
Chapter 12

ARM Testimonials

Edward Ho, Tobias Jacobs, Stefan Meissner, Sonja Meyer,

Miguel-Angel Monjas, and Alexander Salinas Segura

This chapter shows how the IoT ARM is perceived by the IoT community and how

the ARM can be placed in relation to existing IoT related standards and research

projects. The first sections of this chapter present reverse mappings of existing

standards and platforms to the IoT ARM and the last section of this chapter shows a

business case evaluation for an example use case in the healthcare domain.

E. Ho (*)

University of St.Gallen, Dufourstrasse 40a, CH-9000 St.Gallen, Switzerland

e-mail: edward.ho@unisg.ch

T. Jacobs

NEC Laboratories Europe, Software & Services Research Division, NEC Europe Ltd.,

Kurfürsten-Anlage 36, 69115 Heidelberg, Germany

e-mail: tobias.jacobs@neclab.eu

S. Meissner

University of Surrey, Stag Hill, GU2 7XH Guildford, UK

e-mail: s.meissner@surrey.ac.uk

S. Meyer

SAP AG, Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany

e-mail: sonj.meyer@sap.com

Miguel-Angel Monjas

Ericsson Spain, Madrid R&D Center, Technology and Innovation, Vı́a de los Poblados, 13,

28033 Madrid, Spain

e-mail: Miguel-Angel.Monjas@ericsson.com

A. Salinas Segura

University of Würzburg, Josef-Stangl-Platz 2, 97070 Würzburg, Germany

e-mail: alexander.salinas@uni-wuerzburg.de

A. Bassi et al. (eds.), Enabling Things to Talk, DOI 10.1007/978-3-642-40403-0_12,
© The Author(s) 2013

279

mailto:edward.ho@unisg.ch
mailto:tobias.jacobs@neclab.eu
mailto:s.meissner@surrey.ac.uk
mailto:sonj.meyer@sap.com
mailto:Miguel-Angel.Monjas@ericsson.com
mailto:alexander.salinas@uni-wuerzburg.de

12.1 Introduction to Reverse Mapping

In the course of its own project roadmap, our sister project – the Internet of Things
Initiative (IoT-i) – has targeted three different (but connected) activities directly

relating to the IoT-A architecture work as shown below:

1. To review and categorise existing reference models having a connection to the

IoT field (or underlying disciplines, as IoT as such is more a technology

umbrella). Example of the reference models reviewed by IoT-i are ETSI

M2M, IETF Core, EPCglobal, Ucode and NFC to name just a few (IoT-A D1.2);

2. To put online a survey, the goal of which was to capture, people understanding

and expectation, as far as reference models are concerned. This exercise was

very important because people have generally different understanding about

what are reference models, architectures and what they should consist of;

3. Finally, to come back on reference models introduced and summarised in

previous versions of this deliverable and to do a reverse mapping exercise

towards the IoT Reference Model. The goal of this exercise was to show that

the reference model as defined by IoT-A is expressive enough in order to allow a

modelling of those (pre- IoT-A) existing IoT reference models using the IoT-A

one. In other words, if we would consider that IoT-A does not attempt to define

what is an IoT system using sentences and words, but defining models where any

IoT system (from the IoT understanding) shall fit, then all those existing

reference models would be IoT systems reference models.

In this Section we aim at giving some details about this reverse mapping exercise

applied to ETSI M2M, EPCglobal and uID. Some of the material in this

Section comes directly from the IoT-A D1.5 deliverable (Carrez et al. 2013)

(especially the UML figures and concept tables). In order to improve readability,

we do not use direct citations, although the work presented in the following

Section was performed by the IoT-A project and reported in their deliverable D1.5.

In addition to the standards that we have mentioned above, we also apply the IoT

Architectural Reference Model to a concrete architecture, namely the architecture

of the MUNICH (MUNICH 2010) project in order to validate the IoT ARM against

a real system in contrast to an abstract standard. Furthermore we show a reverse

mapping to the information model of the IoT-related research project BUTLER1.

12.2 Reverse Mapping ETSI M2M

Within the IoT-A D1.5 deliverable, Sect. 3.1.1 discusses the ETSI M2M standard

(ETSI TS 102 690). In this section we analyse the ETSI M2M standard. The

acronym ETSI stands for European Telecommunications Standards Institute

1 http://www.iot-butler.eu/

280 E. Ho et al.

http://dx.doi.org/10.1007/978-3-642-40403-0_3

(ETSI), viz. the standardisation body responsible for this standard. The acronym

M2M stands for Machine-to-Machine, which is a pointer to the application field this

standard addresses, viz. machine-to-machine communications. Release 1 of this

standard was published in October 2011 (ETSI TS 102 690), this discussion within

IoT-A also takes the later update (ETSI TS 103 092) into account that was released

in May 2012.

The purpose of the ETSI M2M functional architecture is to define a service-

capability layer which serves as middleware between applications in the Internet

and Devices or gateways residing in local-area networks. The current release is

mainly concerned with secure and reliable data transport.

In what follows, we give a more detailed description of a possible reverse

mapping of ETSI M2M to the IoT Domain Model and IoT Communication

Model as well as their management information model and how it maps to our

management model. We also have a brief look at the ETSI M2M security model and

how it compares to our threat analysis.

12.2.1 Mapping to the IoT Domain Model

As everything above the ETSI M2M Service Capability Layer is considered an

application, there is no explicit concept of a User in ETSI M2M. In particular,

Human Users are out of scope, as the standard focuses on machine-to-machine

communication. The role of an IoT-A User would typically be taken by ETSI

network applications, in some cases also by ETSI gateway applications, because

these applications use the information provided by sensing M2M Devices and

control the actuation capabilities of Devices.

ETSI M2M defines Sensors and Actuators in a similar way as the IoT Domain

Model. However, there is a subtle difference regarding the concept of a Device.

While in IoT-A there is a “is-a” relationship between Sensor/Actuator and Device,

ETSI M2M defines a Device to be a unit comprising Sensors and Actuators, as well

as embedded processing and communication capabilities – so here Sensors and

Actuators are part of Devices.

The ETSI M2M defines a Service Capability Layer with standardised interfaces.

Since this layer includes similar functionalities to the IoT-A Service level

(e.g. registration), it is reasonable to map these functionalities to IoT Services.

There are also some differences between ETSI and IoT-A terminology. For exam-

ple, the ETSI Services are not only exposed towards actors which IoT-A would

consider as Users, but also towards (ETSI) applications residing on Devices.

Additionally, the concept of IoT Resource (IoT-A) as a native software interface

of Devices does not explicitly exist in ETSI M2M – although software components

on legacy Devices could be considered as IoT Resources. Instead the term of

Resources in ETSI is exclusively used to describe the RESTful interface exposed

by the Service Capability Layer.

12 ARM Testimonials 281

The mapping of ETSI M2M concepts to the IoT Domain Model is shown in

Table 12.1.

As the current ETSI M2M release is rather concerned with data transport than

with real-world modelling, the (physical, virtual, augmented) entity concept is not

defined in (ETSI TS 103 092).

12.2.2 Mapping to the Management FG

Management functionalities are an inherent part of both of IoT-A and ETSI M2M.

Both architectures distribute and cluster the management functions into different

packages or functional components.

In (ETSI TS 102 690), the following packages are defined for management:

• General Management (GEN): Allows retrieving general information of the

M2M Device or gateway, and provides generic mechanism applicable to differ-

ent specific management functions;

• Configuration Management (CFG): Allows configuration of the device

capabilities and features for supporting M2M Services and applications, includ-

ing activating/deactivating device hardware components or I/Os in the M2M

Device or gateway;

• Diagnostic & Monitoring Management (D&M): Allows running specific diag-

nostic tests on a device and collecting the results or alerts from the M2M Device

or gateway. This package is also called Fault and Performance Management;

Table 12.1 Mapping ETSI M2M concepts to the IoT-A Domain Model

ETSI M2M

IoT Domain

Model Comments

Device Device Sensors and Actuators are hosted on Devices, they are not

special cases of Devices

Sensor Sensor The Sensor in ETSI M2M is not a Device

Actuator Actuator The Actuator in ETSI M2M is not a Device

Network

application

User In ETSI M2M, there are no Human Users, but only applications

that process the data coming from the “Device and Gateway

Domain”. This concept of an application as a User is

reflected in IoT-A

Gateway

application

User In ETSI M2M, there are no Human Users, but only applications

that process the data coming from the “Device and Gateway

Domain”. This concept of an application as a User is

reflected in IoT-A

Service Service In ETSI M2M, Services are not defined as exposing Resources

on Devices, but can interact with the Devices. A Resource

concept as in IoT-A does not exist

Resource Service Resources in ETSI M2M are defined in analogy to RESTful

Service Interfaces

282 E. Ho et al.

• Software/Firmware Management (SFW): Allows installation/update/removal of

application specific or SCL related software/firmware in M2M Device or

gateway;

• Area Network Management (ANW): Allows M2M Gateway-specific configura-

tion and M2M Area Network and Device management through a M2M gateway;

• SCL Management (SCL): Allows remote configuration and retrieval of M2M

Device or gateway service capability layer parameters.

In a similar fashion, Sect. 8.2.2 of this document identifies different Functional

Components used for management functionalities. These include:

• Configuration: Initialising the system configuration. Gathering and storing

configurations from FCs and Devices, tracking configuration changes;

• Fault: The goal of the Fault FC is to identify, isolate, correct and log faults that

occur in the IoT system;

• Member: This FC is responsible for the management of the membership and

associated information of any relevant entity (FG, FC, VE, IoT Service, Device,

Application, and User) to an IoT system;

• Reporting: The Reporting FC can be seen as an overlay for the other Manage-

ment FCs. It distils information provided by them. One of many conceivable

reporting goals is to determine the efficiency of the current system;

• State: The State FC monitors and predicts state of the IoT system. For a ready

diagnostic of the system, as required by Fault FC, the past, current and predicted

(future) state of the system are provided.

