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Abstract—Decentralized attestation methods for blockchains
are currently being discussed and standardized for use cases such
as certification, identity and existence proofs. In a blockchain-
based attestation, a claim made about the existence of information
can be cryptographically verified publicly and transparently.
In this paper we explore the attestation of models through
globally unique identifiers as a first step towards decentralized
applications based on models. As a proof-of-concept we describe
a prototypical implementation of a software connector for the
ADOxx metamodeling platform. The connector allows for (a.)
the creation of claims bound to the identity of an Ethereum
account and (b.) their verification on the blockchain by anyone
at a later point in time. For evaluating the practical applicability,
we demonstrate the application on the Ethereum network and
measure and evaluate limiting factors related to transaction cost
and confirmation times.

Index Terms—Conceptual Modeling, Ethereum, Blockchain,
Decentralized Identifiers

I. INTRODUCTION

Distributed ledger and blockchain systems have the unique
property of providing a trusted globally consistent view on all
information stored, since they can achieve consensus among
untrusted nodes of a distributed system [1]–[4]. One of the
very fundamental applications of blockchains, which is mostly
oblivious the scalability problem [5], is identity. In essence,
values for the global and unique identification of objects,
persons, documents, or any data, may be used to link or
reference digital identities, for sharing data among them or
for transferring information attached to them.

In combination with distributed ledgers, these applications
can be realized based on the properties of integrity-secured
and non-repudiable transactions bound to identities of users
[4]. Examples utilizing identity go back to the first application
of blockchains for the transfer of money [1] and span to
asset transfer, ERP and SCM business process transactions
[6]–[8], as well as decentralized registries for documents,
records or digital rights shared among organizations [9]. These
instances rely on relatively small identifier data stored on
a distributed ledger. Identity is involved whenever interac-
tions extend beyond an individual entity, e.g. in business-to-
business relationships, customer-facing scenarios or recruiting
processes. In a broader sense, this concept has recently been
recognized for decentralized applications in light of a general
standard for decentralized identifiers (DID) [10].

When implementing the idea of decentralized identification
together with verifiable attestations about the identity and ex-
istence of information [11], decentralized applications beyond
the ones built into distributed ledger systems can be realized.
Many applications can be designed in such a way that infor-
mation does not need to be held available in cases where an
assertion about the existence of the information can be made
instead. For the attestation of the existence of documents,
the concept has been implemented in the form of attestation
services based on blockchains [11]–[14]. In this realization,
the representation used for attestation by these services is
on the level of data. Existing approaches provide a way of
attesting to the integrity of data and identity, but do not address
how new identity applications can be designed with regard
to domain requirements. The importance of requirements and
alignment are well established [15]. However, especially in
sociotechnical information systems which are decentralized,
the system’s complexity due to the high amount of components
and their autonomy requires careful conceptual design and
technological alignment.

In the spirit of the current discussions on decentralized
identity, this exploratory research paper constructs and pro-
totypically implements a model-based attestation method in-
dependent of centralized services, attesting to the structured
information and knowledge represented in conceptual models.
Conceptual models capture semantic concepts of a particular
domain by their representation expressed in terms of the do-
main [16], [17]. In a business context, conceptual models com-
monly represent enterprise architectures, IT infrastructures,
processes, or organizational knowledge [18]. When combining
the global view of distributed ledger systems with globally
unique identity, individual domain concepts from these models
can be the subject of an attestation. For example, intellectual
property (IP) represented by a model can be attested to,
assigned to a global identifier, bound to an identity of a
blockchain system and used to prove the existence of the
IP at its creation time. The validity of such an attestation
and its binding to an identity are then verifiable at a later
point in time, by anyone with access to the distributed ledger
system. It has been shown before that it is possible to apply
blockchain properties such as immutability to the information
and knowledge represented by models [19], [20] or to the



design of contracts [21]. However, no model-based attestation
methods and implementations in the decentralized setting of
a permissionless blockchain could be found. The contribution
of this paper is an attestation architecture directed towards
model-based identity solutions and a proof-of-concept imple-
mentation based on the Ethereum blockchain [22]–[24] and
the ADOxx metamodeling platform [25]. Here, an attestation
is conducted by (1.) constructing a claim about the existence
of a model bound to an identity and (2.) by the validation of
the claim through a smart contract.

