message name="setTemperature">

4 <part name="parameter" type="xsd:float"/>

5 </message>

6 <message name="setTemperatureResponse">

7 <part name="return" type="xsd:boolean"/>

8 </message>

9 <portType name="setTemperature">

10 <operation name="setTemperature">

11 <input wsam:Action=

 "http://ws.diuf/setTemperatureService/setTemperatureRequest"

 message="tns:setTemperature"/>

12 <output wsam:Action=

 "http://ws.diuf/setTemperatureService/setTemperatureResponse"

 message="tns:setTemperatureResponse"/>

13 </operation>

14 </portType>

15 <binding name="setTemperaturePortBinding"

 type="tns:setTemperatureService">

16 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" .../>

17 <operation name="setTemperature">

18 <soap:operation soapAction=""/>

19 <input>

20 <soap:body use="literal" namespace="http://ws.diuf/"/>

21 </input>

22 <output>

23 <soap:body use="literal" namespace="http://ws.diuf/"/>

24 </output>

25 </operation>

26 </binding>

27 <service name="setTemperature">

28 <port name="setTemperaturePort"

 binding="tns:setTemperaturePortBinding">

29 <soap:address location=

 "http://diufpc10.unifr.ch:8080/SmartHome3/setTemperature"/>

30 </port>

31 </service>

32 </definitions>

Listing 3.2: WSDL elements

3.3.3.4 Consuming the Web Service

The WSDL standard provides two main techniques for calling web services within HTTP.

 Using HTTP-POST: A SOAP message is sent to the web service as the body of an HTTP

POST request. The message body contains the method name and its arguments. The

Server decodes the XML string and extracts the input parameter values.

http://ws.diuf/

3.3 Service Layer 33

 Using HTTP-GET (URL encoding): All the required data and method names are passed in

the URL string. For example, the setTemperature(20) method presented in the above

example, can be encoded as http:/servername/setTemperature?parameter=20. It is

similar to an HTML form when submitted with a GET request.

Example 3.2

Consider the above simple example to adjust the target temperature of an air conditioner using

the HTTP-Post method. The end user uses a client application built with Visual Basic or java

to control his appliances remotely by adjusting the target temperature. The steps for using the

service are as follows.

 The service provider (i.e. air conditioner actuator) makes its service available through a 1.

web service interface (WSDL document) shown in Listing 3.2, and deployed on an

embedded server container.

 The service requestor (client side) bundles the setTemperature request into a SOAP 2.

message, as shown in Listing 3.4.

1 <S:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

2 <S:Header/>

3 <S:Body>

4 <ns2:setTemperature xmlns:ns2="http://ws.diuf/">

5 <parameter>20.0</parameter>

6 </ns2:setTemperature>

7 </S:Body>

8 </S:Envelope>

Listing 3.3: SOAP request message

 The SOAP message is sent to the web service address as the body of an HTTP POST 3.

request.

 Once the web service at the server end receives the request, it unpacks the SOAP request 4.

and converts it into a command that the program can interpret. The embedded application

executes the command as required and responds with details concerning the execution

result.

 The web service packs up the appropriate response into another SOAP message and sends 5.

it back to the requestor, as shown in Listing 3.4.

http://192.168.1.4/setTemp?temp=25

34 3.3 Service Layer

1 <?xml version="1.0" encoding="UTF-8"?>

1 <S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

2 <S:Body>

3 <ns2:setTemperatureResponse xmlns:ns2="http://ws.diuf/">

4 <return>true</return>

5 </ns2:setTemperatureResponse>

6 </S:Body>

7 </S:Envelope>

Listing 3.4: SOAP response message

 The service requestor unpacks the SOAP message to get the results (the return result of 6.

the called for method). In Figure 3.7, the client’s application displays a confirmation

message about the adjusted temperature.

Figure 3.7: A confirmation of web service invocation on behalf of the client side

3.3.3.5 Web Services Notification & Eventing

In smart environments, sensors and actuators are designed to host embedded web servers with

web services over HTTP protocols. Usually, the applications and systems query and pull

information from servers, but this is not appropriate if applications need to be notified

immediately about any changes that might occur in the environment. Consider, for instance,

the situation where part of a control workflow or a process is designed to be triggered based

on events fired from a motion detection sensor attached in a given space. Rather than the

workflow requesting constant updates from the sensor, where, in most cases, the requestor

ends up with a no change response, it is better in practice if the event-based interaction pattern

is applied, where the sensor takes responsibility for notifying the process asynchronously

about any changes that may occur. In this way, HTTP calls (raising the scalability) and energy

consumption are minimized [52]. Web Services Notification and Eventing mechanisms can be

helpful for these needs. They are used to define the relationship between the service providers

(e.g. actuators, sensors) and service requestors (e.g. processes, applications, software systems)

using the publish/subscribe pattern (Event-Driven pattern). This involves an interested

receiver (Subscriber) which is registered to consume the published information and a

Publisher, which makes information available to all services subscribed for a specific topic.

In this pattern, the sent message represents information produced about an event. WS-

3.3 Service Layer 35

Notification and Web Services Eventing (WS-Eventing) specifications are proposed to

support event-driven patterns. Both specify a set of protocols, message formats and interfaces

to enable event subscription and notification [40, 43].

In general, there are two methods for communication between subscriber and publisher.

 Interaction via Broker Service. Subscribers and publishers communicate via an

intermediary event manager called a Broker, which performs broadcast and subscription

tasks (see Figure 3.8(a)). The advantage of a broker is to decouple the publisher from the

subscriber (referred to as loosely coupled), allowing both to work independently and

without having any knowledge of each other.

 Direct Interaction. A subscriber interacts directly with the publisher (see Figure 3.8 (b)).

When a new piece of information on a given topic is available, the publisher broadcasts

this information to all the services interested in it. It supports a tight coupling between

publishers and subscribers.

Figure 3.8: Web services notification methods (inspired from [40])

 Semantic Web Services 3.3.4

Exploiting web services is difficult using exclusively the WSDL descriptions, since each

service description lacks a description of the service properties and capabilities as well as its

non-functional attributes, such as service name, type, or location. To be able to describe

services, semantic web languages like the Ontology Language for Web services (OWL-S)

[70], Semantic Annotations for WSDL (SAWSDL) [71] and Web Services Modelling

Ontology (WSMO) [72] have been proposed. They introduce an additional level of

abstraction where a declarative description of the meaning of the service’s functionalities is

given. This helps to distance the user from the syntactic description and thus provides

semantic awareness and adds machine interpretable information to the service content, which

facilitate service discovery and composition. The remainder of this subsection explains briefly

the two main technology implementations for semantic web services: SAWSDL and OWL-S.

36 3.3 Service Layer

3.3.4.1 Semantic Annotations for WSDL and XML Schema (SAWSDL)

W3C in [71] defines SAWSDL as follows:

Definition 3.4: Semantic Annotations for WSDL and XML Schema (SAWSDL) defines

how to add semantic annotations to various parts of a WSDL document such as input and

output message structures, interfaces and operations.

Semantic annotations in SAWSDL are used for mapping WSDL elements (operation, inputs,

outputs, etc.,) to their corresponding semantic meanings and concepts.

Figure 3.9: SAWSDL elements (adapted from [73])

The SAWSDL use two extensions (see Figure 3.9) to annotate WSDL operations and their

parameters as defined in [73].

 Model reference is used to link WSDL elements to semantic concepts based on an

ontology.

 Schema Mapping enables XML data to be transformed into and from its related semantic

data (see Figure 3.10). It enables semantic clients to communicate with a web service.

Mapping languages like XSLT can be used for mapping and SPARQL to query the

ontology. Two elements are used for data mapping:

- sawsdl:liftingSchemaMapping is used to map data from a web service XML

message into its corresponding semantic elements.

- sawsdl:loweringSchemaMapping is used to map data from the semantic elements

into their corresponding web service XML message.

3.3 Service Layer 37

Figure 3.10: (a) Using Lifting and Lowering transformations and (b) XML data mediation (Taken from [73])

Example 3.3

Consider the previous adjusted target temperature example to illustrate how to use SAWSDL

annotations and specifically how to use loweringSchemaMapping to call the setTempera-

ture web service.

 Listing 3.5 represents the WSDL document with SAWSDL annotations.

- Line 2 specifies the location of the loweringSchemaMapping document.

- Line 3 specifies that the modelReference of the variable parameter is a

temperature.

- Line 7 specifies that the modelReference of the operation setTemperature is

adjustTargetTemperature.

1 <definitions targetNamespace="http://ws/">

2 <message name="setTemperature"

 sawsdl:loweringSchemaMapping=

 "http://.../ont2adjustTargetTemperature.xslt">

3 <part name="parameter" type="xsd:float"

 sawsdl:modelReference= "http://...#temperature"/>

4 </message>

5 ...

6 <portType name="setTemperature">

7 <operation name="setTemperature" sawsdl:modelReference=

 "http://...#adjustTargetTemperature">

8 <input ... message="tns:setTemperatureRequest"/>

9 <output ... message="tns:setTemperatureResponse"/>

10 </operation>

11 </portType>

12 ...

13 </definitions>

Listing 3.5: Using modelReference for semantically annotating a WSDL web service

38 3.3 Service Layer

 Listing 3.6 represents the result in XML format of a SPARQL query on the ontology to

retrieve the target temperature value, which should be sent as input parameter for

setTemperature operation.

1 <sparql xmlns="http://www.w3.org/2005/sparql-results#">

2 <results>

3 <result>

4 <binding name="temperature">

5 <literal>20</literal>

6 </binding>

7 </result>

8 </results>

9 </sparql>

Listing 3.6: Result of applying SPARQL to ontology

 Listing 3.7 represents the XSLT loweringSchemaMapping to map data from Listing 3.6

into its corresponding web service request message.

1 <xsl:transform version="2.0"

2 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

3 xmlns:sp="http://www.w3.org/2005/sparql-results#"

4 xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

5 <xsl:output method="xml" version="1.0" encoding="UTF-8"/>

6 <xsl:template match="sp:result">

7 <S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

8 <S:Header></S:Header>

9 <S:Body>

10 <ns2:setTemperature xmlns:ns2="http://ws.diuf/">

11 <parameter>

12 <xsl:value-of select="sp:binding(@name='temperature')

13 /sp:literal"/>

14 </parameter>

15 </ns2:setTemperature>

16 </S:Body>

17 </S:Envelope>

18 </xsl:template>

19 </xsl:transform>

Listing 3.7: An XSLT sample that shows loweringSchemaMapping notion

 The result of executing the XSLT program is shown in Listing 3.8 As can be noted, the

produced XML message corresponds to the setTemperature request message presented

in Listing 3.3.

3.3 Service Layer 39

1 <?xml version="1.0" encoding="UTF-8"?>

2 <S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

3 <S:Header/>

4 <S:Body>

5 <ns2:setTemperature xmlns:ns2="http://ws.diuf/">

6 <parameter>20.0</parameter>

7 </ns2:setTemperature>

8 </S:Body>

9 </S:Envelope>

Listing 3.8: Result of applying XSLT from Listing 3.7 to SPARQL result of Listing 3.6

3.3.4.2 Semantic Mark-up for Web Services (OWL-S)

W3C in [70], defines a OWL-S as

Definition 3.5: OWL-S is the ontology, within the OWL-based framework of the Semantic

Web, for describing Semantic web services. It can enable users and software agents to

automatically discover, invoke, compose, and monitor Web resources offering services,

under specified constraints.

OWL-S is an expressive mark-up language build by the DARPA DAML program [74], to

provide semantic annotations for declaring and describing web service content, capabilities

and properties including the names of operation, input and output parameters, and possible

other services parameters such as the quality of service (QoS), and security parameters.

OWL-S provides three kinds of semantic description to represent different aspects of a web

service: Service Profile, Service Model, and Service Grounding (see Figure 3.11).

Figure 3.11: The top level of OWL-S ontology (taken from [70])

The following briefly describes the main elements of the OWL-S as defined in [70].

 Service Profile Model describes the service features to other services or agents that want 1.

to use it (what the service provides). It defines the service inputs, outputs, effects, and

precondition parameters. The service profile describes the service as a function of three

basic types of information.

40 3.3 Service Layer

- The Provider information consists mainly of the serviceName and the

textDescription (a brief description of the service);

- The functional description consists of the hasInput, hasOutput, hasPrecondition

and hasResult constructs;

- The properties description allows for the description of a host of properties used to

describe features of the service for example its category.

 Service Model specifies how the service works. OWL-S services can be composed using 2.

a combination of atomic, simple, or composite services. An atomic process represents

mainly a WSDL operation. It specifies the inputs, outputs, and effects and it can be

consumed by the requestors in a single call.

 Grounding Model defines how to interact with the service by providing the necessary 3.

concrete details related to the transport protocol, URL location of the service and message

format. The Grounding model refers to specific elements within the WSDL specification

by using a set of constructs such as the wsdlDocument, wsdlOperation, wsdlInput, etc.

Mapping Between OWL-S and WSDL

Both OWL-s and WSDL schema are designed to clearly link the semantic and implemen-

tation description of the web service. The two concepts could be naturally mapped from one

to the other. Figure 3.12 shows how different elements should be mapped including:

 How WSDL operation can be transferred into OWL-S Atomic Process.

 How WSDL incoming and going messages can be transferred into OWL-S inputs/outputs.

 How WSDL binding element can be transferred into OWL-S grounding model.

Figure 3.12: Mapping between WSDL and OWL-S (taken from [70])

3.3 Service Layer 41

Example 3.4

Consider the setTemperature web service example using OWL-S. Listing 3.9 shows the

code of the OWL-S process equivalent to the setTemperature web service.

 Lines 4-23 define the service profile information as follows.

- Lines 5-11 specify confirmation as the semantic output parameter.

- Lines 12-18 specify temperature as the semantic input parameter.

- Lines 19-21 specify that the semantic service name is adjustTargetTemperature.

- Lines 25-30 specify the service model main body defining the atomic process adjust

TargetTemperatureProcess.

 Lines 32-59 define the grounding model of the process, which maps the elements of the

WSDL and OWL-S documents. It provides the necessary concrete details related to the

transport protocol and messages format including:

- Lines 33-40 map output element return from a web service XML message into its

corresponding semantic element (confirmation).

- Lines 41-48 map input element parameter from a web service XML message into its

corresponding semantic element temperature.

- Lines 49-51 refer to the WSDL URL address.

- Lines 52-58 refer to the corresponding web service operation setTemperature.

42 3.3 Service Layer

1 <?xml version="1.0"?>

2 <rdf:RDF>

3 ...

4 <profile:Profile rdf:about="#adjustTargetTemperatureProfile">

5 <profile:hasOutput>

6 <process:Output rdf:ID="confirmation">

7 <process:parameterType rdf:datatype="http://.../XMLSchema#anyURI">

8 http://.../XMLSchema#boolean</process:parameterType>

9 <rdfs:label>confirmation</rdfs:label>

10 </process:Output>

11 </profile:hasOutput>

12 <profile:hasInput>

13 <process:Input rdf:ID="temperature">

14 <process:parameterType rdf:datatype="http://.../XMLSchema#anyURI">

15 http://.../XMLSchema#float</process:parameterType>

16 <rdfs:label>temperature</rdfs:label>

17 </process:Input>

18 </profile:hasInput>

19 <profile:serviceName>

20 adjustTargetTemperature

21 </profile:serviceName>

22 <service:presentedBy rdf:resource="#adjustTargetTemperatureService"/>

23 </profile:Profile>

24 ...

25 <process:AtomicProcess rdf:about="#adjustTargetTemperatureProcess">

26 <process:hasOutput rdf:resource="#confirmation"/>

27 <process:hasInput rdf:resource="#temperature"/>

28 <service:describes rdf:resource="#adjustTargetTemperatureService"/>

29 <rdfs:label>adjustTargetTemperatureProcess</rdfs:label>

30 </process:AtomicProcess>

31 ...

32 <grounding:WsdlAtomicProcessGrounding

rdf:about="#adjustTargetTemperatureAtomicProcessGrounding">

33 <grounding:wsdlOutput>

34 <grounding:WsdlOutputMessageMap>

35 <grounding:wsdlMessagePart>

36 http://diufpc10:8080/smarthome/setTemperature?WSDL#return

37 </grounding:wsdlMessagePart>

38 <grounding:owlsParameter rdf:resource="#confirmation"/>

39 </grounding:WsdlOutputMessageMap>

40 </grounding:wsdlOutput>

41 <grounding:wsdlInput>

42 <grounding:WsdlInputMessageMap>

43 <grounding:wsdlMessagePart>

44 http://diufpc10:8080/smarthome/setTemperature?WSDL#parameter

45 </grounding:wsdlMessagePart>

46 <grounding:owlsParameter rdf:resource="#temperature"/>

47 </grounding:WsdlInputMessageMap>

48 </grounding:wsdlInput>

49 <grounding:wsdlDocument rdf:datatype="http://...#anyURI">

50 http://diufpc10:8080/smarthome/setTemperature?WSDL

51 </grounding:wsdlDocument>

52 <grounding:wsdlOperation>

53 <grounding:WsdlOperationRef>

54 <grounding:operation rdf:datatype="http://.../XMLSchema#anyURI">

55 http://diufpc10:8080/smarthome/setTemperature#setTemperature

56 </grounding:operation>

57 </grounding:WsdlOperationRef>

58 </grounding:wsdlOperation>

59 </grounding:WsdlAtomicProcessGrounding>

60 </rdf:RDF>

Listing 3.9: A simplified OWL-S description of the setTemperature web service

http://.../#anyURI

3.4 Discovery and Registry Layer 43

 Discovery and Registry Layer 3.4

Services discovery is defined as “the process of finding available services and retrieving their

service descriptions” [43], while Registry is “the process of publishing services to keep track

of what services offer” [43]. Registry and Discovery components are used as central places

where providers or developers can publish new services or find existing ones. In a SOA

concept, to discover services, consumers generally either use web services already known to

them, or find new services by consulting a Services Discovery. Additionally, the discovered

services and data mapping are often achieved manually. This is highly inconvenient,

especially for complex composition scenarios. However, integrating the SOA paradigm into

the design of SE has resulted in a number of different technologies for services discovery

aiming to satisfy the specific requirements of the SE [75-78]. Some syntactic and semantic-

based services’ discovery approaches are now introduced briefly focusing on their suitability

for usage in SE.

 Syntactic Discovery 3.4.1

The syntactic-based service discovery process focuses on operational and syntactic details for

matching and describing different services. Many existing technologies use syntactic

discovery such as Bluetooth [25], Service Location Protocol (SLP) [79], Jini [75], UPnP [80],

UDDI [76], etc. The reminder of this subsection gives a short introduction to some of these

technologies.

3.4.1.1 Jini

Jini is a distributed service-oriented architecture produced by Sun Microsystems. It is based

on three Java language protocols: discovery, join, and lookup. The Jini framework provides

administration facilities to discover the available services. One of the main parts of Jini

infrastructures is the Jini Lookup Service (JLS), which stores dynamic information about the

available services. Every service announces itself by publishing its information on the Jini

Lookup Service.

Jini includes:

 Clients: They are the service consumers. Jini is used by clients, PDAs, mobiles, and PCs.

 Jini infrastructure needs a web server, Java, RMI invocation, and lookup service.

 Lookup Service is a central registry for services, allowing search and selection of

services.

 Proxy Object is used as the mediator of the service.

44 3.4 Discovery and Registry Layer

 Notification Method: applications can subscribe to be notified about any change within

the lookup services.

Unfortunately, Jini is based on JVM and RMI, which may not be installed in many devices.

Service matching is performed by using simple matching schemata and at a syntactical level.

3.4.1.2 Universal Plug and Play (UPnP)

Universal Plug and Play (UPnP) is based on internet standards and technologies, such as

XML, TCP/IP, SOAP and HTTP. It allows the discovery of the presence of physical

components on the network and offers mechanisms to communicate and share data using

services. UPnP implements the Simple Service Discovery Protocol (SSDP) to discover

services on distributed networks. The main UPnp capabilities and functions are:

 SSDP enables a newly installed device to announce its services to the control point on the

network. The exchange of messages between the device and the control point is in XML

syntax and contains a description of the device like its URL location, services description

(a list of commands and actions), etc.

 The control point is then able to send commands and actions to the device using an

appropriate control message for each targeted service.

 UPnP also provides an event notification capability called General Event Notification

Architecture (GENA).

 Devices can be controlled and monitored via a web browser.

UPnP is an independent platform with zero configurations and the dynamic discovery of

devices and services. Unfortunately, UPnP is not frequently used due to a lack of management

applications. Most industry solutions lack the tools for the simple configuration and control of

gateways and devices. However, according to [81], the UPnP discovery protocol algorithms

dramatically decrease with an increase of the services in the ubiquitous computing

environment due to the impact of network congestion caused by multicast messages.

3.4.1.3 Universal Description, Discovery, and Integration (UDDI)

Universal Description Discovery and Integration (UDDI) is proposed as an open industry

standard supported by the OASIS community. It is an independent platform which enables the

business worldwide to register and discover web service applications on the internet. The

UDDI directory helps services requestors to access the available WSDL documents by

providing the required protocol bindings and message formats required to invoke them.

UDDI [76] supports three kinds of service description: white-pages, yellow-pages, and green-

pages services.

 White pages contain information such as the business’s name, text description (a list of

multi-language text strings) and contact information (names, phone numbers, and web

sites).

3.4 Discovery and Registry Layer 45

 Yellow pages provide business categories organized according to certain taxonomies such

as industry (a six-digit code for classifying companies), products and services, and

geographical (location of countries and region codes).

 Green pages contain the business information used to describe how other businesses can

conduct electronic commerce with them. It is a nested model comprising business

processes, service descriptions, and binding information.

Two kinds of APIs allow access to the UDDI Registry and Discovery: firstly, the enquiry API

used to retrieve information from the Discovery and, secondly, the publishing API used to

store information in the registry. Figure 3.13 summarizes the interaction between the different

web services partners. With UDDI, the following information can be requested [43]:

 Discovery of web services interfaces.

 Discovery of services based on keywords.

 Discovery of web service providers.

 Determination of security and transport protocols for a given web service.

However, according to [82, 83] UDDI has some shortcomings, for instance, its keyword-

based matches by service name or service classification, and UDDI supported syntactic

interoperability, but it does not support any semantic description of its content.

Figure 3.13: Interaction between web services partners (adapted from [43])

 Semantic-based Services Discovery 3.4.2

Service discovery technologies like UDDI, UPnP, and Jini focus on syntactic details for

services discovery. This limits the discovery process to services with keyword-based

46 3.5 Application Layer

searches. They enable explicit services to be found, only where the search can be made by

keywords such as the service and provider name, location, or business category.

Recently, semantic web technologies have been proposed for providing semantic service

descriptions by reference to ontologies using a formal language such as OWL. Adding

semantic information to syntactical web service definitions can help interpret the purpose and

usage of those services. Several semantic discovery algorithms have been proposed [77, 84,

85]. The main idea behind these approaches is to use semantic matchmaking mechanisms to

discover and select the suitable services based on the comparison of service capabilities. The

matchmaker component is the core of the discovery process. First, it retrieves the request and

initiates the discovery algorithm. Then, the matchmaker executes the algorithm and returns a

service list that makes a match between the underling semantic descriptions of the available

web services and the client request, depending on the required degree of match. Figure 3.14

shows matchmaking between requested and candidate services. The candidate service, in

general, has to fulfil the following conditions.

 Candidate operation name should match the operation name specified in the request. 1.

 Candidate service inputs (name, type) should match the inputs specified in the request. 2.

 Candidate service outputs (name, type) should match the outputs specified in the request. 3.

Figure 3.14: Semantic web services matchmaking

 Application Layer 3.5

One advantage that distinguishes smart environment from environments with user control is

the ability to model inhabitant behaviour. Smart models can be used to obtain a suitable

decision by combining and reusing the available services in order to customize the

environment and to reach specific goals such as automation, security, or energy saving. The

SE and web services share the same services composition motivation to find a suitable

3.5 Application Layer 47

solution by combining and reusing the available resources. Within SE, service composition is

related to the decision-making process. SE is composed of smart entities coupled with

networked devices and services that contain well-defined programming interfaces to enable

the creation of composed and distributed applications, allowing users to interact with and

control them. There are two ways to combine web services: through orchestration or

choreography.

 Orchestration 3.5.1

In orchestration, the web services involved are under the control of a single endpoint central

unit (process). This process controls the logic of the execution and the interaction with other

partners (web services). The partners and the process are loosely coupled. There are three

main orchestration-programming techniques for the decision-making. Automatic composition

(without human interaction), which enables the decision maker to autonomously take suitable

actions using an internal model of the environment. Manual composition is commonly used in

situations where the programmer has a well-defined process model (workflow). In a semi-

automatic or interactive composition, a software system usually assists users with service

selection, filtering, ranking, and integrating automatically. Whatever the technique used, it

needs a programming language to express the service composition algorithms. Automatic

techniques follow, in most cases, the declarative programming style using a declarative

language like GDL4WSAC [86], PDDL [87] or SHOP2 [88]. With a manual composition

technique, a number of tools and languages have been proposed by the software industry like

BPEL4WS [18] and BPMN [89]. Table 3.1 gives a comparison of three approaches regarding

their programming style, composition programming techniques, and programming languages.

Table 3.1: Comparison between composition programming methods

Theme

Composition Approaches

Automatic Manuel Semi-Automatic

Programming style declarative imperative partially declarative

Programming

techniques

AI-Planning, Rule-based,

Machine learning

workflow workflow

Programming languages PDDL[87], GDL4WSAC

[86], SHOP2 [88]

BPEL4WS,

BPMN [90]

OWL-S [70], Script

3.5.1.1 BPEL4WS

In this thesis, workflow-based orchestration strategy is adopted to control the SRE, so it is

important to introduce the basics of BEPL4WS.

48 3.5 Application Layer

BPEL4WS (also referred to as BPEL) is a web service workflow specification language

developed by IBM, Microsoft, and BEA. BPEL4WS allows the behavior of web services in a

business process interaction to be modeled. The specification has an XML-based grammar to

implement and define the control logic needed to orchestrate the web services involved in the

process flow. This implementation language can then be interpreted and executed by an

orchestration engine such as Oracle SOA Suite [91], apache ODE [92], or jBPM [93]. A

BPEL4WS process defines the order in which the appropriate web services are composed,

either in sequence or in parallel. BPEL4WS allows the description of conditional activities.

The invocation of a web service can, for example, rely on the results of another web service

invocation. With BPEL4WS, it is possible to create loops, declare variables, copy, and assign

values.

Example 3.5: The Structure of a BPEL4WS Process

To understand how business processes are described using BPEL4WS, the example of a

simplified business process to control an air conditioner based on room temperature is taken

again. Consider that a temperature sensor is able to publish an event about temperature

changes. Each time the BPEL4WS process receives such an event, it checks if the temperature

is greater than 30°; if yes, it switches the air conditioner on. Listing 3.10 shows a simplified

view of the process used in this example.

 The process element is the root element of the BPEL4WS process definition. It has a

name attribute and it is used to specify the definition related namespaces.

 The import element is used to import the WSDL document of the process.

 The PartnerLinks are used to identify the services participating in the process. It links

the process with the air conditioner services (switchOn, switchOff).

 The Variable elements are used to declare the variables in order to receive, manipulate,

and send data. Variables are defined in either WSDL message types, or XML schema

types. In this example, there are three variables: inputVariable0 to hold the received

data of the event, Invoke1_OutputVariable to hold the return value of calling the

switchOn service, and Invoke1_InputVariable to hold the data sent to the switchOn

web service.

 The sequence element is used to declare the beginning of the main body of the process.

It allows several activities to be defined that will be performed sequentially.

 The receive element is used to wait for the temperature sensor to notify the process

about any change.

 The if-else element is a conditional statement used to control the program flow. There

are other control constructs like while and forEach.

 The documentation element is used to insert comments.

3.5 Application Layer 49

 The invoke element is used to invoke the web service switchOn.

1 <?xml version = "1.0" encoding = "UTF-8"?>

2 <process name="BPELProcess1"

3 targetNamespace="http://.../Project13/Project1/BPELProcess1"

4 xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable"

5 xmlns:client="http://.../Project13/Project1/BPELProcess1"

6 xmlns:ora="http://schemas.oracle.com/xpath/extension"

7 xmlns:bpelx="http://schemas.oracle.com/bpel/extension"

8 xmlns:bpws="http://.../wsbpel/2.0/process/executable"

9 xmlns:ns1="http://.../events/edl/TemperatureEventDefinition"

10 xmlns:ns2="http://xmlns.oracle.com/TemperatureEvent"

11 xmlns:ns3="http://parent.room.ws/"

12 xmlns:bpm="http://xmlns.oracle.com/bpmn20/extensions"

13 xmlns:xdk="http://.../bpel/extension/xpath/function/xdk"

14 xmlns:ldap="http://schemas.oracle.com/xpath/extension/ldap">

15 <import namespace="http://.../Project13/Project1/BPELProcess1"

16 location="BPELProcess1.wsdl" importType="http://.../wsdl/"/>

17 <partnerLinks>

18 <partnerLink name="PartnerLink1"

19 partnerLinkType="ns3:ParentAirconditioner_PL"

20 partnerRole="ParentAirconditioner_Role"/>

21 </partnerLinks>

22 <!-- VARIABLES List of messages and XML documents used by BPEL -->

23 <variables>

24 <!-- Reference to the message passed as input during initiation -->

25 <variable name="inputVariable0" element="ns2:process"/>

26 <variable name="Invoke1_InputVariable"

27 messageType="ns3:switchOnAC"/>

28 <variable name="Invoke1_OutputVariable"

29 messageType="ns3:switchOnACResponse"/>

30 </variables>

31 <!--
32 ORCHESTRATION LOGIC

33 Set of activities coordinating the flow of messages across the

34 services integrated within this business process

35 -->

36 <sequence name="main">

37 <!-- Receive input from requestor. -->

38 <receive name="receiveInput0"

39 bpelx:eventName="ns1:TemperatureEvent"

40 variable="inputVariable0" createInstance="yes"/>

41 <if name="If1">

42 <documentation>if temperature >30°</documentation>

43 <condition>$inputVariable0/ns2:temperature>30</condition>

44 <invoke name="Invoke1" partnerLink="PartnerLink1"

45 portType="ns3:ParentAirconditioner"

46 operation="switchOnAC"

47 outputVariable="Invoke1_OutputVariable"

48 inputVariable="Invoke1_InputVariable"

49 bpelx:invokeAsDetail="no"/>

50 <else>

51 <documentation>do nothing</documentation>

52 <empty name="Empty1"/>

53 </else>

54 </if>

55 </sequence>

56 </process>

Listing 3.10: A simplified BPEL4WS process for air conditioner control

http://.../Project13/Project1/BPELProcess1
http://.../Project13/Project1/BPELProcess1
http://schemas.oracle.com/xpath/extension
http://schemas.oracle.com/bpel/extension
http://parent.room.ws/

50 3.6 Ontology for a Semantic Web

 Choreography 3.5.2

Choreography, in contrast to orchestration, does not depend on centralized processes but on

the distributed and co-operative components (participators). Each participator has to know

exactly when to become active and with whom to interoperate. A multi-agent system is an

example of applying the choreographic composition paradigm. It consists of self-governing

entities named agents. These agents interact and cooperate to control different aspects of their

environments. Ontologies are often used to add semantic descriptions to communication

messages between agents. One of the main challenges in this approach is the distribution of

shared resources. The problem is that agent decision makers can depend on resources that

might already be in use by other agents. Service composition is done dynamically through the

group’s interactions. When a decision or action is required, the entities express it as a service

invocation. The interested reader is referred to [43, 94] for a thorough discussion in

choreography and to [17, 95, 96] specifically for multi-agents systems in pervasive computing

environments, as an in-depth discussion is outside the scope of this work.