When mapping these different management components, it becomes obvious

once again that the focus of ETSI M2M is narrower in terms of its scope and

therefore it is more detailed in the definition of its management capabilities and

does not include all of the functionality defined by IoT-A. For instance, there is no

equivalent to State FC in terms of its temporal distribution and the related billing

capabilities. This aspect is not really central, as it is not contradictory and could be

built upon the D&M package. In general however there is a strong overlap, as D&M

roughly relates to the Reporting FC, CFG closely resembles Configuration, and

both D&M and Fault deal with monitoring functionalities. Error and fault handling

as such is handled specifically in the Fault FC, whereas D&M also handles

performance management. On the other hand, and in line with the general focus

of ETSI-M2M, the different aspects of the Configuration FC are handled in more

specific packages in ETSI M2M, such as SCL, ANW, and SFW which each deal

with specific functionalities that are subsumed under Configuration in IoT-A. As

the different architectures naturally have different levels of abstraction, it is not

surprising to not have a 1:1 relationship between the two architectures, but a

mapping can be performed easily in both directions.

12 ARM Testimonials 283

http://dx.doi.org/10.1007/978-3-642-40403-0_8

12.2.3 Mapping to the IoT Communication Model

The ETSI M2M standard defines a Service Capability Layer in order to enable

seamless, secure, and reliable end-to-end communication in M2M networks. The

ETSI Service Capability Layer can therefore be mapped to the end-to-end layer of

the IoT Communication Model (see Sect. 7.6). (ETSI) applications, communicating

via the Service Capability Layer, would accordingly be associated to the IoT-A

Data Layer (see Sect. 7.6.2), although they do not only exchange data, but also

control and management information.

A Network and ID group (see Sect. 7.6.2) is not in the focus of ETSI M2M, and

the current bindings to HTTP and CoAP do not assume such a layer. However, in

cases where the Service Capability Layer enables a direct connection of mobile

Device applications to network applications, an ID layer that describes the Device

independently from its network location could assist the Service Capability which

provides seamless connectivity. The three communication layers at the bottom of

Fig. 7.17 can be considered as identical in ETSI M2M and IoT-A.

From the point of view of ETSI M2M, all actors making use of the Service

Capability Layer are applications. The model distinguishes between device

applications, gateway applications, and network applications. ETSI M2M also

considers so-called legacy Devices; these are Devices that have no own Service

Capability Layer and therefore need to be integrated via a gateway application into

the M2M system (M2M system is a term implicitly used in ETSI M2M to refer to

the overall architecture).

The IoT-A term IoT Device is used more or less in the same way in ETSI M2M,

but the concept of an IoT Application does not directly exist in ETSI M2M – mainly

because the concept of an application is more broadly defined in ETSI M2M.

12.2.4 Mapping to the Security Model

One of the purposes of the ETSI M2M Service Capability Layer is to address all

security requirements of M2M communication. The standard defines a key hierar-

chy of three levels. The ETSI M2M Root Key is used for mutual authentication

between device or gateway nodes and the M2M Service Provider. It is also used for

deriving and agreeing on the key of the next layer of the hierarchy – the ETSI M2M

Connection Key which is used for every service connection procedure. Finally, the

ETSI M2M Application Key is used for securing sessions between specific

applications. This largely maps to the IoT-A Key exchange and management

functionality in IoT-A with respect to key management is not yet explicitly defined

in this document.

284 E. Ho et al.

http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0_7

Most of the communication security and Service security aspects of the IoT-A

security model are implicitly addressed in ETSI M2M – although the terminology

of IoT-A is not explicitly used. The ETSI M2M standard describes a range of

variants that depend on the security characteristics of the underlying network layers

and on the relationships between the M2M service provider and the network

operator. For example, if these stakeholders are identical, key provisioning can be

significantly simplified. One issue clearly not addressed in ETSI M2M are trust

models.

12.2.5 Threat Analysis Mapping

(ETSI TR 103 167) deals with a threat analysis related to the ETSI M2M standard.

In a similar way as the risk analysis provided in this document in Section.

[Chapter 6 Sect. 6.8] ETSI M2M defines those threats that are most relevant for

the standard, and discusses respective countermeasures. Here, the different focus of

ETSI M2M in terms of network security becomes obvious again, because most of

the threats identified by ETSI M2M deal with keys or message exchange. That

means that the scope of IoT-A is broader, as it also includes, for instance, Human

Users that do not behave correctly. Consequently, IoT-A refers to a general risk

analysis that includes by definition non-malicious behaviour that still imposes a risk

on the system. As the scope of IoT-A is broader, not all the risks identified within

IoT-A are applicable to ETSI M2M, but the threats of ETSI M2M map well to the

risks identified within Sect. 6.8. This is shown in Table 12.2 below.

As we can see in Table 12.2, there is a slight difference between both models

regarding the consequence or the cause of a risk, as ETSI M2M has a stronger focus

on what actions are actually applied in order to impose a risk on the system, whereas

IoT-A focuses more on the consequences of these actions. Nevertheless, there is a

good mapping between the two models. The granularity of ETSI M2M is naturally

higher, as it focuses on a more narrow class of threats.

12.2.6 Conclusion

If we consider that the aim of the ETSI M2M standard is to provide an M2M

architecture with a generic set of capabilities for M2M Services and to provide a

framework for developing Services independently of the underlying network, it

becomes clear that the scope of IoT-A is much broader, taking the entire Internet of

Things domain into account, esp. by explicitly modelling entities and also

providing a much more fine-grained set of relationships between the different

12 ARM Testimonials 285

http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_6

Table 12.2 Mapping ETSI M2M threat analysis to the IoT-A risk analysis

ETSI M2M IoT-A

Threat 1: Discovery of long-term service-layer

keys stored in M2M devices or M2M

gateways

Attacker gains knowledge of sensitive

exchanged data

Disclosure of identities and cryptographic

material

Threat 2: Deletion of long-term service-layer

keys stored in M2M devices or M2M

gateways

Disruption of a global Service

Threat 3: Replacement of long-term service-

layer keys stored in M2M devices or M2M

gateways

Disruption of a global Service

Threat 4: Discovery of long-term service-layer

keys stored in the SCs of the M2M core

Attacker gains knowledge of sensitive

exchanged data

Disclosure of identities and cryptographic

material

Threat 5: Deletion of long-term service-layer

keys stored in the SCs of an M2M core

Disruption of a global Service

Threat 6: Discovery of long-term service-layer

keys stored in MSBF or MAS

Attacker gains knowledge of sensitive

exchanged data

Disclosure of identities and cryptographic

material

Threat 7: Deletion of long-term service-layer

keys stored in the MSBF/MAS

Attacker gains knowledge of sensitive

exchanged data

Disclosure of identities and cryptographic

material

Threat 8: Discover keys by eavesdropping on

communications between entities

Attacker gains knowledge of sensitive

exchanged data

Disclosure of identities and cryptographic

material

Threat 9: Modification of data stored in the M2M

service capabilities

Alteration of the return value upon service

invocation

Attacker alters leaf-device content so that a

user will eventually be redirected to a

malicious content

Attacker alter sensor device so that monitoring

of a Physical Entity fails

Threat 10: Provisioning of non-legitimate keys Disruption of a global Service

Threat 11: Unauthorised or corrupted application

and service-layer software in M2M

Attacker impersonates infrastructure Services,

compromising IoT functionalities and/or

other dependent infrastructure services

Threat 12: Subverting the M2M device/gateway

integrity-checking procedures

Alteration of the invocation of a Service

Threat 13: Unauthorised or corrupted software in

M2M core

Attacker impersonates infrastructure Services,

compromising IoT functionalities and/or

other dependent infrastructure services

Threat 14: Subverting the integrity-checking

procedures in the M2M core

Alteration of the invocation of a Service

Threat 15: General eavesdropping on M2M

service-layer messaging between entities

Attacker gains knowledge of sensitive

exchanged data

(continued)

286 E. Ho et al.

kinds of devices, resources and services. While ETSI M2M makes different

assumptions, especially in terms of security and communication, the basic concepts

are somewhat compatible, at least on an abstract level of discussion. The major

difference is that IoT-A is based on the assumption that the IoT Device space can be

divided into the two main categories of constrained networks (NTU) and uncon-

strained networks (NTC), and the security measurements mainly need to address

the boundaries between them, whereas ETSI focusses so far on the M2M Service

Layer and its interfaces (ETSI TR 103 167) and not on the M2M Area Network

Layer, so that IoT-A has a more network centred view of security than ETSI M2M.

That being said, the functionalities discussed in Sect. 6.8 largely represent in (ETSI

TR 103 167; Sect. 10.2), so that a mapping is feasible on the same abstraction level

as the IoT Domain Model can be mapped to the ETSI M2M Service Capability

Layer.

12.3 Reverse Mapping EPCglobal

The EPCglobal high-level architecture was introduced briefly in D1.5 deliverable

of the IoT-i project (Haller 2012) Figure 12.1 gives a simplified view of the

EPCglobal system architecture, taken from [EPCglobal]. It is worth noting that

the tag itself is not represented as this figure ends up (at the bottom) with the air

interface.