Ethereum has been chosen due to the standardized support
of smart contracts regarding development and tool avail-
ability. For modeling, the choice of ADOxx is due to the
customization capabilities of metamodels for developers and
end users. However, the architecture is independent of the
specific choices. By reverting to metamodeling, conceptual
models specific to a particular attestation scenario may be
designed. With a model as the primary artifact, transformation
and code generation operate from a trusted source. In this way,
a conceptual model can be used as a single point of truth,
making its information dependable and secure, e.g. for the
purposes of collaboration in decentralized environments [26]
or for the binding use as part of contractual agreements.

The remainder of this paper is structured as follows. Section
II introduces foundations on globally unique identification and
blockchain systems. Section III outlines the architecture of the
approach and its technical implementation. Section IV evalu-
ates the practical applicability of the approach on the Ethereum
network and measures limiting factors. Section V discusses the
results and its implications. Section VI concludes.

II. FOUNDATIONS

A. Globally Unique Identification

The concept of globally unique identification of data ob-
jects, documents or resources manifests itself in widely used
standards such as Universally Unique Identifier (UUID), also
called Globally Unique Identifier (GUID) [27], Digital Object
Identifiers (DOI) [28] and URIs, URLs and URNs as uniform
resource identifiers, locators or names [29]. These identifiers
have mostly been thought of and used as references, e.g. in
linked data approaches using URL, or for providing unique-
ness in order to avoid conflicts within namespaces in software
or in hardware, e.g. UUID and MAC addresses. With the
consistent global state of a distributed ledger, identifiers stored
in it can provide a globally unique binding to data objects.
Depending on whether an object’s data should determine the
identifier, content-dependent or content-independent forms of
identification can be used.

1) Content-independent Identification: Generally, two prin-
ciples for the content- or data-independent assignment of
globally unique identifiers can be realized.
• Registration-based approaches, e.g. as found in resource

records registered with the domain name system, require
an assignment by a registry. By carrying out the assign-
ment of each identifier, the registry is able to control and

guarantee global uniqueness. However, without sufficient
redundancy, registries can represent single points of fail-
ure.

• Generation-based approaches randomly generate identi-
fiers. The generation is performed locally by a secure
(pseudo) random number generator. Examples are UUID
version 4 identifiers [27] and addresses in blockchain
systems [1], [24]. For assuming a unique output, the
generator must (a.) be seeded with sufficient entropy and
(b.) the resulting key space, or identifier space, must be
sufficiently large such that collisions do not occur except
for a negligible probability.

2) Content-based Identification: Content-based identifiers
are another form of identity, which is created solely based on
the represented content. Cryptographic hash functions, such
as SHA-2 [30], SHA-3 or Keccak-256 [24], [31] functions
compute a fixed-length output v, often 256 bit, from a variable
length input message ms. Hash functions are required to
be collision resistant [32], i.e., while it must be feasible to
compute the value of a hash function H(ms) = v, it must
be infeasible to find a pair of arbitrary messages ms,ms′

resulting in the same v. This property can not be assumed
unconditionally for SHA-1 anymore [33]. In addition, it must
be infeasible to find an ms given v (preimage resistance) and
to derive an ms′ from ms resulting in the same v (preimage
resistance 2nd). In effect, the function value unpredictably
changes in a pseudo-random fashion when the input changes.
v, sometimes called message digest, identifies ms and may
be used for integrity checking. I.e., if v does not change in
subsequent calculations of the function, integrity is assumed.
Content-based identifiers are prominently used in blockchains
[1], [24], in the Git versioning system [34] and for data re-
trieval in peer-to-peer networks using the protocols of torrent,
IPFS and Swarm for addressing files by their content [35].

B. Blockchain Systems

A blockchain is a data structure of linked blocks, where
each block is linked to one predecessor by the value of a
hash function for providing integrity across the chain. In a
blockchain system, the data structure is used in combination
with consensus algorithms for the verifiably consistent storage
of non-repudiable transactions, signed and broadcasted by the
identities of distributed participants on the infrastructure of
a peer-to-peer network [4], [36]. In the generalized form of
distributed ledger technology, the data structure of such a
system may not necessarily be based on a blockchain.