 Ontology for a Semantic Web 3.6

The Ontology is one of the most used technologies for providing the vocabulary and

describing the data knowledge structures, concepts, and constraints concerning a domain of

interest. It allows the description of a set of hierarchical concepts and the relationships

between those concepts. Ontologies enable people and machines to share a common view in a

heterogeneous environment and makes information understandable, sharable, and reusable.

Web Ontology Language (OWL) [97] is an example of an ontology that supports a semantic

web. OWL is based on the Resource Description Framework (RDF) [98] and the RDF schema

recognized by the W3C.

 RDF 3.6.1

RDF is a data model similar to an entity-relationship. The core structure of RDF is a set of

statements about resources. A resource can be anything- a physical object (e.g. vehicle,

home), a service (e.g. goods, sales, booking service) and so on. The RDF database is stored in

XML syntax as a set of statement expressions, each consisting of a subject, a predicate and an

object (known as triples in RDF terminology). The subject represents a resource; the

predicate specifies the relationship between the subject and the object, which can be a

resource or a value like a string or a number. For example, “Lamp has Location Room” is a

triple. The subject is “Lamp”, the predicate is “has Location”, and the object is “Room”. The

triples are identified via a uniform resource identifier (URI). Figure 3.15 shows a graph-based

model to represent a statement.

3.6 Ontology for a Semantic Web 51

Figure 3.15: An RDF graph with Subject, Object nodes and a triple connector (Predicate)

 OWL 3.6.2

OWL represents a vocabulary set to be used in RDF models. It defines the classes for the

resources, and the properties that belong to each resource. The main OWL concepts are Class,

Instance, Object property, Data property, Domain, and Range.

3.6.2.1 Class

A class represents a set of resources. A class is conventionally named using nouns. It contains

a set of instances which represent real things and share the same properties. For example, in

Figure 3.16, a class Room contains instances named room_1, room_2 and so on. It is possible

to add additional class information by including properties such as the subClassOf property

to relate a class to its parent class. For example, the class Room is a subclass of class

Location.

Figure 3.16: (a) Class presentation; (b) Representation of instances

Listing 3.11 shows an example of how OWL statements are written in RDF. It declares that

class Room is a subclass of class Location.

1 <owl:Class rdf:about="http://www.unifr.ch/...HomeOntology#Room">

2 <rdfs:subClassOf>

3 <owl:Class rdf:about="http://.../HomeOntology.owl#Location"/>

4 </rdfs:subClassOf>

5 </owl:Class>

Listing 3.11: A simplified OWL representation in RDF syntax

52 3.6 Ontology for a Semantic Web

3.6.2.2 Object Property

An object property links a class instance with another class instance. With an object property,

a statement consists of a domain (equivalent to the subject), a property (equivalent to the

predicate), and a range (equivalent to the object). For example, in Figure 3.17 the object

property hasLocation links the domain Lamp class with the range Room class.

Figure 3.17: Representation of ObjectProperty

Listing 3.12 shows how the object property is declared in RDF

 Line 1 declares lamp_1 is an instance of class lamp.

 Line 2 declares that the instance lamp_1 has location room_1.

1 <diuf:Lamp rdf:about="http:///HomeOntology.owl#lamp_1">

2 <diuf:hasLocation rdf:resource="http://.../HomeOntology.owl#room_1"/>

3 </diuf:Lamp>

Listing 3.12: A simplified ObjectProperty example in RDF syntax

An object property can be functional, inverse, transitive, and symmetric.

 Functional Property: In a given instance; there can be -at most- one instance that is

related to the instance via the property. For example, the hasLocation property is

functional, which implies that each lamp instance must belong to one location.

 Inverse property: If a property links instance R1 to instance R2 then its inverse property

will link instance R2 to instance R1, for example, if the hasEntity property is the

inverse property of the hasLocation property. This implies if lamp_1 has location

room_1, then room_1 has entity lamp_1.

 Transitive property: If the property P1 is transitive, and it links instance R1 to instance

R2, and also instance R2 to instance R3, then it can be inferred that instance R1 is linked

to instance R3 via property P1.

 Symmetric property: If a property P1 is symmetric, and the property links instance R1 to

instance R2 then instance R2 is also linked to instance R1 via property P1.

3.6 Ontology for a Semantic Web 53

3.6.2.3 Data Type Property

A data type property links class instance (domain) to data type values (range). Data type

ranges can be limited to a single type (i.e. integer, float, or string) and can be restricted to a

range of possible values (e.g. switch state could be a string value equal to “on” or “off”).

3.6.2.4 Property Restrictions

Restrictions specify the constraints on the properties (object properties or data type

properties). There are two types of restrictions: type constraints (restrictions on type) and

cardinality constraints.

 Type Constraints: This kind of restriction restricts the type range that can be mapped to a

domain via a given property. For example, the hasLocation property restricts all

instances of an Oven class to Kitchen instances as location. There are three types in this

restriction: allValueFrom, someValueFrom and hasValue.

 Cardinality Constraints restrict the number of values that an instance in the domain can

have with a given property. For example, an actuator should have at least one service.

There are three types of cardinality constraints: Minimum Cardinality, Maximum

Cardinality, and Cardinality Restriction Constraints.

3.6.2.5 SPARQL Protocol and RDF Query Language

One of the main features of using an ontology like OWL is that it can retrieve information

using queries. Query languages like SPARQL [99] can be used to query information from

ontologies stored in Resource Description Framework (RDF) format. For example, ontology

classes hierarchy can be retrieved or a check on whether a class is a subclass of another.

Additionally, it is possible to query instances such as displaying a set of instances belonging

to a given class which fit specific constraints.

Example 3.6

Consider a home consisting of several rooms, each containing some lamps. An ontology

defining the classes Room and Lamp with their property relationships is created similar to

Figure 3.17. A number of instances are instantiated for each class to get a list of all lamp

instances in each room. Figure 3.18 shows how to use SPARQL query to get a response with

the help of the Protégé [100] tool. The query consists of a SELECT clause used to retrieve lamp

and room instances, and a WHERE clause, which includes a comparison predicate to eliminate

from the result set rows which do not satisfy the following conditions:

 ?lamp must be an instance of class Lamp. 1.

 ?lamp must be a lamp instance located in ?location instance. 2.

54 3.7 Challenges of Managing SRE

Figure 3.18: Result of SPARQL query

 Challenges of Managing SRE 3.7

So far, the technologies related to smart environments have been outlined. In the following

section, the challenges of controlling smart residential environments through a case study

realized in the field of a smart home is explored as a guiding thread for the remainder of this

thesis.

 Motivating Scenario 3.7.1

The final user, Jane, controls her home environment in a way that allows her to save energy

and to adapt her environment to her habits and living conditions. Figure 3.19 describes Jane’s

home populated with a set of smart entities, including:

 Smart Room: Each room (A, B, C) has two sensors. The first is a presence detection 1.

sensor which detects user presence and publishes an event when the associated state

changes. The second is a temperature sensor which monitors the temperature and

publishes an event when the associated state changes.

 Smart Entrance Door: The home entrance door has an access control actuator, which 2.

provides open/close, and lock/unlock actions. The door also has an access sensor to detect

if somebody enters or leaves the house, a lock sensor to detect if the door is locked or

unlocked and another sensor to detect if the door is opened or closed.

 Smart Lamp: Each lamp in rooms (A, B, and C) has an actuator to switch it on/off. 3.

 Smart Heater: Each heater in the rooms (A, B, and C) has an actuator to switch it on or 4.

off, and adjust the target temperature.

 Smart Shower: The shower has an actuator to open and close the shower faucet. It also 5.

has a faucet sensor to detect whether it is open or closed, and to publish an event when the

associated state changes.

3.7 Challenges of Managing SRE 55

Figure 3.19: Smart home scenario

Table 3.2 gives an example of how a Home Control System (HCS) could use these smart

entities to save energy (other possible examples would be: comfort, surveillance and access

control, security, healthcare, etc.).

Table 3.2: Energy saving scenario

Time Description

T1 The faucet sensor informs via its event publisher, the HCS when Jane starts her shower in

Room C.

T2 The HCS triggers a timer to wait for 10 minutes.

T3 After 10 minutes, if the shower is still open, the system forces it to close.

T4 The presence detection sensor informs via its event publisher, the HCS that Jane has left

Room B.

T5 The HCS waits for 3 minutes, and then switches off the lamp in Room B if it is on.

T6 The temperature sensor informs via its event publisher the HCS that there is a significant

temperature change (i.e. >2°) in Room A.

T7 The HCS checks whether the current temperature in Room A is more than 18 and less than

22. If so, the system takes the appropriate action to bring the temperature within these

intervals.

T8 The access sensor of the entrance door informs the HCS that Jane has left the home.

T9 The HCS configures the house in the best way to save energy taking into account Jane’s

stored preferences and that there is nobody at home.

56 3.7 Challenges of Managing SRE

 Requirements and Challenges 3.7.2

The above scenario demonstrates the requirements to be satisfied in a home energy saving

scenario. Below are examples of such requirements.

Modelling and Describing SRE

 There is a need to define a generic model of the smart space in order to answer clearly 1.

questions such as what are the smart entities present in a home; what actuators and

sensors they are attached to; what services (actions, queries and/or events) might they

provide? Such a model could help programs to have a high degree of abstraction by using

declarative elements and hiding several programming details. The smart space model

should be a location-aware model. For example, when an event occurs, the control system

often depends on the location of the event to determine the appropriate available services

in the zone of space where suitable action is required.

Accessibility & Interoperability of Services in SRE

 Although an additional service layer solves the heterogeneity and interoperability 2.

problems, the functionalities of the actuators and sensors could be implemented in

different ways depending on the constructors. For example, to switch a lamp on, one

constructor might provide an on operation, while another would call it switchOn. The

question now is how to enable a standard description to operate the different services of

the physical components of an SRE? Hardware components (actuators and sensors) need

a mechanism to describe themselves and their services. Thus, there is a need for an

ontology-based semantic description of services to help service discovery and

composition by providing standardized and unified semantic descriptions.

Service Discovery in SRE

 The control system not only needs to have a precise idea of the explicitly involved 3.

services, but also be able to link them with the associated smart entities (through actuators

and/or sensors). The question now is how can the discovery process find available smart

entities, and link them with their associated services and locations? Using an ontology

and semantic-based discovery mechanism can help link and interpret the purpose and

usage of both smart entities and their associated services.

Service Orchestration in SRE

 The decision making process is often a conditional set of actions that need to be taken in 4.

order to achieve the desired goal. For example, in a scenario where an inhabitant leaves

the home, the decision maker could determine that it should turn off all the lights and

reduce the temperature of the heating system.

3.8 Summary 57

 The service implementation and composition details should be hidden from the user. This 5.

might imply that an abstract generic process template is defined to raise the level of

abstraction of the composing services to user interactions with the system.

Process-Oriented Domain Specific Language for SRE

 The orchestration of hundreds of applicants is difficult using only existing solutions like 6.

web service technologies with a composition language like BPEL4WS. It is difficult to

build control systems when all the service software components are explicitly defined.

There is a lack of process-oriented domain specific languages to facilitate the integration

of the smart entities involved and their services in a declarative manner to automatically

discover and transparently use smart objects under the control of a centralised process.

 The processes should support event handlers (an event represents the occurrence of 7.

something interesting). Event handlers allow processes to respond to the expiration of

timers or to events by executing a specified set of operations independently from the rest

of the process. The decision-making is often related to the efficient sensing of the current

situation in the smart space. In the home scenario, movement detection or a temperature

change can happen at any moment. Providing an event handler mechanism makes the

process more aware of the context.

 The process-oriented language should provide control flow constructs (while, if, pick 8.

(switch), flow, etc.) to allow for creating complex orchestration control scenarios.

 Parallel execution is extremely useful whereby a process, such as an energy saving 9.

scenario, must react to events simultaneously over a long period of time.

 The process should be generic in order to support multi-scenarios in a smart environment 10.

context like saving energy, security etc.

 Finally, the end-user should be able to interact with the system to reconfigure and 11.

customize the processes according to her needs.

 Summary 3.8

This chapter presented the background and current status of smart environment architecture,

mainly focusing on the collaboration aspects and challenges related to physical components

accessibility, discovery, and control. Physical spaces are characterized by being highly

distributed and very physically coupled. This involves challenges unknown in traditional

distributed network systems. The chapter examined the available technologies and the

unresolved challenges in SE both in lower layers (sensors and actuators that enable coupling

between the virtual and physical worlds) and in the higher layers (application and

middleware).

58 3.8 Summary

On the one hand, emerging SOA concepts and technologies from many initiatives related to

smart automated environments help data sharing and solve heterogeneity problems because of

the different network protocols. According to [43], a service-oriented paradigm offers the

following advantages:

 Interoperability: Services enable the sharing of data and communication between different

smart entities and applications in a flexible manner. Thus, services and applications

become platform and technology independent enabling new applications without adding

new hardware components to be deployed.

 Reusability: A service is a reusable component. Services provide the means to make a pre-

existing code available through the internet and can be remotely accessed using standards

protocols such HTTP. As a result, the program’s functionalities can be invoked by many

applications for different purposes.

 Standardized Protocol: Web services are implemented with standard protocols for

communication, service description, and discovery using XML messages. This has many

advantages like unified and standardised access, heterogeneity, wide range of choices, and

reduction in costs.

 Services Discovery: SOA offers a service discovery ability to find the desired services.

 Loose Coupling: Service consumers and providers are loosely coupled. This implies that

the service requestor can ignore any implementation or technical details of the service

provider (e.g. programming language, platform).

 Composability: SOA enables the use of composing languages like BPEL4WS to combine

the available services to address new requirements. Smart systems rely more and more on

services composition to provide intelligent automation to their final users.

On the other hand, from the smart environment services discovery and composition

perspective, hardware components still need methods to describe themselves and their

services to allow them to be (automatically) discovered and used. In the application layer,

embedded devices remain hard to integrate into complex control applications. Several

challenges still need to be addressed in order to build a smart system able to orchestrate smart

objects: for instance, there is a lack of frameworks and domain specific languages to facilitate

the orchestration of smart spaces, and a need to involve user preferences and context-

awareness in the control process. These concerns are the subjects of the next chapters.

 59

 4

A Framework for Controlling Smart

Residential Environments

 Related Work .. 60 4.1

 The GF4SRE Framework ... 61 4.2

 The Global Software Architecture ... 63 4.3

 The Ont4SRE Ontology for SRE .. 64 4.4

 Ont4SRE Concepts .. 64 4.4.1

 Ont4SRE Properties and Restriction Types ... 71 4.4.2

 Key Benefits of the Ont4SRE Ontology .. 74 4.4.3

 Ontology Mapping ... 77 4.4.4

 Services Accessibility (Context) .. 77 4.5

 Web Services (WS-*) .. 78 4.5.1

 Semantic Annotations of the Web services ... 80 4.5.2

 Implementation of the Smart Residential Environment (Context) 82 4.5.3

 Registry and Discovery Engine ... 83 4.6

 Services Registry ... 84 4.6.1

 Services Discovery... 87 4.6.2

 Key Benefits of Discovery & Registry Engine .. 91 4.6.3

 Implementing the Registry and Discovery Engine 92 4.6.4

 The GPL4SRE Language: Overview ... 93 4.7

 GPL4SRE Program Structure .. 94 4.7.1

 Main Constructs ... 96 4.7.2

 Key Benefits of the GPL4SRE Language .. 99 4.7.3

 Process Generator .. 100 4.8

 Benefits of Using the Process Generator ... 101 4.8.1

 Software Implementation of the Process Generator 102 4.8.2

 Process Execution Engine .. 102 4.9

 The Process Lifecycle .. 103 4.9.1

60 4.1 Related Work

 Installing the Process Execution Engine .. 103 4.9.2

 Process Template Tool ... 104 4.10

 Client User Interface .. 105 4.11

 Discussion and Summary .. 105 4.12

The previous chapter demonstrated the current technologies and challenges related to

controlling SRE. The goal of this chapter is to clearly define all the concepts involved in the

GF4SRE framework proposed for managing SRE. This chapter is a reworked and extended

version of the publications in [31, 101-104].

 Related Work 4.1

A number of attempts related to the control of SRE have been made. According to the

orchestration techniques mentioned in Section 3.5.1 and shown in Figure 4.1, manual

compositions [90, 105-109] are often defined as workflow using a procedural process-oriented

language like BPEL4WS or BPMN. The users program and tell the system which operations

to perform or which actions to take during the composition process development steps. Many

tools like Oracle SOA Suite [91], JOpera [110] are available to enable the creation of

workflow-based processes. The problem with this approach is that users have to make tedious

efforts to find, and understand detailed knowledge about many web service resources, and

demand usually explicit details about web service grounding. This approach does not often

deal with changing environments, where services and devices might change their addresses,

or be replaced. Web services have to be known during the process design phase, and

discovery is done in the most cases manually.

The automatic composition technique (without human involvement) is used when the user has

no process model, but does have a set of predefined goals, constraints (rules) and preferences.

It involves the representation of possible actions and their effects, and techniques for

efficiently searching for possible plans. Dynamic composition methods are required to

generate the final plan automatically. A common characteristic of these approaches is the use

of a declarative programming style. Several such approaches have been introduced in the

literature [111, 112], e.g., those based on Linear-time Temporal Logic (LTL) [113, 114],

Artificial Intelligence Planning (AI) [16, 115-118], or Rule and Policy-Based [77, 119-124].

However, these techniques are still viewed as highly complex because of the rapid

proliferation of available services to choose from, and the risks of producing side effects or

drifting away from the initial user’s goal. Rule-based systems often require a large number of

rules that programmers define manually to deal with the environment context and which

might produce a conflict between different rules when several rules are active. The automatic

approach is relatively inefficient and is significantly more complex when programmers know

which set of actions and conditions to take to achieve a predefined goal such as saving energy

or for security.

4.2 The GF4SRE Framework 61

The third technique (which is close to this thesis) is the semi-automatic (interactive) one. In

this kind of orchestration, the system usually helps users to find, filter, and integrate

automatically the desired services while the programmer defines the control workflow [125-

127]. In addition, it may enable end-users to interact with the system during the workflow

execution. Some research efforts have exploited ontology and semantic data models to

partially automate the services’ discovery and compositions [33, 77, 128]. However,

orchestrating the interaction between smart entities to direct their behaviours is still a

challenging task that needs solving both in terms of low-level accessibility problems and

high-level discovery and composition challenges. This thesis intends to deal with these issues

by proposing a generic framework for managing SRE.

Figure 4.1: Orchestration techniques

 The GF4SRE Framework 4.2

The overall goal of this thesis is to define a framework and its software architecture and the

infrastructure necessary to support the integration of the physical objects in the digital world

and facilitate the modelling and implementation of the tasks associated with SRE

management. The main refined elements that together embody the GF4SRE framework and

satisfy the requirements discussed in Section 3.7.2 are the following.

62 4.2 The GF4SRE Framework

 Modelling and Describing SRE: Consider there is a smart environment, which we want 1.

to control. It consists of diverse networked smart objects that inhabitants use. These smart

entities are coupled with miniaturized actuators and sensors which provide services in the

form of actions, queries and events to change, measure, or perceive their states. One of

the contributions of this thesis is to propose the Ont4SRE ontology for describing and

modelling the smart residential environment. It is necessary to have a clear description of

the smart entities' properties and capabilities. It must describe the building environment

resources, including household appliances, lights, windows, doors, etc., as well as their

properties, locations, and functions.

 Accessibility & Interoperability of Services in SRE: In the network layer, actuators and 2.

sensors are supposed to be connected using the adapted protocols introduced in Section

2.3. In the Service Layer, WS-* is a commonly used technology to solve heterogeneity

and interoperability challenges in the middleware layer. Web servers are embedded in

sensors and actuators and apply the WS-* web service style to expose their services

through a WSDL interface, as explained in Subsection 3.3.3.2. How to model the

functionalities and the services of SRE using the WS-* principles is explained and

supporting the WSDL syntactic description with Ont4SRE-based semantic annotations to

enable the discovery of relevant smart entities and their services automatically in an

abstract manner is also suggested.

 Services Discovery in SRE: A software component, which deals with the registry and 3.

discovery requirements in the SRE context, is proposed. The Ont4SRE ontology and a

proposed query-based discovery mechanism are suggested in order to link and interpret

the purpose of both smart entities and their associated services.

 Services Orchestration and a Process-Oriented DSL for SRE: Another fundamental 4.

element is the scenario templates used to control the SRE, written within an original

process-oriented domain specific language, and characterised by the following.

- It is a workflow-based composed of several activities linked with control flow and

execution constructs.

- It enables the discovery of the smart entities automatically, and supports events

handling.

- The end user is able to configure and customizes each template according to her

requirements and preferences.

- There are translation and execution software components used to compile and run the

templates.

4.3 The Global Software Architecture 63

 The Global Software Architecture 4.3

The GF4SRE framework architecture proposed in this thesis is illustrated in Figure 4.2. It

comprises the following components and functionalities.

 The final user can choose a recommended Generic Process Template (a control scenario)

from the Process Templates Repository. Templates are defined using the GPL4SRE

domain specific language and based on a pluggable Ont4SRE ontology.

 The Process Generator converts the chosen template into an executable process.

 At the execution stage, the semantic smart entities' characteristics that are declared in the

process are captured and sent to the Registry & Discovery Engine as a service query.

Smart entities and their available services are usually published in the service registry.

 It is possible for the final user to precise his context preferences through a simple Client

User Interface.

 The Process Execution Engine is the runtime environment.

Figure 4.2: GF4SRE framework architecture

The remainder of this chapter explains in details the concept and role of each component in

the GF4SRE framework.

64 4.4 The Ont4SRE Ontology for SRE

 The Ont4SRE Ontology for SRE 4.4

Several efforts have been introduced for modelling household

environments or describing device hardware using ontologies,

including [129, 130] which introduce an ontology to describe the

hardware, software and measurement capabilities of devices like

sensors. Ontologies like [131-133] have been proposed to reason, manipulate and access

context information in smart environments. They offer inference rules to reason about the

context and facilitate data sharing. In [134], Natalia et al. surveyed other ontologies which

support modelling personal profiles and human behaviour recognition to help build assistance

systems in smart homes. However, it is not enough to have wide information about appliances

and environment context alone; many other essential concepts like sensors, actuators, services

and their parameters to help functionality modelling in ambient systems are required.

From the functionalities and service concept perspectives, DomoML [135] is another example

of an ontology for building household models. It consists of two main ontologies: DomoML-

environment is to describe the objects in the house; and DomoML-function is to specify the

devices’ functionalities. Therefore, this work benefits from this and similar ontologies like

[136, 137], to propose the Ont4SRE ontology with more concepts and relations to sufficiently

model SREs. The Ont4SRE ontology serves as the link between the entities in the physical

world and the services of the virtual one in order to model and control the SRE at a high level

of abstraction.

 Ont4SRE Concepts 4.4.1

The Ont4SRE defines an ontology model to share a common presentation of the SRE,

including the smart entities, locations, associated embedded devices (sensors, actuators),

services (action, query, and event) and the relationships between them. This enables questions

such as what the smart entities present in the space are; where they are located; to which

actuators and sensors are they attached; and what are the services capabilities that they might

provide, to be answered. The formalisation of the SRE introduced in Section 2.6 is

transformed into an Ont4SRE ontology model, as illustrated in Figure 4.3.

4.4 The Ont4SRE Ontology for SRE 65

Figure 4.3: Mapping between formalization & ontology presentation

Figure 4.4 shows the schema of the proposed Ont4SRE ontology. It is modelled with the web

ontology language (OWL) and realised with Protégé as the tool to describe the different

concepts of a SRE. Each concept of the Ont4SRE ontology is represented as an OWL class.

The Ont4SRE model consists of the following concepts: Entity, Actuator, Sensor, Publisher,

and Services: action, event, and query, and the relevant relationships between them to fully

describe the smart entities occupying the space.

These main class concepts can be applied to any smart residential building populated with

diverse networked devices and smart entities (e.g. home, school, hospital), while the hierarchy

in each class can be differentiated from one building to another depending on the building's

characteristics and usage. In this thesis, the Ont4SRE ontology is modelled to fit a smart

home building environment. Details of each concept follow below.

66 4.4 The Ont4SRE Ontology for SRE

Figure 4.4: Smart residential environment ontology

 Entity Modelling

The Entity class concept represents and models which objects, persons, and locations may

occupy the space and could be smart. It is the superclass of all the entities. The hierarchy of

entity subclasses is clearly defined. Figure 4.4 shows the first subclasses of the Entity class

which are Object, Location, and Person.

1. Object class represents different appliances, objects, and devices that may occupy

the space. Figure 4.5 illustrates the different objects which are classified into different

types and extended to subclasses to better navigate (e.g. safety warning equipment,

white and brown goods, furniture, etc.).

4.4 The Ont4SRE Ontology for SRE 67

Figure 4.5: A presentation of Object subclasses

2. Location class is where smart entities could be located. Figure 4.6 illustrates

different location places which may be present in a smart home environment. The

location tree supports the usual space locations including, for example, room,

bedroom, bathroom, garage, and garden. One of the most important aspects of

contextual information is where a physical entity is located. In the GF4SRE

framework, the notion of location is used to represent where an entity is in an indoor

environment rather than where a service is in an outdoor environment. As an

example, in a saving energy scenario, if there is nobody in room 𝑥, switching off

lights and unnecessary electrical equipment during the inhabitant’s absence is a good

idea to economize energy. To achieve this, the home control system needs to know

which lamps and electric devices are in room 𝑥.

3. Person class represents who occupies the space. As shown in Figure 4.6, the person

tree supports different physical actors (e.g., dweller, guest, or a family member). A

physical person is considered a smart entity, as an object, since she can, for example,

wear, or implant in her body small devices and sensors which can determine her

presence, identity or health.

68 4.4 The Ont4SRE Ontology for SRE

Figure 4.6: A presentation of Person and Location subclasses

 Actuator Modelling

An Actuator class represents actuators which could be associated to entities in order to

change their states. As shown in Figure 4.7, the Actuator class has many subclasses to

represent different actuator types. For example, there is a DoorController class to

control access to a door, a LampController class to control a lamp and so on. Several

smart entities may use the same type of actuator when they offer the same services.

Therefore, it is not necessary to have the same number of actuators as entities.

 Sensor Modelling

The Sensor class concept refers to all the kinds of sensor associated with entities in order

to read their states. The Sensor class has many subclasses to represent different sensor

types. Figure 4.7 shows the screenshots of some of these created classes. For example, the

class FireSensor is for sensors able to detect a fire, while the class MotionSensor

contains sensors able to detect any movement that might occur in a given space.

 Publisher Modelling

The Publisher class refers to all kinds of publisher that may be associated with sensors

in order to publish one or more events. As shown in Figure 4.7, the Publisher class has

many subclasses to represent different publisher types. For example, a FireEvent

Publisher is used to publish a fire event while a MotionEventPublisher is used to

publish an event concerning any movement.

4.4 The Ont4SRE Ontology for SRE 69

Figure 4.7: A presentation of Sensor, Actuator, and Publisher subclasses

 Service Modelling

The goal of the Service concept is to model what actuators, sensors and publishers can

do in the form of action, queries, and events. As shown in Figure 4.8, they are divided into

three main subclasses, as follows.

1. The action class refers to all actions provided by actuators to change the state of

entities. Each actuator can perform one or more actions. For example, A Heater

Controller actuator can switch a heater on or adjust its target temperature using

actions switchOn, and adjustTargetTemperature respectively; another actuator

named FaucetController provides actions (open, close) to control the valve by

adjusting the water temperature and opening or closing it. Figure 4.8 shows an extract

of the created actions.

2. The query class refers to all queries that may be provided by sensors in order to

retrieve the current state of the smart entities. Each sensor can respond to one or more

queries. For example, a PresenceSensor can inform us if a given room is occupied

by using a getPresenceState query. Another query like getSwitchState can

check if the TV or the lamp is on or off. Figure 4.8 shows some examples of possible

queries. Further software applications can provide virtual web services such as

weather station software which can be used to provide information about weather

70 4.4 The Ont4SRE Ontology for SRE

forecasts or an electronic version of a calendar to say whether it is daytime or when

the holidays are.

3. The event class refers to all the events that may occur. An event occurs when the

property value of a smart entity changes. An event is detected by a sensor and

published by the publisher associated with this sensor. Each publisher can provide

one or more events. For example, DoorBrokenEventPublisher is the publisher of a

door sensor, which can produce an event when it is broken. Another event like

TemperatureEvent notifies the inhabitant if the temperature changes Figure 4.8

shows examples of possible events. Further software applications can be designed to

publish events about particular information such as an electronic calendar and time

management software agent with an appointment reminder when meetings are due, or

when user holidays start and end.

Figure 4.8: Examples for action, query, and event subclasses

4.4 The Ont4SRE Ontology for SRE 71

 Ont4SRE Properties and Restriction Types 4.4.2

Having defined the different classes that represent the necessary concepts to describe a smart

space, this subsection introduces the necessary property elements in order to enrich the model,

especially the relationship between the entity, sensors, actuators, and services (action, query,

and event). To create these relationships, the ObjectProperty, DatatypeProperty

relationships, and restriction constraints are used.

4.4.2.1 Object Properties

An object property links a class instance with another class instance. For example, the object

property hasAction links an actuator instance with a specific action instance (e.g. a

LampController instance with a switchOn instance). OWL Language enables a class to

inherit all the properties of its ancestor classes. According to the ontology schema introduced

in Figure 4.4, and as shown in Figure 4.9, the following object properties are defined.

 hasEntity links an entity to its location. Its inverse object property is hasLocation.

 hasActuator links an entity to its actuators. Its inverse object property is isActuatorOf.

 hasAction links an actuator to its actions. Its inverse object property is isActionOf.

 hasSensor links an entity to its sensors. Its inverse object property is isSensorOf.

 hasPublisher links a sensor to its publishers. Its inverse object property is

isPublisherOf.

 hasQuery links a sensor to its queries. Its inverse object property is isQueryOf.

 hasEvent links a publisher to its events. Its inverse object property is isEventOf.

Figure 4.9: A presentation of Ont4SRE object properties [138]

72 4.4 The Ont4SRE Ontology for SRE

In order to enrich the Ont4SRE model, other object properties are introduced such as

hasFloor to specify on which floor each entity is. The hasOwner is used to identify the

owner of each location space. The more object properties declared, the more useful queries

can be asked and the more indirect result predicted from the ontology.