Table 12.2 (continued)

ETSI M2M IoT-A

Threat 16: Alteration of M2M service-layer

messaging between entities

Alteration of the invocation of a Service

Threat 17: Replay of M2M service-layer mes-

saging between entities

Compromised intermediary devices alter tra-

versing data

Alteration of the invocation of a Service

Threat 18: Breach of privacy due to inter-

application communications

User is involved in transactions with a mali-

cious peer

Attacker gains knowledge of user private

parameters

Threat 19: Breach of privacy due to attacks on

M2M device/gateway service capabilities

User is involved in transactions with a mali-

cious peer

Attacker gains knowledge of user private

parameters

Threat 20: Discovery of M2M long-term service-

layer keys from knowledge of access-

network keys

Attacker gains knowledge of sensitive

exchanged data

Disclosure of identities and cryptographic

material

Threat 21: Transfer of module containing access-

network keys and/or M2M long-term keys to

a different terminal/device/gateway

Attacker gains knowledge of sensitive

exchanged data

Disclosure of identities and cryptographic

material

12 ARM Testimonials 287

http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_10

12.3.1 Mapping to the Domain Model

In the EPCglobal architecture, the unique identifier associated with a physical

object is the Electronic Product Code (EPC). It is defined by the EPCglobal Tag

Data Standard, which defines its structure and encoding rules. Uniqueness of

encoding structure (in order to avoid name collisions) is ensured by the use of a

central Registration Authority.

The EPC Network Services in Fig. 12.1 are under the responsibility of the

EPCglobal central authority and they are responsible for respectively providing

discovery service to EPCglobal parties (end-users). The Object Naming Service
(ONS) root management is also under the responsibility if the central authority

Data Capture
Device

(i.e. RF Reader)

Data Capture
Device Management
(i.e. RF Reader Mngt)

Filtering &
Collections

EPCIS
Capturing Application

EPCIS Repository

EPCIS Accessing
Application Local ONSONS i/f

Reader Mngt i/f

Air protocol

Reader i/f

Application Level Event i/f

EPCIS Capturing i/f

EPCIS Query i/f

End User A

Discovery Services ONS Root
EPC Network Services

EPCIS Accessing
Application

End User B

EPCIS Query i/f

Discovery i/f Discovery i/f

RFID Tag

Fig. 12.1 EPCglobal system architecture (simplified)

288 E. Ho et al.

since it is the one allocating the EPC blocks. Local ONS are under the responsibility

of the EPC manager (one per registered end-user).

After getting the address of an Electronic Product Code Information Service
(EPCIS) responsible for the EPC of interest, an EPCIS Accessing Application will

use the EPCIS query interface (i/f) to query additional information about an EPC

(like class level/instance level or transactional data about a particular EPC). EPCIS

query interface uses both push and pull mode, which means that it can be also used

to receive notifications of observations concerning a particular EPC.

EPCIS Repository is the functional block, located at the “end-user A” side, deals

with storage of information (of any nature) it wants to share with other parties

(e.g. end-user B) of the EPC Global network. Of course all interfaces have to be

implemented following the EPCglobal standards, however a certain level of free-

dom is left to “end-users” as for how those block shall be implemented.

The ONS block is a simple look-up Service that will map an EPC to the address

of a designated EPCIS Service by which information about the EPC can be found.

The Filtering & Collection functional block is responsible for collecting raw tag

data following policies defined by the EPCIS Capturing Application box. Example

of such policy is: gathering all EPC of a certain class that have been read on a

certain date, location and time interval.

The EPCIS Capturing Application supervises the operation at the lower level of

the model and provides business context by coordinating with other components

involved in a given business process. Again, a lot of freedom is left to the end-user

for implementing this box, as far as the Application Level Event (ALE i/f) and

capturing i/f are implemented according to the EPCglobal standards.

To finish up with the lower level, the Data Capture Device box (Tag Reader) is

the one observing events relating to RFID Tags. The corresponding Reader i/f

provides those events to the Filtering & Collection box.

The purpose of the reverse mapping is to check if the EPCglobal architecture is

compatible with the IoT Reference Model.

The EPCglobal architecture illustrated in Fig. 12.1 is not exactly an EPCglobal

domain model (as we understand IoT Domain Model in IoT-A), but rather a high-

level diagram of a concrete architecture. Because the two models are not exactly

similar in nature (i.e. IoT Domain Model is clearly at the “concept” level while the

EPCglobal is a high level system architecture description) the reverse mapping of

the EPCglobal architecture towards the IoT Domain Model is not a straightforward

or simple process.

So in the following we use the EPCglobal system architecture in order to extract

the EPCglobal concepts and then build an EPCglobal domain model taking a basis

the generic IoT DM (meaning we try linking the EPCglobal concepts using the IoT

12 ARM Testimonials 289

DM relationships, and try mapping the EPCglobal concepts to the IoT-A concepts)

Nevertheless, we still executed to reverse mapping by building an EPCglobal

domain model taking a basis the generic IoT DM (meaning we linked the

Table 12.3 Mapping EPCglobal concepts to the IoT Domain Model

EPCglobal

concept

IoT ref. model

concept Comments

Entity Physical entity Is the Physical object been tracked by the EPCglobal

system

End-user User The user managing and using the EPCIS, and reading the

EPC

Partner user User The user willing to access EPC information for their own

business

Physical entity Physical entity

(special case

of)

Corresponds to physical objects like parcels, objects

etc.. . .

Location Physical entity

(special case

of)

Places, room, lift,. . .

RFID tag Tag The physical tag embedding the EPC

Tag reader Device/Sensor

Reader interface Service

EPC manager Service Is granted a portion of the naming space and assigns EPC

to products

EPCIS accessing

application

User Located at end-user side that is willing to access EPC

related information

EPCIS service Service Service that encompasses interfaces for data exchange

(through the EPCIS Query Interface e.g.) and specifi-

cation of Data (EPCIS data standard)

EPCIS query

interface

Service Interface exposed by the EPCIS and accessed by the

EPCIS Accessing Application

EPCIS capture

interface

Service

EPCIS

repository

Service/Resource Exposes the EPCIS Query Interface. Stores info about

EPCs events. . .The actual functionality of storing

(e.g. in a data base) could/should be modelled as a

Resource whereas the component that exposes the

interface would be a Service. Of course that could be

implemented tightly coupled as one software

component

EPC record Virtual entity Consists of all info related to EPC (stored in EPC Data

Base)

EPC data base Network resource

EPCIS capturing

application

Service Exposes the EPCIS capture interface

Filtering &

collection

Service/Resource Exposes the filtering and collection interface. Collects tag

reads over time intervals constrained by events defi-

nition by the EPCIS Capturing Application. Filtering

functionality may be modelled as a Resource, whereas

exposing the interface as a Service

290 E. Ho et al.

EPCglobal concepts using the IoT DM relationships, and mapped the EPCglobal

concepts to the IoT-A concepts).

First we identified a list of concepts that can be extracted from the EPCglobal

system architecture and mapped them to the corresponding IoT DM concepts. This

mapping is illustrated in Table 12.3.

Then according to the IoT Domain Model, the kind of concepts it handles and

how those concepts are connected through relationships, the following (see

Fig. 12.2) and consistent UML EPCglobal domain model could be extracted. As

it fits the IoT Domain Model framework it can be argued that EPCglobal fits the IoT

Fig. 12.2 EPCglobal domain model fit into the IoT Domain Model

12 ARM Testimonials 291

Domain Model and that EPCglobal is truly an IoT system from the IoT-A definition

point of view.

However, during this reverse mapping exercise IoT-A raised few comments:

1. Difficulties to model interfaces in general, as interfaces are not part of the IoT

Domain Model in IoT-A. But it can also be argued that “interface” is purely a

software concept which makes great sense in an architecture but making no sense

at the concept level (i.e. in a domain model). Again this can be due to the fact that

they (IoT-A) tried to fit somehow a system architecture into a domain model;

2. EPCglobal does not emphasise the need for Augmented Entities. They are

therefore not part of the model;

3. Difficulties to model that a User can be responsible for managing a Tag (there-

fore End-user has not been included in the model);

4. There is a need for introducing end-users formally in the model with roles. It

must be possible to express the fact that end-users with management role can

associate information to a tag for instance.

5. It should be possible to express the fact that User can discover Services, that

Services can discover Resources, that Resources can discover Resources (to be

discussed which combinations make most sense);

6. Some links between IoT Domain Model and IoT Information Model should be

explicitly described within the IoT Domain Model, like “*-description

publishing”

7. Discovery and publishing are important concepts in IoT they should be very

visible in the IoT Domain model as said in 7/ and 8/

8. We don’t show here the reverse mapping to the IoT Information model, but it

was pretty clear that the IoT Information Model is a meta-model that cannot

really be used to model the class structure of the EPCglobal data handled at the

different levels in the architecture (e.g. at Tag level, reader level, Filtering &

Collection etc.. . .), in particular the IoT Information Model does not consider

events (and EPCglobal is intensively using the notion of event). We reckon that

most likely this is not the role of the IoT Information Model to model in a fine-

grained way the class structure of a software system, especially when the class

structure is clearly not IoT-specific.

12.3.2 Mapping to Information Model

As far as information is concerned, the main input in the EPCglobal reference

architecture is the description of the EPC Information Service and the description of

data the end user can share through the EPCIS interface.

EPCIS data within a so-called EPCIS record can be divided in several categories

as follows2 (see also Table 12.4):

2 Excerpt from the EPCglobal Architecture document.

292 E. Ho et al.

• Static Data: class level and instance level data, which do not change over time

during the physical object life span

– Class Level Data: there remain identical to any object which is an instance of

that class

– Instance-Level Data: the data may vary within objects instance of a class.

Typical examples are lot number, expiry date, number within a lot, S/N

etc.. . .