In this paper, the widely-used permissionless blockchain
system Ethereum is utilized [37]. For being permissionless,
access rights are not restricted to an a priori defined group of
users. The system is outlined in the sections following.

1) Accounts and Transactions: Ethereum is an account-
based blockchain which allows for the execution of perma-
nently stored smart contracts [24]. An account is identified by
a globally unique address for sending and receiving transac-
tions. It is either an externally owned account (EOA), owned



by an identity of a participant, or a contract account (CA),
storing a smart contract.
• EOA rely on elliptic curve public key cryptography for

access control. Each identity locally generates a public-
private key pair and derives an address of an externally
owned account from the public key. Similar to other
systems, the private key is used to sign transactions, while
the public key is used to validate signatures.

• CA are outside the control of external identities and
execute smart contracts autonomously on fully validating
nodes of the network when invoked by a transaction,
calling a contract at a particular storage location.

Each transaction (a.) transfers an amount of the Ether cryp-
tocurrency between accounts, (b.) creates a contract account
by storing the code of a smart contract or (c.) invokes a smart
contract stored in a contract account.

2) Structure of Blocks: In addition to a hash value of
the previous block and transactions, the Ethereum blockchain
stores the state of all accounts and so-called receipts for
transactions in blocks [24], [38]. The structure of a block
includes separate Merkle Patricia Tree hash-based tree data
structures for (a.) transactions, (b.) state, and (c.) receipts.
Similar to Merkle trees, the integrity of the data stored in
the tree can be verified by re-calculating hash functions. In
contrast to Merkle trees, data is stored inside the tree and not
only represented by leaf nodes.

3) Consensus Algorithm: Ethereum uses a proof-of-
resource algorithm which requires the expenditure of resources
in order to solve computationally hard problems, sometimes
called cryptographic puzzles [32]. Whenever a solution is
found, a block may be appended by a miner to the blockchain.
At this point, Ethereum uses the proof-of-work consensus
algorithm Ethash, based on the DaggerHashimoto algorithm
for constructing a directed acyclic graph optimized for com-
putation in graphics processing units (GPUs) [38]. The inter-
block time, i.e. the minimum amount of time it takes to record
a transaction in a block, averages between 14 and 15 seconds
with deviations depending on the load [39], [40].

4) Smart Contracts: Smart contracts written in a high-level
language such as Solidity are compiled to bytecode before
the creation of a contract [38]. After the creation in a
CA by a transaction, bytecode is stored together with the
execution state of the contract, defined by state variables.
By invoking the contract through a transaction transferring
a function call with input data, the executed code operates
on the state. While the Ethereum instruction set is said to
be Turing complete, the execution time of a smart contract
invocation is bound by the expenditure of a transaction
fee in the unit ”gas”, set by the sender. The Ethereum
Virtual Machine (EVM) is the execution environment for
the bytecode of smart contracts, running on every fully
validating node of the network. It is a stack-based virtual
machine which executes the code stored in a contract account.

III. ATTESTATION OF CONCEPTUAL MODELS

The concept of remote attestation concerns claims made
about the properties of a target and their attestation by means
of evidence transferred over a network to another party [41].
Recently, applications of attestation concepts are being dis-
cussed for the web, and in the context of blockchain systems
[10], [12], [42]–[44].

A. Attestation Concept

In the context of conceptual modeling, these ideas can be
applied for the remote attestation of model artifacts, bound to
the identity of a user. Here, a model-based attestation can be
conducted by (a.) the creation of a claim about the existence
of a model, bound to an identity, and (b.) the validation
of the claim by any other identity at a later point in time.
An architecture realizing this concept can be constructed by
meeting three requirements:
• Globally Unique Identification of conceptual models

and users when constructing a claim. Note that although
models need to be globally identifiable, they may not
necessarily need to be stored globally.

• Trusted Global State for storing the identifiers in a
globally accessible and consistent manner in order to
record the claim.

• Content-based Validation by a method establishing the
correctness of the content of a model as it existed at the
time when the claim was created.