4.4.2.2 Ont4SRE Properties’ Characteristics

One smart space characteristic is that each smart entity can have at a given time only one

location in the smart space. For example, if the instance window_1 is located in room_1, it

could not be located in room_2 at the same time. To satisfy this condition, the functional

property is used where instances can be restricted to belonging to a unique property. Thus, the

property hasLocation must be functional. Further, an actuator or a sensor instance can

belong to only a single entity instance. Similarly, this happens with action, query, and event

instances where they belong to only a single actuator, sensor, or publisher instance,

respectively. To satisfy these conditions, the properties isActuatorOf, isSensorOf,

isPublisherOf, isActionOf, isQueryOf, isEventOf are functional.

4.4.2.3 Datatype Properties

To describe well a smart entity, mandatory information about each class instance is defined

such as providing a name and a unique identifier for each entity and its associated devices.

This is to distinguish the different instances of the same type. As shown in Figure 4.10, the

following data type properties are created.

 An actuator has a Datatype property actuatorID and actuatorName.

 An entity has a Datatype property entityID and entityName.

 A location has a Datatype property locationID and locationName.

 A sensor has a Datatype property sensorID and sensorName.

Figure 4.10: Some of Ont4SRE data type properties

4.4 The Ont4SRE Ontology for SRE 73

4.4.2.4 Entity State modelling

According to the SRE formalization introduced in Section 2.6, each smart entity is

characterised by a set of optional parameters (entity states) which give information about the

entity at a given point in time. For this purpose, additional data types are specified for each

entity declared in the Ont4SRE ontology which link one or more entity (domain) to data type

values (range). For example, Figure 4.11 shows a property switchState for electrical and

hold appliance subclass instances (e.g. lamp, air conditioner, heater, or TV). It has a range of

string values equal to "on" or "off". Further, each data type declared may be associated with

an action, query or event, if the latter are responsible for changing the entity concerned state.

For example, a getSwitchState query is a service provided by a sensor to get the

switchState value of its associated smart entity.

Figure 4.11: The relationship between the switchState property and related classes

4.4.2.5 Restriction Types

Restriction types are used to determine which kind of actuators, sensors, and services can be

associated with each entity. For the Ont4SRE ontology, the following restrictions are defined.

 Each entity can have zero, one or several actuators, and/or sensors, but can be linked only 1.

to a certain type of actuators and sensors. For example, as shown in Listing 4.1, a Lamp

entity instance can have only a LampController actuator and a LampSensor. The

allValueFrom type constraint is used to specify these restrictions.

1 <owl:Class rdf:ID="Lamp">

2 <rdfs:subClassOf>

3 <owl:Restriction>

4 <owl:onProperty>

5 <owl:ObjectProperty rdf:about="#hasActuator"/>

6 </owl:onProperty>

7 <owl:allValuesFrom>

8 <owl:Class rdf:ID="LampController"/>

9 </owl:allValuesFrom>

10 </owl:Restriction>

11 </rdfs:subClassOf>

12 </owl:Class>

Listing 4.1: The restrictions declaration between a Lamp and its types of Actuators

74 4.4 The Ont4SRE Ontology for SRE

 Each Actuator can have one or several actions, but it can provide only a certain type of 2.

actions. For example, a LampController actuator provides only three actions switchOn,

switchOff, and adjustBrightnessLevel.

 A sensor can have zero, one or several publishers, and one or several queries. Each 3.

publisher or query can be linked only to a certain type of sensor. For example, a

LampSensor can have a LigthEventPublisher publisher and getSwitchState and

getBrightnessLevel queries.

 The publisher has one or several events. Each event can be produced by only a certain 4.

type of publisher. For example, a MotionEvent event can be fired by a MotionEvent-

Publisher and cannot be fired by a FireEventPublisher.

 Key Benefits of the Ont4SRE Ontology 4.4.3

Example 4.1

To illustrate the Ont4SRE benefits, consider a home consisting of four rooms each containing:

a PresenceDetectionSensor, which provides a getPresenceState query and a

PresenceEvent event via a PresenceEventPublisher; and a smart lamp, which provides a

switchOn and switchOff service via a LampController actuator.

An instance is created for each room, lamp, actuator, sensor and service in the Ont4SRE

ontology with properties and relationships similar to Figure 4.12.

Figure 4.12: An example of Lamp entity relationships

4.4 The Ont4SRE Ontology for SRE 75

Consider the following questions:

 Which smart entities are present in the space? 1.

 Where are they located? 2.

 To which actuators and sensors are they attached? 3.

 Which are the service capabilities they might provide? 4.

Listing 4.2 shows how to use a SPARQL query to get a response to each of these questions

and Figure 4.13 shows the answers. The query consists of a SELECT clause used to retrieve the

instances, and a WHERE clause, which includes the comparison predicates to select the

instances which satisfy the question requirements.

 Line 4 declares the retrieved instances.

 Lines 6-19 use the UNION operator to combine the results of two condition sets.

- For the first condition set, lines 6-10 specify that each entity instance must have an

actuator instance and each actuator must have an action instance.

- For the second condition set, lines 12-19 specify that each entity instance must have a

sensor instance and each sensor have a query instance, and a publisher instance.

Finally each publisher must have an event.

 Line 20 specifies that each entity should have a location and line 22 orders the result by

entity names.

1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

2 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

3 PREFIX diuf: <http://www.unifr.ch/owl/2011/03/HomeOntology.owl#>

4 SELECT distinct ?location ?entity ?actuator ?actionType ?sensor

 ?queryType ?publisher ?eventType

5 WHERE{

6 {

7 ?entity diuf:hasActuator ?actuator.

8 ?actuator diuf:hasAction ?action.

9 ?action rdf:type ?actionType.

10 }

11 UNION

12 {

13 ?entity diuf:hasSensor ?sensor.

14 ?sensor diuf:hasQuery ?query.

15 ?query rdf:type ?queryType.

16 ?sensor diuf:hasPublisher ?publisher.

17 ?publisher diuf:hasEvent ?event.

18 ?event rdf:type ?eventType.

19 }

20 ?entity diuf:hasLocation ?location.

21 }

22 order by (?entity)

Listing 4.2: A SPARQL query to get a list of the smart entities

76 4.4 The Ont4SRE Ontology for SRE

Figure 4.13: SPARQL query result

To summarise, the key benefits of Ont4SRE are as follows.

 It enables the construction of a formal model of the SRE that helps computers and

programmers to have a good understanding of the smart components that might occupy an

SRE and shows their relationships to their associated devices, services, and locations.

 With the Ont4SRE ontology, the different smart entities and services share the same

axioms as these are specified in the ontology. This ensures consistency between the

different components.

 The Ont4SRE ontology offers a semantic description of the representation of the device’s

capabilities whereby the device's services content can be marked up with ontology-based

semantic annotations, as will be shown in the next section.

 The Ont4SRE ontology can be used as a database store for the registry and discovery of

smart entities. As will be shown in Section 4.6, the Ont4SRE ontology helps the discovery

engine to construct a representation of a real SRE, including smart entities, actuators,

sensors, services, and locations.

 The proposed ontology helps, as outlined in this thesis, to create a domain specific

language for describing control scenarios using a precise vocabulary without having to

deal with program intricacies such as services grounding, event registry, and services

discovery.

 The Ont4SRE enforces the loose coupling between the different models in the framework,

so change in one model will not affect the others.

 The Ont4SRE is pluggable. Different ontologies for different domains (home, school, and

hospital) can be used within the framework once the appropriate service providers are

available.

 The Ont4SRE ontology can be easily updated to add new smart entities, sensors, actuators

or services.

4.5 Services Accessibility (Context) 77

 Ontology Mapping 4.4.4

Using a single, global ontology to represent all services is not realistic to support the tasks

envisaged by a distributed environment like a SRE. Consequently, ontology mapping aims to

provide a common layer from which several applications could access multiple ontologies and

exchange semantic information. Developing such mappings has been the focus of a variety of

work originating from diverse communities over a number of years. The interested reader is

referred to [139] for a good survey of ontology mapping techniques, as an in-depth discussion

is outside the scope of this thesis.

 Services Accessibility (Context) 4.5

Referring to Figure 3.1, at the low level (physical & communication

layers), many industrial approaches [140] have proposed a number of

protocols to help integrate embedded devices into a distributed network.

At this level, recent research [141-143] has focused mostly on improving

communication, data coding efficiency and power consumption.

At a higher level (service layer), several works have proposed middlewares to address

interoperability issues in SRE using technologies like OSGi [13, 59, 60, 144], WS-* web

service [5-7, 41, 145, 146] and RESTful web service [9-11, 52, 147]. These are deployed on

the top of the low-communication protocols to provide a service abstraction and programming

interface, which standardizes the accessibility and helps data sharing. Several researches

results like in [65, 67, 148] have proved that applying these technologies to embedded devices

could be achieved and could improve them in spite of their hardware limitations in term of

memory, code space and communication bandwidth.

Other efforts go in a different direction, to establish standards enabling the syntactic and

semantic description of the services layer. Exploiting web services is difficult using only the

syntactic descriptions. Semantic-based approaches like [14, 16, 96, 149] use semantic web

languages like OWL-S, and SAWSDL to provide semantic awareness and add machine

interpretable information to services content which simplifies the service discovery and

filtering capabilities.

To enable a consistent access to all components of a SRE, the web services (WS-*)

architectural style were adapted and a semantic description for each web service was provided

in order to support low-level gathered data with a high-level of abstraction (see Figure 4.14).

78 4.5 Services Accessibility (Context)

Figure 4.14: Service layer based on WS-* web service and OWL-S semantic description

 Web Services (WS-*) 4.5.1

By integrating the WS-* web service into the GF4SRE framework, smart entities can publish

their functionalities in the form of actions, queries and events via a web services description

language (WSDL) interface. A web service may contain one or more operations to be

performed. According to the Ont4SRE ontology model, two kinds of operation are

distinguished, as depicted in Figure 4.15.

 action operation represents a web service operation to be performed by an actuator to

modify the smart entity’s state. In Example 3.1, to adjust the air conditioner temperature, a

web service setTemperature(parameter) is used. It represents an action named

setTemperature, which has one input called parameter.

 query operation represents a web service operation used to retrieve and read the current

state of a smart entity via a sensor. The result of calling up this operation is the current

state of the smart entity. For example, to get the room temperature, we can use an

operation called getTemperature. This represents a query named getTemperature

without any input parameters and which returns the room temperature.

Figure 4.15: Operation types for a web service

4.5.1.1 Events Notification

An event represents a callback mechanism enabling a software system to be informed about

changes in the environment rather than asking at specific intervals in time if any significant

change has occurred. The change may be considered to have occurred only if a predefined

threshold value has been crossed (e.g. after increase in a certain number of degrees in

4.5 Services Accessibility (Context) 79

temperature). In the GF4SRE framework, the orchestration process subscribes to an event

manager to be notified when a new event is produced. Each time a new event is produced, the

corresponding sensor’s publisher fires a new update to the event manager, which, in turn,

receives the incoming message and notifies all the subscribers about the occurrence of the

event. The received message may contain supplementary information such as the time when

the event occurred, or the geographical location where the event was produced, etc.

As mentioned in Subsection 3.3.3.5, using event notifications raises scalability by minimizing

the HTTP calls and reduces the energy consumption of the smart entities. Further, it reduces

the dependencies between framework components and therefore increases reusability and

flexibility. The main idea behind the event notification mechanism applied in the GF4SRE

framework is shown in Figure 4.16, and explained below.

 The Event Publisher is the event resource responsible for generating and sending events 1.

to the event manager.

 The Event Manager component contains the following elements: 2.

- Definitions of interested events. Each event is defined with the event name and its

related parameters and the data types exchanged via this event.

- A declaration of the involved events publishers.

- Remote Event Connection: There are different ways to publish an event to the Event

Delivery Network (EDN) remotely (e.g. using Java API or WS-Eventing

specification). The event manager should listen to each interested event. There are

two ways for the event manager and the event publisher to discover each other.

 Manual configuration: the event publisher may explicitly be pre-

configured with the address to which it should publish the event.

 Dynamic discovery: when the device joins the network, it announces its

arrival via a multicast Probe message. Then, the event manager receives

the multicast Hello messages, stores the information about the event

publisher and start listening to it.

 The Event Subscriber that is interested in a particular event should subscribe to being 3.

notified.

Figure 4.16: Event notification process

80 4.5 Services Accessibility (Context)

4.5.1.2 Alternative solution for deploying WS-*

Because the computational memory and the communication bandwidth of actuators and

sensors are limited, WS-* can be implemented as an additional attached hardware component

(called a proxy) rather than implementing it directly on actuators and sensors.

4.5.1.3 Benefits of using Big Web Services (WS-*)

The WS-* choice is based on the followings arguments:

 WS-* web service is a well-known standard supported by a large research community.

 Research results have found that applying this technology on embedded systems is

possible.

 WS-* provides a common interface written in a standard machine-readable format

(WSDL, XSD), so applications can access, consume, and reuse these services in a uniform

way.

 Further, WS-* standards support many features such as addressing, WS-Eventing,

discovery and services composition.

 Many applications and development tools like Oracle SOA Suite [91] support using WS-*

services with composition language standards like BPEL4WS.

 Many semantic web technologies have been developed to build a semantic layer on top of

WS-* standards such as OWL-S, SAWSDL.

 Although, the RESTful web service appears as an alternative approach to design web

services, with the later, everything is seen as a resource, identified by URL and has a

uniform interface (DELETE, POST, GET, and PUT), whereas WS-* web services are

written in a standard WSDL format to specify operations and their parameters which is

useful for functionality modelling in SRE.

 Semantic Annotations of the Web services 4.5.2

On top of the service layer, an additional level of abstraction is introduced. Instead of giving

only a syntactic description of the services provided by the devices (sensors, actuators), each

service (action, query, event) is marked up with a semantic description to describe its

capabilities. The different service interfaces are mapped onto the Ont4SRE ontology to

provide common semantic equivalences. The semantic description of a web service includes

the following elements.

 A semantic meaning for each WSDL operation name corresponding to its name (action,

query, or event) in the Ont4SRE.

4.5 Services Accessibility (Context) 81

 A semantic description of each input parameter and its data type as required by each web

service operation as well as each output parameter with its data type, which is returned by

calling a web service operation.

 Grounding details to be able to invoke the web service, the grounding include providing a

URI address for each WSDL service and the necessary concrete details related to the

transport protocol and message format.

The semantic proposal in the case study which will be introduced in Chapter 6, uses OWL-S

technology, which has well-defined constructs for describing the properties and capabilities of

web services. Each implemented web service provides the appropriate OWL-S documents.

Another similar, technology like SAWSDL, can be implemented in the framework for the

same proposal.

Example 4.2

Figure 4.17 shows an example of a mapping between a web service and its semantic descrip-

tions. On the right side of the figure, a lamp controller provides concrete implementation of a

web service with an operation named adjustLampBrightness, which has an input named

parameter and returns an output return of type Boolean to confirm the modification of the

lamp’s brightness level. On the left side is the ontology instantiated for a given real lamp

(lamp_1) with its actuator (LampController_1) and service (adjustBrithness_1) which

provides the corresponding semantic description for each of the web service elements. At the

bottom of the figure, the OWL-S construct is used to map the right and left sides (i.e.

adjustLampBrightness vs. adjustBrightness, parameter vs. level and return vs.

confirmation), and the necessary details about the web service binding (i.e. transport

protocol, WSDL address, etc.). These relationships are expressed in OWL-S language and

saved in an RDF format.

82 4.5 Services Accessibility (Context)

Figure 4.17: Ontology-based semantic annotation for web services

4.5.2.1 Key Benefits of Using Semantic Annotations

Using the semantic annotations, add to the GF4SRE framework the following features.

 Add machine interpretable information to services content in order to understand the

capabilities of web services that have different original purposes.

 Give a unified presentation for similar web services and their properties and parameters.

 Distance the user from the complexity of device platforms by hiding the implementation

details related to each web service - like its grounding details - which are transparently

mapped.

 Help the discovery of the smart entities’ capabilities by mapping and linking the different

smart entities with their associated services.

 Simplify the completion of complex control scenarios using the web services.

 Implementation of the Smart Residential Environment (Context) 4.5.3

The implementation of the smart residential environment consists of simulating the case

study, which will be introduced in Chapter 6. It contains a set of smart entities occupying a

smart home where each smart entity is simulated and associated with one or more virtual

devices (actuators or sensors) with one real implemented web service interface that provides

4.6 Registry and Discovery Engine 83

its services (queries, events and actions). The evolution of service invocations and the

produced events are visualized in a graphical user interface as shown Figure 4.18. The reader

is referred to Subsection 6.2.1 for more details.

Figure 4.18: Smart home simulation

 Registry and Discovery Engine 4.6

With the framework components introduced in the previous

sections, the smart environment was allowed to provide a

service-based architectural layer with semantic descriptions and

an ontology-based model for describing it. This section

describes how to register, search, and find the relevant services via a registry & discovery

mechanism to create - as will be shown latter - complex control scenarios. In the GF4SRE

framework, this happens via the Registry & Discovery Engine component. Existing solutions

like UDDI, UPnP and Jini have been proposed to enable the service discovery for devices and

hardware components [150-152], but discovery techniques are still based on the syntactic

details of services. They enable explicit services to be found without exploiting the benefits of

semantic service discovery capabilities. Several semantic-based discovery approaches have

shown that adding semantic information to syntactical service definitions through the use of

an ontology can help interpret the purpose and usage of those services [33, 77]. For further

reading, [111] and [153] give a comparative review of services discovery using semantic

annotations techniques for ambient environments.

84 4.6 Registry and Discovery Engine

In the SRE context, searching for smart objects is different from searching for concrete

services on the internet since each service is associated with a given smart entity offered by a

given sensor or actuator in a specific location. In a SRE, services have effects on their

providers, where they may change or monitor their states. The benefits for the service

requestors, in this case, are implicitly acquired by adapting the environment to his needs.

Therefore, it is important for the programmer and the computing systems to have a good

understanding of each service provider (e.g. lamps, heaters, etc.) and their properties in order

to understand the effects of each service on them and on the environment. As far as this thesis

is concerned, the discovery process adapted here is based totally on this vision. The registry

and discovery module proposed are based on the Ont4SRR ontology, where smart entities,

locations, associated devices and offered services are modelled and linked together.

The Registry & Discovery Engine is composed of Ont4SRE used as a database store, a

registry, and discovery unit, as shown in Figure 4.19. The registry component allows sensors

and actuators to announce themselves and their services, while the discovery component

allows applications (consumers) to search for specific smart entities and their services. In the

following, the role and concepts of the two units are presented:

Figure 4.19: Registry and discovery layer and related components

 Services Registry 4.6.1

The service registry is the process of specifying which and where smart entities and services

are available in a particular SRE. This keeps track of what can be discovered and used in the

SRE. The service registry process is performed in two steps as follows.

4.6.1.1 Ontology Instantiation (Step 1)

For a given smart building, the configuration of the environment corresponds to an

instantiation of the ontology classes related to smart objects occupying the space. The

instantiation is based on describing and representing the smart environments along six types

of ontology-based required information, as shown in Figure 4.20.

 Smart Entities: instantiate the ontology classes related to smart entities occupying the

space.

4.6 Registry and Discovery Engine 85

 Locations: instantiate the ontology classes related to different real locations. Each smart

entity is linked to a location in the physical world.

 Sensors: instantiate the ontology classes related to sensors for each corresponding smart

entity in order to link the latter with its services and to perform queries via its sensors. The

instantiation includes providing the sensorID value for each sensor.

 Actuators: instantiate the ontology classes related to actuators for each corresponding

smart entity in order to link the latter with its services and to perform actions via its

actuators. The instantiation includes providing the actuatorID value for each actuator.

 Publishers: instantiate the ontology classes related to publishers for each corresponding

sensor belonging to a smart entity instance.

 Services: instantiate the ontology classes related to different services (query, action, and

event) for each corresponding sensor or actuator belonging to a smart entity instance. This

gives a list of the services and their required parameters that a smart entity offers.

Figure 4.20: Ontology required information for the instantiation of each smart entity

Example 4.3

Listing 4.3 shows an extract of the Ont4SRE ontology instantiated within Example 4.1, which

contains an instance lamp_1 of the class Lamp and is located in room_1. The lamp has an

actuator lampController_1 and offers two actions switchOn and switchOff while the

room_1 has a sensor presenceSensor_1, associated with a publisher presencePublisher_1

86 4.6 Registry and Discovery Engine

to detect if somebody enters the home in the form of an event PresenceEvent. The code is

organized as follows.

 Lines 1-2 define that the instance room_1, which is a type of the class Room, and has an

entityID equal to Room_A.

 Lines 3-4 define that the instance room_1 has entity lamp_1.

 Lines 4-6 define that the instance lamp_1 has an actuator instance lampController_1.

 Lines 7-12 define that the instance lampController_1 has switchOff and switchOn

actions.

 Lines 16-27 define that the instance room_1 has a sensor instance presenceSensor_1

with an event publisher presenseEventPublisher_1.

1 <diuf:Room rdf:ID="room_1">

2 <diuf:entityID rdf:datatype="#string">Room_A</diuf:entityID>

3 <diuf:hasEntity>

4 <diuf:Lamp rdf:ID="lamp_1">

5 <diuf:hasActuator>

6 <diuf:LampController rdf:ID="lampController_1">

7 <diuf:hasAction>

8 <diuf:switchOff rdf:ID="switchOff_1">...</diuf:switchOff>

9 </diuf:hasAction>

10 <diuf:hasAction>

11 <diuf:switchOn rdf:ID="switchOn_1">...</diuf:switchOn>

12 </diuf:hasAction>

13 </diuf:hasActuator>

14 </diuf:Lamp>

15 </diuf:hasEntity>

16 <diuf:hasSensor>

17 <diuf:PresenceSensor rdf:ID="presenceSensor_1">

18 <diuf:hasPublisher>

19 <diuf:PresenseEventPublisher rdf:ID="presenceEventPublisher_1">

20 <diuf:hasEvent>

21 <diuf:PresenceEvent rdf:ID="presenceEvent_1">...

22 </diuf:PresenceEvent>

23 </diuf:hasEvent>

24 </diuf:PresenceEventPublisher>

25 </diuf:hasPublisher>

26 </diuf:PresenceSensor>

27 </diuf:hasSensor>

28 </diuf:Room>

Listing 4.3: Code extract of a smart lamp instantiation and its corresponding services

4.6.1.2 Installation of Actuators and Sensors (Step 2)

After partially instantiating the ontology (without grounding), the final registry process is

started by an actuator or a sensor associated with a smart entity. First, it sends a request to be

added to the service providers. Then, the registry engine identifies the device instance using

its unique identifier, which can be, for example, the physical address of the device (e.g. MAC

address). The registry engine extracts and updates the received information to their

4.6 Registry and Discovery Engine 87

corresponding device instances in the ontology, which includes a list of services, the semantic

description document, and their corresponding URL addresses. There are two ways for

sensors and actuators to find the registry and discovery engine the first time.

 Manual configuration: the sensor or actuator may explicitly be pre-configured with the

address to which it should register itself and its services.

 Dynamic discovery: when the device joins the network, it announces its arrival via a

multicast Probe message. The registry unit then receives the multicast Hello messages,

and stores the information about the devices and their related services.

Example 4.4

An extract of an expected web service request sent by a Lamp Controller actuator is given

in Listing 4.4. It shows that the actuator is identified by an actuatorID equal to 4754, and

registers a switchOn service.

1 <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

2 <soap:Body xmlns:ns1="http://ws/">

3 <ns1:registre>

4 <deviceID>4754</deviceID>

5 <serviceName>switchOn</serviceName>

6 <owlURL>http://diufpc10:8080/.../LivingRoomLamp.owl</owlURL>

7 <wsdlURL>http://diufpc10:8080/.../LivingRoomLamp?WSDL</wsdlURL>

8 </ns1:registre>

9 </soap:Body>

10 </soap:Envelope>

Listing 4.4: SOAP message sent by a LampController actuator

 Services Discovery 4.6.2

The discovery component assumes responsibility for offering a query interface for finding

relevant smart entities. Once the ontology has been instantiated, all the sensors and actuators

are installed, and services are registered, so the Ont4SRE ontology can be used to send

queries about the smart entities. The queries in the discovery unit are written in the SPARQL

language. The latter allows the formation of different queries similar to what the SQL

language does. With the GF4SRE framework, queries are formulated based on the following

given information.

 Smart Entity Type specifies the type of the requested smart entity (e.g. Lamp, Door).

 Smart Entity Identifier (optional) specifies the entityID.

 Location (optional) specifies where the requested smart entity should be located.

88 4.6 Registry and Discovery Engine

The three previous parameters determine the predicates of the query. Thanks to the power of

the SPARQL language, and based on these predicates, the query could be further formulated

in order to know which services and devices are linked to each smart entity.

In the GF4SRE framework, the discovery query interface provides four types of query when

looking for existing smart entities.

 Full Query: this query is performed to return a list of all the available smart entities and 1.

their related devices and services that match a specific type of smart entity (e.g. find all

smart entities of type Lamp in the building). This can be useful, for example, when a

control system decides to switch off all the lamps. In this case, the action switchOff can

be performed by iterating over each lamp in the discovered list. Listing 4.5 is a full query

example written in SPARQL to discover the smart lamps and their associated services.

This extract of code is organized as follows:

- Lines 1-3 define the PREFIX keywords which associate prefix labels with URI.

- Line 4 defines the clause SELECT to return a result set of records (rows). Each row

contains the smart entity, its location, actuators, sensors, publishers and their

associated services: action, query and event.

- Lines 8-36 declare the clause WHERE to filter the results to retrieve. The criteria are

expressed in the form of predicates.

- Line 9 finds the smart entities of type Lamp. The subject is ?entity, the predicate is

rdf:type and the object is ?entityType.

- Line 10 retrieves the name of the entity.

- Line 11 uses method Filter to select only the smart entity of type Lamp.

- Lines 12-13 determine the location of the entity.

- Lines 14-35 use the UNION operator to combine the results of three condition sets.

 In the first condition set, lines 14-20 specify that each entity instance

must have an actuator and each actuator must have an actuatorID, and an

action. Finally, each action has a WSDL and OWL-S URL address.

 In the second condition set, lines 22-28 specify that each entity instance

must have a sensor, sensorID, and a query. Finally, each query has a

WSDL and OWL-S URL addresses.

 In the third condition set, lines 30-35 specify that each entity instance

must have a sensor, and a publisher. Each publisher must have an event.

4.6 Registry and Discovery Engine 89

1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

2 PREFIX rdf : <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

3 PREFIX diuf: <http://www.unifr.ch/owl/2011/03/HomeOntology.owl#>

4 SELECT ?entityName ?entityType ?locationID ?actuator ?actuatorID

5 ?sensor ?sensorType ?sensorID ?publisher

6 ?actionType ?actionWsdlAddress ?actionOwlsAddress

7 ?queryType ?queryWsdlAddress?queryOwlsAddress ?eventType

8 WHERE {

9 ?entity rdf:type ?entityType.

10 ?entity diuf:entityName ?entityName.

11 filter (?entityType = diuf:Lamp).

12 ?entity diuf:hasLocation ?location.

13 ?location diuf:locationID ?locationID

14 { ?entity diuf:hasActuator ?actuator.

15 ?actuator diuf:actuatorID ?acutatorID.

16 ?actuator diuf:hasAction ?action.

17 ?action rdf:type ?actionType.

18 ?action diuf:wsdlAddress ?actionWsdlAddress.

19 ?action diuf:owlsAddress ?actionOwlsAddress.

20 }

21 UNION

22 { ?entity diuf:hasSensor ?sensor.

23 ?sensor rdf:type ?sensorType.

24 ?sensor diuf:hasQuery ?query.

25 ?query rdf:type ?queryType.

26 ?query diuf:wsdlAddress ?queryWsdlAddress.

27 ?query diuf:owlsAddress ?queryOwlsAddress.

28 }

29 UNION

30 {?entity diuf:hasSensor ?sensor.

31 ?sensor diuf:hasPublisher ?publisher.

32 ?sensor diuf:sensorID ?sensorID.

33 ?publisher diuf:hasEvent ?event.

34 ?event rdf:type ?eventType.

35 }

36 }

37 order by (?entity)

Listing 4.5: A SPQRL Full Query to discover all the smart lamps in the space

 Location-based-Full Query: this kind of query is used to return a list of all the available 2.

smart entities that exist in a given location. In a smart space, the context of the

environment and the end user’s needs are different from one place to another. For

example, in a security scenario, if there is nobody at home, leaving some lights on during

the night in some places is a good idea to give the appearance the home is occupied.

Similarly, the heating for the pool or garage can be turned off when not being used in

order to reduce the total energy consumption. The SPARQL query for this kind of request

is similar to the Full query represented above with the following additional condition

statement where the filtering is based on the locationID provided by the requestor (e.g.

Room_A, or Room_B).

1 filter(?locationID = 'Room_A').

 EntityID-based Query: this kind of query is used to return one smart entity with a 3.

known identifier which can be used, for example, to control a specific smart entity like an

90 4.6 Registry and Discovery Engine

entrance door or a room rather than a list of doors and rooms. In this case, the discovery

engine will apply a Full query and return one smart entity from the list. The SPARQL

query for this kind of request is similar to the Full query represented above with the

following additional condition statements where the filtering is based on the entityID

provided by the requestor (e.g. Lamp_A, or Lamp_B).

1 ?entity diuf:entityID ?entityID.

2 filter(?entityID = 'Lamp_A').

 Minimum-Cardinality Query: this kind of query is used to return one smart entity. A 4.

typical example is when the programmer knows that there is only one smart entity of a

given type occupying a particular space like a FireAlarm or he needs only one smart

entity of a given type to perform a given action like sending an SMS message via a

Telephone. In this case, the discovery engine will apply a minimum-cardinality query

and return one smart entity from the list.

Example 4.5

Consider the same home ontology instance presented in Example 4.1 consisting of four room

instances, each containing a lamp instance which provides a switchOn, and switchOff

service via a LampController actuator.

 To get a list of all lamp instances in each room, the discovery process is performed in the

following order.

 First, the client (e.g. process) sends a request to the discovery engine asking for all the 1.

smart entities of type Lamp.

 Then, the query engine component retrieves the request, initiates a full query using the 2.

SPARQL language, and executes it.

 Finally, it returns a list of the discovered smart entities, their associated devices and 3.

services. The response is an XML message, as presented Listing 4.6.