• Transactional Data: which changes and grows over the physical object life

span, possibly created by more than one actor along a supply chain for instance:

– Instance observation: it records events concerning the Physical Objects and

often relates to dimensions like time, location, other EPC, and business

process steps

– Quantity observation: records events concerned with measuring the quan-

tity of objects within a particular class. Five dimensions: time, location,

object class, quantity, business step.

– Business Transaction Observation: records association between one or

more EPC and a business transaction. Four dimensions time, one or more

EPCs, business process step, business transaction id.

12.3.3 Security Model

As explained in the EPCglobal Architecture Framework document [EPCglobal],

the EPCglobal Architecture Framework allows for many different authentication

technologies across the different interfaces. It is however recommended in the

EPCglobal architecture document, that the X.509 certificate-based method should

Table 12.4 Mapping of the EPCglobal information model to the IoT Information Model

EPCglobal

concept

IoT ref. model

concept Comments

RFID tag Device/Tag Virtual entity representing RFID tag associated with the Phys-

ical Entity

EPC Virtual entity Electronic product code. It is encoded on the RFID tag

EPCIS event Value Might be just a wrapping of IPCIS data in the form of an

event. . .

EPCIS data Value Is the data associated with the Physical Object and therefore

contained in the EPCIS Virtual Entity

EPC record Virtual entity Consists of all info related to Physical Object identified by EPC

(stored in EPCIS Data Base), i.e. IPCIS Data

EPCIS static

data

Value Contains class level Data and Instance level Data

EPCIS transac-

tional data

Value Relates to observations (instances, quantity within a class)

12 ARM Testimonials 293

be used by end-users when accessing the EPCIS interface for example. Typical case

occurs when the EPCIS Accessing Application of an accessing end-user (referred as

Partner user in the architecture framework) is willing to access the EPCIS service of

the primary end-user (the one owning the EPCIS data for instance). If used the

X.509 certificates are expected to comply with the X.509 Certificate Profile

[Cert1.0] which provide minimum level of security.

At the network level some network standards within EPCglobal rely on Trans-
port Layer Security (TSL), some others EPCglobal standards rely on HTTPS

(HTTP over TLS) for the purpose of Data protection.

At higher level both EPCIS Capturing I/f and EPCIS Query i/f standards are

allowing authentication of client’s identity so that companies (owners of the data)

can decide very precisely whether access to that data can be granted or denied. For

the query interface, Applicability Statement 2 (AS2) is used for communication

with external partners. This RFC (4130) specifies how to securely transport data

over Internet and allows in particular for mutual authentication, data confidentiality

and integrity and non-repudiation. Those security qualities are required in the

ARM. AS2 uses x.509 certificate as defined above.

The high level interface (AuthX) used for Authentication in the ARM Security

Model does authorise for the use of X.509 certificates.

12.4 Reverse Mapping Ucode

The Ubiquitous ID (uID) architecture is an architecture proposed by Prof.

Sakamura (from the University of Tokyo) (Koshizuka, Sakamura 2010) to imple-

ment the concept of Ubiquitous Computing (ubicomp). Ubiquitous computing is a

paradigm coined initially by Mark Weiser in the late 80s (see Weiser 1991). It

touches many aspects of computing, like OS’s, displays, intelligent user interfaces,

wireless communication and networking. In the vision of ubicomp, the computer as

we use to know it today, has mostly (if not totally) disappeared. It has become

invisible and ambient. While IoT as such is not ubicomp (for instance intelligent

user interfaces are not clearly part of IoT field) it can be argued that IoT offers

means for implementing partly the ubicomp concept, spreading intelligence among

objects of extremely different natures, enabling for cooperation between objects

and humans and creating awareness about the surrounding (Context awareness) in a

fully connected environment.

The intelligent features or Services implemented through this paradigm can be

enabled only if information about the objects, places, Devices, etc. is available to

those Services. We therefore talk about “intelligent” “smart” or more specifically

“context-aware” Services. This only works if those objects, places, Devices of

interest can be uniquely identified at any point in time. The uID architecture relies

on an identification technique called ucode (ubiquitous code) which can be consid-

ered as the cornerstone of the uID architecture. The ucode model is a descriptive

technique that establishes relationships between Physical and Virtual Entities

through relationships between ucodes.

294 E. Ho et al.

The basic principles of the uID architecture consist of uniquely identifying

entities of interest with ucodes, maintaining databases that contain information

about the entities, ensuring data and privacy protection and opening this platform

through open APIs.

In order to enable those principles fundamental technologies and mechanisms

such as ucode structure, ucode tag, ucode readers and terminals, ucode relational

databases managing the entities information and ucode information servers are used.

These different components are detailed in the following subsections. The simplified

architecture shown in Fig. 12.3 is taken from (Koshizuka, Sakamura 2010).

12.4.1 uCode Model

In the ucode model [UID Architecture], unique identifiers are assigned to:

• Objects: tangible objects of the real world (industrial product, piece of art,

everyday objects,..) as well as intangible ones like pieces of digital media or

source code;

• Spaces: monuments, streets, etc.

• Concepts: relationships between objects and spaces of the real world, which are

also named “entities”. Those relationships are used to define complex context

information, and are defined using a description framework called ucode Rela-

tion (ucR) model. Simple context information relates to objects and places

directly.

It is worth noting that the uniquely assigned code does not contain any informa-

tion about the entity. Relevant information about the tagged entity is stored in an

application Information Service which can be located by resolving the ucode. A

distinction is made between physical ucode which are by definition stored in a Tag

attached to the entity, and logical ucode which are not stored in any Tag and are

mainly used for identifying intangible objects as described above (including

relationships between ucodes).

The main idea behind allocating ucode to relationships between entities comes

from the Resource Description Format used to model knowledge. RDF knowledge

Objects

Places

Ucode

Ucode

User Terminal

Ucode
Resolution

Server

Application
Information

Servcie

Fig. 12.3 Ubiquitous ID

architecture

12 ARM Testimonials 295

is made of triple<subject, relation, object> where each constituent of the triple is

made of a URI. In the case of ucode relationship each ucR unit is a triple of ucodes.

Information associated with the two entities and the relation can therefore be found

querying the ucode resolution server.

In addition resulting from this establishment of relations between entities, are

graphs (ucR graph) where single “subject” ucode gets linked to many “object”

ucode via various “relations”. Objects which are not ucodes are called “atoms”. A

subject ucode pointing via a relation towards a URL is a typical example of such

rules involving atoms.

12.4.2 ucode Resolution Server

The resolution of ucode is achieved in the ucode Resolution Server The simplified

resolution consists of taking the ucode read by the reader, searching for ucR units

that correspond to that ucode and returning to the mobile terminal the addresses of

content associated with the ucode via the relational database introduced earlier

(similar to a triple store).

The Ubiquitous ID architecture can be simply described as follows (Fig. 12.3):

From the descriptions of the various entities of the architecture (see Fig. 12.3)

above, the following table of concepts could be derived (Table 12.5):

In turn, the reverse mapping produced the following UML (see Fig. 12.4) below:

The uID architecture uses the uCR to describe complex context information via

relationships between real-world entities (Koshizuka, Sakamura 2010). So-called

uCR units consist of a triple of ucodes: subject ucode, relation ucode, and object

ucode. The object ucode can be replaced by simple literals, hence it becomes

possible to express attributes of a real-world entity as a uCR unit, e.g., <ucode X,

“hasBrandName”, “GoldenTea”>.

It is not feasible to try to map the uCR model directly to IoT Information Model.

The IoT Information Model provides a vocabulary for describing IoT systems and it

does not, explicitly prescribe how information should be represented. The uCR, on

the other hand, can be used to represent relations between any kinds of objects

identified with ucodes much in the same way as RDF is used to represent resources

identified with URIs. Therefore, the relation between IoT-A information model and

the uCR model is actually complementary by nature and the uCR should be seen as

a an alternative way (for XML, RDF, binary etc.) to represent IoT Information

Model concepts.

12.4.3 Conclusion

To conclude, when mapped to the generic IoT-A the uID provides implementations

for only a small subset of the functionalities defined in IoT ARM. First, the ucode

provides a globally unique way identify physical (and virtual) objects. These

296 E. Ho et al.

ucodes can be used as identifiers for any instance of the IoT ARM concept. Second,

the uID provides a way to resolve the address of the information service hosting

data about the object identified with a ucode. This functionality is basically a subset

of the functionality defined for the IoT-A resolution infrastructure. Third, the uID

provides methods (i.e. the ucode Relational Model) for representing relations

Table 12.5 Mapping of uID concepts to the IoT reference model

uID concept

IoT reference

model concept Comments

Tangible object Physical entity

Intangible object Digital artefact If the intangible object is a representation of a tangible

object, then it is also a Virtual Entity

Location Physical entity Location is not modelled explicitly in the IoT Domain

Model. However, a specific (possibly tagged) place

can be regarded as a Physical Entity

uCR model Relates to informa-

tion model

uCR can be used for representing IoT-A Information

Model instances

ucode No direct relation The ucode can be used as an globally unique identifier

for any instance of the IoT-A RM concept

ucode resolution

gateway

Network-based

resource

Provides a ucode resolution over HTTP

ucode signature

server

Network-based

resource

Prevents ucode counterfeiting by verifying and

generating signatures

ucode manage-

ment server

Network-based

resource

Manages the allocated ucode space

ucode issue

gateway

Network-based

resource

Provides a HTTP interface for obtaining ucode issued by

ucode management server

ucode entry

update

gateway

Network-based

resource

Provides a HTTP interface for updating ucode resolution

entry

Top level domain

server

Network-based

resource

Hierarchical component of the ucode resolution server

Second level

domain server

Network-based

resource

Hierarchical component of the ucode resolution server

ucode resolution

server

Network-based

resource /

Service

The resource would be exposed through a resolution

service

Application infor-

mation service

Service Provides infrastructure and application services

ucode tag Tag

User terminal (Device) Is a device that reads ucodes and provides services based

on the ucode to a user. A user terminal that is just

used to run an application or display some informa-

tion is not in the scope of the IoT Domain Model.