In such a system, an attestation can be conducted by the
issuance of a claim through a user, referred to as Claim
Issuer, who records the claim for it to become part of the
trusted global state, and by validating the claim through a
user, referred to as Claim Validator.

B. Attestation Architecture

For realizing an attestation based on this concept, the
following architecture of a blockchain-based attestation system
for conceptual models can be implemented:
• Globally Unique Identification for models is based on

content-independent UUID for identifying and perma-
nently addressing models changing over time, as well
as for revocation. For identifying users, the blockchain
system’s addresses are used.

• Trusted Global State is provided through the blockchain
system. Here, Ethereum is used with state being recorded
in state variables of a smart contract. The smart contract
contains at least two functions, for recording claims and
for verifying claims. For state variables, appropriate data
structures must record claims per user and per model.

• Content-based Validation is conducted by the application
of content-based identifiers in the form of hash functions
H to a model m subject to attestation, such that H(m) =
v can be used as evidence of the existence of the model.
For multiple models, the value v is created from the set of
models M by calculating H(m) for each m ∈M and by



the construction of a Merkle tree MerkleTree(M) = v
as described in the following sections. For the validation,
the root hash value v is then used as evidence.

Figure 1 on the next page describes the attestation architec-
ture. The participants and the processes for (a.) the issuance
of claims and (b.) their validation are outlined in the following
sections. By these processes, a claim regarding a set of models
and a user identity bound to it lead to a valid or invalid
attestation result. In the case of valid, the identity of claim
issuer and a timestamp of the claim’s record in a block can
be retrieved additionally.

1) System Participants: In the attestation, two users repre-
sented by EOA on the Ethereum blockchain are involved, with
the CA on the Ethereum blockchain acting as a trusted third
party. The process is controlled from the perspective of a user
through a locally running modeling tool. For (a.) the issuance
of a claim about the existence of globally identifiable models,
an Issuance Component of the modeling tool is invoked by a
user referred to as Claim Issuer. For (b.) the validation of a
claim in another remotely running instance of the modeling
tool, a Validator Component of the tool is invoked by a user
referred to as Claim Validator.

2) Issuance of Claims: Starting from a set of locally
available models M present in the modeling tool of claim
issuer, the issuance of a claim for M is carried out by this
party through the following process in accordance to Figure
1. Conceptually, M represents a set of one or more models
belonging together for the purposes of the claim, possibly with
inter-model references between the members of M . For issuing
claims on a per-model basis, the process may be carried out
with |M | = 1.

2.1) Serialization of Models: For the models to be trans-
ferred to claim validator and for the generation of content-
based identifiers, a serialization is generated by the modeling
tool. The serialization is stored locally and may be transferred
to claim validator over an insecure channel independent of the
attestation process.

2.2) Generation of Content-independent Model Identifiers:
Models are identified by a content-independent identifier, here
described as UUID. That is, one UUID identifies one or more
models in M , which are subject to the claim. This allows for
flexibility, since it is up to the claim issuer to create multiple
claims with |M | = 1, resulting in one UUID per model, or
to combine models belonging together and identify them by a
single UUID. The Issuance Component generates and assigns
the UUID randomly, independent of individual models. The
UUID may be added as a model attribute to individual models
or stored separately.

2.3) Generation of Content-based Model Identifiers: Evi-
dence of the existence of models is created for the claim
as a content-based model identifier, calculated as the value
of a hash function applied to the model serialization through
the Issuance Component. The hash function must be a secure

cryptographic hash function, e.g. of the SHA-2 or SHA-3
family [30], [31].
• In the case of |M | = 1 for one individual model m ∈

M , H(m) = v is calculated and is the content-based
identifier for M .

• In the case of |M | > 1, the Merkle tree’s root hash
value MerkleTree(M) = v identifies the models of M .
After calculating H(m) for each m ∈ M , the tree is
constructed from these values, which represent its leaf
nodes. In each iteration of the calculation, one level of the
resulting tree is created: For any given level, starting at
the leaf nodes, all hash values of the level are partitioned
into pairs [45] (v1, v2), which are concatenated and
hashed as in H(v1||v2) = v1||2, such that the number
of values making up the next level halves. In the case of
an odd number of values, the remaining value forms a
pair with v2 = 0. This process is repeated until the root
hash value v is reached for identifying M .