4.6 Registry and Discovery Engine 91

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <smartEntitiesHolder>

3 <entityType>Lamp</entityType>

4 <smartEntity xmlns:xsi="http:" xsi:type="smartEntity">

5 <entityType>Lamp</entityType>

6 <locationID>A</locationID>

7 <entityID>lamp_4</entityID>

8 <name>Lamp_4</name>

9 <actuator xsi:type="actuator">

10 <actuatorID>a316</actuatorID>

11 <actuatorName>LampController_5</actuatorName>

12 <action xsi:type="action">

13 <OWLSAddress>http://.../SwitchOffHallLamp.owl</OWLSAddress>

14 <WSDLAddress>http://.../SwitchOffHallLamp.wsdl</WSDLAddress>

15 <name>switchOff</name>

16 </action>

17 <action xsi:type="action">

18 <OWLSAddress>http://.../SwitchOnHallLamp.owl</OWLSAddress>

19 <WSDLAddress>http://.../SwitchOnHallLamp.wsdl</WSDLAddress>

20 <name>switchOn</name>

21 </action>

22 </actuator>

23 </smartEntity>

24 <smartEntity xmlns:xsi="http:" xsi:type="smartEntity">

25 <entityType>Lamp</entityType>

26 <locationID>B</locationID>

27 <entityID>lamp_1</entityID>

28 <name>Lamp_1</name>

29 <actuator xsi:type="actuator">

30 <actuatorID>a318</actuatorID>

31 <actuatorName>LampController_2</actuatorName>

32 <action xsi:type="action">

33 <OWLSAddress>http://.../SwitchOffParentLamp.owl</OWLSAddress>

34 <WSDLAddress>http://.../SwitchOffParentLamp.wsdl</WSDLAddress>

35 <name>switchOff</name>

36 </action>

37 <action xsi:type="action">

38 <OWLSAddress>http://.../SwitchOnParentLamp.owl</OWLSAddress>

39 <WSDLAddress>http://.../SwitchOnParentLamp.wsdl</WSDLAddress>

40 <name>switchOn</name>

41 </action>

42 </actuator>

43 </smartEntity>

44 ...

45 </smartEntitiesHolder>

Listing 4.6: A simplified result of SPARQL full query for the discovered smart lamps

 Key Benefits of Discovery & Registry Engine 4.6.3

Using the Discovery and Registry engine adds the following features to the GF4SRE.

 Enabling smart entities to be registered and discovered.

 Using semantic-based discovery solves syntactic matching challenges in smart

environments due to the unification of the services’ semantic descriptions.

 Ontology Instantiation is done for one time and updating is done dynamically.

 The benefits of using SPARQL are:

92 4.6 Registry and Discovery Engine

- It enables the automatic discovery of smart entities.

- Its ability to take into consideration the Ont4SRE class relationships where smart

environment concepts are defined and linked together. This enables each smart entity

to be linked to its devices, location and services.

- SPARQL queries help the classifying and grouping of services, depending on their

types or locations.

- SPARQL queries can be further formulated to provide more specific conditions and

requirements for requested smart entities.

 Implementing the Registry and Discovery Engine 4.6.4

The Registry & Discovery Engine is implemented using the Ont4SRE ontology, WS-* web

service, and Java API. As shown in Figure 4.21, it consists of the following software

components:

 The Ontology Repository (Ont4SRE) component serves as a database store for SRE

instantiation and devices registry and discovery.

 The Query Engine (SPARQL) is used to query the Ont4SRE ontology.

 The Registry Unit is responsible for registering each sensor or actuator joining the

network.

 The Discovery Unit is responsible for discovering the relevant smart entities requested by

clients.

 The Query Interface is a set of web services available for requestor to query about smart

entities or register new devices. Both the registry and discovery units communicate with

their clients via the query interface.

Figure 4.21: Service registry and discovery units: physical model

4.7 The GPL4SRE Language: Overview 93

Two kinds of queries allow access to the Registry and Discovery Engine:

 Registry Enquires are used to update and store information in the Ont4SRE ontology. The

following is a summary of the main implemented inquiries:

- A registry query to add a newly installed device. In this kind of query, the device sends a

request to be added. The registry engine identifies the device instance using its identifier

and adds it to the Ont4SRE.

- A query to update an existing device. This kind of query can be used to update the device

state (i.e. online or offline).

 Discovery Enquires are used to retrieve information from the Ont4SRE ontology. The

implemented queries are related to the four queries introduced in Section 4.6.2 for the

discovery and selection of the smart entities.

 4.6.4.1 Smart Residential Environment Visualization

A graphical interface has been developed to visualize and present in real time the registered

smart entities with their associated devices and services graphically. In order to create the

smart entities tree, as represented in Figure 6.4, the SPARQL query was used to select all

distinct smart entities with one or more actuators or/and sensors and all their related properties

such as their location, and services. For more details see Subsection 6.2.3.

 The GPL4SRE Language: Overview 4.7

The Ont4SRE ontology, Services Accessibility

(Context), and Registry & Discovery Engine

components introduced in the previous sections

allowed the modelling, access and searches for smart entities and their services in a given

smart space. In this section, developers will be able to create simple and complex control

scenarios on top of the smart objects. Whatever the technique used for managing SRE

(manual, automatic or semi-automatic), it needs a programming language to express the

composition algorithm. A number of tools and languages have been proposed by the software

industry to support services composition in the smart environment context [106-108].

However, creating business processes with these tools and languages through an XML editor

is complex and error prone. [154] proposes a macro language that extends Java in order to

help developers create context-aware applications. [155] proposes an agent-based domain

specific language for controlling appliances and providing a single interface for each device.

However, it does not efficiently support the management of events.

Compared to existing composition languages like BPEL4WS [18] and BPMN [89], the

proposed domain specific language (DSL) based on BPEL4WS is designed to be used for the

orchestration of the SRE. It supports a high degree of abstraction and allows users to define

94 4.7 The GPL4SRE Language: Overview

processes in a more compact and comprehensible way. It provides interaction ability with

final users and generic (declarative) definition of the involved smart entities and their services

using semantic-based service description, rather than using WSDL description interfaces. The

discovery of services and the event registry are completely automatic. The GPL4SRE

language is the link between the different elements of the GF4SRE framework infrastructure

(i.e., Ont4SRE, Context, Registry & Discovery Engine, and the execution environment).

 GPL4SRE Program Structure 4.7.1

The GPL4SRE is a workflow-based language characterized by an imperative programming

style. Diverse control scenarios can be simply written with GPL4SRE language. It is possible

to discover and interact with different smart entities, create loops, declare variables, copy and

assign values, as well as register and wait for events from sensors’ publishers. Scenario

execution can be sequential or parallel. The language syntax is explained in detail in Chapter

5. This section gives a description of the concepts and structure of a program written in the

GPL4SRE language. As shown in Figure 4.22, a program written in GPL4SRE has two main

sections: a declaration section and an execution section.

 Figure 4.22: GPL4SRE elements structure

4.7 The GPL4SRE Language: Overview 95

4.7.1.1 Declaration Section

The declaration section deals with the declaration of the smart entities, the registry of the

events and the declaration of variables.

 Smart Entities Declaration Part: allows for the declaration of the smart entities that will

interact with the process. Smart entities can be declared individually or as a list of similar

entities. Once a smart entity is declared, it can be controlled through its associated

services. The smart entities are declared implicitly in regard only to their type and location

(optional), while the discovery and services grounding are fully hidden and automated by

sending a request using the discover keyword. Once the request is received by the

discovery engine, it is automatically translated into a SPARQL query to find and send

back a list of the discovered smart entities.

 Events Registration Part allows subscribing the process to events that it is interesting in.

The event subscription is performed in implicit manner with regard only to the event type

(e.g. MotionEvent, TemperatureChangingEvent), while subscribing the process to the

Event Manager is fully automatic using subscribe as the keyword.

 Variables Declaration Part: allows the declaring of variables in order to receive

manipulate and send data between the smart entities and the process. Variable can be

global or local. The programmer is allowed to declare primitive data types such as Int,

Float, and Boolean. It is possible also to declare complex variables in a Map collection

form (i.e. a list of (name, value) pairs).

4.7.1.2 Execution Section

The execution section specifies the parts that will be executed when the process is running. It

includes the following parts.

 User Preferences Setting Part: this plays the role of the initializer to customize the

process according to the final user requirements. The process provides set construct to

assign user preferences to variables, a select construct to select, according to the final

user, which smart entity should be involved in the scenario, and a print construct to

display information to the user through a simple interface.

 Main Thread Part: specifies the first part of the process that runs when the process starts

after the initialization of user preferences. This part can be used for the following

proposals.

- Initialize variables.

- Perform a combination of actions at regular intervals (time-driven fashion).

- Perform a combination of action when an event is produced (event-driven fashion),

especially when a process reacts to an event over a short period of time.

96 4.7 The GPL4SRE Language: Overview

- Determine the lifetime of the process. The process terminates when this part

completes its execution.

 Event / Alarm Handlers Part are associated with an enclosed scope. This allows the

process to respond to events or alarms (an expiration of a timeout) which occur

independently of the execution of the main thread and are produced at any moment during

the process’s lifetime. The keyword OnEvent is used to declare the beginning of an event

handler branch, and OnAlarm for the beginning of an alarm handler branch.

 Main Constructs 4.7.2

After the introduction of the main structure of a GPL4SRE program, this subsection presents

some of the main constructs used within the process execution parts.

 Control flow Constructs define the program's procedural logic. The important ones are

for, while and if.

 Execution Constructs: the workflow execution can be sequential or parallel by using the

keywords sequence and flow, respectively. Other execution constructs, inspired by

BPEL4WS, are also provided, such as the pick construct to give a set of choices of

possible sets of actions.

 Service Interaction Constructs allow interacting with the smart entities. There are three

types:

1. An action construct is used to perform an action to modify the state of a smart

entity. Three elements are required to perform an action: the target smart entity, the

action’s name and the input message to be sent which contains the new value of the

smart entity state. The action name must have the same name as specified in the

Ont4SRE ontology.

2. A query construct is used to perform a query, which retrieves the current state of the

corresponding smart entity. Two elements are required to perform a query: the smart

entity, and the name of the query. The query name must have the same name as

specified in the Ont4SRE ontology. The returned result is in a Map collection form

(i.e. a list of (name, value) pairs).

3. An OnEvent construct allows the process to wait for an event from an event pub-

lisher. This kind of interaction is declared either with a pick construct or with an

event handler part (OnEvent). Two elements need to be specified: the event name

from where the message is expected to arrive, for example TemperatureEvent; and

a variable to hold the received message. The event name must have the same name as

specified in the Ont4SRE ontology.

4.7 The GPL4SRE Language: Overview 97

Example 4.6

The scenario introduced in Example 3.5 of a simplified process to control an air conditioner

based on the room temperature is used again. A temperature sensor is able to publish an event

about temperature change. Each time the process receives such an event, it checks if the

temperature is greater than 30°; if yes, it switches the air conditioner on.

According to the Ont4SRE concepts, the room involved, the air conditioner, and associated

devices are introduced as follows:

 There is an air conditioner instance of the class Airconditioner located in a room

instantiated from the class Room, with a entityID equal, for example, to AC-1 The air

conditioner has an AirconditionerController actuator which offers two actions

switchOn and switchOff

 The room has a TemperatureSensor sensor, which hosts a TemperatureEvent

Publisher publisher to send a TemperatureEvent, if any change in the temperature

occurs.

Listing 4.7 shows the scenario implemented with the GPL4SRE language and the subsequent

points describing it:

 Smart Entities Declarations: line 2 specifies the involved smart entities. In this example, a

single air conditioner is declared. The programmer specified the entity type, which is

Airconditioner, according to its definition in the Ont4SRE ontology and its ID which is

supposed to be AC-1.

 Events Registration: line 3 registers the process with TemperatureChangingEvent event.

 The main Thread: lines 4-11 specify the main body of the process.

 Event Handlers: line 6 specifies an OnEvent handler to wait for the temperature event.

 Control flow and Execution Constructs: lines 4, 5, and 7 give an example of the use of

sequence, while, and if constructs, respectively.

 Service Interaction Constructs: line 8 shows how the action construct is used to invoke

the switchOn service of the Airconditioner.

 Map Data Structures: in line 6, one Map data structure inputVariable is declared. It

holds the received message from the temperature event. In line 7, the value of the

temperature is accessed through a getter method.

98 4.7 The GPL4SRE Language: Overview

1 Process temperatureControlScenario1{

2 Airconditioner ac = discover(Airconditioner,"AC-1");

3 subscribe TemperatureEvent;

4 sequence {

5 while (true){

6 onEvent(TemperatureEvent, Map inputVariable);

7 if(inputVariable.get("temperature") > 30){

8 action (ac, "switchOn");

9 }

10 }

11 }

12 }

Listing 4.7: Room temperature control scenario

In the above example, the scenario is to control the temperature of only one room if it exceeds

30°. The code to apply the same scenario to other rooms containing a temperature sensor and

an air conditioner similar to those in the previous room is shown in Listing 4.8. Comparing

this scenario with the previous one distinguishes the following:

 Smart Entities Declarations: line 2 specifies the involved smart entities. In this case, a list

of air conditioners is declared. To do this with the BPEL4WS language, the programmer

needs to specify each service involved manually and the bindings between services need

to be known a priori. For example, for each air conditioner, the associated services

switchOn and switchOff should be declared and their WSDL descriptions should be

known.

 User Preferences setting: lines 5-12 set the user preferences. The final user can express

the temperature she considers hot and selects which air conditioner can be involved in the

temperature control process.

 For Construct: lines 16-23 give an example of the use of for construct and show how it

is used to iterate over the air conditioner list in order to switch on each air conditioner in

the list.

4.7 The GPL4SRE Language: Overview 99

1 Process temperatureControlScenario2{

2 List acList = discover(Airconditioner);

3 float temperature;

4 subscribe TemperatureEvent;

5 preferences{

6 print("Give your prefered temperature");

7 set(temperature);

8 for (Airconditioner ac: acList){

9 print ("Would you like to use this air conditioner?");

10 select (ac);

11 }

12 }

13 sequence {

14 while(true){

15 onEvent (TemperatureEvent, Map inputVariable);

16 for (Airconditioner ac: acList){

17 if(inputVariable.get("temperature") > temperature){

18 if(inputVariable.get("locationID") ==

19 ac.getLocation().get("locationID")){

20 action (ac, "switchOn");

21 }

22 }

23 }

24 }

25 }

26 }

Listing 4.8: Multi-rooms temperature control scenario

 Key Benefits of the GPL4SRE Language 4.7.3

Some key features of the GPL4SRE language are its ability to:

 Interact with smart entities: The decision-making process nature of the SRE context

often depends on acquiring the actual state of the environment and reacting to new

changes by providing a set of actions to achieve the final goal such as saving energy.The

GPL4SRE is able to interact in the form of action and query with declared smart entities

to change or read their states. Each smart entity is related to a specific physical component

that characterizes it and offers a specific number of services.

 Automate the discovery process: programmers are not forced to make tedious efforts in

finding and understanding details about the available smart entities and link them with

their associated services and locations. Thanks to GPL4SRE and the Ont4SRE ontology,

smart entities and their services are declared in implicit manner only according to their

types and locations while linking, discovering, and service grounding is fully automatic, a

capability that traditional composition languages like BPEL4WS lack.

 Facilitate the applications development and the user interaction: GPL4SRE expresses

the smart environment’s nature, and enables the programmer to easily use the

environment expressions and concepts. It reduces the complexity and the size of the

source code as well as increasing the level of abstraction of the composing services by

hiding the low-level implementation details and facilitating coding.

100 4.8 Process Generator

 Iterate over a list of smart entities: GPL4SRE offers a for loop construct to iterate over a

smart entities list. This kind of iteration enables the manipulation of all the entities and

services sets at once, a capability that traditional composition languages, like BPEL4WS,

lack.

 Involve the end-user: GPL4SRE offers a distinct execution part called preferences to

enable the final user to reconfigure and customize the processes according to her needs.

 React to the produced events: with event handler parts, the GPL4SRE process is able to

handle events that occur independently of, and asynchronously to, the execution of the

main thread at any moment during the process’ lifetime.

 Automate the subscription to events: the subscription to events is performed

automatically, a capability that traditional composition languages like BPEL4WS lack, as

the subscription must be programmed manually.

 Handle data: it is possible to use variables to store, reformat, manipulate, and transfer

messages. A programmer is allowed to declare simple, complex, global, or local variables.

 Control flow: the GPL4SRE enable to control the flow of the program using conditional

statements like while, and if.

 Enable parallel and sequential executions: scenario execution can be sequential or

parallel.

 Process Generator 4.8

The aim of the Process Generator component is to compile and

convert the GPL4SRE program into a runnable process. The

compiler reads the templates written in the GPL4SRE language

and produces BPEL4WS executable statements. As shown in

Figure 4.23, the operations performed by the compiler include:

 Lexical Analysis: the input text (process template) written in GPL4SRE is read and

divided into tokens, which represents the language’s symbols (e.g. int, float, for, while).

 Syntax Analysis: this stage consists of building a tree-structure from the tokens list

produced by lexical analysis. The tree structure corresponds to the structure of the

program.

 Type Checking: in this stage, the parser checks the tree structure to determine if any

violation of the grammar requirements has occurred (syntax errors) or semantic errors, for

example, if a variable is declared twice, or used but not declared. It determines as well

whether the declared smart entities, the performed services (actions, queries, and events),

and input and output parameters correspond to their definition in the Ont4SRE ontology.

4.8 Process Generator 101

 Code Generation: in the final stage, the process template is translated into BPEL4WS

executable code statements with their associated links, and XML files.

Figure 4.23: Recognizer operations

 Benefits of Using the Process Generator 4.8.1

 It generates a runnable process. This includes generating the BPEL4WS process and all 1.

its related packages.

 It automatically checks the information about the inputs and outputs of each invoked 2.

service to assure that all the necessary data are provided, all operations can be executed,

and all links are respected.

 It detects syntax and semantic errors at the compiling stage. Listing 4.9 shows an example 3.

of error messages generated during the compilation of a GPL4SRE program. The error

detection includes:

- Checking if any violation in the language grammar requirements has occurred. This

includes declaring false constructs, missing breaks or semi comas.

- Checking if a variable or a smart entity is declared twice.

- Checking if a variable or a smart entity is used but not declared.

- Checking if the declared smart entities, the performed services (actions, queries, and

events) and their inputs and outputs parameters correspond to their definitions in the

ontology.

Compile-single:

Line 16:12 An error has occurred: variable x is not declared

Line 17:19 An error has occurred: entity room is not declared

Line 25:9 An error has occurred: event MotdionEvent is not found in the

 ontology

Listing 4.9: Error messages generated by compiling a GPL4SRE program

102 4.9 Process Execution Engine

 Software Implementation of the Process Generator 4.8.2

Based on the compilation phases defined above, a recognizer (recursive-descent parser) is

created to read scenario templates written in GPL4SRE and to produce BPEL4WS executable

statements. As shown in Figure 4.24, the recognizer is generated using the ANTLR tool

(Another Tool for Language Recognition) [156]. ANTRL takes as input a grammar (see

Appendix C), which defines the GPL4SRE language and generates a recognizer for it.

Figure 4.24: Grammar development environment for building the GPL4SRE translator

 Process Execution Engine 4.9

Once the executable process and its associated package are

generated, the Process Execution Engine component is

responsible for the life cycle of the process. The execution

engine has not been developed from scratch, but is based on

Oracle SOA Suite [91]. This is an open-source engine to manage and run the SOA

environment. The main features of using Oracle SOA platform are:

 Supporting processes programmed with BPEL4WS: It provides a comprehensive and

easy-to-use infrastructure for deploying and running BPEL4WS processes. To adapt the

platform to the GF4SRE framework needs, the BPEL4SE was extended, with specific

parts especially for enabling the final user to express her requirements via a simple

dynamic graphical interface, and perform and automate the discovery and events registry

4.9 Process Execution Engine 103

process. Providing a lightweight execution engine adapted for the SRE needs will be a

good alternative in the future.

 Providing an Event Driven Network (EDN) for publishing and subscribing Events: the

Oracle SOA suite provides the necessary infrastructure for supporting eventing. EDN

enables event subscribers and publishers to communicate via an intermediary called an

event manager (broker), which performs the broadcast (notification) and the subscription

tasks.

 The Process Lifecycle 4.9.1

The process lifecycle is evaluated in the terms of its initialization, interaction, and execution

as follows:

 First, the process interacts with the discovery engine in order to find smart entities, which 1.

have been declared.

 Secondly, variables are initialized. 2.

 If the process needs to be notified when a particular event is produced, it must register in 3.

the EDN as a new subscriber to be informed about a particular event.

 The process starts the first execution part (User Preferences Setting) by setting some 4.

variables and filters the entities list (optional) according to user preferences via the Client

User Interface.

 Then, the process executes the main thread. 5.

 During the execution of the main thread, the process is able to respond to events in 6.

parallel via the declared event handlers.

 Installing the Process Execution Engine 4.9.2

The process execution engine is implemented by using the Oracle SOA Suite. As shown in

Figure 4.25, the following main components are installed:

 Database for the SOA Suite deployments. It contains a collection of schemas used by the 1.

SOA components.

 Oracle WebLogic Server is the main component of the SOA Suite to deploy and run 2.

applications and manage SOA environments. It embodies the oracle BPEL engine to

execute standard BPEL processes. The WebLogic Server also provides an administration

server to configure and manage all the resources such as the deployed BPEL processes

and web services.

104 4.10 Process Template Tool

 Oracle Service Bus (OSB) is a lightweight enterprise service bus (ESB). It connects and 3.

manages the interaction between heterogeneous services and legacy systems across the

platform.

Figure 4.25: Oracle SOA Suite main installed components

 Process Template Tool 4.10

An editor is created to help the programmer to realise

GPL4SRE-based control scenarios and to save, compile, deploy

and run them. Figure 4.26 shows a screenshot of the realised

process template tool. It is built with Java Swing components

and provides a graphical user interface that consists of three parts: The first shows a graphical

representation of all the smart entities presented in a SRE; the second is the text editor where

the programmer writes the GPL4SRE program; the third part is the toolbar, which consists of

several buttons to save, build, deploy, and run a GPL4SRE program.

Figure 4.26: Process Template Tool

4.11 Client User Interface 105

 Client User Interface 4.11

A simple dynamic graphic user interface has been developed

to handle the communication between the end-user and the

process built with Java Swing components. Figure 4.27 shows

a snapshot of this interface. The bottom part allows for

inserting user preference and the upper part shows messages sent by the process. According to

user preferences constructs presented in Subsection 4.7.1.2, there are three possible

interactions between the final user and the control process:

 Using print construct to display a new message on the upper part. 1.

 Using set construct to insert data by the final user to send to the process. 2.

 Using select construct to decide if a given smart entity should be involved in a particular 3.

decision.

Figure 4.27: Client User Interface

 Discussion and Summary 4.12

This chapter proposed a framework and its software architecture to facilitate modelling and

controlling SRE. It explained in detail the concept, role, implementation, and benefits of each

component in the GF4SRE framework, summarised as follows:

 The Ont4SRE ontology is proposed for modelling and describing the SRE. By using the

Ont4SRE ontology, control systems and programmers can clearly answer questions about

the smart entities present in a smart space.

 Accessibility & interoperability of services in SRE (Context): How sensors and

actuators networks can be implemented using web service-oriented technology like WS-*

to represent the smart entities functionalities and enable a consistent access to all the

106 4.12 Discussion and Summary

components of an SRE was outlined. A standard description of the different services of

physical components through web service uniform interfaces is provided. Further,

semantic descriptions were proposed based on the Ont4SRE ontology to enable searching

for smart entities. Although, there is a strong tendency in the web of Things to move

towards RESTful web services, the GF4SRE does not question either the proposed

language or the fact that making a model for describing the SRE - should at least question

how WoT services are to be delivered and adapted to the GF4SRE framework, which

could be a new challenge to explore.

 Services registry and discovery: A registry and discovery software component is

represented to deal with the registry and discovery requirements in the SRE context.

Thanks to the Ont4SRE ontology and the SPARQL language, an appropriate discovery

process is proposed in order to link and interpret the purpose of both smart entities and

their associated services.

 The GPL4SRE language for controlling the SRE: a domain specific language is

proposed to create diverse control scenarios. It enables the discovery and integration of

smart entities as part of the control process.

Thanks to these components, the GF4SRE framework offers the following features:

 It is composed of pluggable software modules. The GF4SRE is designed to achieve a

loose coupling and a clean separation of the involved components and thereby enhance

reusability and flexibility. The technologies are cleanly integrated for modelling and

controlling different SRE (home, school, hospital, etc.) without increasing the complexity

and spending tedious effort. The GF4SRE framework can be used for different buildings

with the same principles and architecture.

 It is a generic software solution where discovering and using smart objects in control

process scenarios is made in a transparent manner. System architecture minimizes the

complexity through the separation of tasks using modularization and abstraction. This

includes:

- Access transparency: resources and services are clearly represented to users. Users

declare them rather than specify where they are.

- Discovery transparency: programmers do not need to determine the exact number of

smart entities and services that should be involved. Smart entities and their services

are declared in an implicit and generic manner by providing their type rather than the

syntax of their implementation.

- Registry & discovery transparency: the discovery of smart entities and event registry

is completely automatic.

- Interaction transparency: the information is introduced to users in an understandable

fashion with fully meaning phrases.

4.12 Discussion and Summary 107

 Context awareness: The proposed framework is implicitly context-aware. This includes:

- Physical environment context: different physical properties can be considered such as

location, time, temperature, rainfall, light level to handle different situations

depending on the information received from sensors.

- Human context: users are allowed to interact with the processes in terms of

preferences and task requirements.

- Virtual environment context: the GF4SRE framework enables applications to be

aware of the available physical objects and their services in the SRE.

 To show the feasibility of the proposed approach, the different framework components are

implemented and an interactive Smart Home prototype was developed. In Chapter 6, the

Case Study of a complex control scenario using the proposed framework is introduced to

illustrate its usefulness and features.

 109

 5

The GPL4SRE Domain Specific

Language

 GPL4SRE Program ... 110 5.1

 The Process Heading .. 111 5.2

 Declaration Section .. 111 5.3

 Entities Declaration Parts ... 111 5.3.1

 Event Registration Part .. 113 5.3.2

 Variable Declaration Part ... 113 5.3.3

 Execution Section ... 115 5.4

 User Preferences Setting Part... 115 5.4.1

 The Main Thread Part .. 116 5.4.2

 Event Handlers Part ... 117 5.4.3

 Control Flow Constructs ... 118 5.5

 Conditional Statement (If) ... 118 5.5.1

 Repetitive Execution Statement (While) ... 118 5.5.2

 Repetitive Execution Statement (For) .. 119 5.5.3

 Execution Constructs ... 119 5.6

 Sequence Execution (sequence) .. 120 5.6.1

 Parallel Execution (flow) ... 120 5.6.2

 Pick Statement ... 121 5.6.3

 Services Interaction Constructs .. 121 5.7

 Action Construct .. 122 5.7.1

 Query Construct ... 122 5.7.2

 onEvent Construct .. 123 5.7.3

 Other Useful Constructs .. 123 5.8

 Wait Statement ... 123 5.8.1

 Terminate Statement .. 124 5.8.2

 Empty Statement .. 124 5.8.3

110 5.1 GPL4SRE Program

 Assignment Statement ... 124 5.9

In the previous chapter, the structural and conceptual models of the GPL4SRE language were

introduced to set out its role played in the framework. This chapter focuses on the actual

content of GPL4SRE and describes it. The basic syntax elements of a program written in

GPL4SRE are introduced.

Figure 5.1: GPL4SRE Structure

 GPL4SRE Program 5.1

As shown in Figure 5.1, a GPL4SRE program consists of a heading and two essential

sections: Declaration Section, with entities and variables declarations, as well as event

registration; and Execution Section, which is divided into three parts: user preference setting,

main thread, and event handlers. The GPL4SRE program syntax is represented as follows
1
.

program: processHeading '{' declarationSection* executionSection '}'

More details of the syntax of each section of the program follow below with helpful

examples.

1
 In this chapter, the syntax elements are presented with the EBNF standard form in appendix C. Appendix D

contains the complete syntax diagram of the GP4SRE language

5.2 The Process Heading 111

 The Process Heading 5.2

The process heading encloses the entire template definition and gives the program a name.

The syntax of a process heading declaration is as follows.

processHeading: 'Process' processIdentifier

Example 5.1

Process EnergySavingScenario {

 // The process body

}

The Process keyword is the root element, while the word EnergySavingScenario denotes

the process name (i.e. processIdentifier). It represents a sequence of characters, which

normally uses the standard naming conventions.

 Declaration Section 5.3

The declaration section enables the declaration of the smart entities, variables and the

registration of events as follows.

declarationSection: entityDeclaration | entityByIdDeclaration |

 entityListDeclaration |

 entityListByLocationIdDeclaration|

 eventRegistration | varaibleDeclaration

 Entities Declaration Parts 5.3.1

GPL4SRE offers four predefined methods to discover the smart entities. The smart entities

declarations correspond to the four queries supported by the discovery engine presented in

Subsection 4.6.2. Smart entities can be declared individually or as a list of entities of the same

type. The syntax declaration of the fours methods is as follows.

112 5.3 Declaration Section

entityDeclaration : entityType entityIdentifier '=' 'discover'

 '(' entityType ')' ';'

entityListDeclaration : 'List' entityListIdentifier '=' 'discover'

 '(' entityType ')' ';'

entityByIdDeclaration : entityType entityIdentifier '=' 'discover'

 '(' entityType ',' entityIdName ')' ';'

entityListByLocationIdDeclaration : 'List' entityListIdentifier '='

 '(' entityType ',' locationIdName ')' ';'

Example 5.2

The declaration of a single smart entity is written as follows.

Room room_X = discover (Room);

In this example, a single entity of type Room is declared. The smart entity is randomly selected

from the available entities of the same type. The elements used in calling this method, are in

the following order:

 Room specifies the discovered entity type returned in calling the method discover. Other

examples can be Door, Lamp, etc.

 room_X specifies the entity identifier (variable) that will hold the returned result.

 discover is the method’s name to be called. To execute this method, the process interacts

with the discovery engine, as explained in Section 4.6.2.

 Room is an input parameter which specifies the type of entity to be discovered. The entity’s

type is declared using entities name defined in the Ont4SRE ontology.

Example 5.3

The declaration of a list of smart entities is written as follows.

List rooms = discover (Room);

The difference, compared to the previous example, is that the returned result here is a list of

all the available smart entities of the type Room occupying the space, rather than a single

room.

Example 5.4

The declaration of a smart entity based on its identifier (entityIdName) is written as follows.

5.3 Declaration Section 113

Room room_X = discover (Room, "room_1");

In this example, a single entity of type Room is declared. The entity selection is based on the

entityIdName. For this example, the result will be a single smart entity having an

entityIdName equal to "room_1".

Example 5.5

List heaters = discover (Heater, "room_1");

In this example, a list of entity of type Heater is declared. The entity filtering is based on the

locationIdName. The result will be a list of heaters having a locationIdName equal to

"room_1".

 Event Registration Part 5.3.2

The event registration part enables the process to subscribe to a specific event. The syntax is

as follows.

eventRegistration : 'subscribe' eventType ';'

Example 5.6

subscribe MotionEvent;

In this example, the keyword subscribe is used for the subscription and the MotionEvent

denotes the type of the event that the process is interested in and should be subscribed to.

 Variable Declaration Part 5.3.3

Variables are used to hold data during the run time. They must be declared before being used.

Each variable declaration consists of a variable name and its data type. Data type defines

which set of values a variable can hold. Variables can have a primitive (i.e. simple variable)

and a complex type (i.e. complex variable).

variableDeclaration : simpleVariable | complexVariable

5.3.3.1 Simple Variable

Simple variable declarations are made with the same syntax as for primitive variables in Java

language.