However, a user terminal containing a reader is in the

terms of the IoT Domain Model a Device with an

embedded Sensor Device

Reader Device/Sensor

12 ARM Testimonials 297

between ucodes. This functionality can be used for representing IoT Information

Model concepts.

12.5 Reverse Mapping BUTLER Information Model

12.5.1 Introduction

BUTLER’s mission is to provide context-aware services within an IoT environ-

ment3. What is really striking about that is that there does not seem to be an explicit

and widely accepted definition of what context-awareness really means. Although

an intuitive definition of what context means can be found easily (“the conditions

and circumstances that are relevant to an event, fact, etc.”) (Dey 2001), a more

formal definition is needed. If we look at other projects within the FP7 umbrella, we

can see what FI-WARE4 provides – a data/context management section. Although

not straightforward, it states that “Context [..] is represented through context

elements” and that these elements “are typically created containing the value of

attributes characterising a given entity at a given moment”. Therefore, we can state

that the context “characterises a given entity at a given moment”. That definition

gives rise to a discussion of what an entity is and the extent to which

characterisation must take place.

ObjectTag :Tag

Object :Physical
Entity

Location :Physical
Entity

LocationTag :Tag

TagReader :Sensor

User Terminal :
Dev ice

ReaderDriv er :
On-Dev ice Resource

Reader API :Serv ice

ucode App :Activ e
Digital Artefact

User Terninal

Application
Information Serv ice :

Serv ice

ucode Resolution
Serv ice :Serv ice

ucode Resolution DB :
Network Resource

ucode Object DB :
Network Resource

LocationRecord :
Virtual Entity

ObjectRecord :
Virtual Entity

ucode Resolution

Application Information Services

exposes

is attached to

identifies is attached to

reads

reads

identifies

hosts

queries

queries

exposes

exposes

is asociated with / is stored in

hosts

relates to

relates to

Fig. 12.4 uID architecture fit into the IoT Domain Model

3 http://www.iot-butler.eu/
4 FI-WARE (http://www.fi-ware.eu/) is a European FP7 Research Project aiming to foster the

emerging Future Internet by creating an open architecture and a reference implementation of a

novel service infrastructure, building upon generic and reusable building blocks developed in

earlier research projects.

298 E. Ho et al.

http://www.fi-ware.eu/

12.5.2 Reverse Mapping of IoT Domain Model

With regard to the first issue, the IoT-A Domain Model (IoT-A DM) fits perfectly

within such a definition, as it introduces the concept of Virtual Entity. These Virtual

Entities are the main concept handled by the IoT-A model since they represent the

entities in the real world that designers of IoT applications consider relevant. The

remaining main concepts introduced by the IoT-A DM (Resources and Services)

are naturally associated to the Virtual Entities. A straightforward conclusion is that

context should also be “associated” to Virtual Entities. However, the IoT-A DM

does not explicitly consider the context. This is irrelevant; we will return to this

issue later.

The second issue (what the context means for a given entity) is actually related to

the deployment and implementation of a given IoT scenario and not to the definition

of the model. However, it is worth mentioning that the components of the context

(the “context elements” mentioned by FI-WARE) are totally dependent on the

needs and requirements of the consumers of the functionality exposed by entities

(again, in a specific scenario). In BUTLER, we introduce a model in which, given a

Virtual Entity, it is possible for the consumer of the functionality (usually an

application developer) to define at any time the relevant context for this entity.

This type of context declaration operation defines the context elements and the data

sources these context elements will depend on. It is also important to acknowledge

that a given entity context relies not only on the information that devices can gather

about it but also (and sometimes mainly) on dynamic data sources that are not

actually “device-originated”.

BUTLER has taken the IoT-A DM as its main inspiration. However, it has been

simplified somewhat to increase the readability and clarity of the model. For

instance, the Augmented Entity is not considered; Digital Artefacts – and therefore

a non-Human User – have been removed as well; Network Resources have been

also dismissed and therefore, the BUTLER model contemplates only On-Device

Resources. UML has been used to illustrate the model graphically similarly to the

way the IoT-A DM does. We will highlight the main differences and additions we

have considered.

The relationship between Users, Physical and Virtual Entities is almost identical

to the ones suggested by the IoT-A DM. Besides the simplification already men-

tioned, it is worth noting that the BUTLER Domain Model introduces additional

relationships that are not expressed by the IoT-A DM. For instance, there can be

additional relationships between Users and Physical Entities. The most obvious is

the “ownership” (or at least entitlement to the management of the Physical Entity).

The relevance of this relationship relies on the access permissions it derives (that is,

the owner of a house will have the “right” to get information about his home and to

adjust the desired temperature, while a stranger will not, at least not until the owner

gives him the right to). On the other hand, the BUTLER Domain Model introduces

the BUTLER terminology and therefore, instead of talking about Devices, we

12 ARM Testimonials 299

introduce the Smart Object concept, which is equivalent to the Device concept

within the IoT-A DM (Fig. 12.5).

As with the IoT-A DM, Resources are introduced to bridge the gap between the

Virtual Entities and the Smart Objects, enabling the monitoring and manipulation of

Physical Entities from the digital world. Resources are the software components

that actually provide information about, or enable the actuation on Physical
Entities. BUTLER simplifies the management of Resources, focusing on On-
Device Resources (those deployed locally on the Smart Object attached to the

Physical Entity; these types of Resources are typically sensor Resources that

User

Physical Entity

Smart Object

Actuator Tag Sensor

1..*

1..*

1..*

0..* 0..*

0..* 0..*

0..*

0..*

0..*

0..*

0..1

0..1

1

contains

contains

interacts with

monitors

reads

identifies
acts on

is attached to

0..*

0..*

owns

0..*

0..*

Virtual Entity

1..*

1

relates to

0..*

0..1

contains

Fig. 12.5 Relationships between users, physical and virtual entities

300 E. Ho et al.

provide sensing data, or actuator Resources). It is possible to model other Resources

deployed externally to Smart Objects that run somewhere in the network as generic

Network Resources. These Resources can process data, for example, taking sensor

information as input and generating aggregated or higher-level information as

output (for instance, a dynamic data source providing dynamic weather forecasts

or energy consumption estimates). Also, Network Resources can be storage

Resources storing information coming from On-Device Resources and thus provide
information about Physical Entities (i.e. location and state-tracking information

(history), static data, such as product type information, and many other properties).

Other external data sources, even Human Users, can also update the information in

a storage Resource (Fig. 12.6).
The primary relationship between Physical Entities and their digital

counterparts, the Virtual Entities on one hand, and the Smart Objects and the

User

Virtual Entity

Physical Entity

Smart Object

Actuator Tag Sensor

1..*

1..*

1..*

1..*

0..* 0..*

0..* 0..*

0..*

0..*

0..*

0..*

0..1

0..1

1

1

contains

contains

interacts with

relates to

monitors

reads

identifies
acts on

is attached to

0..*

0..1

contains

Resource

1..*

has information about / acts on

0..*

0..*

0..*

1

0..* 0..*

is associated
with

hosts

owns

0..*

0..*

1..*

Fig. 12.6 Introduction of the resource concept and its relationship to devices and physical entities

12 ARM Testimonials 301

Resources they host on the other, is achieved by means of associations. Therefore,

Users are enabled to act on or to know about Physical Entities by means of the

associations between Virtual Entities and Resources. For each Virtual Entity there
can be associations with different Resources that may provide different

functionalities, such as retrieving information or enabling the execution of

actuation tasks on the Virtual Entities. When a User wishes to acquire information

about or to actuate on a given Physical Entity, she would perform a discovery

process determining which Resources associated to the Virtual Entities representing
the Physical Entities enable actuation or data access. Next, the User would pick up

the Resources that match her requirements and invoke them. However, it is unlikely

that the User would directly invoke Resources. She would do it instead through a

Service or application that accesses Resources to perform its business logic.

Finally, it is necessary to acknowledge that both Smart Objects and Users can be
modelled as a Physical Entity. The same may happen with Smart Mobiles (the client
device used by users in the BUTLER terminology) (Fig. 12.7).

Here we can see a main divergence from the IoT-A DM, since that model

introduces an explicit relationship between Services and Virtual Entities. Although

the nature of the relationship is not explicit in the model, the IoT-A Information

Model offers additional information about what such a relationship looks like: the

Virtual Entity attributes are used to associate Services to Virtual Entities. We prefer

a model in which the context is made explicit in the BUTLER Domain Model (and

not disguised as the Virtual Entity attributes).

As described in the initial section of this chapter when describing the FI-WARE

data/context, the context elements are associated to the entities the system handles.

BUTLER proposes to associate Contexts to Virtual Entities. Therefore, it will be
possible to handle the context of the Physical Entities represented by the Virtual
Entities the Context is associated to. On the other hand, several Contexts can be

associated to a given Virtual Entity just to reflect the fact that different “consumers”

will have a different need or view of the context associated to a given entity

(Fig. 12.8).

On the other hand, the attributes of Contexts in BUTLER will be mostly created

from data obtained from Resources. Each attribute will be the result of an operation
executed over data elements from one or several Resources. Such Resources may or

may not be associated to the Virtual Entity the Context is associated to (Fig. 12.9).5

Finally, Services will be entitled to use not only low-level Resources when they

need to know about the status of Physical Entities, but also richer Contexts
(Fig. 12.10).