2.4) Generation of User Identifier: Users are identified
by the addresses of EOA on the Ethereum blockchain. The
EOA is generated locally by the Issuance Component from a
randomly generated public-private key pair, from which the
claim issuer’s address CIA is derived as the user identifier.
Alternatively, a previously generated EOA may be retrieved
locally.

2.5) Creation of the Claim: The claim is generated
by the Issuance Component in the form of the tu-
ple (v, UUID,CIA,Merkle TreeM ). It contains (a.) the
content-based model identifier v, (b.) the content-independent
identifier UUID of M , (c.) CIA as the user identifier in the
form of the Ethereum EOA address of claim issuer, and (d.)
the Merkle tree of hash values representing, but not containing,
the members of M .

2.6) Recording of Evidence from the Claim: For recording
evidence with the global state of the smart contract stored
in CA, the Issuance Component calls the function record-
Claim(UUID,v). The function records the claim’s UUID,
v, and CIA in state variables of the smart contract. For
consistently identifying changing models over time, UUID
is a key for identifying v and CIA, e.g. implemented by
Solidity ”mapping” data structures. After a defined number of
transaction confirmations, the record is acknowledged (ack).

2.7) Transfer of Claims and Models: Models and according
claims are created locally, such that the transfer from claim
issuer to claim validator may be carried out over an insecure
channel in separate messages, independent of the attestation
process. Subject to the transfer are (a.) the model message
with models MV ⊆M and (b.) the claim message consisting
of (UUID,CIA,MLN), where MLN are the Merkle tree’s
leaf nodes in a totally ordered set. It is up to claim issuer to
decide which members of M are sent to claim validator in
the context of the domain, e.g. for the creation of multiple
certificates in the form of individual models in a scenario
where only certificates intended for a specific claim validator



Fig. 1. Attestation Architecture

might be sent to them. By the Merkle tree, any member of MV

may be validated by claim validator without revealing M .

3) Validation of Claims: Through claim validator, the
following process is carried out by invoking the Validator
Component in the modeling tool, in accordance to Figure 1.

3.1) Import of Models: The models of the set MV are
imported by their serialization into the modeling tool. As a
prerequisite, an according metamodel must be present. The
metamodel might be validated through a prior attestation.

3.2) Import of the Claim: In order to validate the claim
received in a message, the tuple (UUID,CIA,MLN) is
locally imported into the modeling tool. From the claim
message, the identifiers of (a.) the model UUID, (b.) the EOA
address of claim issuer, and (c.) the Merkle tree leaf nodes are
present locally for validation.

3.3) Generation of EOA Address as User Identifier: For in-
teracting with the CA smart contract, claim validator generates
an EOA locally with a randomly generated address similar
to 2.4. Alternatively, a previously generated EOA may be
retrieved locally.

3.4) Validation of the Claim: The validation of the claim
is performed by re-constructing the Merkle tree (3.4.1), by
retrieving and validating it with the CA smart contract (3.4.2),
followed by additional local validations (3.4.3). Note that in

the special case of MV = ∅, only the Merkle tree is validated,
without taking models into account.

3.4.1) Re-construction of the Merkle tree: The validation of
the claim establishes the existence of the models in MV at a
prior point in time. From the members of MV and the received
MLN , a content-based identifier for M is re-calculated as
v′. While in the case of |MLN | = 1, the hash value is
calculated from the element of MLN , the Merkle tree must be
re-constructed in the case of |MLN | > 1 as Merkle Tree′M .
This is achieved by (1.) calculating the hash value for each
mV ∈ MV , (2.) by validating that each hash value is a leaf
node, i.e. H(mV ) ∈ MLN , and (3.) by re-calculating the
Merkle tree from all leaf nodes by the process given in step
2.3, resulting in the root hash value v′. The attestation fails
here if ∃mV ∈MV such that H(mV ) /∈MLN .

3.4.2) Validation with the CA smart contract: By invok-
ing the function validateClaim(UUID,v’), the smart contract
retrieves the claim for the given set of models identified by
UUID and validates it using the recorded v. In case of v′ = v,
the attestation result is valid; or else invalid. The function
returns a claim validation result with (a.) the attestation result
and, in the valid case, (b.) the claim issuer’s identity as EOA
address and (c.) a timestamp of the block containing the claim.