114 5.3 Declaration Section

simpleVariable : dataType variableIdentifier ('=' expression)?

Example 5.7

boolean x;

float y = 23.3;

GPL4SRE supports simple data types such as integer, float, and String. Once a variable

is declared, any expression can be assigned to it.

5.3.3.2 Complex Variable

A complex variable denotes a Map collection (i.e. a list of (key, value) pairs). It maps keys to

values and behaves like the Map collection in Java programming. It is used, for example, to

pass messages between the processes and services (i.e. action, query, and event).

complexVariable: 'Map' variableIdentifier ('=' '{' mapPair (','

 mapPair)* '}')? ';'

mapPair : '(' parameterKeyName ',' (IntegerNumber |

 DoubleNumber | STRING_LITERAL | variableIdentifier |

 'true' | 'false') ')'

Example 5.8

Map input1={("phoneNumber", "0764596458"),("message", "Hello")};

In this example, input1 is a complex variable, which contains two keys: "phoneNumber" with

an assigned value equal to "0764596458" and a "message" with an assigned value equal to

"Hello".

5.3.3.3 Variable’s Scopes

Variable declarations can appear directly within the Declaration Section, which means that

they are visible to all GPL4SRE constructs (global variables), or can be declared under a

scope, which means they are only visible to the children of that scope (local variables). The

Main Thread, Event Handlers (onEvent, onAlarm), control flow constructs (if, else,

while, for), and execution constructs (pick, flow, sequence) are each considered to be an

enclosed scope.

5.4 Execution Section 115

 Execution Section 5.4

The Execution Section specifies the parts that will be executed when the process is running. It

includes the user preferences setting, the main thread, and event handler parts. As noted in

Subsection 4.9.1, the process executes firstly the user preferences setting part then both the

main thread and event handlers parts are executed in parallel.

executionSection : userPreferences? mainThread eventHandlers*

 User Preferences Setting Part 5.4.1

This part customizes the process according to final user requirements. It provides some

constructs to display information to the user and to assign user preferences to variables

through a simple user interface. Three main constructs are used to perform these tasks: print,

set and select constructs.

userPreferences : 'preferences' preferenceBlock

preferenceBlock : '{'(print | set | select | ifStatement4Preference |

 forStatement4Preference)* '}'

The child statements of if and for constructs in the user preference setting part, are limited

to select, print, set, if and for constructs.

5.4.1.1 Print Statement

print statement is used to display messages sent by the process to the final user through the

client user interface.

print : 'print' '(' STRING_LITERAL ')' ';'

Example 5.9

preferences {

 print ("Hello World");

}

5.4.1.2 Set Statement

set statement is used to assign user preferences to a global variable.

116 5.4 Execution Section

set : 'set' '(' variableIdentifier ')' ';'

Example 5.10

float targetTemperature;

preferences {

 print ("which temperature do you like in your home");

 set(targetTemperature);

}

In this example, the construct set enables the user to assign a digital value to the variable

targetTemperature.

5.4.1.3 Select Statement

select statement is used to enable the final user to select which smart entities can be

involved in a given situation. Discovered entities are selected by default as long as the final

user did not eliminate them.

select : 'select' '(' entityIdentifier ')' ';'

Example 5.11

Heater _heater = discover(Heater);

preferences {

 print ("do you want to use this heater");

 select(_heater);

}

 The Main Thread Part 5.4.2

The main thread specifies the part of the process that runs when the process starts and after

setting the user preferences. All constructs from Section 5.5 to Section 5.9 can be used in this

part (e.g. control constructs, executions constructs, interaction constructs, other constructs,

and variable assignments).

mainThread : 'sequence' block

block : '{' (controlConstructs | executionConstructs |

 interactionConstructs | otherConstructs |

 assignStatement)* '}'

5.4 Execution Section 117

Example 5.12

sequence {

 int x=5;

}

The main thread starts with a sequence statement, which encloses all the child activities of

the main thread. In the latter, it is possible to interact with different smart entities, create

loops, declare variables, copy, and assign values, as well as wait for events and perform

sequential or parallel executions.

 Event Handlers Part 5.4.3

An event handler allows the process to react to an event or alarm that occurs in parallel while

the process executes the main thread. All constructs from Section 5.5 to Section 5.9 can be

used in the event handler block. The difference between the main thread and the event

handlers is that the first is executed automatically and immediately when the process starts

while the latters are executed each time the corresponding event is produced as long as the

process is alive.

eventHandlers : 'onEvent' '(' eventType ',' 'Map' variableIdentifier

 ')' block |

 'onAlarm' '(' (('for' '(' duration')') |('repeatEvery'

 '(' duration ')')) ')' block

Example 5.13

onEvent (PresenceEvent, Map inputMessage){

 boolean presenceState = inputMessage.get("presenceState");

 String locationId=inputMessage.get("locationID");

}

This example specifies a presence event handler. The event type (PresenceEvent)

corresponds to the event name defined in the Ont4SRE ontology. The child activities are

executed each time a presence event publisher fires an event. A Map variable named

inputMessage is declared to hold the message received from the presence event. According

to the PresenceEvent definition in the Ont4SRE, it should contain two pairs one with the key

"presenceState" and the other with the key "locationID" with their assigned values.

118 5.5 Control Flow Constructs

Example 5.14

onAlarm (for(12H-30M-20S)){

 ...

}

This example defines a timeout event using the onAlarm handler. The keyword for

determines the duration after which the onAlarm will be executed. The time counting for the

duration begins at the point in time when the process starts. For this example, the onAlarm

block will be executed after 12 hours, 30 minutes and 20 seconds from when the process

starts running. Another alternative is repeatEvery.It is set to fire the onAlarm repeatedly

each time an interval time expires. For example, repeatEvery(1D5H14M20S) means an

onAlarm handler is executed repeatedly after each 1 day 5 hours 14 minutes and 20 seconds.

 Control Flow Constructs 5.5

Control flow constructs define the program's procedural logic. The important ones are for,

while and if.

controlConstructs : ifStatement | whileStatement | forStatement

 Conditional Statement (If) 5.5.1

A conditional if statement is used to control the program flow, i.e. if a specified condition is

fulfilled certain statements are executed, if not, other statements are executed.

ifStatement : 'if' '(' conditionExpression ')' block elseStatement?

elseStatement : 'else' block

Example 5.15

int x=4;

if (x < 5){...}

else {...}

 Repetitive Execution Statement (While) 5.5.2

The while activity performs its child activities repeatedly until the specified Boolean

condition no longer evaluates to be true.

5.6 Execution Constructs 119

whileStatement : 'while' '(' conditionExpression ')' block

Example 5.16

int x=1;

while (x < 10)

 {...}

 Repetitive Execution Statement (For) 5.5.3

The construct for is used to iterate over a list of smart entities. The child activities of for

statement are limited only to interaction constructs (action and query), assignment

statements and control constructs (if, for and while). Its syntax is as follows:

forStatement :'for' '(' entityType entityIdentifier ':'

 entityListIdentifier ')' partial_block

partial_block :'{' interactionConstructs | assignStatement

 | forStatement

 | ('if' '(' conditionExpression ')' partial_block)

 | ('while' '(' conditionExpression ')' partial_block)

 '}'

Example 5.17

List heaters=discover(Heater);

for (Heater h: heaters){

 if(temperature > 28){

 action (h, "switchOff");

 }

}

In this example, an action switchOff is sent sequentially for each heater in the heaters list if

the temperature is greater than 28°.

 Execution Constructs 5.6

This kind of construct is used to execute the process activities either in sequential or in

parallel by using the keywords sequence and flow, respectively. Other execution constructs,

inspired from BPEL, are also provided, such as the pick construct.

120 5.6 Execution Constructs

executionConstructs : sequenceStatement | flowStatement |

 pickStatement

 Sequence Execution (sequence) 5.6.1

This activity consists of one or more activities executed in sequential order. The sequence is

completed by the execution of the final activity.

sequenceStatement : 'sequence' block

Example 5.18

sequence {

 int t=0;

 if (t <30){...}

 while (t<4){...}

}

In this example, the sequence activity encloses two activities if and while statements. The

two activities if and while are executed sequentially.

 Parallel Execution (flow) 5.6.2

The flow construct consists of one or more sequence statements to be performed in parallel.

A flow activity is completed when all parallel activities in the flow have finished their

execution. This construct is useful for example, to get results from different resources by

invoking different services concurrently.

flowStatement : 'flow' '{' ('sequence' block)+ '}'

Example 5.19

flow{

 sequence {...}

 sequence {...}

}

In this example, two sequence statements are executed in parallel and simultaneously.

5.7 Services Interaction Constructs 121

 Pick Statement 5.6.3

The pick construct can specify a set of choices of possible blocks to be executed. Each block

starts with an event handler OnEvent or onAlarm handler. Only the event handler, that is

produced first, will run its procedure, and the pick block will complete once that event

handler's activities have been executed.

pickStatement : 'pick' '{' (onEventStatement | onAlarmStatement)+ '}'

onEventStatement : 'onEvent' '(' eventType ',' 'Map'

 variableIdentifier ')' block

onAlarmStatement : 'onAlaram' '(' 'for' '(' duration ')' ')' block

Example 5.20

pick {

 onEvent(MotionEvent, Map input1){

 ...

 }

 onAlarm (for(11H-30M-20S)){

 ...

 }

}

In this example, two event handlers are declared with the pick statement a MotionEvent and

an onAlarm. When the program execution reaches the pick statement, it will wait either for

the MotionEvent to be produced or for the onAlarm duration time to expire. The first of two

handlers fired will execute its child activities. Time counting for the duration of the onAlarm

begins at the point in time when the program execution reaches the pick statement. The time

expression defined for the onAlarm’s example specifies a duration of 11 hours, 30 minutes

and 20 seconds. This means an alarm will be produced after 11 hours, 30 minutes and 20

seconds from when counting started.

 Services Interaction Constructs 5.7

Service interaction constructs allow interaction with the smart entities via their devices

(sensors and actuators). There are three kinds of interaction: action, query and onEvent.

122 5.7 Services Interaction Constructs

interactionConstructs : action | query | onEvent

 Action Construct 5.7.1

The action construct is used to modify the state of a given smart entity.

action : 'action' '(' 'this.'? entityIdentifier ',' serviceName ((','

 'this.'?) variableIdentifier)? ')' ';'

Example 5.21

Heater heater = discover(Heater);

Map inputVariable = {("temperature",25.0)};

action(heater, "adjustTargetTemperature", inputVariable);

With the action statement, three parameters are needed: the entity and action names, and a

Map variable, which holds the name of the entity state to be modified and its new value. In this

example, the heater is the smart entity, the "adjustTargetTemperature" is the action name,

and the inputVariable is used to hold the entity state "temperature" with an assigned value

equal to 25.0. The keyword this is used to distinguish between the smart entity declared

globally in the Declaration Section (e.g. this.heater) and the one declared locally inside the

scope.

 Query Construct 5.7.2

The query construct is used to read the current state of a given smart entity.

query : 'Map' variableIdentifier '=' 'query' '(' ('this.')?

 entityIdentifier ',' serviceName (',' ('this.')?

 variableIdentifier)? ')' ';'

Example 5.22

Room room = discover(Room);

Map result = query (room, "getTemperature");

The query statement takes the smart entity and the name of the query as input parameters and

returns the requested current state. In this example, room is the entity identifier,

"getTemperature" is the name of the query, and result is the variable used to hold the

returned temperature. Then, result.get("temperature") is used to get the temperature.

5.8 Other Useful Constructs 123

 onEvent Construct 5.7.3

The onEvent construct can be declared inside the main thread or any event handler without

needing a pick statement to wait for a specific event.

onEvent :'onEvent' '(' eventType ',' 'Map' variableIdentifier ')' ';'

Example 5.23

X=5;

onEvent (TemperatureEvent, Map input1);

if(input1.get("temperature") < 18){

 ...

}

In this example, the onEvent statement is declared to wait for a TemperatureEvent.The part

of the program declared after the onEvent statement will not be executed until the event is

fired. A map data structure named input1 is declared to hold the message received from the

event. In this example, the program first assigns the number 5 to the variable x, then it waits

for the temperature event to be produced. Once the event is fired, the next activity (if

statement) is executed.

 Other Useful Constructs 5.8

Other useful constructs are available with GPL4SRE language like wait, terminate, and

empty.

otherConstructs : waitStatement | terminateStatement | emptyStatement

 Wait Statement 5.8.1

The wait activity enables the process to wait for a determined time interval. The syntax is as

follows.

waitStatement : 'wait' '(' expression ')' ';'

124 5.9 Assignment Statement

Example 5.24

wait(60*3); // wait for 3 minutes

 Terminate Statement 5.8.2

The terminate constructs allows the stop process instance to be executed immediately. The

syntax is as follows.

terminateStatement : 'terminate' '(' ')' ';'

Example 5.25

 terminate();

 Empty Statement 5.8.3

This activity has no operation associated with it. It does nothing. The syntax is as follows.

emptyStatement : 'empty' '(' ')' ';'

Example 5.26

empty();

 Assignment Statement 5.9

The assignment statement is used to manipulate and assign data from one variable to another,

as well as to construct and insert new data. Table 5.1 gives some examples of possible

assignments including those for simple and complex variables.

assignStatement : assignSimpleVariable | assignComplexVariable |

 setMapVarParameter | getEntityById |

 getEntityByLocation;

5.9 Assignment Statement 125

Table 5.1: Example of variables Assignments

Description Assignment statement Description

Assign a constant to a simple

variable.
x = 100;

x and y are simple variables.

100 is a constant. Assign a simple variable value to

another simple variable.
y = x;

Assign a key’s value from a

complex variable to a simple

variable.

x = b.get("location");
b and d are complex

variables.

location is a key.

RoomA is a string.
Assign a constant to a complex

variable key.
d.set("location","RoomA");

Assign a simple variable value to

a complex variable key.
d.set("location",c); location and x are keys.

d is a complex variable.

C is a simple variable.
Assign a key’s value from a

complex variable to a complex

variable key.

d.set ("x",b.get("d"));

Get an entity by its Id name.
Entity h=getEntityById

 (heaters,"h1");

h is an entity.

heaters is an entity list.

h1 is the entity identifier

name. Get an entity by its location.
Entity h=getEntityById

 (heaters,"RoomA");

 127

 6

Case Study: Smart Home Scenarios

 Smart Home Environment .. 127 6.1

 Making-Ready the Smart Home ... 130 6.2

 Making-Ready the Smart Entities .. 130 6.2.1

 Instantiating the Smart Home Ontology .. 131 6.2.2

 Making-Ready the Registry and Discovery Engine 132 6.2.3

 Example Scenarios ... 133 6.3

 Energy Saving Scenario ... 133 6.3.1

 Security & Safety Scenario .. 142 6.3.2

 Discussion and Evaluation... 149 6.4

 Scenarios Evaluation .. 150 6.4.1

 Lessons learnt and Good Programming Styles for GPL4SRE................... 154 6.4.2

 Summary ... 157 6.5

This chapter introduces a case study based on the proposed framework for the smart home

environment. The case study includes the development of two scenarios revolving around

energy saving, security and safety.

 Smart Home Environment 6.1

The smart home introduced in this chapter is similar to Jane’s home introduced in Section

3.7.1. Figure 6.1 describes this particular home, which has four rooms: A, B, C, D, and a

garden, E. These places are populated by the set of smart entities presented in Table 6.1.

128 6.1 Smart Home Environment

Figure 6.1: Smart home plan

Table 6.1: Smart Entities occupying the smart home

SmartEntity

Smart Location

Total

R
o
o
m

A

R
o
o
m

B

R
o
o
m

C

R
o
o
m

D

G
a
r
d
e
n

E

Heater 2 1 1 1 5

Window 1 1 1 1 4

Lamp 1 1 1 1 1 5

Shutter 1 1 1 1 4

Door 1 1

Sprinkler 1 1 1 1 4

Telephone 1 1

AntitheftAlarm 1 1

FireAlarm 1 1

Shower

 1 1

6.1 Smart Home Environment 129

Each entity presented in Table 6.1 is associated with actuator(s) and/or sensor(s) which offer

the services presented in Table 6.2. The actuators and services’ names correspond to their

definition in the Ont4SRE ontology.

Table 6.2: Smart entities, their devices, and services according to the Ont4SRE definitions

Entity Sensors & Actuators
Concerned

Property

Services(actions,

queries, events)

Room FireSensor dangerLevel FireEvent

PresenceSensor presenceState PresenceEvent

getPresenceState

TemperatureSensor temperature TemperatureEvent

getTemperature

MotionSensor motionState MotionEvent

WaterLeakSensor leakLevel WaterLeakEvent

Door

AccessControlSystem lockState,

homeState,

doorState,

accessCode

open, close, lock,

unlock, getHomeState,

getLockState,

getAccessCode

DoorBrokenSensor dangerLevel DoorBrokenEvent

Window

WindowController lockState,

windowState

lock, unlock, open,

close

WindowBrokenSensor dangerLevel WindowBrokenEvent

Shutter

ShutterController lockState,

positionState

open, close

Lamp LampController switchState,

brightnessLevel

switchOn, switchOff,

getSwitchState,

adjustLight

Heater HeaterController switchState,

targetTemperature

switchOn, switchOff,

getSwitchState,

adjustTargetTemperature

Shower ShowerController faucetState open, close

Telephone TelephoneStation Message,

phoneNumber

eCall, sendSMS

AntitheftAlarm

AlarmController switchState switchOn, switchOff

FireAlarm

FireAlarmController switchState switchOn, switchOff

Sprinkler SprinklerController valveState open, close

Calendar DigitalCalendar daytime,

nighttime, date

CalendarEvent,

getDaytime,

getNighttime

WeatherStation
DigitalWeather

Station
dangerLevel WindstormEvent

130 6.2 Making-Ready the Smart Home

 Making-Ready the Smart Home 6.2

Three steps are necessary to make the smart home ready for the execution of different home

control scenarios: (i) making available the smart entities and their services; (ii) instantiating

the home ontology; (iii) making ready the discovery and registry engine.

 Making-Ready the Smart Entities 6.2.1

This step consists of building the smart home and making available each smart entity and its

related services through the network. As indicated in Section 4.8, for the proposed smart

home, the services provided by actuators, and sensors are simulated and described in web

service interfaces. Each device (actuator or sensor) has one interface that provides its services

(queries, events, and actions) corresponding to their definition in Table 6.2. The web services

associated with a smart home web application are deployed on a web server. The evaluation

of service invocations and the produced events are visualized in a graphical user interface, as

in Figure 6.2 below. The lower section allows for artificially publishing various events such

as MotionEvent or ShowerEvent while the upper section shows the reaction of the system

(Smart Home) according to the action scenarios.

Figure 6.2: Smart home simulator

6.2 Making-Ready the Smart Home 131

 Instantiating the Smart Home Ontology 6.2.2

Conforming to the ontology instantiation steps presented in Subsection 4.6.1.1, the present

smart home ontology was completely instantiated, which included:

 The instantiation of the five locations (i.e. room A, B, C, D and garden E).

 The instantiation of each smart entity located in each room, given in Table 6.1.

 The instantiation of each actuator and sensor associated with each smart entity, given in

Table 6.1.

 The instantiation of each service (action, query, event) provided by each actuator and

sensor presented in Table 6.2.

The ontology instantiation is relatively simple using a protégé tool. Figure 6.3 shows an

example of how a room is instantiated using the protégé tool.

Figure 6.3: Smart home instantiation using a protégé tool

132 6.2 Making-Ready the Smart Home

 Making-Ready the Registry and Discovery Engine 6.2.3

After the ontology instantiation step, the ontology was saved in the registry and discovery

engine as a database store for the smart home for the registry and discovery proposals. The

registry process performed conformed to the steps introduced in Subsection 4.6.1.2. When

actuators and sensors are installed (i.e. deployed within the smart home simulator), they send

a registry request similar to Listing 4.4, to the register engine to provide the necessary

grounding information and to enable the smart entities to become part of the services

providers in the instantiated ontology. By finishing the registry process, the discovery engine

can respond to queries concerning the discovery of the smart entities and services. Figure 6.4

shows a screenshot of the registered smart entities and their associated devices and services.

 Figure 6.4: Visualization of the smart entities occupying a SRE

6.3 Example Scenarios 133

 Example Scenarios 6.3

Once the ontology has been instantiated and all the services registered, diverse scenarios can

be simply written with the GPL4SRE language. In the remainder of this section, two scenarios

are demonstrated: energy saving, and security and safety.

 Energy Saving Scenario 6.3.1

The energy consumption of homes depends mainly on the usage of the HVAC, lighting, and

electrical devices like TV, washing machine, etc. If the final user wants to reduce energy

consumption during the winter season, it can be reduced by the following strategies:

 CaseI:Whenthehouse’soccupantleavesorentersthehome

The home can be set in vacant mode when the inhabitant leaves the home. In this situation

and to save the energy, the following actions are taken:

- Switch off all the heaters and lamps.

- Close all the windows.

When the inhabitant enters the home, the following actions are taken:

- Switch on the heater in each room which has a temperature lower than the minimum.

 CaseII:whenthehouse’soccupantsareathome

When a user is at home, the HVAC and lighting systems should be turned off or their

consumption can be minimized when it is not needed. Concerning occupied rooms’,

managing the temperature and light is based on presence detection, the comfort level

needed and the time of sunrise or sunset and the room’s function. The following actions

can be taken:

- Switch off the lights in rooms when they are not occupied or during daylight hours.

- Open all the shutters to allow the light to enter the rooms.

- Switch on the light when somebody enters a given room during the night hours.

- Switch on the heater if the temperature is lower than the minimum level and off if the

temperature is greater than the maximum level required.

- Close windows if heaters are switched on.

- Adjust the heater to an economical level during the hours of sleep at night.

- Limit hot water consumption during showers.

134 6.3 Example Scenarios

6.3.1.1 Programming methodology

As in any other language, there are many ways to implement the scenario using GPL4SRE.

By analyzing the scenario and from the energy saving strategies explained above, the

following points arise:

 The necessary queries and actions depend on the environment context changing. For

example, switching a lamp on or off depends on the presence detection (PresenceEvent)

while switching a heater on or off depends on temperature change (TemperatureEvent).

Therefore, the decisions should be grouped according to each type of event and its effects.

 Additional contextual information sometimes needs to be gathered to determine the right

decision (e.g. if a change in the temperature occurs in a given space, we need to know if

that space is occupied by somebody, and if it is day or night time). Therefore, to be sure of

having the correct information about the current state of the environment, queries can be

made about the states in question.

These two criteria serve as guidelines for programming the two introduced scenarios in a clear

way. A redraft of the energy saving scenario description based on these criteria is given in

Listing 6.1, providing a high-level description (pseudo-code) of the necessary queries and

actions, and the involved smart entities grouped under the following five event handlers.

 AccessEvent: an access event (lines 1-10) is produced when the inhabitant enters or 1.

leaves the home. It informs of any change in the homeState (i.e. occupied value if the

inhabitant enters and vacant value if he leaves).

 PresenceEvent: a presence event (lines 11-20) is produced when the inhabitant enters or 2.

leaves a given location. It informs of any change in the presenceState (i.e. true value if

the inhabitant enters and false value if he leaves), and the location where this change has

occurred.

 TemperatureEvent: a temperature event (lines 21-29) is produced when the temperature 3.

changes. It informs about the new temperature, and the location where this change has

occurred.

 ShowerEvent: a shower event (lines 30-33) is produced when the inhabitant starts taking 4.

her shower. It informs about the change in the faucetState (i.e. opened value if the

faucet is opened and a closed value if it is closed), and the location where this change

has occurred.

 CalendarEvent: a calendar event (lines 34-45) is produced when day or night begins. It 5.

informs of the change from e.g. daytime to nighttime (i.e. daytime has true value if it

is day, while nighttime has true value if it is night).

 OnAlarm Event: an onAlarm event (lines 46-48) is produced after a timeout expires. For 6.

this scenario, an alarm is produced each time the clock reaches midnight.

6.3 Example Scenarios 135

1 When an AccessEvent is produced

2 if the homeState equals vacant

3 switch off Heaters and Lamps

4 if the homeState equals occupied

5 for each room

6 query the current temperature in the Room

7 if the current temperature is equal to or less than the minumim

8 switch Heater on

9 adjust Heaters’ targetTemperature to comfort level

10 close Window in the room concerned

11 When a PresenceEvent is produced

12 if the presenceState is false

13 wait for 3 minutes

14 query the presenceState in the Room in which the event was produced

15 if the presenceState is still false

16 switch off the Lamps in the given room

17 else

18 query the Calendar whether it is daytime or nighttime

19 if it is nighttime

20 switch on the Lamp in the given room

21 When a TemperatureEvent is produced

22 query the homeState from the EntranceDoor

23 if the homeState is occupied

24 if the change in temperature is less than the minimum required

25 switch on the Heater in the room concerned

26 adjust the Heater’s targetTemperature to comfort level

27 close the Window in the room concerned

28 If the temperature is greater than the maximum needed

29 switch off the Heater in the given location

30 When a ShowerEvent is produced

31 if the faucetState is opened

32 wait for x minutes (user determines the shower duration)

33 close the Shower

34 When a CalendarEvent is produced

35 if it is daytime

36 open the Shutters

37 switch the Lamps off

38 for each Heater

39 adjust the Heater’ targetTemperature to confort level

40 if it is nighttime

41 close the Shutters

42 for each Room

43 query the presenceState in the Room

44 if the presenceState equals true

45 switch on the Lamp in the room concerned

46 When onAlarm on midnight is produced

47 for each Heater

48 adjust the Heater’s targetTemperature to an economical level

Listing 6.1: Pseudo-code concerning the energy saving scenario

6.3.1.2 Energy Saving Scenario Implementation

Listing 6.2 shows how the energy saving scenario is written in a GPL4SRE. Hereafter, the

code lines are commented on from a programming methodology viewpoint since the language

syntax and constructs were introduced in Section 4.7 and Chapter 5. Decisions and actions are

136 6.3 Example Scenarios

grouped under the five event handlers, as explained above, and according to the following

order sequence:

 The main thread (lines 34-69) consists of an AccessEvent. In general, where activities are

less often performed or where the aim is to initialize a process, these are declared within

the main thread. When the process starts, it queries the homeState. Depending on the

query's response, if the home is in vacant mode, it switches all the heaters and lamps off.

Otherwise (occupied mode) other queries concerning the temperature of each room are

performed and depending on the result of those queries, some or all heaters could be

switched on. This is the home initialization then the process waits for an AccessEvent

(line 66) to be produced to repeat the previous steps.

 The other five event handlers (PresenceEvent, TemperatureEvent, ShowerEvent and

CalendarEvent, and OnAlarm event) are declared as separate event handlers in parallel

with the main thread. Some contain a wait statement. If they are declared inside a pick

statement with other events handlers, this will prevent the process from executing the next

activity until it has finished executing the wait activity, which could take a period of time

(i.e. a few minutes, hours or days).

 Lines 94-121 specify a TemperatureEvent handler which is programmed as follows.

- Line 95 queries the homeState from the entrance door.

- Lines 96-97 assign the homeState received from the query and the locationID

received from the event message into two variables named homeState and location

- Lines 98-121 perform a set of conditions and actions including:

 Line 98 checks if the home is occupied. If that is true, line 99 is executed

to check if the temperature is considered cold. If that is true as well, lines

100-113 are executed. The heater located where the temperature changed

to low, is switched on and the window located in the same place is closed.

 If the condition in line 99 is evaluated to be false, then the temperature is

not considered cold and another if statement in line 114 is performed to

check if the temperature exceeds the maximum needed temperature. If line

114 is evaluated to be true, then lines 115-121 are executed. The heater

located where the event was produced, is switched off.

6.3 Example Scenarios 137

1 Process EnergySavingScenario {

2 List heaters = discover(Heater);

3 Shower shower = discover(Shower,"shower_C");

4 List lamps = discover(Lamp);

5 List windows = discover(Window);

6 List shutters = discover (Shutter);

7 List rooms = discover(Room);

8 Door entranceDoor = discover(Door,"EntranceDoor_1");

9 Calendar calendar =discover (Calendar);

10 subscribe ShowerEvent;

11 subscribe TemperatureEvent;

12 subscribe CalendarEvent;

13 subscribe PresenceEvent;

14 subscribe AccessEvent;

15 float coldTemp;

16 float hotTemp;

17 float targetTemp;

18 float econmicTemp = 18;

19 int showerDuration;

20 preferences {

21 print("Which temperature do you consider to be cold?");

22 set(coldTemp);

23 print("Which temperature do you consider to be hot?");

24 set(hotTemp);

25 print("What is your preferred temperature?");

26 set(targetTemp);

27 print("How many minutes do you need for your Shower?");

28 set(showerDuration);

29 for(Heater h: heaters){

30 print ("Would you like to use this heater?");

31 select (h);

32 }

33 }

34 sequence{

35 Map result = query(entranceDoor,"getHomeState");

36 String homeState = result.get("homeState");

37 while(true){

38 if(homeState == "vacant"){

39 for (Lamp lamp : lamps){

40 action (lamp, "switchOff");

41 }

42 for (Heater heater : heaters){

43 action(heater,"switchOff");

44 }

45 }

46 if(homeState == "occupied"){

47 for(Room room: rooms){

48 Map temp = query(room, "getTemperature");

49 String location = room.getLocation().get("locationID");

50 if(temp.get("temperature") < coldTemp){

51 for(Heater h:heaters){

52 if(h.getLocation().get("locationID") == location){

53 action(h,"switchOn");

54 Map input1 = {("temperature",targetTemp)};

55 action(h,"adjustTargetTemperature",input1);

56 }

57 }

58 for(Window w: windows){

59 if(w.getLocation().get("locationID") == location){

60 action(w,"close");

61 }

62 }

63 }

138 6.3 Example Scenarios

64 }

65 }

66 onEvent(AccessEvent, Map input2);

67 homeState=input2.get("homeState");

68 }

69 }

70 onEvent(PresenceEvent, Map input5){

71 String location = input5.get("locationID");

72 if (input5.get("presenceState") == false){

73 wait(3*60);

74 Room room = getEntityByLocation(rooms,location);

75 Map input6 = query(room,"getPresenceState");

76 if(input6.get("presenceState") == false){

77 for(Lamp l: lamps){

78 if(l.getLocation().get("locationID") == location){

79 action(l,"switchOff");

80 }

81 }

82 }

83 }else{

84 Map input7 = query(calendar, "getDaytime");

85 if(input7.get("dayTime") == false){

86 for(Lamp l: lamps){

87 if(l.getLocation().get("locationID") == location){

88 action(l,"switchOn");

89 }

90 }

91 }

92 }

93 }

94 onEvent(TemperatureEvent, Map input1){

95 Map result1 = query(entranceDoor,"getHomeState");

96 String homeState = result1.get("homeState");

97 String location = input1.get("locationID");

98 if(homeState == "occupied"){

99 if(input1.get("temperature") <coldTemp) {

100 for (Heater h: heaters){

101 if(h.getLocation().get("locationID") == location){

102 action(h,"switchOn");

103 Map input2 = {("temperature",targetTemp)};

104 action(h,"adjustTargetTemperature",input2);

105 }

106 }

107 for (Window w: windows){

108 if(w.getLocation().get("locationID") == location){

109 action(w,"close");

110 }

111 }

112 }

113 }

114 if(input1.get("temperature") > hotTemp){

115 for (Heater h: heaters){

116 if(h.getLocation().get("locationID") == location){

117 action(h,"switchOff");

118 }

119 }

120 }

121 }

122 onEvent(ShowerEvent, Map input3){

123 if(input3.get("faucetState") == "opened"){

124 wait(showerDuration * 60);

125 action (shower, "close");

126 }

127 }

6.3 Example Scenarios 139

128 onEvent(CalendarEvent, Map input4){

129 if(input4.get("dayTime") == true){

130 for(Shutter s: shutters){

131 action(s,"open");

132 }

133 for(Lamp l: lamps){

134 action(l,"switchOff");

135 }

136 }

137 else{

138 for(Shutter s: shutters){

139 action(s,"close");

140 }

141 for(Room room: rooms){

142 Map p = query(room, "getPresenceState");

143 String location = room.getLocation().get("locationID");

144 if(p.get("presenceState") == true){

145 for(Lamp l: lamps){

146 if(l.getLocation().get("locationID") == location){

147 action(l,"switchOn");

148 }

149 }

150 }

151 }

152 }

153 }

154 onAlarm(repeatEvery(23:59:59,1D-1S)){

155 for(Heater h:heaters){

156 Map input4 = {("temperature",econmicTemp)};

157 action(h,"adjustTargetTemperature",input4);

158 }

159 }

160 }

Listing 6.2: The energy saving program written in GPL4SRE

6.3.1.3 Scenario Execution Monitoring

Figure 6.5 and Table 6.3 monitor the energy saving scenario’s execution history. According to

the lifecycle process introduced in Subsection 4.9.1, the energy saving program is executed in

the following order:

 First, the process interacts with the discovery engine in order to find the smart entities 1.

declared in lines 2-9. As shown in Figure 6.5, 25 smart entities matching the requested

criteria can be found.