5 For instance, the context associated to a house can include the outdoor temperature. This

temperature value can be exposed through a Resource associated to the Weather Service, which

in turn has also been modeled as a Virtual Entity. Although the Resource exposing the temperature

is not associated to the Virtual Entity representing the given house, an element of its context relies

on this “external” Resource.

302 E. Ho et al.

12.6 Reverse Mapping MUNICH Platform

The goal of reverse mapping an existing system towards the IoT Reference Model

is to show that an existing system that has been designed without applying the IoT

ARM can be redesigned according to the IoT ARM. By doing so the IoT ARM

shows its potential for being a reference model for any kind of IoT systems.

12.6.1 Use Case Description

The use case is about counting “stomach towels” which are used inside the

abdomen during surgery of a human. After the operation it needs to be assured

that no towels are retained in the abdominal cavity of the patient’s body. Therefore,

each towel is fitted with a 13.56 MHz RFID tag which enables tracing the towels

User

Virtual Entity

Physical Entity

Smart Object

Actuator Tag

1..*

1..*

1..*

1..*

0..* 0..*

0..* 0..*

0..*

0..*

0..*

0..*

0..1

0..1

1

1

contains

contains

interacts with

relates to

monitors

reads

identifies
acts on

is attached to

Smart Mobile

Sensor

0..*

0..1

contains

Resource

1..*

has information about / acts on

0..*

0..*

0..*

1

0..* 0..*

is associated
with

hosts

owns

0..*

0..*

invokes/subscribes

1..*

0..*

Service

accesses

0..*

0..*

0..*

Fig. 12.7 Users to service/resource relationship

12 ARM Testimonials 303

before, during, and after the surgery. The RFID-tagged towels may be tracked by

three antennas from different positions in the operating theatre:

• Mayo stand (instrument table): towel is unused;

• Operation table: towel is in use;

• Used towel container: towel is used

Each towel will be used in a specific order: First a batch of “unused” stomach

towels resides on the instrument table. Towels that are put into the abdominal cavity

are declared as “in use”. Finally, towels that are not needed anymore after the

surgery are put into the towel container where their status is set to “used”.

Every time an RFID reader recognises a tagged towel appearing or disappearing

in its range an event is generated and stored in an event-log database hosted in the

cloud.

User

Virtual Entity

Physical Entity

Smart Object

Actuator Tag Sensor

1..*

1..*

1..*

1..*

0..* 0..*

0..* 0..*

0..*

0..*

0..*

0..*

0..1

0..1

11

contains

contains

interacts with

relates to

monitors

reads

identifies
acts on

is attached to

Smart Mobile

exposes

0..*

0..1

contains

Resource

1..*

has information about / acts on

0..*

0..*

0..*

1

0..* 0..*

is associated
with

0..*

1

hosts

owns

0..*

0..*

invokes/subscribes

1..*

0..*

Service

accesses

0..*

0..*

0..*

Context

describes

0..*

1

Fig. 12.8 Context to virtual entity relationship

304 E. Ho et al.

12.6.2 Use Case Objective

It must be assured that no towels are left inside the patient’s abdomen when

the operation has finished. In more technical terms it means that after finishing

the operation all the towels that were “in use” must be in state “used” meaning

in the used towel container.

12.6.3 Current System Architecture

So far the use case has been designed to run with a certain type of RFID-readers

only that are connected via USB-cable to a laptop computer that is hosting the

application. The MUNICH-platform (MUNICH 2010) depicted in Fig. 12.11

provides a cloud storage system indicated as ‘Open Nebula Core’ that stores the

events captured every time the ‘Object Inventory Service’ notice a change in the

User

Virtual Entity

Physical Entity

Smart Object

Actuator Tag Sensor

1..*

1..*

1..*

1..*

0..* 0..*

0..* 0..*

0..*

0..*

0..*

0..1

0..1

1

contains

contains

interacts with

relates to

monitors

reads

identifies
acts on

is attached to

Smart Mobile

exposes

0..*

0..1

contains

Resource

1..*

has information about / acts on

builds
on

0..*

0..*

0..*

0..*

0..*

1

0..* 0..*

is associated
with

0..*

1

hosts

owns

0..*

0..*

invokes/subscribes

1..*

0..*

Service

accesses

0..*

0..*

0..*

Context 0..*

1

describes

0..*

1

Fig. 12.9 Context to resource relationship

12 ARM Testimonials 305

number of towels in their respective range by invoking the ‘Event Service’. The

application that monitors the status of the towels during the operation invokes

methods provided by the ‘Operation Theatre Service’. The API to store and retrieve

information from and to the cloud storage system is technology-specific. If an

architect decides at a later point in time to change from Open Nebula to another

technology the system needs to be adapted to the changes in the API.

12.6.4 Enhancement by Using IoT Reference Architectural
Model

Making the use case demonstrator IoT-A conform means making the system more

evolvable and future-proof. By using RFID reader services a technology agnostic

layer is introduced that is not so much dependent on today’s lifecycle of

technologies. With the current solution the software needs to be updated when a

User

Virtual Entity

Physical Entity

Smart Object

Actuator Tag

1..*

1..*

1..*

1..*

0..* 0..*

0..* 0..*

0..*

0..*

0..*

0..1

0..1

1

contains

contains

interacts with

relates to

monitors

reads

identifies
acts on

is attached to

Smart Mobile

exposes

Sensor

0..*

0..1

contains

Resource

1..*

has information about / acts on

builds
on

0..*

0..*

0..*

0..*

0..*

1

0..* 0..*

is associated
with

0..*

1

hosts

owns

0..*

0..*

invokes/subscribes

1..*

0..*

Service

accesses

0..*

0..*

0..*

Context

accesses

0..*

0..*

0..*

1

describes

0..*

1

Fig. 12.10 Service to context relationship

306 E. Ho et al.

new type of RFID reader needs to replace a current one. Also extending the use case

with another RFID reader or another type of sensor will be much easier once IoT-A

is applied. Thus the IoT ARM contributes towards scalability in this use case too.

The restriction in evolvability applies to the cloud storage component too since the

current system is designed to be used with certain cloud storage software. It is not

Fig. 12.11 Current architecture of MUNICH platform (MUNICH 2010)

12 ARM Testimonials 307

easy to substitute the component in case the software is discontinued or no longer

appropriate. In case the services are modelled according to technology agnostic

IoT-A specifications the system will be more future proof. In order to make the use

case IoT-A-compliant, the following architectural process will be undertaken.

1. Specification of Business Process Model;

2. Specification of Domain Model;

3. Specification of Information Model;

4. Specification of Functional View;

5. Specification of Services and Interactions between components.

12.6.5 Specification of IoT Business Process Model

The use case has been formalised as IoT Business Process Model by a domain

expert in Fig. 12.12. The modelling notation used is described in (Meyer

et al. 2011). The operation scenario is a sub-process of the overall Emergency

operation process that may include the arrival of the patient via ambulance and the

availability of data record for the patient in the hospital’s data base. The towels

being used during the surgery are associated to the patient identified in the database

record. This way it is possible to verify which towels have been used for which

patient. The towels are the entities of interest (depicted by the box with the cow

icon) in this scenario. The RFID reading processes are running in parallel on all

three positions in the operating theatre that are equipped with the RFID readers. The

used towel container is denoted as waste bin in Fig. 12.12. Each RFID reader

sub-process sends events to the Event History database upon detection of tagged

towels. The ‘Monitor towel process’ analyses the events that have arrived in the

database, determines the current state for each towel, and calculates the number of

towels that are currently inside the body of the patient.

12.6.6 Specification of IoT Domain Model

Based on the Business Process Model presented before, a domain model can be

derived that identifies the Physical and Virtual Entities, the IoT Services, the

Devices, Resources, and the users that are involved in the use case. The Human

User is the doctor or other medical staff who is responsible to monitor the towels in

the operation theatre. The actual monitoring of the towels by comparing the used

towels with the ones currently in use is done by software implementing the

‘Monitor towel process’ as depicted in Fig. 12.12. The User checks only that no

towels are still in use when the operation is about to end. The software ‘Operation

Theatre Application’ is modelled as Active Digital Artefact. Each towel is a

Physical Entity that has one RFID tag attached so that the number of towels

corresponds to the number of tags. Each physical towel has a digital counterpart

308 E. Ho et al.

Fig. 12.12 IoT business process model of MUNICH use case

12 ARM Testimonials 309

modelled as Virtual Entity. There are three RFID readers deployed in the scenario

at different significant locations of the operation theatre (Instrument Table, Opera-

tion Table, and Waste Bin) that are modelled as Sensor Devices. Each of the

Sensors hosts an OnDevice Resource that is exposed by an ‘Object Inventory

Service’ as depicted in Fig. 12.11. These services store events by invoking the

‘Event Storage Service’ that exposes the Network Resource ‘Event History’. This

Resource is also exposed to the ‘Operation Theatre Application’ by the Event

History (Fig. 12.13).