3.4.3) Additional validations: Depending on the use case,
additional validations beyond the proof-of-existence paradigm



Fig. 2. Layered System Architecture Based on a Permissionless Blockchain for Communication

may be performed. From (b.), the user identity of claim issuer
may be validated in cases where it is known, for example if
this user represents a public certificate authority. The public-
private key pair used to generate the claim issuer’s address,
and the private key used to send the transaction, bind the claim
issuer’s address to the claim. For this identity to be valid, the
claim issuer must match the address returned by the smart
contract. From (c.), the date and time of the block containing
the transaction of the claim may be utilized for validation.
Here, Ethereum acts as a trusted distributed timestamping
service, such that the prior existence of information can be
assumed for the time when the claim was recorded.

C. Prototypical Implementation

For evaluating the feasibility of this approach, the architec-
ture has been implemented as a prototype model attestation
system using Ethereum and ADOxx as a metamodeling plat-
form. The software realization is based on the layers of the
blockchain-based system architecture given in Figure 2.

On the basis of the network and transport layer, real-
ized by internet protocols, a blockchain consensus layer
is realized by Ethereum with Parity nodes in a fully
validating configuration and the autonomous CA smart
contract. This contract is deployed on Ethereum at ad-
dress 0x048e82278A597c1e977ED78c4Ba20FB5caECb73A1.
The blockchain consensus layer is accessed by the Web3.js
API for providing a standardized method of interaction with
the blockchain. The software connector [46] in a separate
layer interacts through this API for (1.) the generation of
Ethereum addresses, (2.) for the broadcasting of transactions
from an EOA to the CA smart contract and (3.) for receiving
transactions and event handling. Based on these features, the
software connector layer hosts the Issuance and Validator
components written in JavaFX. By these components, the
ADOxx metamodeling platform is connected to the blockchain
API, allowing for all user interactions to be handled through
the platform. The user interfaces of the JavaFX implementation

1C.f. https://etherscan.io/address/<address>

(see Figures 3, 5) are invoked through and controlled by
AdoScript customizations of the platform.

IV. EVALUATION

The practical applicability of the approach is evaluated on
the Ethereum network through the proof-of-concept implemen-
tation. For identifying limiting factors and to demonstrate the
application of the approach, the following sections outline an
assumed use case, describe the generation of data in the form
of models, and discuss the measurements, the setup, and the
results.

A. Evaluation Use Case

One of the use cases discussed for blockchains is certifica-
tion, since organizations often rely on third parties for the as-
surance of information bound to an identity. In many business
processes, certificates are provided by external entities and
are required to be verifiable with a third party. For instance,
one of the first steps of a recruiting process is the validation
of the applicant’s certifications with third party institutions.
For university degrees and courses, this approach has been
discussed and tested as a blockchain application [47], [48].

Certification in recruiting processes represents a typical
attestation use case since (a.) a certificate is created in the
form of a document or a model by an authority such as a
university, which acts as claim issuer, and (b.) the validation
of the certificate may be carried out at a later point in time by
anyone, e.g. an HR department acting as claim validator. After
the issuance of the claim on the existence of the certificate
model, no centralized server is required for validation in this
decentralized attestation use case.

The ADOxx modeltype Certificate, implemented for this
use case, is defined by a metamodel of the four classes
Institution, Course, Student and Grade with ac-
cording relations. A 1-to-n relation between Institution and
Course indicates offered courses, another one between Course
and Student represents the inscribed students of a course. 1-
to-1 relations between Student and Grade as well as between
Course and Grade represent the completion of a course by



Fig. 3. Certificate Model and Issuance Component in ADOxx with Annotations (Red Font)

a student, such that a grade and the final result passed or
failed are shown. Figure 3 gives an example of such a model
in ADOxx. Any certificate model represents the structured
information of one or more certifications, processible by the
ADOxx platform for model transformation, code or docu-
ment generation. For example, the model-based generation
of according data models, database records or certificate pdf
documents directly relies on trusted information from the
model.