 Then, the process registers in the EDN as a new subscriber to be informed about all the 2.

events declared in lines 10-14.

 Then, the user preferences are set (lines 20-33), by asking the user which temperature she 3.

considers cold and hot in the rooms as well as asking about the duration of the shower and

selecting which heater will be involved, as illustrated in Figure 6.5.

 The process then executes the main thread (lines 34-69) during which the process is able 4.

to respond to the five events in parallel through the event handlers’ blocks (lines 70-159).

140 6.3 Example Scenarios

 Table 6.3 shows an extract of the execution history of the saving energy scenario (i.e. 5.

main thread and events’ handler parts). As can be noted, the running scenario reacts to the

different events. Each time, an event is produced, the appropriate actions and queries are

performed according to their order in the program. For example, on 13:30:33, an access

event was produced informing the process that somebody has entered the home. The

process first queried the current temperature of each room. Because the temperature of

each room was less than 18°, all the heaters were switched on and all windows were

closed.

Figure 6.5: User preferences setting in energy saving scenario

6.3 Example Scenarios 141

Table 6.3: An extract of the execution history of the saving energy scenario

T
im

e

E
v

e
n

t

Received data

R
o

o
m

Query

S
m

a
r
tE

n
tity

C
h

a
n

g
e
d

 sta
te

d
a

y
tim

e

h
o

m
e
S

ta
te

te
m

p
e
r
a

tu
r

e

p
r
e
s
e
n

c
e

fa
u

c
e
tS

ta
te

h
o

m
e
S

ta
te

d
a

y
tim

e

T
e
m

p
e
r
a

tu
r

e

P
r
e
s
e
n

c
e

13:22:09
Process

Starting
- -

- - - A
v

a

c

a

n

t

-

- -
Lamps

Heaters

off

off

- - - B - -
Lamp

Heater

off

off

- - - C - -
Lamp

Heater

off

off

- - - D - -
Lamp

Heater

off

off

13:30:33
Access

Event
-

o

c

c

u

p

i

e

d

- - - A

- -

15 -
Window

Heater

closed

on

- - - B 15 -
Window

Heater

closed

on

- - - C 15 -
Window

Heater

closed

on

- - - D 15 -
Window

Heater

closed

on

13:35:54
Presence

Event
- - - true - A - day - - - -

13:41:00
Presence

Event
- - - false - A - - - false

Lamp

wait 3 min
off

13:45:00
Presence

Event
- - - true - C - day - - -

13:50:09
Shower

Event
- - - - opened C - - - -

Shower

wait 10 min

closed

14:10:04
Presence

Event
- - - false - C - - - false

Lamp

wait 3 min
off

14:10:50
Presence

Event
- - - true - A - day - - - -

18:23:19
Calendar

Event
night -

- - - A

- -

- true
Lamp

Shutter

on

closed

- - - B - false Shutter closed

- - - C - false Shutter closed

- - - D - false Shutter closed

18:00:21
Presence

Event
- - - false - C - - - false Lamp off

18:00:30
Presence

Event
- - - true - A - day - - - -

06:11:05
Calendar

Event
day -

- - - A

- -

- -
Lamp

Shutter

off

opened

- - - B - -
Lamp

Shutter

off

opened

- - - C - -
Lamp

Shutter

off

opened

- - - D - -
Lamp

Shutter

off

opened

142 6.3 Example Scenarios

 Security & Safety Scenario 6.3.2

The second scenario consists of controlling the home's security and safety, which mainly

depends on controlling access to the home, detecting intrusion, fire, and inclement weather

effects, and water leaks. It can be managed by the following strategies, some of which are

proposed in [157]:

 Case I: Control of Access

- The entry door and windows should be closed and locked when the homeowner

leaves home.

- Notify the homeowner via an SMS message if anyone enters the empty home.

- Activate the outside lights during the night to give the impression that the home is

occupied.

 Case II: Intrusion Detection

When the user is away from home, he should be informed about any intrusion detected,

whether in the form of movement or a broken door or window. The following actions can

be taken:

- Alert the home owner or police if any window or door is broken or movement is

detected.

- Activate the anti-theft alarm if any window or door is broken or movement is

detected.

 Case III: Weather Storm and Wind

- Close the windows and shutters.

- Alert the homeowner.

 Case IV: Fire Safety

- Alert the homeowner and the fire department if a fire is detected.

- Switch the fire alarm on.

- Turn on all the anti-fire water system (fire sprinklers) in fire detected accidents.

- Turn on all room lighting.

- Unlock doors and windows.

 Case V: Leak Detection

- Alert the home owner if any water leak is detected. Sensors in the garage and kitchen

can detect a water leak from the washing machine, dishwasher or water heater.

6.3 Example Scenarios 143

6.3.2.1 Programming methodology

By following the programming methodology applied in the energy saving scenario, the

security and safety scenario can be redrafted, as shown in Listing 6.3, which gives a high-

level description (pseudo-code) of the necessary queries and actions, with involved smart

entities grouped under the following eight event handlers.

 MotionEvent: a motion event (lines 1-6) is produced when any movement is detected 1.

around the motion sensor. The motion event informs about the change in the

motionState (i.e. a true value if a movement is detected), and the location where this

change has occurred.

 DoorBrokenEvent: a door broken event (lines 7-10) is produced when a door is broken. 2.

It informs about the dangerLevel (i.e. a high value if a danger is detected), and the

location where this danger has been detected.

 WindowBrokenEvent: a window broken event (lines 7-10) is similar to a door broken 3.

event.

 AccessControl: an access event (lines 11-17) is similar to the one introduced in the 4.

energy saving scenario.

 Windstorm Event: a digital weather station informs the control system through a 5.

windstorm event (lines 18-21) when a windstorm is coming. It informs about the

dangerLevel (i.e. a high value if the windstorm considered violent).

 FireEvent: a fire event (lines 22-28) is produced when smoking or a fire is detected. It 6.

informs about the dangerLevel (i.e. a high value if a fire is detected), and the location

where the fire has been detected.

 WaterLeakEvent: a water leak event (lines 29-30) is produced when a water leak in the 7.

pipes is detected. It informs about the waterleak (i.e. a true value if a lack is detected)

and the location where the lack has been detected.

 CalendarEvent: a calendar event (lines 31-35) is similar to the one introduced in the 8.

energy saving scenario.

144 6.3 Example Scenarios

1 When a MotionEvent is produced

2 query the homeState from the EntranceDoor

3 if the home is in vacant mode

4 notify homeowner by sending an SMS message via the Telephone

5 call the police via the Telephone

6 switch AntitheftAlarm on

7 When a Window or a DoorbrokenEvent is produced

8 notify the homeowner through an SMS message using the Telephone

9 call the police using the Telephone

10 switch the AntitheftAlarm on

11 When an AccessEvent is produced

12 if the inhabitant leaves home

13 close and lock the EntranceDoor

14 close and lock the windows

15 if the inhabitant enters the home

16 if the access code is not equal to the homeowner's access code

17 notify the homeowner via an SMS message using the Telephone

18 When a WindstormEvent is produced

19 close the Shutters

20 close and lock the Windows

21 alert the user via an SMS message using the Telephone

22 When a FireEvent is produced

23 switch the FireAlarm on.

24 open all the Sprinklers

25 switch on all the Lamps

26 unlock all the Doors and Windows

27 alert the home owner via an SMS message using the Telephone

28 alert the fire department via a Telephone call

29 When a WaterLeakEvent is produced

30 notify the homeowner via an SMS message using the Telephone

31 When a CalendarEvent is produced

32 if it is nighttime

33 switch garden Lamp on

34 else

35 switch garden Lamp off

Listing 6.3: Pseudo-code concerning the security and safety scenario

6.3.2.2 Security Scenario Implementation

Listing 6.4 shows how the security and safety scenario is written in a GPL4SRE. Decisions

and actions are grouped according to the eight event handlers, as follows.

 The main thread (lines 29-54) consists of a pick statement which contains three events 1.

handlers: MotionEvent, DoorBrokenEvent and WindowBrokenEvent. As can be noted,

the three events lead to the same actions and decisions, which consist of alerting the

homeowner and calling the police. To avoid writing the code concerning sending an alert

message and making a call in each event handler, the three events handlers are declared in

the pick statement while the two actions are executed sequentially after the pick block.

 The remainder event handlers (AccessEvent, WindstormEven, FireEvent, 2.

WaterLeakEvent, and CalendarEvent) are declared in parallel (lines 55-115) to the

6.3 Example Scenarios 145

main thread. Lines 55-71 specify an AccessEvent handler, which is executed when an

access event is detected in the following order.

- Line 56 verifies whether the home is occupied or empty.

- If the home is empty, lines 57-62 are executed consisting of closing and locking the

entrance door and the four windows.

- If the home is occupied, lines 65-69 are executed consisting of checking that the

accessCode received by the event message is equal to the homeowner accessCode.

If not, the homeowner is alerted via an SMS message.

146 6.3 Example Scenarios

1 Process SecurityandSafetyScenario {

2 FireAlarm firealarm = discover(FireAlarm);

3 Telephone telephone = discover(Telephone);

4 Door entranceDoor = discover(Door,"EntranceDoor_1");

5 AntitheftAlarm antitheftAlarm = discover(AntitheftAlarm);

6 List windows = discover(Window);

7 List shutters = discover(Shutter);

8 List sprinklers = discover(Sprinkler);

9 List lamps = discover(Lamp);

10 subscribe MotionEvent;

11 subscribe DoorBrokenEvent;

12 subscribe WindowBrokenEvent;

13 subscribe AccessEvent;

14 subscribe WindStormEvent;

15 subscribe WaterLeakEvent;

16 subscribe FireEvent;

17 subscribe CalendarEvent;

18 String phoneNumber = "";

19 String accessCode = "";

20 String homeAddress = "";

21 preferences{

22 print("Give your phone number");

23 set(phoneNumber);

24 print("Give your home address");

25 set(homeAddress);

26 print("Give your home access code");

27 set(accessCode);

28 }

29 sequence {

30 while (true){

31 String alertMessage = "";

32 pick{

33 onEvent(MotionEvent, Map input1){

34 Map result = query(entranceDoor, "getHomeState");

35 if(result.get("homeState") == "vacant"){

36 alertMessage = "Somebody entered the following address "

 +homeAddress;

37 }

38 }

39 onEvent(DoorBrokenEvent, Map input2){

40 alertMessage = "a door is broken in the following address "

 +homeAddress;

41 }

42 onEvent(WindowBrokenEvent, Map input3){

43 alertMessage = "a window is broken in the following address "

 +homeAddress;

44 }

45 }

46 if(alertMessage != ""){

47 action(antitheftAlarm, "switchOn");

48 Map input2 = {("message",alertMessage),("phoneNumber",

 phoneNumber)};

49 action(telephone,"sendSMS",input2);

50 Map input3 = {("message",alertMessage),("phoneNumber","117")};

51 action(telephone,"eCall",input3);

52 }

53 }

54 }

55 onEvent(AccessEvent, Map input4){

56 if(input4.get("homeState") == "vacant"){

57 action(entranceDoor,"close");

6.3 Example Scenarios 147

58 action(entranceDoor,"lock");

59 for (Window w: windows){

60 action(w,"close");

61 action(w,"lock");

62 }

63 }

64 if(input4.get("homeState") == "occupied"){

65 if (input4.get("accessCode") != accessCode){

66 Map message = {("message","some body entered your home"),

67 ("phoneNumber",phoneNumber)};

68 action(telephone,"sendSMS",message);

69 }

70 }

71 }

72 onEvent(WindStormEvent, Map input5){

73 for(Shutter s : shutters){

74 action(s,"close");

75 }

76 for(Window w : windows){

77 action(w,"close");

78 action(w,"lock");

79 }

80 Map input6 = {("message","a windstorm is coming"),

81 ("phoneNumber", phoneNumber)};

82 action(telephone,"sendSMS",input6);

83 }

84 onEvent(FireEvent, Map input7){

85 action(firealarm,"switchOn");

86 for (Sprinkler sp : sprinklers){

87 action(sp,"open");

88 }

89 for (Lamp lamp : lamps){

90 action(lamp,"switchOn");

91 }

92 for (Window w : windows){

93 action(w,"unlock");

94 }

95 action(entranceDoor,"unlock");

96 Map input8 = {("message","a fire is detected in your home"),

 ("phoneNumber",phoneNumber)};

97 action(telephone,"sendSMS",input8);

98 String alertMessage = "A fire is detected at "+homeAddress;

99 Map input9 = {("message",alertMessage),("phoneNumber","118")};

100 action(telephone,"eCall",input9);

101 }

102 onEvent(WaterLeakEvent, Map input10){

103 String alertMessage = "Water Leak is detected at "

104 +input10.get("locationID");

105 Map input11 = {("message",alertMessage),("phoneNumber",phoneNumber)};

106 action(telephone,"sendSMS",input11);

107 }

108 onEvent(CalendarEvent, Map input12){

109 Lamp lamp = getEntityByID(lamps,"GardenLamp_1");

110 if(input12.get("dayTime") == true){

111 action(lamp,"switchOff");

112 }else{

113 action(lamp,"switchOn");

114 }

115 }

116 }

Listing 6.4: The security and safety scenario written in GPL4SRE

148 6.3 Example Scenarios

6.3.2.3 Scenario Execution Monitoring

The execution lifecycle of the security and safety scenario is similar to the energy saving

scenario.

 First, the process interacted with the discovery engine to find declared smart entities. 1.

According to the result shown in Figure 6.6, 21 smart entities involved in the scenario

were found.

 Then, the process registered in the EDN as a new subscriber to be informed about all 2.

events declared in the security scenario (lines 10-17).

 Then the user preferences setting part started (lines 21-28) by asking the user his phone 3.

number, address and home access code (see Figure 6.6).

 The process then executed the main thread. No initial actions are preformed; the main 4.

thread is able to respond to three kinds of events (i.e. MotionEvent, DoorBrokenEvent,

or WindowBrokenEvent).

 In parallel to the execution of the main thread, the process was able to respond to other 5.

events through the event handlers. Table 6.4 shows an extract of the execution history of

the current scenario. The running scenario reacted as expected to the different events.

Each time, an event was produced, the appropriate actions and queries were performed

according to their order in the program. For example at 08:05:20, an AccessEvent was

produced to inform the control system the home was in a vacant mode. According to the

new environment context, the entrance door, and four windows were closed and locked.

Figure 6.6: User preferences setting in security and safety scenario

6.4 Discussion and Evaluation 149

Table 6.4: An extract of the execution history of security and safety scenario

 Discussion and Evaluation 6.4

This section discusses the utility and benefits of using the GF4SRE framework and the

GPL4SRE language by evaluating the two scenarios implemented. Further, a discussion of

good programming style when using GPL4SRE is outlined.

T
im

e

E
v

e
n

t

Received data

R
o

o
m

Query

S
m

a
r
tE

n
tity

C
h

a
n

g
e
d

 S
ta

te

h
o

m
e
S

ta
te

d
a

n
g

e
r
S

ta
te

p
r
e
s
e
n

c
e
S

ta
te

d
a

y
tim

e

h
o

m
e
S

ta
te

08.00:00 Process Starting - -

- - A

-

- -

- - B - -

- - C - -

- - D - -

08.05:20 AccessEvent vacant -

- - A

-

Entrance Door

Window

closed, locked

closed, locked

- - B Window closed, locked

- - C Window closed, locked

- - D Window closed, locked

18:22:22 CalendarEvent - - - night E -
Lamp on

06:15:00 CalendarEvent - - - day E -
Lamp off

08:20:00 MotionEvent - - true A occupied
AntitheftAlarm

Telephone

On

eCall

11:32:00
DoorBroken

Event
- high - - C -

AntitheftAlarm

Telephone

On

eCall

11:33:50
WindowBroken

Event
- high - - B -

AntitheftAlarm

Telephone

On

eCall, sendSMS

14:08:12 AccessEvent occupied - - - D - Telephone sendSMS

18:07:00
Windstorm

Event
- high

- - A

-

Entrance Door

Window

closed, locked

closed, locked

- - B Window closed, locked

- - C Window closed, locked

 - D Window closed, locked

20:00:00 FireEvent - high

- - A

-

FireAlarm

Telephone

Entrance Door

Window

on

eCall, sendSMS

unlocked

unlocked

- - B Window unlocked

- - C Window unlocked

 - D Window unlocked

150 6.4 Discussion and Evaluation

 Scenarios Evaluation 6.4.1

The evaluation is discussed in term of the capabilities, abstraction and transparency,

expressiveness, and reusability criteria compared to other languages like BPLE4WS. Some

evaluation criteria are similar to those in the evaluation carried out by [158].

6.4.1.1 Capabilities

The introduced scenarios demonstrate that to control SREs, the decision-making process

requires co-ordination between the smart entities populating the environment. The control

system should have the ability to acquire the current context of the environment, react to new

changes, and provide a set of actions in order to achieve the final goal such as home security

or saving energy. The two scenarios revealed how GPL4SRE capabilities are designed to fit

these requirements. Table 6.5 summarises the characteristics and capabilities of GPL4SRE

compared with a traditional composition language like BPEL4WS. The following GPL4SRE

characteristics can be identified:

 It can be seen in the energy saving scenario (lines 2-14), and in the scenario of security

(lines 2-17), that GPL4SRE enables the automatic discovery of smart entities as well as

the subscription to different events.

 The energy saving scenario (lines 20-33) and scenario of security (lines 21-28) show how

to involve the final user in the process through an ask-response dialogue for data, and the

choices available to satisfy user needs.

 It can be noted in the energy saving scenario (lines 37, 38, 46) and in the security scenario

(lines 30, 35, 56) that with the GPL4SRE, it is possible to create loops, declare and assign

variables, as well as offer control flow constructs (while, if, etc.) thereby enabling the

creation of complex control scenarios.

 As can be noted in the energy saving scenario (lines 35, 40, 48, 53), and in the security

scenario (lines 34, 47, 51, 61), GPL4SRE enables interactions with different smart

entities, either in the form of actions or queries. This allows the control process to collect

surrounding information from the environment to deduce the current environment

situation and take suitable actions to change the appropriate states.

 As noted in the energy saving scenario (lines 70-93, 94-121, 122-127, 128-153 and 154-

159) in the security scenario (lines 55-71, 72-83, 84-101, 102-107, 108-115), GPL4SRE

allows different produced events to be handled in parallel. This enables the control

process to be informed about changes in the environment rather than having to frequently

ask if any significant change has occurred.

 As shown in the energy saving scenario (line 39-41), and the security scenario (lines 59-

62), GPL4SRE enables the processing of individual smart entities and the services

returned by service discovery queries using a for statement. This kind of cursor allows

6.4 Discussion and Evaluation 151

the whole service sets to be manipulated at the same time, a capability that traditional

composition languages - like BPEL - lack.

 Although, fault handlers are not directly supported in this version of GPL4SRE, the

following precautions are considered appropriate:

- An automatic fault handling in the situation where an unavailable smart entity is

invoked. If a query fails to be performed, the returned result is considered to be null.

- Any declared list is considered empty if no smart entities are found.

- An automatic check made for each entity if it is not set to null before performing an

action or query.

 Table 6.5: A comparison of constructs and syntax of GPL4SRE and BPEL4WS language

 𝑎

 Programmer must manually bind each service and each event.

 b

 Variables in BPEL are basically XML data.

6.4.1.2 Abstraction

The abstraction aims to introduce the environmental conceptual model into the GPL4SRE

programs by linking the domain knowledge to the source code. This helps the programmer to

program in the same way as the environment is modeled and facilitates the writing,

understanding, and maintenance of the GPL4SRE scenarios, which would be harder using

general-purpose languages like BPEL4WS. The abstractions carried out by the GF4SRE

framework include:

Metric GPL4SRE BPEL4WS

Automatic discovery ×

Event registry
 𝑎

Automatic event registry ×

User preferences ×

Variables declaration
 𝑏

Control flow

Entities declaration semantic-based syntactic-based

Services invocation
 𝑎

Event handlers

Iteration over a list of smart

entities
 ×

Fault handlers ×

152 6.4 Discussion and Evaluation

 Smart entity declarations: As illustrated in the energy saving scenario, Listing 6.2 (lines 1.

2-9), and the security scenario, Listing 6.4 (lines 2-9), the smart entity declarations

correspond to their definition in the Ont4SRE ontology. The notions of Heater, Room and

so on are used rather than the syntax implantation notions like partnerLink.

 Services declarations: In the energy saving scenario (lines 35, 43, 53), and the security 2.

scenario (lines 34, 47, 87) the notions of getHomeState, switchOn and so on are used for

the name of the invoked service, which corresponds to their definitions in the Ont4SRE

ontology rather than using their implementation syntax names.

 Smart entities properties: In the energy saving scenario (lines 36, 38, 67) and security 3.

scenario (lines 35, 48, 96) the entities properties (i.e. homeState, phoneNumber, vacant,

etc.) are declared based on their definition in the Ont4SRE ontology rather than using

service input implementation syntax names.

6.4.1.3 Transparency

The transparency discussed here means that any physical or software component should hide

its implementation nature from its users, appearing and being used in a uniform and

individual way. The transparency carried out by the GF4SRE framework includes:

 Discovery transparency: The discovery of smart entities and event registry is completely 1.

automatic and performed in a transparent manner. This includes hiding the

implementation syntax and grounding details of each smart entity. As illustrated in the

energy saving (lines 2-9) and security (lines 2-9) scenarios, the discover method is used

to find the different smart entities by specifying only their types (i.e. Room, Door,

Telephone) and locations (optional), while discovering and linking the smart entities with

their services is fully hidden, as the programmer should not have to be aware of that.

 Access and interaction transparency: smart entities and their associated services are 2.

clearly represented to the programmer. Users declare them rather than specify where they

are (i.e. WSDL URLs) or how they are implemented. With a traditional composition

language like BPEL4WS, the programmer needs to specify all the grounding details

related to each service. Listing 6.5 compares the two programs' syntax to switch a heater

on extracted from the energy saving scenario written in GPL4SRE and BPEL4WS. The

number of implementation details that the programmer must know and specify a priori in

order to perform a switchOn action for a heater using BPEL4WS can be seen. The

WSDL URL address (line 3), the portType (line 8) and the operation implementation

parameters (line 9) should be known a priori, while with GPL4SRE, thanks to Ont4SRE,

declaration and invocation are semantically annotated and automatically discovered in

regard only to the entity type (line 11) and the semantic description of the service (line

12) according to the Ont4SRE definitions.

6.4 Discussion and Evaluation 153

1 #a- BPEL4WS

2 <wsdl:import namespace="http://hall.ws/"
3 location="http://diufpc10.unifr.ch:8080/.../ParentHeater?wsdl"/>
4 <partnerLink name="Heater"
5 partnerLinkType="http://parent.room.ws:ParentHeater_PL"
6 partnerRole="ParentHeater_Role"/>
7 <invoke name="setTemperature" partnerLink="Heater"
8 portType="http://parent.room.ws/ParentHeater"
9 operation="switchOnHeater" inputVariable="inputVariable"/>

10 # b- GPL4SRE
11 Heater heater=discover(Heater, "Heater-B");
12 action(heater, "adjustTargetTemperature", inputVariable);

Listing 6.5: A syntax comparison of service invocation using GPL4SRE and BPEL4WS

6.4.1.4 Expressiveness

Ranging from the SRE formulization via the Ont4SRE's concepts and definitions for the

GPL4SRE syntax, there is continuity and consistency in concepts, terms and expressions

used. The relations between the different components that form the SRE overall are clearly

defined in the same way through the different scenario implementation stages. This way of

designing outlines the way in which a developer should program. A GPL4SRE programmer

should keep in mind that there are smart entities that can be discovered, their actual states can

be changed or read via action and query services and changes in their states can be detected

using event handlers to realize any control scenario. Table 6.6 illustrates how the

implemented energy saving and security scenarios are expressive in themselves. In the two

scenarios, 48 smart entities (e.g. Window, Door) keywords were used, the notion of action

and query used 45 times and discovery and subscribe keywords used 29 times. Further,

each individual statement and code line has a meaning and is understandable by itself.

Approximately 47% of the words and terms used in the two scenarios are either ontology-

based or belong to the GPL4SRE keywords.

6.4.1.5 Reusability

The reader can note that in the two scenarios, adding a new smart entity like heater, window,

or a motion detector in any room will have no negative influence or impact on the program

and these new smart entities will be discovered and involved in the scenario once the scenario

is rerun. Going further, the two scenarios can be implemented in any home occupied by

similar smart entities and services without configuring any device or providing any new

implementation details. These features are due to three reasons.

 The using of semantic-based declarations for each smart entity and its associated 1.

properties and services rather than declaring the syntax of their implementations.

 The Ont4SRE links all the smart entities and their associated components, enabling 2.

automatic discovery and registry.

 The different services are completely loosely coupled. 3.

http://hall.ws/

154 6.4 Discussion and Evaluation

Table 6.6: An evaluation of the number of keywords used in the two scenarios

Keywords

 Excluding the following symbols ;{}:() = 0…9.

Times

Scenario I

(446 words)

Scenario II

(345 words)

O
n

to
lo

g
y

-b
a

sed

entity type (e.g. Window, Door) 29 6.50% 19 5.51%

entity state (e.g. temperature, lockState) 30 6.73% 14 4.06%

service name (e.g. close, getTemperature) 21 4.71% 23 6.67%

event type (e.g. MotionEvent) 10 2.24% 16 4.64%

L
a

n
g

u
a

g
e sy

m
b

o
ls

datatype (e.g. float, Map, List) 25 5.61% 23 6.67%

discover, subscribe, preferences 13 2.91% 16 4.64%

action 16 3.59% 22 6.38%

query 6 1.35% 1 0.29%

onEvent 5 1.12% 10 2.90%

if, for, while 38 8.52% 12 3.48%

pick, flow, sequence, wait, print, set etc. 14 3.14% 9 2.61%

Total 207 46.41% 165 47.83%

 Lessons learnt and Good Programming Styles for GPL4SRE 6.4.2

This section reviews some good programming styles from the two presented scenarios, which

can serve as recipes or a cookbook of how to program and build good control scenarios.

Using an event-driven approach: The control system intervention is often related to a

particular situational change in the environment. Unlike the scheduling control style, the

system does not intervene according to a predefined time schedule (i.e. control every 5

minutes if the temperature changes). Instead, the system can be informed automatically about

any change that might occur using a combination of events generated by a set of sensors. This

style of programming is called an event-driven approach. In this kind of programming,

appropriate decisions and actions are grouped under event handlers depending on how each

event effects the environment.

Querying the actual state of the environment: sometimes being informed about any change

occurring in the environment is not enough to have a complete understanding about the

actions and decisions which need to be taken. For example, when the temperature decreases in

a given room, knowing whether the room is occupied or not is crucial in order to decide the

level of comfort required. To ensure information about the current state of the environment is

available during the decision making process, the programmer should query and gather

information about the required states and concerning the decision process. In the temperature-

6.4 Discussion and Evaluation 155

decreasing example, the control system should perform a query getPresenceState to find

out if the room is occupied or not before adjusting the heater's temperature.

Avoiding code duplication: an environment characterised by dynamic changes in its

situation means that different situations could lead to the same actions and decisions taken by

the control system. For example, if a window or a door is broken, in both cases, the control

system should alert the homeowner by sending an alert message. To avoid duplication of the

code, similar actions can be shared by different events. For example, to avoid using

sendSMSmessage action twice, the programmer can involve the two events handlers in a pick

statement while the action sendSMSmessage can be executed sequentially after the pick

block, as illustrated in Figure 6.7.

Figure 6.7: An example of using pick construct to avoid code duplication

The effects of using a wait statement: the wait construct is used to force the process to

wait a specified amount of time. Listing 6.2, line 124 shows an example of using wait to

make the process of waiting a predefined period before closing the shower. All activities

declared after this construct are executed after the wait statement has been executed (i.e. the

expiry of a predefined amount of time). The programmer should be aware of the

consequences of deploying this construct. Consider the scenario when the system is

programmed to react to a temperature event during the execution of the wait statement. To do

this, the TemperatureEvent handler must be declared in parallel to the block that contains the

wait statement.

Using predefined methods: GPL4SRE provides a set of predefined methods that could

reduce the program code's size and facilitate programming. For example, the

getEntityByLocation method is introduced to get a specific entity in a given location rather

than iterating over a list of smart entities to find it. This method takes as input parameters, a

list of the smart entities and the location name and returns the required smart entity. Other

156 6.4 Discussion and Evaluation

methods introduced in Appendix C can be used for similar proposal. Additional methods are

the subject of future work. Consider, for example, a room occupied by many temperature

sensors and we want to calculate the average temperature of these sensors. Programming this

task with the GPL4SRE requires many code lines. One solution is to have a predefined

method such as the following:

 AVG(query(rooms, "getTemperature"), "temperature").

It takes as input parameters the list of smart entities, the target service and the variable from

which the average should be calculated. Other methods like SUM, isAllTrue and so on can be

proposed to facilitate GPL4SRE programming.

Initializing the process: sometimes initial actions need to be taken when the program starts.

Such actions are usually declared in the main thread of the program.

Programming generic and specific scenarios: there are two possible contexts in which the

programmer can write a GPL4SRE scenario.