12.6.7 Specification of Functional View

The realisation of the use case according to the IoT ARM a Functional View is

tailored to the use case needs to be specified. The Functional View for the MUNICH

platform is depicted in Fig. 12.14. No IoT Service Resolution is required, because

all needed services are already known to the system at design time. A VE Resolu-

tion FC is included in the FV. This FC is able to resolve particular towels to the IoT

Fig. 12.13 Domain model of MUNICH platform

310 E. Ho et al.

Service they are currently associated with. The ‘VE & IoT Service Monitoring’ FC

is used to update the current state of towels whenever these VEs change their

position in the operating theatre. Whenever VEs change their positions their

associations between the VEs and the IoT Services reading the RFID tags change

too. No Service Organisation functions are required in this use case since the

binding of services is static and can therefore be hardwired. To accommodate IoT

Business Process Management functionality that is required in the MUNICH

platform the respective FG is included in the FV. The process model diagram

depicted in Fig. 12.12 was created by the ‘Process Modelling’ FC and this model

is executed by the ‘Process Execution’ FC. The Functional View of the MUNICH

platform includes IoT Services for the RFID readers and for Event Storage

Resources. The Application in the FV is the use case as described the beginning

of this Section. The Devices are the RFID readers and Tags used in the operational

theatre which communicate to the IoT Services by ‘End To End Communication’

and ‘Network Communication’ FCs. The entire FV is depicted in Fig. 12.14.

12.6.8 Specification of IoT Information Model

The IoT Information Model specified for this use case also addresses relationships

between entities that are not depicted in the IoT Domain Model before. Some more

entities appear in the IoT Business Process Model shown before in Fig. 12.12. For

instance it is depicted that an ‘Operation’ is held for a ‘Patient’ and thus the

‘PatientIdentifier’ (valid in the clinic) is assigned to an ‘Operation’. Operations

are processes with a defined status at any point in time: ‘before’, ‘in’, and ‘after

Operation’. There is also an unknown status in case the status cannot be obtained.

The towels are represented as VEs with domain attributes that are essential for the

use case. The towel’s identifier stored into a RFID tag is one of the attributes as well

as the current state of a towel that can be one of ‘unused’, ‘in use’, and ‘used’. Again

there is an ‘unknown’ state specified in case the state cannot be obtained by the

system. The aforementioned designated locations of the operating theatre are

reflected in the Information Model as attributes of the VE ‘Towel’. For simplifica-

tion the allowed values for this attribute {InstrumentTable; OperationTable;

WasteBin; unknown} are not visualised as ValueContainer. With the aforemen-

tioned attribute values the OperationTheatreApplication is able to relate the current

location of the towels (retrieved through the RFID readers) to the respective state of

the towel: {instrument table ¼ ‘unused’; operation table ¼ ‘in use’; waste bin ¼
‘used’} (Fig. 12.15).

12 ARM Testimonials 311

12.6.9 Specification of IoT Services and Interactions

In the following an example description is given for one of the three ‘Object

Inventory Services’ specified in the IoT Domain Model before (Fig. 12.16).

The sensing service ‘ObjectInventoryServiceOPtable’ exposes the Resource

RFIDInventoryOperationTable hosted on the Sensor that observes the area

OperationTable during the operation. The duration is determined by the

Op123Schedule. The output of the service is described in a domain specific

operation-ontology by the class ListOfRFID that defines a list of identifiers the

RFID reader has detected. The service can be invoked by accessing the service

endpoint objInventoryOPtableRestSE that provides a RESTful web service on the

endpoint host optablehost. An HTTP GET method call on port 4355 on the root path

‘/’ of this host will return the list of identifiers the RFID sensor has read.

Fig. 12.14 Functional view of the MUNICH platform

312 E. Ho et al.

Fig. 12.15 Information model of MUNICH platform

Fig. 12.16 Service description MUNICH platform

12 ARM Testimonials 313

The use case is driven by events using asynchronous communication. Events are

sent to the Event History network resource every time an RFID reader recognises a

change in the number of RFID-tags in its observation area by using IoT Service

storeEvent(event). The Event History resource provides another IoT Service that

allows the subscription to notifications about the change in the status of towels,

e.g. from unused to in use.

The structure of an Event data type is given as follows:

• Origin: {RFID reader instrument table; RFID reader operation table; RFID

reader waste bin}

• Type: {RFID tag gone; RFID tag added; unrecognised tag}

• Time stamp

The sequence diagram below illustrates the interactions between Physical

Entities and Functional Components of the architecture. The doctor takes a new

towel out of the box on the instrument table and uses it in the patient’s abdomen

located on the operation table. The system detects the move of the towel from the

instrument to the operation table by the disappearance of the respective RFID tag

that is attached to the towel together with the appearance of the same RFID tag on

the operation table. The Event Storage Service evaluates these single events towel

disappeared on instrument table and towel appeared on operation table to a complex

event towel in use (Fig. 12.17).

12.6.10 MUNICH Platform Conclusion

The previous Sections have shown that an existing system can be reverse

engineered by applying the IoT ARM. Beginning from an existing system the

modelling of the IoT Domain Model and Information Model has been

demonstrated. With the help of these models the respective IoT Service

Descriptions have been derived and the interactions between the Resources have

been specified. The exercise did not include all the steps of the process to derive a

concrete architecture based on the IoT ARM. There was neither a requirements

analysis nor a security risk analysis undertaken. The purpose of this exercise is to

demonstrate the usage of the models in first place. Since the functionality of the

system has not changed a comprehensive requirements analysis has been skipped.

Also the security risks are seen as manageable since the operating theatre is a well-

secured and closed environment anyways. Only the event related service makes

connections to external environments, but that was the case for the original system

already and therefore no changes in security risks are expected. Particular platforms

and solutions to implement the use case are not recommended here; technologies

that would be suggested in this document might be outdated by the time of reading

this document and therefore obsolete.

314 E. Ho et al.

12.7 Conclusions About Reverse Mapping

In this Section we have provided a reverse mapping of the IoT Architectural

Reference Model with several standards from the field of IoT as well as a concrete

architecture in order to provide an architectural validation, namely whether it is

possible to map existing standards to the IoT ARM. If this was not possible, then the

validity of the ARM itself would be questionable.

As we have seen in the detailed discussion of the different standards, whether a

mapping is possible or not largely depends on the level of detail that we apply to the

mapping. Especially for the Domain Model this becomes clear when we pick up the

concept of a “Service”: All the standards we looked at provide services in one way

or the other, so that at a superficial glance a mapping is trivial. However, when we

take the exact definition of that term in the different standards, we realize that there

is not always a 1:1 correspondence between the standards. For instance, in ETSI

M2M a service is not defined as “exposing resources on devices, but can interact

with the devices.” A resource concept as in IoT-A does not exist, so that compared

to the definition of services and resources in the ARM, the distinction between a

resource and the service as it is made in IoT-A does not exist in ETSI M2M. From a

high-level perspective, though, the Domain Model usually maps rather well to the

different standards. Also, the Communication Model and security aspects are rather

compatible between the standards and the ARM. The latter is not surprising, as

security aspects in the world of IoT are commonly derived from a well-established

body of security research with fixed and clear terminology, quite unlike the Internet

of Things domain. Also, it must be noted that the scope of IoT-A is broader than the

scope of any of the individual standards. This is not surprising, as IoT-A aims to

provide a Reference Architecture for all different kinds of specific architectures and

use cases, and therefore must be broader by definition. Different parts of the IoT

ARM are therefore only partially or not covered at all by different standards. For

Fig. 12.17 Interactions MUNICH platform

12 ARM Testimonials 315

instance, EPCglobal is highly RFID centric and therefore neglects certain aspects

such as the IoT Communication Model, however the mapping to the IoT Domain

Model and also to the Security and Information Model works reasonably well at the

appropriate level of abstraction.

While the mapping of the different standards can be regarded as successful,

when being performed at the appropriate level of detail, the real litmus test is the

mapping of a concrete architecture to the IoT ARM. We have provided such a

mapping for the MUNICH platform and have provided detailed information about

the Domain Model, the Information Model, a process modelling based on the

BPMN extensions developed in IoT-A (Meyer et al. 2013) and have discussed the

service modelling in detail. Of course, we cannot generalize this successful exercise

to any existing concrete architecture, but it still demonstrates nicely, how the IoT

ARM can be applied to a concrete architecture. We are confident that other

architectures from the domain of IoT map equally well to the IoT ARM.

12.8 Business Case Evaluation Example

12.8.1 Introduction

In the healthcare use case, to show the real-world value of the ARM, we focus on an

IoT system that has already been implemented. In combination with the reverse

mapping (see Sect. 12.6), we show that not only can the IoT ARM describe existing

IoT systems (and by extension, help realise such systems), but that these systems

also bring value. We evaluated the operating efficiency and profitability of such an

IoT system.

This use case was implemented and carried out by several companies and

universities in the framework for the Initiative for Cloud Computing in Health

Care (henceforth referred to as the “MUNICH platform”). The MUNICH platform

addresses two main problems: debris left in the human body after surgery and time-

consuming process steps with no added value (“non-productive time”). A third

auxiliary problem is the on-going integration of software and solutions from third

party providers, which the IoT-A ARM would address.

Regarding the debris problem, in spite of safety checks already implemented,

debris (tools, towels, consumables) is still left in the body during surgical

procedures in 1:10,000 cases (Kranzfelder et al. 2012). In these cases, 70 % of

the debris comes from surgical towels and 30 % from other surgical equipment

(Kranzfelder et al. 2012). The consequences for the patient are a 40 % morbidity

rate with a 5 % mortality rate (Kranzfelder et al. 2012). Regarding non-productive

time, this refers to steps such as documenting and registering towels before the

operation, subsequent counting of towels during the operation, and searching for

towels when something is amiss; none of these steps add value, but instead address

a problem created by the process itself.

316 E. Ho et al.

Accordingly, a solution that addresses the tracking of surgical towels would

mitigate these problems significantly. We can therefore map the MUNICH

platform’s objectives and solutions as shown in Fig. 12.18.