B. Generation of Conceptual Models

For working with conceptual models, the contents of the
models need to be taken into account at the level of in-
formation instead of data. Therefore, two sets of data (D)
were created. (D1) n=100 models representing individual
certificates, each attesting the completion of an institution’s
course by one student. (D2) One single model for attesting
the same information of the 100 certificates. Each model of
(D1) consists of 4 elements, while the model of (D2) contains
206 elements with 3 identifying and describing attributes per
element in all cases. Note that the total number of elements
for (D1) is higher compared to (D2), since the models of (D1)
contain redundant information about the institution, courses
and students. The generation was carried out by a Perl program
generating random content for all model elements.

In order to measure the overhead of multiple attestations
over one individual attestation with the same information, three
scenarios (S) are accounted for. In each scenario, an institution
issuing certificates acts as claim issuer.
• (S1) assumes the issuance of one claim for all models

from (D1), such that the institution can transfer each

certificate to a student or another party acting as claim
validator. 1 claim for |M | = 100 models is recorded, and
100 validations with |MV | = 1 model are carried out.

• (S2) assumes the issuance of one claim from the model of
(D2) for the purposes of the institution, e.g. for archiving
and integrity checking by the institution’s stakeholders
acting as claim validators. 1 claim with |M | = |MV | = 1
model is recorded and validated.

• (S3) assumes the issuance of one claim per certificate
from each model of (D1), such that the institution can
transfer each certificate to a student or another party
acting as claim validator. 100 claims are recorded with
|M | = 1 model, and 100 validations with |MV | = 1
model are carried out.

(S3) is added for comparison to (S1), since it also can be
carried out easily using existing file-based attestation services
with individual certificate files.

C. Measurements

The goal of this evaluation is the measurement of factors
which could potentially limit applicability. Especially the
time and cost of recording and validating claims need to
be taken into account here, due to the scalability limitations
and comparatively high transaction cost of today’s blockchain
systems [5].

For recording a claim in accordance to the architecture, the
claim issuer generates it and records it on Ethereum by broad-
casting a transaction to the smart contract. The transaction
contains metadata, such as the EOA address of the sender,
and data for the function invocation recordClaim(UUID, v)
with a 128 bit UUID and a 256 bit hash value.



For validating a claim in accordance to the architecture, the
claim validator retrieves data of the claim from Ethereum by
invoking the function validateClaim(UUID, v′) of the smart
contract. Since this so-called view function only has read
access to the locally available replication of the blockchain
data, there is no transaction broadcast to the network.

Therefore, the following measurements on the Ethereum
network were taken for the recording of claims in each
scenario:
• Transaction input data size, i.e. the amount of data in the

input data field of a transaction.
• Transaction cost, i.e. the amount of Ether currency payed,

calculated through the consumed ”gas”, to a miner for
including the transaction in a block.

• Time to record the transaction, i.e. the time it takes for the
Ethereum network to include the transaction in a block
and issue a transaction receipt.

In addition to the cost per claim issuance, a one-time cost
for the deployment of the smart contract incurs.

D. Setup
The measurements were performed on the Ethereum main

network in its so-called ”Byzantium” stage [49]. The node
software used was Parity Ethereum, version 2.30 beta, in a
configuration for fully replicating, validating (”tracing”) and
indexing (”fat-db”) all transactions locally. This configuration
archives all transactions, however, only recent state representa-
tions are kept in a cache. With these parameters, the blockchain
node was set up after 225 hours of synchronization with the
network, carried out over 4.5 weeks, resulting in 201 GB of
data.

E. Results
The experiments were carried out separately per scenario

and are recorded with claim data in the transactions to the
smart contract2 in the blocks 7267828 (S1), 7267830 (S2),
and [7267833, 7268181] (S3). Table I lists the measurements.