 The first context is when the programmer makes a control scenario for a specific home.

She knows exactly the kind of smart entities and their services occupying the space. This

is similar to the two previous scenarios. Therefore, an ontology instance is available and

can be used to specify the possible queries, actions, and decisions. The programmer has

the ability to find a particular smart entity and know which queries and actions can be

performed according to the available smart entities in each location. Further, there is no

risk that the smart entities involved cannot be found in the space.

 The second context is when the programmer makes a control scenario for a SRE and she

has no idea about what exists in the space, but guessed which kind of smart entities

occupy the space without specifying their number. In this case, the programmer will not

be able to discover a particular smart entity or distinguish the different locations. One

solution is to program in a generic way by using the notion of a list. Each time an event is

supposed to be produced in a given location, the program will receive the locationID of

that location. With this key element, the programmer is then able to determine all the

smart entities that occupy that location and perform the suitable actions and queries. As

mentioned in Subsection 6.4.1.1 concerning the fault handling issues, with GPL4SRE

when a smart entity list is declared but not found, it is considered empty and no iteration

over that list can be performed. Consider, for example, the programmer's intention is to

switch off all the lamps in each room when it is unoccupied. To do this, the programmer

declares a list of smart entities of type Lamp and a PresenceEvent handler. When an

inhabitant leaves a given room, a PresenceEvent is supposed to be produced. Once the

program is notified about this change and the locationID is given, all the lamps located

in the specified location can be switched off. Listing 6.6 shows how to program for such a

scenario. During the execution of this piece of program for a given home, it might be there

6.5 Summary 157

is no presence detection sensor installed or the lamps are not connected via the network.

The impact of these two problems on the program is as follows:

1. Concerning the unavailability of the PresenceEvent this means that the entire event

handler block (lines 2-10) will never be executed, since such an event is impossible.

2. Concerning the lamps unavailability, there are two possibilities. Either all the lamps

are not connected, in which case, lines 4-8 will not be executed because the list of the

lamps is empty, or the lamps do not exist in the location where the event has been

produced so line 6 will never be executed because the if statement will never be

evaluated as true.

1 List lamps = discover(Lamp);

2 onEvent(PresenceEvent, Map input1){

3 if (input5.get("presenceState") == false){

4 for(Lamp lamp: lamps){

5 if(lamp.getLocation.get("ID") == input1.get("locationID")){

6 action (lamp, "switchOff");

7 }

8 }

9 }

10 }

Listing 6.6: A generic scenario to control the light

 Summary 6.5

This chapter has demonstrated the feasibility and utilities of the proposed framework and its

related components through a case study in a smart home. The different steps for realizing and

developing the case study were illustrated. The implemented scenarios brought out the

following elements which must be considered as added value:

 Defining a conceptual model for describing the SRE and transforming it into the Ont4SRE

ontology facilitates discovery and control in the proposed framework. To use the

framework, two reasonable conditions are required.

1. The existence of an appropriate ontology for the chosen environment (home, hospital,

school, etc.), and

2. The existence of a declarative semantic description using the exact same terminology

as defined in the Ont4SRE ontology for each web service provided by the concrete

actuators and sensors.

 The power of the framework and its GPL4SRE language is in reducing the complexity of

controlling SREs through reducing the program code size, increasing expressivity and the

abstraction, and automating the discovery of the smart entities.

158 6.5 Summary

 Choosing a good programming style to realize control scenarios guarantees the avoidance

of many concurrent programming challenges and duplications of code in the SRE

characterized by context change and concurrently produced events.

 159

 7

Conclusion and Future Work

 Contributions .. 159 7.1

 Open Challenges and Future Work ... 161 7.2

This thesis has described the design and implementation of a framework for controlling a

smart residential environment. First, the necessary definitions, characteristics, and the utilities

of the smart environment were clearly outlined. Then a survey of the use of emerging

technologies and the identification of the main problems, especially those related to modelling

and controlling the SRE, were provided.

The remainder of this chapter presents a summary of the contribution of this thesis and

discusses the remaining challenges and future tasks.

 Contributions 7.1

The core of this thesis is the proposal of the GF4SRE framework and its pluggable software

architecture to support the integration of physical objects into the digital world using proven

technologies to facilitate the definition and execution of complex control scenarios in the

context of SREs. This involves reducing the complexity of the SRE infrastructure based on

the separation of concerns, modularization, and facility for changing and assembling modules.

A brief overview of the benefits of the GF4SRE components is summarized as follows.

 The Ont4SRE ontology is proposed to model and share a common presentation of the

SRE, including the smart entities, locations, associated embedded devices (sensors,

actuators), services (action, query, and event) and the relationships between them. This

provides a significant basis for defining and finding the smart entities occupying the space

and how it is used in term of services. In fact, it shows the whole potential of a standard

query language such as SPARQL when introduced into the discovery and control of SRE.

Describing a SRE using the Ont4SRE ontology increased the level of transparency and

abstraction for both the discovery and control of different SREs - home, school, hospital.

 To address the accessibility and interoperability issues in the SRE context, the proposed

framework architecture is based on actual state of the arts standards: the services proposed

160 7.1 Contributions

by the various sensors and actuators are described using proven technologies like WS-*

and OWL-S. Integrating these technologies brings the following advantages:

- Considering the smart entities and their devices as services providers and exposing

their capabilities as web services correspond to how the smart environment is defined

and modeled using the Ont4SRE ontology and validates (enforces) the idea of

applying the service oriented paradigm to a heterogeneous dynamic environment like

SREs.

- Smart objects can publish their functionalities in the form of actions, queries and

events via a web services description language (WSDL) interface. This forces the

loose coupling and a clean separation between the framework modules.

- Adding machine interpretable semantic annotations to web service content helps to

understand their capabilities and distances the programmer from the complexity of

the implementation details related to each web service and simplifies the completion

of complex control scenarios.

 The registration and discovery components proposed take into account the particular

context of SRE. The Ont4SRE is used as a database store for modeling and describing the

SRE. The lookup infrastructure allows the running of the search queries implemented

using the SPARQL language to find relevant smart entities and their services. The

discovery and registration queries are performed automatically and presented to the user

in an abstract and transparence manner.

 Control scenarios in the form of templates to manage the SRE are proposed. The

templates are workflow-based and written by an original process oriented language named

GPL4SRE. Further, a process execution engine, which can execute these scenarios, is

provided.

 Another fundamental component is the GPL4SRE language, presented in Chapter 5, to

write the control templates. This language has a well-defined general structure which is

divided into two distinct parts. First, the declaration section uses the ontology vocabulary

to discover transparently the entities in the smart environment and their associated

services. Secondly, the execution section offers, in a simplified manner, all the essential

control and execution structures of a well-established process control language such as

BPEL4WS. The power of the GPL4SRE language is that it is designed to bridge the gap

between natural human thinking and the syntax and expression of the control programs.

The control scenarios are designed and written in an understandable fashion, with fully

meaningful phrases. It offers considerable gains in expressiveness and simplicity

compared with other process-oriented language like BPLE4WS.

To validate the proposed approach, it was implemented and tested in term of feasibility,

capabilities and benefits. Two implemented control scenarios illustrated the different

development stages: modelling the SRE using the Ont4SRE ontology, discovery, and scenario

7.2 Open Challenges and Future Work 161

running lifecycle. Overall, the results demonstrate that the GF4SRE framework capabilities

are designed to fit the SRE requirements in term of accessibility, discovery, context-

awareness, and ability to combine events and actions to create complex control applications.

The GF4SRE architecture significantly simplifies the development of control applications for

the SRE by increasing abstraction, transparency, expressivity and reusability.

 Open Challenges and Future Work 7.2

This thesis proposed a holistic framework to deal with challenges related to describing and

controlling the SRE, but also emphasized other important challenges and perspectives that

could be pursued.

Conflict of Interest between Multi Scenarios: By comparing the two scenarios introduced in

Chapter 6, it can be noted in some cases, that opposite actions can be performed in the two

scenarios - energy saving and security - although they relate to similar reasons. For example,

in the energy saving scenario, the control system should turn all the lamps off if nobody is at

home, while in the security scenario, the control system should turn some lamps on at night if

nobody is at home, to give the impression that the home is occupied. This kind of conflict can

be either detected by the programmer and one solution is to merge the two scenarios into one,

or other solutions can be proposed like in [159, 160] where the notion of priority and

preferences are introduced. However, in this thesis, this issue was not considered as part of

the investigated challenges. It is not recommended to run two scenarios at the same time since

this may cause a conflict between them.

Conflict of Interest between Multi-users: Another conflict concerning multi-users and

shared spaces was explored in [161, 162]. This kind of conflict is due to the different

preferences and needs of the users that share a given space. [163, 164] give more details about

the nature of such conflicts in ambient intelligence systems since an in-depth analysis of this

topic is outside the scope of this work. As far as this thesis is concerned, users can be attached

to RFID tags to be automatically identified by the control system. Consider a presence

detection sensor that is not only able to detect if anybody enters the room, but also is able to

read the RFID tags, which lead it to know who entered the room. Once the inhabitant is

identified, it is up to the programmer to decide how to perform the appropriate action to meet

the identified user's needs.

Failure and Fault Handlers: The process execution engine, network, and devices can fail for

several reasons, such as when a shutdown occurs or a battery loses power. In this work, three

kinds of failure can be identified during the execution of a control scenario.

 The first failure is when the control system is completely shut down. One of the common 1.

solutions to such problem is based on redundancy, to increase the reliability of the

system, for example, by having an automatic failover control system. By using automatic

detection, an error in the primary control system can be detected and the redundant

162 7.2 Open Challenges and Future Work

control system will take over control automatically. The interested reader is referred to

[165] for a thorough discussion of this issue.

 The second failure consists of the errors, especially those thrown inside the process itself 2.

and which cause the entire process to crash. Providing error recovery to catch such errors

is a commonly adopted solution, like that implemented within BPEL4WS [166]. It is just

a question of implementation to integrate similar mechanism into GPL4SRE.

 The third failure is related to the sensors and actuators being unavailable for different 3.

reasons like device damage, malfunctions or cable break. The first challenge related to

this failure is how to alert the discovery engine and the involved processes about the

devices' unavailability to avoid errors like network timeouts and faults in the invoked

services. The second problem is how the process should react in this circumstance. [69,

167-169] proposed different ideas to deal with these problems like:

- The use of a number of small sensors elements in order to form a single sensor which

has intrinsic fault tolerance.

- Implementing a hidden fault handler for each single invoke operation (action or

query). The fault handler program tries to invoke the target several times (with a

maximum number of attempts). If this does not solve the problem, the services may

be substituted by an equivalent one.

- A dynamic discovery can solve the problem of removing and adding sensors and

actuators to the networks. The WS4D initiative proposed for embedded devices

provides such capabilities, where clients and devices are able to exchange a Hello-

Bye message each time a device joins or leaves the network.

 163

 Appendices

A Abbreviations

This appendix gathers the abbreviations used in this thesis and their corresponding meanings.

Abbreviation Meaning

API Application Programming Interface

BPEL Business Process Execution Language

BPEL4WS Business Process Execution Language for Web Services

BPMN Business Process Model and Notation

CORBA Common Object Request Broker Architecture

CRUD Create, Read, Update and Delete

DAML DARPA Agent Markup Language

DPWS Devices Profile for Web Services

DSL Domain Specific Language

EDN Event Delivery Network

FTP File Transport Protocol

GDL4WSAC Goal Description Language for Semantic WS Automatic Composition

GENA Generic Event Notification Architecture

GF4SRE Generic Framework for Smart Residential Environments

GPL4SRE Generic Process Language for Smart Residential Environment

GPS Global Positioning System

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HVAC Heating, Ventilation, and Air Conditioning

HUD Head-up Display

IoT Internet of Things

ISO Open Systems Interconnection

JLS Jini Lookup Service

JVM Java Virtual Machine

JSON JavaScript Object Notation

LAN Local Area Network

LJS Jini Lookup Service

Ont4SRE Ontology for Smart Residential Environment

OSGi Open Service Gateway initiative

OWL Web Ontology Language

OWL-S Semantic Mark-up for Web Services

PDA Personal Digital Assistant

PDDL Planning Domain Definition Language

164 Appendix A

QoS Quality of Service

RDF Resource Description Framework

REST Representational State Transfer (REST)

RMI Remote Method Invocation

RPC Remote Procedure Call

SAWSDL Semantic Annotations for WSDL

SE Smart Environment

SLP Service Location Protocol

SMTP Simple Mail Transfer Protocol

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SPARQL SPARQL Protocol and RDF Query Language

SRE Smart Residential Environment

SSDP Simple Service Discovery Protocol

TCP/IP Transmission Control Protocol / Internet Protocol

UDDI Universal Description, Discovery, and Integration

UPnP Universal Plug and Play

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

WLAN Wireless Local Area Network

WoT Web of Things

WS-* Big Web Service

WS4D Web Services for Devices

WSDL Web Service Description Language

WSMO Web Service Modelling Ontology

XML Extensible Mark-up Language

XSLT Extensible Stylesheet Language Transformations

 165

B GPL4SRE: Types, Reserved Words, Operators,
Methods

B.1 Types

int, float, double, boolean, String, Map, List.

B.2 Reserved Words

process, discover, subscribe, float, int, double, boolean, String, Map,

List, preferences, print, select, set, for, if, true, false, IF, if,

while, pick, sequence, flow, action, query, onEvent, onAlarm, wait,

terminate, empty.

B.3 Operators Precedence in Expressions

/ * multiplying operators

+ - adding operators

== < > =< >= !=

relational operators

&& || logical operators

B.4 Predefined Methods

discover(entityType):Entity

discover(entityType, entityIdName):Entity

discover(entityType):List

discover(entityType, locationIdName):List

getEntityByID(entityListIdentifier, entityIdName) :Entity

getEntityByLocation(entityListIdentifier, locationIdName):Entity

 167

C GPL4SRE: EBNF Syntax

Figure C.1: EBNF grammar sub-rules (taken from [156])

(«X»|«Y»|«Z»)

Match any alternative within the sub-rule exactly once.

𝑥?
Element x is optional.

(«X»|«Y»|«Z»)?

Match nothing or any alternative within sub-rule.

𝑥*
Match element x zero or more times.

(«X»|«Y»|«Z»)*

Match an alternative within subrule zero or more times.

𝑥+
Match element x one or more times.

(«X»|«Y»|«Z»)+

Match an alternative within subrule one or more times.

168 Appendix C

C.1 EBNF Syntax

program : processHeading '{' declarationSection* executionSection '}' ;

processHeading : 'process' processIdentifier ;

declarationSection : entityDeclaration | entityByIdDeclaration | entityListDeclaration |

 entityListByLocationIdDeclaration | eventRegistration | variableDeclaration;

entityDeclaration : entityType entityIdentifier '=' 'discover' '(' entityType ')' ';' ;

entityByIdDeclaration : entityType entityIdentifier '=' 'discover' '(' entityType ',' entityIdName ')' ';'

;
entityListDeclaration : 'List' entityListIdentifier '=' 'discover' '(' entityType ')' ';' ;

entityListByLocationIdDeclaration :

 'List' entityListIdentifier '=' 'discover' '(' entityType ','

 locationIdName ')' ';' ;

eventRegistration : 'subscribe' eventType ';' ;

variableDeclaration : simpleVariable | complexVariable ;

simpleVariable : dataType variableIdentifier ('=' expression)? ';' ;

complexVariable : 'Map' variableIdentifier ('=' '{' mapPair (',' mapPair)* '}')? ';';

executionSection : userPreferences? mainThread eventHandlers* ;

userPreferences : 'preferences' preferenceBlock ;

preferenceBlock : '{'(print | set | select | ifStatement4Preference |

 forStatement4Preference)* '}' ;

print : 'print' '(' STRING_LITERAL ')' ';' ;

set : 'set' '(' variableIdentifier ')' ';' ;

select : 'select' '(' entityIdentifier ')' ';' ;

ifStatement4Preference : IF '(' conditionExpression ')' preferenceBlock elseStatement4Preference? ;

elseStatement4Preference : 'else' preferenceBlock ;

forStatement4Preference : 'for' '(' entityType entityIdentifier ':' entityListIdentifier ')'

 preferenceBlock ;

mainThread : 'sequence' block ;

eventHandlers : 'onEvent' '(' eventType ',' 'Map' variableIdentifier ')' block |

 'onAlarm' '(' (('for' '(' duration)')' | (

 'repeatEvery' '(' duration ')')) ')' block ;

block : '{' (controlConstructs | executionConstructs | interactionConstructs |

 otherConstructs | assignStatement)* '}' ;

controlConstructs : ifStatement | whileStatement | forStatement ;

ifStatement : IF '(' conditionExpression ')' block elseStatement? ;

elseStatement : 'else' block ;

whileStatement : 'while' '(' conditionExpression ')' block ;

forStatement : 'for' '(' entityType entityIdentifier ':' entityListIdentifier ')'

Appendix C 169

 partial_block ;

partial_block : '{' interactionConstructs | assignStatement | forStatement |

 (IF '(' conditionExpression ')' partial_block) |

 ('while' '(' conditionExpression ')' partial_block) '}' ;

executionConstructs : sequenceStatement | flowStatement | pickStatement ;

sequenceStatement : 'sequence' block ;

flowStatement : 'flow' '{' ('sequence' block)+ '}' ;

pickStatement : 'pick' '{' (onEventStatement | onAlarmStatement)+ '}';

onEventStatement : 'onEvent' '(' eventType ',' 'Map' variableIdentifier ')' block ;

onAlarmStatement : 'onAlarm' '(' 'for' '(' duration ')' ')' block ;

interactionConstructs : action | query | onEvent ;

action : 'action' '(' 'this.'? entityIdentifier ',' serviceName ((','

 'this.'?) variableIdentifier)? ')' ';' ;

query : 'Map' variableIdentifier '=' 'query' '(' ('this.')? entityIdentifier

 ',' serviceName (',' ('this.')? variableIdentifier)? ')' ';' ;

onEvent : 'onEvent' '(' eventType ',' 'Map' variableIdentifier ')' ';' ;

otherConstructs : waitStatement | terminateStatement | emptyStatement ;

waitStatement : 'wait' '(' expression ')' ';' ;

terminateStatement : 'terminate' '(' ')' ';' ;

emptyStatement : 'empty' '(' ')' ';' ;

assignStatement : assignSimpleVariable | assignComplexVariable | setMapVarParameter |

 getEntityById | getEntityByLocation;

assignSimpleVariable : (dataType | 'this.')? variableIdentifier ('=' expression)? ;

assignComplexVariable : 'Map' variableIdentifier ('=' '{' mapPair (',' mapPair)* '}')? ';' ;

setMapVarParameter : 'this.'? variableIdentifier '.' 'set' '('

 parameterKeyName',' expression ')' ';' ;

getEntityById : entityType? entityIdentifier '=' 'getEntityByID' '('

 entityListIdentifier ',' entityIdName ')' ';' ;

getEntityByLocation : entityType? entityIdentifier '=' 'getEntityByLocation' '('

 entityListIdentifier ',' locationIdName ')' ';' ;

conditionExpression : relationalCondition (('&&' relationalCondition) | ('||' relationalCondition))* ;

relationalCondition : expression ('==' expression | '!=' expression | '<' expression | '>'

 expression | '<=' expression | '>=' expression)* ;

expression : atom (('+' atom) | ('-' atom) | ('*' atom) | ('/' atom))* ;

atom : ('this.')? variableIdentifier | STRING_LITERAL | getParameterValue |

 getEntityLocation | IntegerNumber | DoubleNumber |

 'true' | 'false' | ('(' expression ')') ;

170 Appendix C

getParameterValue : 'this.'? variableIdentifier '.' 'get' '(' parameterKeyName')' ;

getEntityLocation

: entityIdentifier '.' 'getLocation' '(' ')' '.' 'get' '('

 'locationID' ')' ';' ;

IF : 'if' | 'IF' ;

 mapPair : '(' parameterKeyName',' (DoubleNumber | IntegerNumber |

 STRING_LITERAL | variableIdentifier | 'true' | 'false') ')' ;

duration : (IntegerNumber 'Y' '-')? (IntegerNumber 'M' '-')?

 (IntegerNumber 'D' '-')?(IntegerNumber 'H' '-')?

 (IntegerNumber 'M' '-')? IntegerNumber 'S' ;

 dataType : 'int' | 'boolean' | 'String' | 'long' | 'float' | 'double';

eventType : ID ;

entityType : ID ;

entityIdentifier : ID ;

entityListIdentifier : ID ;

processIdentifier : ID ;

variableIdentifier : ID ;

locationIdName : STRING_LITERAL;

serviceName : STRING_LITERAL;

entityIdName : STRING_LITERAL;

parameterKeyName : STRING_LITERAL;

ID : ('a'..'z' | 'A'..'Z' | '_') ('a'..'z' | 'A'..'Z' | '0'..'9' | '_')* ;

DoubleNumber : '0'..'9'+ '.' '0'..'9'+ ;

IntegerNumber : ('0'..'9') + ;

STRING_LITERAL : '"' (~ ('"' | '\\' | '\n' | '\r'))* '"' ;

 171

D GPL4SRE: Syntax Diagram

172 Appendix D

Appendix D 173

174 Appendix D

Appendix D 175

176 Appendix D

Appendix D 177

178 Appendix D

Appendix D 179

180 Appendix D

Appendix D 181

182 Appendix D

Appendix D 183

184 Appendix D

 185

References

[1] Weiser, M. The Computer for the 21st Century. Scientific American. 1991.

[2] Diane Cook, Sajal Das. SMART ENVIRONMENTS Technology, Protocols, and

Applications. WILEY INTERSCIENCE. 2005.

[3] Alliance. ZigBee from, http://www.zigbee.org (accessed 22.05.2015).

[4] Jonathan Hui, David Culler. IP is dead, long live IP for wireless sensor networks. In

Proceedings of 6th ACM conference on Embedded network sensor systems, Raleigh,

NC, USA, ACM, p. 15-28, 2008.

[5] Thanos Stavropoulos, Konstantinos Gottis, Dimitris Vrakas and Ioannis Vlahavas.

aWESoME: A web service middleware for ambient intelligence. Expert Systems with

Applications, Tarrytown, NY, USA, Pergamon Press, p. 4380-4392 2013.

[6] Elmar Zeeb, Guido Moritz, Dirk Timmermann, Frank Golatowski. WS4D: Toolkits

for Networked Embedded Systems Based on the Devices Profile for Web Services. In

Proceedings of 39th International Conference on Parallel Processing Workshops

(ICPPW), San Diego, CA IEEE, p. 1-8, 2010.

[7] DPWS. Devices Profile for Web Services Version 1.1. 2009.

[8] Christin Groba, Siobhan Clarke. Web services on embedded systems-a performance

study. In Proceedings of 8th IEEE International Conference on Pervasive Computing

and Communications Workshops (PERCOM Workshops), Mannheim, IEEE, p. 726-

731, 2010.

[9] Petros Belimpasakis, Seamus Moloney A Platform for Proving Family Oriented

RESTful Services Hosted at Home IEEE Transactions on Consumer Electronics,

55(2):690-698, 2009.

[10] Mauro Caporuscio, Marco Funaro, Carlo Ghezzi, Valerie Issarny. ubiREST: A

RESTful Service-oriented Middleware for Ubiquitous Networking. Advanced Web

Services Springer, p. 475-500, 2014.

[11] Daniel Romero, Gabriel Hermosillo, Amirhosein Taherkordi, Russel Nzekwa, Romain

Rouvoy, Frank Eliassen RESTful Integration of Heterogeneous Devices in Pervasive

Environments. Distributed Applications and Interoperable Systems, Springer Berlin

Heidelberg, 6115:1-14, 2010.

[12] Alliance, OSGi. Open Services Gateway initiative (OSGi). from, http://www.osgi.org

(accessed 22.05.2015).

[13] Sheng-Tzong Cheng, Chi-Hsuan Wang, Gwo-Jiun Horng. OSGi-based smart home

architecture for heterogeneous network. Expert Systems with Applications,

39(16):12418–12429, 2012.

http://www.zigbee.org/
http://www.osgi.org/

186 References

[14] Son N. Han, Gyu Myoung Lee, Noel Crespi. Semantic Context-Aware Service

Composition for Building Automation System. IEEE Transactions on Industrial

Informatics, 10(1):752-761, 2014.

[15] Tiziana Catarci, Claudio Di Ciccio, Vincenzo Forte, Ettore Iacomussi, Massimo

Mecella, Giuseppe Santucci, Giuseppe Tino Service Composition and Advanced User

Interfaces in the Home of Tomorrow: The SM4All Approach. Lecture Notes of the

Institute for Computer Sciences, Social Informatics and Telecommunications

Engineering, Ambient Media and Systems, Springer Link, 70:12-19, 2011.

[16] Maria J. Santofimiaa, Scott E. Fahlmanb, Xavier del Toroc, Francisco Moyaa, Juan C.

Lopeza. A semantic model for actions and events in ambient intelligence. Engineering

Applications of Artificial Intelligence, 24(8):1432–1445, 2011.

[17] Qingquan Sun, Weihong Yu, Nikolai Kochurov, Qi Hao, Fei Hu. A Multi-Agent-

Based Intelligent Sensor and Actuator Network Design for Smart House and Home

Automation. Journal of Sensor and Actuator Networks, 2:557-588, 2013.

[18] OASIS. Web Services Business Process Execution Language. from, http://docs.oasis-

open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html (accessed 22.05.2015).

[19] Poslad, Stefan. Ubiquitous Computing: Smart Devices, Environments and

Interactions. John Wiley & Sons. 2009.

[20] Marcelo Kallmann, Daniel Thalmann. Modeling Objects for Interaction Tasks. In

Proceedings of 9th Eurographics Workshop on Animation and Simulation (EGCAS),

Lisbon, p. 73-86, 1998.

[21] R. Giffinger, C. Fertner, H. Kramar, R. Kalasek, N. Pichler.Milanovic, E. Meijers.

Smart cities-Ranking of European medium-sized cities Centre of Regional Science

(SRF), Vienna University of Technology. 2007. from, http://www.smart-

cities.eu/download/smart_cities_final_report.pdf.

[22] Luis M., Klaus Wünstel. Smart Cities Applications and Requirements. Networks

Eurpean Technology Platform. 2011. from, http://www.networks-etp.eu/fileadmin/

user_upload/Publications/Position_White_Papers/White_Paper_Smart_Cities_Applica

tions.pdf.

[23] Enocean-Alliance. Building Automation. from, www.enocean-alliance.org (accessed

22.05.2015).

[24] alliance, IPSO. Enabling the internet of things. from, http://www.ipso-alliance.org/

(accessed 22.05.2015).

[25] Group, Bluetooth. Bluetooth Core Specification. from, https://www.bluetooth.org/en-

us/specification/adopted-specifications (accessed 22.05.2015).

[26] HomePlug. HomePlug 1.0.1 Specification. 2001.

[27] X10. X10 Basics. from, http://www.x10.com/x10-basics.html (accessed 20.05.2015).

[28] Samaneh Movassaghi, Mehran Abolhasan, Justin Lipman, David Smith, Abbas

Jamalipour. Wireless Body Area Networks: A Survey. Communications Surveys &

Tutorials, 6(3):1658-1686 2014.

[29] Association, IEEE Standards. IEEE Standard for Local and metropolitan area

networks—Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs).

Jounral Name, New York, IEEE Publisher, p. 1-314, 2011.

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.smart-cities.eu/download/smart_cities_final_report.pdf
http://www.smart-cities.eu/download/smart_cities_final_report.pdf
http://www.networks-etp.eu/fileadmin/
http://www.enocean-alliance.org/
http://www.ipso-alliance.org/
http://www.bluetooth.org/en-us/specification/adopted-specifications
http://www.bluetooth.org/en-us/specification/adopted-specifications
http://www.x10.com/x10-basics.html

References 187

[30] Sang Hyun Park , So Hee Won , Jong Bong Lee , Sung Woo Kim. Smart home–

digitally engineered domestic life. Personal and Ubiquitous Computing, 7(3):189-196,

2003.

[31] Albreshne Abdaladhem, Ayoub Ait Lahcen, Jacques Pasquier. A Framework and its

Associated Process-Oriented Domain Specific Language for Managing Smart

Residential Environments. International Journal of Smart Home, 7(377-392, 2013.

[32] chander, Vinob. Novel Ubiquitous Interoperable Context-aware Smart Environments

through Web Services. In Proceedings of the International MutliConference of

Engineers and Computer Scientists, Hong Kong, 1:646-650, 2012.

[33] Nenad Stojanovic, Dejan Milenovic, Yongchun Xu. An Intelligent Event-driven

Approach for Efficient Energy Consumption in Commercial Buildings. In

Proceedings of 5th ACM international conference on Distributed event-based system,

New York, NY, USA, ACM, p. 303-312, 2011.

[34] Viktoriya Degeler, Alexander Lazovik. Architecture pattern for context-aware smart

environments Creating Personal, Social and Urban Awareness through Pervasive

Computing, IGI Global, p. 108-130, 2013.

[35] Diane Cook, Sajal Das. Designing and Modeling Smart Environments. In Proceedings

of International Symposium on a World of Wireless, Mobile and Multimedia Networks

(WoWMoM'06), IEEE, p. 490-494, 2006.

[36] Association, KNX. KNX System Specications. 2011.

[37] BACnet. ASHARE BACnet. from, http://www.bacnet.org/ (accessed 20.05.2015).

[38] Viktoriya Degeler, Luis Gonzalez, Mariano Leva, Paul Shrubsole, Silvia Bonomi,

Oliver Amft, Alexander Lazovik. Service-Oriented Architecture for Smart

Environments. In Proceedings of IEEE International Conference on Service Oriented

Computing and Applications (SOCA), p. 99-104, 2013.

[39] Rodolfo Santos, Paulo Carreira. Service Oriented Development of Building Energy

Management Systems. In Proceedings of 3rd International Conference on Smart

Grids and Green IT Systems (SMARTGREENS), Barcelona, Spain, p. 315-323, 2014.

[40] Erl, Thomas. Service-Oriented Architecture, Concepts, Technology, and Design.

Prentice Hall Indiana. 2006.

[41] Antonio Pintus, Davide Carboni, Andrea Piras, Alessandro Giordano. Connecting

smart things through web services orchestrations. In Proceedings of 10th international

conference on Current trends in web engineering (ICWE'10), Springer-Verlag Berlin,

p. 431-441, 2010.

[42] Miguel S. Familiar, José F. Martínez, Lourdes López. Pervasive Smart Spaces and

Environments: A Service-Oriented Middleware Architecture for Wireless Ad Hoc and

Sensor Networks. International Journal of Distributed Sensor Networks, 2012:1-11,

2012.

[43] Michael P., Papazoglou. Web Services: Principles and Technology. PEARSON

Prentice Hall. 2008.

[44] Thinagaran Perumal, Abd Rahman Ramli, Chui Yew Leong. SOA-Based Framework

for Home and Building Automation Systems (HBAS). International Journal of Smart

Home, 8(5):197-206, 2014.

http://www.bacnet.org/

188 References

[45] Cerami, Ethan. Web Services Essentials: Distributed Applications with XML-RPC,

SOAP, UDDI & WSDL. O'Reilly Media. 2002.