Real-time monitoring and location of all towels reduces the risk of debris in the

human body because manual error-prone counting and searching is avoided

(MUWS 2013). Therefore, the automation reduces manual errors. The process

improvement increases the transparency of the process and reduces the risk of

documentation errors that can also lead to debris in the human body. Experts

estimate that a 100 % failure protection is possible with this solution (Kranzfelder

et al. 2012). Addressing the debris problem meets short-term objectives of automa-

tion and improved process effectiveness, and in the mid-term, increases patient

safety.

For the non-productive time problem, automation and the resultant process

improvement remove the error-prone steps of documenting and registering towels

before the operation, subsequent counting of towels during the operation, and

searching for towels when something is amiss.

For the long-term problem of integrating new software developments from the

hospital and their third party solution providers, the IoT-A ARM provides a

standardised reference architecture. This would simplify the complexity of the

architecture and make integration of new components into the system easier.

12.8.2 Cost and Benefit Models

The inputs for our analysis consisted of a cost model and a benefit model. The cost

model factored in non-recurring costs (NRC) such as the RFID antenna and readers.

The main cost driver is the hardware investment for the RFID antennas, which

amounts to €49,500 – 58 % of the total non-recurring cost (€85,600). Beyond this

initial investment, the cost model also factored in recurring costs (RC), such as the

RFID-tagged towels, the software and system licensing fee, staff training, and the

maintenance costs. The main cost driver of the recurring cost group is the operating

fees of the system provider. This cost element has the most significant impact on the

Fig. 12.18 Objectives of the healthcare use case and the problems addressed

12 ARM Testimonials 317

cost model and accounts for 98 % of the yearly RC of €1,034,000. A price change in

the service fee has a dramatic impact on the total cost structure over time. There-

fore, this price change will be part of a specific sensitivity analysis.

The total cost (NRC+RC) development over a 6 year period was subsequently

computed and input into a combined cost-benefit model (see 0 Cost-benefit

analysis).

The benefit model is composed of three benefits; the calculated yearly benefits

are in brackets: RFID-supported surgery (€815,000), cost savings from prevention

of surgical errors (€370,000), and RFID-supported surgery preparation (€104,000).
The “RFID-supported surgery” model provided the highest benefit, accounting for

63 % of total benefits. Non-tangible benefits not directly linked to a monetary

outcome include an increase in surgical scheduling each year due to reduced

preparation time, and hospital reputation improvements due to improved safety.

The total benefit over a 6 year period was subsequently computed and input into

a combined cost-benefit model (see 0 Cost-benefit analysis).

12.8.3 Cost-Benefit Analysis

Figure 12.19 presents the yearly and cumulative cash flows. The cost-benefit

analysis demonstrates a positive investment result. The discount factor is assumed

at 8 % and the net present value is €805,000. The payback period is less than 1 year.
Within Germany, according to healthcare experts, this would meet the requirement

of a 1 year payback period for new investments in a German hospital.

12.8.4 Sensitivity Analysis

With the sensitivity analysis, we can investigate the impact of changing the major

calculation variables. The following impacts shown in Table 12.6 will be discussed:

The results of the sensitivities are always evaluated with respect to the final

effect on the discounted cumulative cash flow. The sensitivity analysis will be

summarized with a best/worst case scenario.

12.8.4.1 Sensitivity Analysis for the Cost Model

The cost model sensitivity analysis investigates the impacts on the cost model if a

parameter is changed. Reducing the critical risk factors (CRF) by 10 % leads to an

increase in the total cash flow from €805,000 to €1,187,000, which is an increase in
the net present value of 47 %. On the other hand, increasing the CRF by +10 % or

+20 % due to higher NRC and RC lowers the net present value to €423,000 or

€41,000 respectively.

318 E. Ho et al.

The main cost driver for recurring costs (RC) is the system service fee. An

increase of 10 % in the service fee per surgery from €20 to €22 reduces the net

present value by two thirds to €270,000. The profitability limit is reached by

increasing the fee to €23/surgery. The cost model sensitivity analysis is depicted

in Fig. 12.20.

Fig. 12.19 Cost-benefit analysis over the business case timeframe (healthcare case)

Table 12.6 Models and parameters varied in the sensitivity analysis for the healthcare case

Model element changed

Cost model Benefit model (c) General calculation

assumptions

Change in

variables

Critical risk factors: Benefit variation factor

(BSF)

Discount Rate (DF)

Software risk ¼ SR Frequency of surgeries

(TAoS)Hardware

risk ¼ HR

Personnel

risk ¼ PR

Maintenance

risk ¼ MR

System service fee

(SFS)

12 ARM Testimonials 319

12.8.4.2 Sensitivity Analysis Regarding Benefit Model Robustness

This analysis aims to investigate the robustness of the benefit model and the impact

on the cost-benefit results. To demonstrate the development of the model, three

different scenarios are simulated: (1) Benefits increase by 10 % (2) Benefits

decrease by 10 % and (3) Benefits decrease by 15 %. The results of these

simulations are summarized in Fig. 12.21. The net present value is exactly

0 when the benefits are reduced by 12.4 %.

Notably, the net present value is very sensitive to changes in the benefit model;

there are large benefit differences between (1) and (2).

12.8.4.3 Sensitivity Analysis for the Assumptions in the General

Calculation

After the sensitivity analysis of costs and benefits variations, the analysis is

extended to variations of the general calculation assumptions that affect both

models. Two parameters are used to simulate the results. The first is the change

in the discount rate (DF) to reflect different risk perceptions and interest rate

influences. The second parameter concerns the frequency of the surgeries per

year (TAoS), which is a basic quantity variable (see Fig. 12.22).

A variation in the discount rate of �2 % leads to an increase/decrease in the net

present value of�4 %. If a 12 % discount rate is assumed, the net present value falls

to €741,000 (�8 %).

If the hospital performs 25 % fewer surgeries per year, the net present value

decreases to €524,000 (�35 %). In contrast, if the number of surgeries per year

increases by 25 %, the net present value rises by 35 % (€1,087,000). The net present
value is zero if the hospital performs 71.5 % fewer surgeries per year.

Fig. 12.20 Cost model sensitivity analysis (healthcare case)

320 E. Ho et al.

12.8.4.4 Best/Worst Case Scenario

By combining cost and benefit variation in the sensitivity analysis, best and worst

case scenarios can be elaborated. For example, if the system service cost is reduced

by €1/surgery (¼ �5 %) and the hospital performs 25 % more surgeries annually,

then the net present value rises significantly to €1,421,000 (+77 %). The best case

scenario is based on the assumption that the service provider can lower the cost of

the service fee due to cheaper maintenance costs, additional development support

Fig. 12.21 Benefit model sensitivity analysis (healthcare case)

Fig. 12.22 Cost-benefit sensitivity analysis (healthcare case)

12 ARM Testimonials 321

from using the IoT ARM, and from economies of scale effects. As a result of using

the system and thereby reducing the errors, it is assumed that the hospital gains a

better reputation and is more efficient, and accordingly, the number of surgeries per

year rises.

In a worst case scenario it is assumed that the benefits are lowered by 5 %, the

system service fee is €2/surgery more expensive (+10 %), and the number of the

surgeries is reduced by 25 %. In this worst case scenario, the net present value is

completely destroyed and always negative (see Fig. 12.23).

We observe that the economic feasibility of the case depends to a high degree on

the system service fee of the service provider. The feasibility is also sensitive to

fluctuations in the benefits. Further investigation about the reliability of the cost

estimates is necessary. This information can be gained from the pilot deployments

of the system with RFID-equipped towels. A test case is currently running in

Munich at the university hospital “Rechts der Isar”. When the pilot case is finished,

a more reliable assessment of cost and benefits will be possible. The service

provider would then also have better information for the calculation of the cost of

the service fee.

Fig. 12.23 Best and worst case scenario (healthcare case)

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

322 E. Ho et al.

	Chapter 12: ARM Testimonials
	12.1 Introduction to Reverse Mapping
	12.2 Reverse Mapping ETSI M2M
	12.2.1 Mapping to the IoT Domain Model
	12.2.2 Mapping to the Management FG
	12.2.3 Mapping to the IoT Communication Model
	12.2.4 Mapping to the Security Model
	12.2.5 Threat Analysis Mapping
	12.2.6 Conclusion

	12.3 Reverse Mapping EPCglobal
	12.3.1 Mapping to the Domain Model
	12.3.2 Mapping to Information Model
	12.3.3 Security Model

	12.4 Reverse Mapping Ucode
	12.4.1 uCode Model
	12.4.2 ucode Resolution Server
	12.4.3 Conclusion

	12.5 Reverse Mapping BUTLER Information Model
	12.5.1 Introduction
	12.5.2 Reverse Mapping of IoT Domain Model

	12.6 Reverse Mapping MUNICH Platform
	12.6.1 Use Case Description
	12.6.2 Use Case Objective
	12.6.3 Current System Architecture
	12.6.4 Enhancement by Using IoT Reference Architectural Model
	12.6.5 Specification of IoT Business Process Model
	12.6.6 Specification of IoT Domain Model
	12.6.7 Specification of Functional View
	12.6.8 Specification of IoT Information Model
	12.6.9 Specification of IoT Services and Interactions
	12.6.10 MUNICH Platform Conclusion

	12.7 Conclusions About Reverse Mapping
	12.8 Business Case Evaluation Example
	12.8.1 Introduction
	12.8.2 Cost and Benefit Models
	12.8.3 Cost-Benefit Analysis
	12.8.4 Sensitivity Analysis
	12.8.4.1 Sensitivity Analysis for the Cost Model
	12.8.4.2 Sensitivity Analysis Regarding Benefit Model Robustness
	12.8.4.3 Sensitivity Analysis for the Assumptions in the General Calculation
	12.8.4.4 Best/Worst Case Scenario