TABLE I
RESULTS FOR SCENARIO S1, S2, S3

S1 S2 S3
Number of models 100 1 100
Number of claims issued 1 1 100
Number of validations 100 1 100
Size of transactions 544 bit 544 bit 54.4 kbit
Cost of transactions in Ether 6.8678E-4 6.8678E-4 6.8670E-2
Time to record transactions 47 s 60 s 114.44 min

1) Transaction Data Size: S1 and S2 required one transac-
tion, each recording one claim in 544 bit per transaction. The
100 claims of S3 required 100 transactions using the same
amount of data per transaction as S1 and S2. The size of
544 bit per transaction far exceeds the data for UUID and
Hash Value, since the UUID only utilized half of the word
length of 256 bit in Ethereum. With each transaction, 128 bit
of superfluous zero values were transmitted.

2C.f. https://etherscan.io/txs?a=0x048e82278a597c1e977ed78c4ba20fb5caecb73a

2) Transaction Cost: The per-transaction cost for S1, S2
and S3 was 6.8678E-4 Ether or 0.095 USD3. For S1 and S2,
this is the total cost, while S3 resulted in 6.8670E-2 Ether or
9.53 USD total cost. The transaction cost is dependent on the
gas price set by the claim issuer and the size of the transaction.
In order to prevent delays in recording transactions and to
minimize the impact of network load on the measurement of
time, the gas price was set to about 133% of the median gas
price of the last 500 blocks, i.e. 8E-9 Ether. The one-time cost
to deploy the contract was 1.9782E-3 Ether or 0.27 USD4.

3) Time to Record Transactions: The load of the network
and the chosen transaction cost influence the time to include a
transaction in a block. For S3, the median time was 46.2 s as
indicated by the box plot in Figure 4, however, the maximum
time was 360 seconds. In total, the time to confirm the 100
transactions of S3 was 1.9 hours. These measurements are
specific to the situation in the network at the time of the test
and might deviate further when load on the network increases.
In addition, local processing time was taken into account for
generating UUIDs, hash values and Merkle trees, however, the
time for S1, S2, and, S3 was below 0.1 s.

Fig. 4. Time to Record Transactions

V. DISCUSSION

The model-based attestation use case demonstrates the
application of domain-specific models for the domain of
certification. Here, an attestation was carried out for individual
models representing certificates in S1 and S3, and for one
model in S2. While S2 may be thought of as a special case for
attesting to all the information from S1 or S3 internally by a
single claim, it demonstrates the impact of modeling decisions
in contrast to file-based attestations. In the metamodeling
platform, elements of this model can be transformed into the
individual models of S1 and S3 easily, e.g. using copy and
paste, by specifying functional expressions, or by procedural
programs, possibly with transformations. For the typical use
case of handing out certificates, S1 shows the advantage of

3Given the exchange rate of 138.81 Ether/USD indicated by Etherscan.io
4Given the exchange rate of 136.48 Ether/USD indicated by Etherscan.io
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using hash-based tree data structures in comparison to the
issuance of individual claims per model.

While the results demonstrate the applicability of the ap-
proach, they also highlight several practical limitations. Firstly,
the lengthy and resource intensive setup process for a fully val-
idating Ethereum node is a one-time expenditure which makes
the approach hard to deploy and impractical for performance
or throughput constrained computing environments. Secondly,
as a function of the number of claims issued, the transaction
cost and the time to record transactions limit the applicability
to use cases where (a.) a cost on the order of tens of USD
cents per claim is acceptable and (b.) a delay on the order
of tens of seconds to minutes per claim is acceptable. In the
scenario of issuing course certificates this might not be an
issue, however, the variability in confirmation time does not
allow for guarantees which might be necessary for other cases.

VI. CONCLUSION AND OUTLOOK

An attestation approach based on a metamodeling platform
allows the modeling of attestations in the context of a specific
domain, and the recording and validation of claims based
on it. With appropriate attestation methods and data struc-
tures, identity applications beyond the ones build into today’s
blockchain systems can be implemented. While this has been
demonstrated for the issuance of certificates here, it might be
extended to any domain. However, with the practical appli-
cability being limited by today’s blockchain systems, further
research on limiting technical and sociotechnical factors and
their influence on identity use cases is necessary to evaluate the
promising idea of decentralized identity. Arguably, the most
interesting property of this fundamental concept of identity is

its broad applicability. In combination with capturing arbitrary
domains in domain-specific conceptual models, decentralized
and self-sovereign identity solutions might be specified by
models in order to realize model-based identity solutions.
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