[46] Leonard Richardson, Sam Ruby. RESTful Web Services 1ed. O'Reilly Media. 2007.

[47] W3C. Web Services Architecture. from, http://www.w3.org/TR/ws-arch/ (accessed

20.06.2015).

[48] Fielding, Roy Thomas. Architectural Styles and the Design of Network-based

Software Architectures, PhD Thesis, Department of Informatics, University of

California, USA, 2000.

[49] W3C. HTTP Specifications and Drafts. from, http://www.w3.org/Protocols/Specs.html

(accessed 20.05.2015).

[50] OMG. Common Object Request Broker Architecture (CORBA) Specification, Version

3.3. from, http://www.corba.org/ (accessed 22.05.2015).

[51] Group, Network Working. RPC: Remote Procedure Call Protocol Specification

Version 2. from, (accessed 22.05.2015).

[52] Guinard, Dominique. A Web of Things Application Architecture -Integrating the Real-

World into the Web. PhD thesis, Department of Informatics, ETH Zurich, Switzerland,

2011. Thesis No. 19891.

[53] Cesare Pautasso, Olaf Zimmermann, Frank Leymann Restful web services vs. "big"'

web services: making the right architectural decision. In Proceedings of 17th

international conference on World Wide Web ACM, p. 805-814, 2008.

[54] Ovidiu Vermesan, Peter Friess. Internet of Things: Converging Technologies for

Smart Environments and Integrated Ecosystems. River Publisher. 2013.

[55] Luigi Atzori, Antonio Iera, Giacomo Morabito. The Internet of Things: A survey.

Computer Networks Journal, 54:2787-2805, 2010.

[56] Deze Zeng, Song Guo, Zixue Cheng. The Web of Things: A Survey. Journal of

Communications, 6(6):424-438, 2011.

[57] Alliance, OSGi. About the OSGi Service Platform. 2007.

[58] Chao-Lin Wu, Chun-Feng Liao , Li-Chen Fu. Service-Oriented Smart-Home

Architecture Based on OSGi and Mobile-Agent Technology. IEEE Transactions on

Systems, Man, and Cybernetics, Part C: Applications and Reviews, 37(2):193-205,

2007.

[59] Davide Carneiro, Paulo Novais, Ricardo Costa, José Neves. Developing Intelligent

Environments with OSGi and JADE In Proceedings of 3rd International Conference

on Artificial Intelligence (IFIPAI2010), Brisbane, Australia, Springer Berlin

Heidelberg, p. 174-183, 2010.

[60] Ji Eun Kim, George Boulos, John Yackovich, Tassilo Barth, Christian Beckel, Daniel

Mosse. Seamless Integration of Heterogeneous Devices and Access Control in Smart

Homes In Proceedings of 8th International Conference on Intelligent Environments,

Guanajuato IEEE, p. 206-213, 2012.

[61] W3C. Web Services Description Language. from, http://www.w3.org/TR/wsdl

(accessed 20.05.2015).

[62] W3C. SOAP Simple Object Access Protocol. from, http://www.w3.org/

TR/2007/REC-soap12-part2-20070427 (accessed 20.05.2015).

http://www.w3.org/TR/ws-arch/
http://www.w3.org/Protocols/Specs.html
http://www.corba.org/
http://www.w3.org/TR/wsdl
http://www.w3.org/

References 189

[63] Daniel Schall, Marco Aiello, Schahram Dustdar. Web Services on Embedded Devices.

International Journal of Web Information Systems, 2(1):45-50, 2006.

[64] Machado, G.B., Siqueira, F., Mittmann R., Augusto C., e Vieira V. Integration of

Embedded Devices Through Web Services: Requirements, Challenges and Early

Results In Proceedings of 11th IEEE Symposium on Computers and Communications

(ISCC '06) IEEE, p. 1530-1346, 2006.

[65] Yeon-Seok Kim, Kyong-Ho Lee. A Light-weight Framework for Hosting Web

Services on Mobile Devices In Proceedings of 5th European Conference on Web

Services (ECOWS '07) Halle, Germany p. 255-263, 2007.

[66] Engelen, Robert van. Code generation techniques for developing light-weight XML

Web services for embedded devices. In Proceedings of ACM symposium on Applied

computing (SAC'04), p. 854-861, 2004.

[67] Nissanka B. Priyantha, Aman Kansal, Michel Goraczko, Feng Zhao. Tiny web

services: design and implementation of interoperable and evolvable sensor networks.

In Proceedings of the 6th ACM conference on Embedded network sensor systems

ACM p. 253-266 2008.

[68] Marvell. Marvell Smart Energy Platform Solutions. from, http://www.marvell.com/

smart-energy/assets/Marvell-Smart-Energy-Platform-Brief.pdf (accessed 22.05.2015).

[69] University of Rostock, University of Dortmund and MATERNA. Web Services for

Devices (WS4D). from, http://ws4d.e-technik.uni-rostock.de/ (accessed 20.05.2015).

[70] W3C. OWL-S: Semantic Markup for Web Services from, http://www.w3.org/

Submission/OWL-S/ (accessed 22.05.2015).

[71] W3C. Semantic Annotations for WSDL and XML Schema. from, http://www.w3.org/

TR/sawsdl/ (accessed 20.05.2015).

[72] W3C. Web Service Modeling Ontology (WSMO). from, http://www.w3.org/

Submission/WSMO/ (accessed 20.05.2015).

[73] Kopecky, J., Innsbruck , Vitvar, T., Bournez, C., Farrell, J. . SAWSDL: Semantic

Annotations for WSDL and XML Schema Internet Computing, IEEE, 11(6):60-67,

2007.

[74] Agency, Defense Advanced Research Projects. The DARPA Agent Markup

Language. from, http://www.daml.org/ (accessed 22.05.2015).

[75] Apache. DJ-JiniTM Discovery & Join Specification v2.1.2. from, https://river.

apache.org/doc/specs/html/discovery-spec.html (accessed 22.05.2015).

[76] OASIS. UDDI Specification Version 3.0.2. from, http://uddi.org/pubs/uddi-v3.0.2-

20041019.htm (accessed 20.05.2015).

[77] Feng Wang, Kenneth J. Turner. An Ontology-based Actuator Discovery and

Invocation Framework in Home Care Systems. In Proceedings of 7th International

Conference on Smart Homes and Health Telematics, Berlin, Springer, p. 66-73, 2009.

[78] Hen-I Yang, Ryan Babbitt, Johnny Wong, Carl K. Chang A Framework for Service

Morphing and Heterogeneous Service Discovery in Smart Environments. Springer

Berlin Heidelberg. p. 9-17, 2012.

[79] microsystems, Sun. Service Location Protocol Administration Guide. from,

http://docs.oracle.com/cd/E19455-01/806-1412/806-1412.pdf (accessed 20.05.2015).

http://www.marvell.com/
http://ws4d.e-technik.uni-rostock.de/
http://www.w3.org/
http://www.w3.org/
http://www.w3.org/
http://www.daml.org/
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm
http://docs.oracle.com/cd/E19455-01/806-1412/806-1412.pdf

190 References

[80] ISO. UPnP Device Architecture. Standard:SO/IEC 29341-1:2011(E) 2008.

[81] Zhi Wang , Jizhong Zhao. Improved algorithm for UPnP discovery in smart space. In

Proceedings of IEEE 3rd International Conference on Software Engineering and

Service Science (ICSESS), IEEE, p. 519-522, 2012.

[82] Elira Hoxha, Dhimitri Tole, Kreshnik Vukatana. Semantics and OWL in UDDI

Registry: Improving the Discovery Process of Web Services. Academic Journal of

Interdisciplinary Studies, 3(1):341-346, 2014.

[83] Falak Nawaz, Kamran Qadir, H. Farooq Ahmad. SEMREG-Pro: A Semantic based

Registry for Proactive Web Service Discovery using Publish-Subscribe Model. In

Proceedings of 4th International Conference on Semantics, Knowledge and Grid

Beijing, IEEE, p. 301-308, 2008.

[84] He Yu'an, Wu Dongqi, Yu Tao. Research on Service Discovery and Matching based

on Ontology and Service Capabilities in Manufacturing Grid. World Congress on

Computer Science and Information Engineering, OEEE Computer society, p., 2009.

[85] Yue-an Zhu, Xiao-hua Meng A Framework for Service Discovery in Pervasive

Computing In Proceedings of 2nd International Conference on Information

Engineering and Computer Science (ICIECS 2010), p. 1-4, 2010.

[86] Manshan Lin, Heqing Guo, Jianfei Yin. Goal Description Language for Semantic Web

Service Automatic Composition. Proceedings of the The 2005 IEEE, Symposium on

Applications and the Internet, Washington, USA p. 190-196, 2005.

[87] Adele Howe, Craig Knoblock, Drew McDermott, Ashwin Ram, Manuela Veloso,

Daniel Weld, David Wilkins PDDL-The Planning Domain Denition Language

Version 1.2. Yale Center for Computational Vision and Control. 1998. from,

[88] Tsung-Hsien Yang, Wei-Po Lee. A Service-Oriented Framework for the Development

of Home Robots International Journal of Advanced Robotic Systems, 10:1-11, 2013.

[89] OMG. Business Process Model and Notation (BPMN) 2.0. from,

http://www.omg.org/spec/BPMN/2.0/ (accessed 22.05.2015).

[90] Michael Rietzler, Julia Greim, Marcel Walch, Florian Schaub, Björn Wiedersheim,

Michael Weber. homeBLOX: introducing process-driven home automation. In

Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing

adjunct publication: Workshop on Design, Technology, Systems and Applications for

the Home, ACM, p. 801-808, 2013.

[91] ORACLE. Oracle SOA Suite. from, http://www.oracle.com/us/products/middleware/

soa/suite/overview/index.html (accessed 20.05.2015).

[92] Apache, ODE. WS-BPEL 2.0. from, http://ode.apache.org/ws-bpel-20.html (accessed

20.05.2015).

[93] JBOSS. Business Process Management (BPM) Suite. from, http://www.jbpm.org/

(accessed 22.05.2015).

[94] W3C. Web Services Choreography Description Language Version 1.0. 2005.

[95] Diane J. Cook, Michael Youngblood, Sajal K. Das. A Multi-agent Approach to

Controlling a Smart Environment. Journal of Ambient Intelligence and Smart

Environments, 1(1):51-55, 2009.

http://www.omg.org/spec/BPMN/2.0/
http://www.oracle.com/us/products/middleware/
http://ode.apache.org/ws-bpel-20.html
http://www.jbpm.org/

References 191

[96] Giuseppe Loseto, Floriano Scioscia, Michele Ruta, Eugenio Di Sciascio. Semantic-

based smart homes: a multi-agent approach. In Proceedings of 13th Workshop on

Objects and Agents, 892:49-55, 2012.

[97] W3C. OWL 2 Web Ontology Language. from, http://www.w3.org/TR/2012/REC-

owl2-syntax-20121211 (accessed 20.05.2015).

[98] W3C. Resource Description Framework (RDF). from, http://www.w3.org/RDF/

(accessed 22.05.2015).

[99] W3C. SPARQL Query Language for RDF. from, http://www.w3.org/TR/rdf-sparql-

query/ (accessed 20.05.2015).

[100] Research, Stanford Center for Biomedical Informatics. Protégé Tool. from,

http://protege.stanford.edu/ (accessed 20.05.2015).

[101] Abdaladhem Albreshne, Ayoub Ait Lahcen, Jacques Pasquier. Using a Residential

Environment Domain Ontology for Discovering and Integrating Smart Objects in

Complex Scenarios. In Proceedings of the International Workshop on Enabling ICT

for Smart Buildings (ICT-SB 2014), Hasselt, Belgium, Elsevier, 32:997-1002, 2014.

[102] Abdaladhem Albreshne , Jacques Pasquier. A Template-Based Semi-Automatic Web

Services Composition Framework: Case Study of Smart Home Management. In

Proceedings of the PhD Symposium at the 9th IEEE European Conference on Web

Services ECOWS11, Lugano, Switzerland, p. 11-17, 2011.

[103] Abdaladhem Albreshne , Jacques Pasquier. Semantic-Based Semi-Automatic Web

Service Composition. In Proceedings of the 5th Libyan Arab International Conference

On Electrical and Electronic Engineering LAICEEE, Tripoli, Libya, p. 603-615, 2010.

[104] Abdaladhem Albreshne, Jacques Pasquier. A Domain Specific Language for High-

Level Process Control Programming in Smart Buildings. In Proceedings of the 6th

International Conference on Emerging Ubiquitous Systems and Pervasive Networks

(EUSPN 2015), Berlin, Germany, Elsevier, 63:65-73, 2015.

[105] Zohar Etzioni, John Keeney, Rob Brennan, David Lewis Supporting Composite Smart

Home Services with Semantic Fault Management In Proceedings of 5th International

Conference on Future Information Technology (FutureTech), Busan, p. 1-8, 2010.

[106] Adnan Afsar Khan, Hussein T. Mouftah. Web services for indoor energy management

in a smart grid environment. In Proceedings of 22nd International Symposium on

Personal Indoor and Mobile Radio Communications (PIMRC), IEEE, p. 1036-1040,

2011.

[107] Nils Glombitza, Dennis Pfisterer, Stefan Fischer. Integrating Wireless Sensor

Networks into Web Service-Based Business Processes. In Proceedings of 4th

International Workshop on Middleware Tools, Services and Run-Time Support for

Sensor Networks, ACM, p. 25-30, 2009.

[108] Feng Gao, Maciej Zaremba, Sami Bhiri, Wassim Derguerch. Extending BPMN 2.0

with Sensor and Smart Device Business Functions. In Proceedings of 20th IEEE

International Workshops on Enabling Technologies: Infrastructure for Collaborative

Enterprises, Paris, France, IEEE, p. 297-302, 2011.

[109] Stefano Tranquillini, Patrik Spieß, Florian Daniel, Stamatis Karnouskos, Fabio Casati,

Nina Oertel, Luca Mottola, Felix Jonathan Oppermann, Gian Pietro Picco, Kay

Römer, Thiemo Voigt Process-Based Design and Integration of Wireless Sensor

Network Applications. Lecture Notes in Computer Science, 7481:134-149, 2012.

http://www.w3.org/TR/2012/REC-owl2-syntax-20121211
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://protege.stanford.edu/

192 References

[110] Jopera. JOpera for Eclipse. from, http://www.jopera.org/ (accessed 20.05.2015).

[111] Thanos G, Stavropoulos . Dimitris Vrakas, Ioannis Vlahavas. A survey of service

composition in ambient intelligence environments. Artificial Intelligence Review,

Springer, 40(3):247-270, 2011.

[112] Fulvio Corno, Muhammad Sanaullah. Design-Time Formal Verication for Smart

Environments: An Exploratory Perspective. Journal of Ambient Intelligence and

Humanized Computing , Sprinker, 5(4):581-599, 2014.

[113] Tommaso Magherini, Alessandro Fantechi, Chris D. Nugent, Enrico Vicario. Using

Temporal Logic and Model Checking in Automated Recognition of Human Activities

for Ambient-Assisted Living. IEEE Transactions on Human-Machine Systems,

43(6):509-521, 2013.

[114] Riccardo De Masellis, Claudio Di Ciccio, Massimo Mecella, Fabio Patrizi. Smart

Home Planning Programs. 7th International Conference on Service Systems and

Service Management, Tokyo, p. 1-6, 2010.

[115] Eirini K., Ehsan W., Jaap B.,Alexander L., Marco A. Interoperation, Composition and

Simulation of Services at Home. In Proceedings of 8th International Conference,

ICSOC, San Francisco, CA, USA, p. 167-181, 2010.

[116] Christian Reinisch, Mario J.Kofler, Félix Iglesias, Wolfgang Kastner. ThinkHome

Energy Efficiency in Future Smart Homes. EURASIP Journal on Embedded Systems,

p. 1-18, 2011.

[117] Florian Marquardt, Adelinde Uhrmacher. Evaluating AI planning for service

composition in smart environments. In Proceedings of 7th International Conference

on Mobile and Ubiquitous Multimedia, ACM, p. 44-55, 2008.

[118] Faris Nizamic, Tuan Anh Nguyen, Alexander Lazovik ,Marco Aiello. GreenMind -

An Architecture and Realization for Energy Smart Buildings. In Proceedings of 2nd

International Conference on ICT for Sustainability (ICT4S 2014), Atlantis Press, p.

20-29, 2014.

[119] Davide Cavone, Berardina De Carolis, Stefano Ferilli, Nicole Novielli. Smart

Composition of Services in Situation-Aware Home Environments. In Proceedings of

2nd International Workshop on User Modeling and Adaptation for Daily Routines

(UMADR), Spain, p. 5-12, 2011.

[120] Manuel García-Herranz, Xavier Alamán, Pablo A. Haya. Easing the Smart Home: A

rule-based language and multi-agent structure for end user development in Intelligent

Environments. Journal of Ambient Intelligence and Smart Environments, 2(4):437-438

2010.

[121] Chui Yew Leong, A.R.Ramli, Thinagaran Perumal. A Rule-Based Framework for

Heterogeneous Subsystems Management in Smart Home Environment IEEE

Transactions on Consumer Electronics, 55(3):1208-1213, 2009.

[122] Jin Xiao, Raouf Boutaba. The Design and Implementation of an Energy-Smart Home

in Korea. Journal of Computing Science and Engineering (JCSE), 7(3):204-210, 2014.

[123] Turner, Kenneth. Flexible Management of Smart Homes. Journal of Ambient

Intelligence and Smart Environments, IOS Press, 3:83-110, 2011.

http://www.jopera.org/

References 193

[124] Alexander Smirnov, Alexey Kashevnik, Nikolay Shilov, Nikolay Teslya. Context-

based access control model for smart space. In Proceedings of 5th International

Conference on Cyber Conflict, IEEE, p. 1-15, 2013.

[125] Pierpaolo Baglietto, Massimo Maresca, Michele Stecca. Smart Object Cooperation

through Service Composition. 15th International conference on Intelligence in Next

Generation Networks, Berlin, p. 133-138, 2011.

[126] Claudio Di Ciccio, Massimo Mecella. The homes of tomorrow: service composition

and advanced user interfaces. ICST Transactions on Ambient Systems, 11(10-12):1-13,

2011.

[127] Christos Goumopoulos, Ioannis Calemis, Achilles Kameas Deployment of adaptive

workflows in intelligent environments In Proceedings of 6th International Conference

on Intelligent Environments, IEEE Computer Society, p. 197-202, 2010.

[128] A. Katasonov , M. Palviainen Towards ontology-driven development of applications

for smart environments. In Proceedings of Pervasive Computing and Communications

Workshops (PERCOM Workshops), 8th IEEE International Conference on Mannheim,

p. 696-701, 2010.

[129] Michael Compton, Payam Barnaghi, Luis Bermudez et al. The SSN Ontology of the

W3C Semantic Sensor Network Incubator Group. Web Semantics: Science, Services

and Agents on the World Wide Web, 17:25-32, 2012.

[130] Henrik Dibowski, Klaus Kabitzsch. Ontology-Based Device Descriptions and Device

Repository for Building Automation Devices. EURASIP Journal on Embedded

Systems, 3:1-17, 2011.

[131] Zakwan Jaroucheh, Xiaodong Liu, Sally Smith. An approach to domain-based

scalable context management architecture in pervasive environments. Personal and

Ubiquitous Computing, 16(6):741-755, 2012.

[132] Tao Xu, Bertrand David, René Chalon, Yun Zhou. A context-aware middleware for

ambient intelligence. In Proceedings of the Workshop on Posters and Demos Track,

Lisbon, Portugal, ACM, p. 10:1-10:2, 2011.

[133] Kyungeun Park, Yanggon Kim, Juno Chang. Semantic Reasoning with Contextual

Ontologies on Sensor Cloud Environment. International Journal of Distributed Sensor

Networks, 1-13,

[134] Natalia Díaz Rodríguez, M. P. Cuéllar, Johan Lilius, Miguel Delgado Calvo-Flores. A

Survey on Ontologies for Human Behavior Recognition. ACM Computing Surveys

(CSUR) 46(4):1-33, 2014.

[135] Lorenzo, Sommaruga, Tiziana, Formilli and Nicola, Rizzo. DomoML-an Integrating

Devices Framework for Ambient Intelligence Solutions. In Proceedings of 6th

International Workshop on Enhanced Web Service Technologies Lugano, Switzerland,

ACM, p. 9-15, 2011.

[136] Dario Bonino, Fulvio Corno DogOnt - Ontology Modeling for Intelligent Domotic

Environments. In Proceedings of 7th International Semantic Web Conference (ISWC),

Springer Berlin Heidelberg, p. 790-803, 2008.

[137] Thanos G., Dimitris Vrakas, Danai Vlachava, Nick Bassiliades. BOnSAI: a Smart

Building Ontology for Ambient Intelligence. Proceedings of the 2nd International

Conference on Web Intelligence, Mining and Semantics (WIMS '12), Craiova,

Romania, ACM, p. 1-12, 2012.

194 References

[138] YERLY, SAMUEL. Instanciation d’une “Smart Home” en OWL et recherche des ses

propriétés en SPARQL. Bachelor Work, Software Engineering Group, Department of

Informatics, University of Fribourg. 2014.

[139] Yew Kwang Hooi, M. Fadzil Hassan, Azmi M. Shariff A Survey on Ontology

Mapping Techniques. Advanced in Computer Science and its Applications, Springer

Berlin Heidelberg, 279:829-836 2014.

[140] Shen, Jin-Shyan Lee ; Yu-Wei Su ; Chung-Chou. A comparative study of wireless

protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. In Processing of the 33rd Annual

Conference of the IEEEIndustrial Electronics Society (IECON 2007), Taipei, Taiwan,

IEEE, p. 46-51, 2007.

[141] Sharmilaa S., Jagadeesan A., Sathesh Kumar T. Shortcut Tree Routing Algorithm for

Efficient Data Delivery in ZigBee Wireless Networks. International Journal of

Innovative Science and Modern Engineering (IJISME), 2(4):11-15, 2014.

[142] Qingchao Gong, Guangming Li, Yong Pang. Design and Implementation of Smart

Home System Based on ZigBee Technology. International Journal of Smart Home,

8(6):143-156, 2014.

[143] Claro Noda, Shashi Prabh, Mario Alves, Thiemo Voigt. On packet size and error

correction optimisations in low-power wireless networks. In Proceedings of IEEE

International Conference on Sensing, Communications and Networking (SECON),

IEEE, p. 212-220, 2013.

[144] Ehsan Ullah Warriach, Eirini Kaldeli, Alexander Lazovik, Marco Aiello. An

Interplatform Service-Oriented Middleware for the Smart Home. International

Journal of Smart Home 7(1):115-142, 2013.

[145] Thinagaran Perumal, Abdul Rahman Ramli, Chui Yew Leong, Shattri Mansor,

Khairulmizam Samsudin. Interoperability for Smart Home Environment Using Web

Services. International Journal of Smart Home, 2(4):1-16, 2008.

[146] Jonas Gustafsson, Rumen Kyusakov, Henrik Mäkitaavola, Jerker Delsing. Application

of Service Oriented Architecture for Sensors and Actuators in District Heating

Substations. Sensors, 14(8):15553-15572, 2014.

[147] KamalEldin Mohamed, Duminda Wijesekera. A lightweight Framework for Web

Services Implementations on Mobile Devices In Proceedings of 1st International

Conference on Mobile Services, Honolulu, HI IEEE, p. 64-71, 2012.

[148] Engelen, Robert van. Code Generation Techniques for Developing Light-Weight

XML Web Services for Embedded Devices. In Procceedings of ACM SIGAPP SAC

Conference (Embedded Systems Track), p., 2004.

[149] Wei Wang, Payam Barnaghi, Gilbert Cassar, Frieder Ganz, Pirabakaran Navaratnam.

Semantic sensor service networks. IEEE, p. 1-4, 2012.

[150] Ehsan Ullah Warriach, Eirini Kaldeli, Jaap Bresser, Alexander Lazovik, Marco Aiello.

Heterogeneous Device Discovery Framework for the Smart Homes. In Proceedings of

Conference of Exhibition (GCC), Dubai, IEEE, p. 637-640, 2011.

[151] Zhi Wang, Jizhong Zhao. Improved Algorithm for UPnP Discovery in Smart Space.

3rd International Conference on Software Engineering and Service Science (ICSESS),

Beijing IEEE, p. 519-522, 2012.

References 195

[152] Nuno Costa, António Pereira, Carlos Serôdio. Integration of Resource Poor Wireless

Sensor Networks into Smart Spaces. In Proceedings of 8th IEEE International

Conference on Dependable, Autonomic and Secure Computing (DASC '09), Chengdu

IEEE, p. 496-501, 2009.

[153] Noha Ibrahim, Frédéric Le Mouël. A Survey on Service Composition Middleware in

Pervasive Environments. IJCSI International Journal of Computer Science, p. 1-12,

2009.

[154] Sanjin Sechic, Fie Li, Schahram Dustdar. COPAL: A Macro Language for Rapid

Development of Context-aware Applications in Wireless Sensor Networks. In

Proceedings of the 2nd Workshop on Software Engineering for Sensor Network

Applications, ACM, p. 1-6, 2011.

[155] Diego Adolf, Ettore Ferranti, Stephan Koch. SmartScript- A Domain-Specific

Language for Appliance Control in Smart Grids. In Proceedings of 3rd International

Conference on Smart Grid Communications (SmartGridComm), p. 465-470, 2012.

[156] Parr, Terence. The Definitive ANTLR Reference:Building Domain Sepcific Languages.

Pragmatic Bookshelf. 2011.

[157] Rosslin John Robles, Tai-hoon Kim. A Review on Security in Smart Home

Development. International Journal of Advanced Science and Technology, 15:13-22,

2010.

[158] Jon Robinson, Ian Wakeman, Dan Chalmers Composing software services in the

pervasive computing environment: Languages or APIs? ELSEVIER: Pervasive and

Mobile Computing, 4(4):481-505, 2008.

[159] Daniel Retkowitz, Sven Kulle Dependency Management in Smart Homes Distributed

Applications and Interoperable Systems, Lecture Notes in Computer Science ,

Springer, 5523:143-156, 2009.

[160] Hamdan Sayuti, Rozeha A.Rashid, Mu'azzah Latiff, A Hamid, N. Fisal, M. Sarijari,

Alias Mohd, Kamaludin Yusof, Rozaini Abd Rahim. Lightweight Priority Scheduling

Scheme for Smart Home and Ambient Assisted Living System. International Journal

of Digital Information and Wireless Communications (IJDIWC), 4(1):114-123, 2014.

[161] Tamim Sookoor, Kamin Whitehouse. RoomZoner: Occupancy-based Room-Level

Zoning of a Centralized HVAC System. In Proceedings of the International

Conference of Cyber-Physical Systems (ICCPS), Philadelphia, PA, IEEE, p., 2013.

[162] Sílvia Resendes, Paulo Carreira, André C. Santos Towards automatic conflict

detection in home and building automation systems. Pervasive and Mobile

Computing, 12:37-57, 2014.

[163] Rui Camachoa, Paulo Carreiraa, Inês Lyncea, Sílvia Resendesa An ontology-based

approach to conflict resolution in Home and Building Automation Systems. Expert

Systems with Applications, Elsevier, 41(14):6161–6173, 2014.

[164] Sílvia Resendes, Paulo Carreira, André C. Santos. Conflict detection and resolution in

home and building automation systems: a literature review. Journal of Ambient

Intelligence and Humanized Computing, Sprinker, 5(5):699-715, 2014.

[165] ORACLE. Architecting BPEL Systems for High Availability. ORACLE. 2007. from,

196 References

[166] Kennedy, Deanna Bradshaw and Mark. Oracle BPEL Process Manager Developer’s

Guide, 10g (10.1.3.1.0) from, http://docs.oracle.com/cd/E11036_01/integrate.1013/

b28981.pdf (accessed 20.05.2015).

[167] Sirajum Munir, John Stankovic. FailureSense: Detecting Sensor Failure using

Electrical Appliances in the Home. In Proceedings of 11th International Conference

on Mobile Ad Hoc and Sensor Systems (MASS), IEEE, p. 73-81, 2014.

[168] Angel Jesus Varela-Vaca, Rafael M. Gasca, Diana Borrego, Sergio Pozo. Towards

Dependable Business Processes with Fault-Tolerance Approach. In Proceedings of 3th

International Conference on Dependability, IEEE Computer Society, p. 104-111,

2010.

[169] Um, Dugan. Massive Sensor Array Fault Tolerance: Tolerance Mechanism and Fault

Injection for Validation. Journal of Robotics, p. 1-8, 2010.

http://docs.oracle.com/cd/E11036_01/integrate.1013/

 197

Curriculum Vitae

Personal Data

Name: Abdaladhem ALBRESHNE

Date of Birth: August 19
th
, 1973 in Agelat (Libya)

Nationality: Libyan

Marital Status: Married

Education

2011-2015: PhD Assistant, Department of Computer Science, University of Fribourg, Switzerland.

2002-2004: MSc (Master of Science) in Computer and Communication Networks, mention A,
 Institut National des Télécommunications (Télécom SudParis), Paris, France.

1992-1997: BSc (Bachelor of Engineering Science), field of Telecommunications Engineering,
 level: very good, University of Tripoli, Tripoli, Libya.

1990-1991: Higher Secondary Diploma, level: excellent, High Secondary School of Agelat, Agelat,
 Libya.

Languages

 Arabic

 English

 French

 German (spoken)

Publications

 Abdaladhem Albreshne, Jacques Pasquier. A Domain Specific Language for High-Level Process 1.

Control Programming in Smart Buildings. In Proceedings of the 6th International Conference on

Emerging Ubiquitous Systems and Pervasive Networks (EUSPN 2015). Berlin, Germany:

Elsevier. 63:65-73, 2015.

 Abdaladhem Albreshne, Ayoub Ait Lahcen, Jacques Pasquier. Using a Residential Environment 2.

Domain Ontology for Discovering and Integrating Smart Objects in Complex Scenarios. In

Proceedings of the International Workshop on Enabling ICT for Smart Buildings (ICT-SB 2014).

Hasselt, Belgium: Elsevier. 32:997-1002, 2014.

198 Curriculum Vitae

 Albreshne Abdaladhem, Ayoub Ait Lahcen, Jacques Pasquier. A Framework and its Associated 3.

Process-Oriented Domain Specific Language for Managing Smart Residential Environments.

International Journal of Smart Home, 7:377-392, 2013.

 Albreshne Abdaladhem, Jacques Pasquier. A Template-Based Semi-Automatic Web Services 4.

Composition Framework: Case Study of Smart Home Management. In Proceedings of the PhD

Symposium at the 9th IEEE European Conference on Web Services ECOWS11. Lugano,

Switzerland, p. 11-17, September, 2011.

 Albreshne Abdaladhem, Jacques Pasquier. Semantic-Based Semi-Automatic Web Service 5.

Composition. In Proceedings of the 5th Libyan Arab International Conference on Electrical and

Electronic Engineering LAICEEE. Tripoli, Libya, 1: 603-615, Octobre, 2010.

