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ABSTRACT
Scientific peer review is pivotal to maintain quality standards for

academic publication. The effectiveness of the reviewing process is

currently being challenged by the rapid increase of paper submis-

sions in various conferences. Those venues need to recruit a large

number of reviewers of different levels of expertise and background.

The submitted reviews often do not meet the conformity standards

of the conferences. Such a situation poses an ever-bigger burden

on the meta-reviewers when trying to reach a final decision.

In this work, we propose a human-AI approach that estimates the

conformity of reviews to the conference standards. Specifically, we

ask peers to grade each other’s reviews anonymously with respect

to important criteria of review conformity such as sufficient justi-

fication and objectivity. We introduce a Bayesian framework that

learns the conformity of reviews from both the peer grading pro-

cess, historical reviews and decisions of a conference, while taking

into account grading reliability. Our approach helps meta-reviewers

easily identify reviews that require clarification and detect submis-

sions requiring discussions while not inducing additional overhead

from reviewers. Through a large-scale crowdsourced study where

crowd workers are recruited as graders, we show that the proposed

approach outperforms machine learning or review grades alone and

that it can be easily integrated into existing peer review systems.

CCS CONCEPTS
• Information systems → Crowdsourcing; • Mathematics of
computing → Bayesian computation; • Computing method-
ologies→Neural networks; Learning latent representations.
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1 INTRODUCTION
Peer review is the standard process of evaluating the scientific

work of researchers submitted to academic journals or conferences.

An essential task in this process comes at the end when the meta-

reviewers have to make a decision as to accept a paper or not.

Recently, peer review has been challenged by the rapid increase

of paper submissions. Consider the example of computer science

conferences: The Conference on Neural Information Processing

Systems (NeurIPS) and the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR) received 9467 and 6656 submis-

sions in 2020, respectively; the numbers are five times the number

of submissions they received in 2010.

To guarantee aminimum number of reviews per paper, those con-

ferences recruit a large number of reviewers of different expertise

levels and background. For example, due to the very high number

of submissions, some conferences decided to lift the restriction of

having published papers in former editions of the same venue to

be part of the reviewing board [11]. The submitted reviews do not

always meet the conformity standards of the conferences such as

the presence of sufficient justification for the claims, the validity

of argumentation (e.g., not self-contradictory), and the objectivity

of comments. Such a situation poses an ever-bigger burden on the

meta-reviewers, who not only have to handle more papers and

reviews, but also have to carefully validate the reviews in terms of

the conformity to the review standards. For instance, in the NeurIPS

example we cite above, each meta-reviewer had to handle up to 19

submissions with around 76 reviews total.

The load could be reduced if we were able to develop methods to

automatically detect low-conformity reviews. The need has been ex-

plicitly discussed recently by program chairs of the ACM SIGMOD

conference [2]: “The chairs discovered low-confidence reviewsman-

ually; such reviews, however, should be flagged automatically to

allow for immediate action”, “automated analysis of the reviews as

they come in to spot problematic text ... could dramatically alleviate

the overhead that chairs and meta-reviewers endure while trying

to detect the problem cases manually”. We note that computational

methods have provided strong support to streamline several parts

of the peer review process, such as those for paper assignment to
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reviewers [13, 21, 23, 27, 42], finding expert reviewers [12, 15, 30],

and reviewer score calibration [4, 16, 31]; however, relatively lit-

tle work can be found on developing computational methods for

detecting low-conformity reviews.

Automatic detection of low-conformity reviews is nontrivial for

two main reasons. First, the task is highly complex and requires

to assess reviews from a multitude of dimensions [1, 18, 36, 38, 41]

including justification, argumentation, objectivity, etc. Assessment

on those dimensions is cognitively demanding as it requires to com-

prehend the review text to understand the various relations among

its statements. Second, submission and review information of most

conferences are not openly accessible for privacy and confidential-

ity concerns. This lack of training data limits the performance of

existing natural language processing techniques.

To tackle these challenges, we advocate a human-AI collabora-

tive approach for the semi-automatic detection of low-conformity

reviews. We involve peer reviewers to grade each other’s reviews

anonymously with respect to important criteria of review confor-

mity. Simultaneously, a machine learning model joins the assess-

ment for less ambiguous reviews while learning from new peer

grading to make connections between the review features and

their conformity level. The main advantage of involving machine

learning is that the model encapsulates and accumulates human

knowledge of review conformity over time: what it learned in the

previous editions of a conference can be used for a new edition by

simply applying the model to new reviews. Over time, the model im-

proves and the human-AI approach requires less amount of grading

from humans to detect low-conformity reviews. The “peer grading

peer reviews” mechanism does not disrupt current peer review

process: reviewers of the same paper are supposed to read each

other’s reviews and make adjustments to their own reviews when-

ever necessary. Making such an explicit step by asking them to

grade each other’s reviews can potentially stimulate reviewers to

be more engaged and promote the quality of the discussion there-

after. Our proposed mechanism is, therefore, a lightweight add-on

to the current peer review systems without inducing much extra

effort from the reviewers.

At the technical level, we introduce a Bayesian framework that

seamlessly integrates machine learning with peer grading for as-

sessing review conformity while allowing the model to learn from

peer grading. An important consideration of our framework design

is that it models the reliability of the graders, thus taking into ac-

count the effect of their various background and expertise levels.

To learn the reliability and the parameters of the machine learn-

ing model, we derive a principled optimization algorithm based

on variational inference. In particular, we derive efficient updating

rules that allow both model parameters and grader reliability to be

updated incrementally at each iteration. By doing so, both types of

parameters can be efficiently learned with little extra computational

cost compared to the computational cost for training a machine

learning model alone.

To evaluate our proposed approach, we first conduct a small-scale

online experiment with real expert reviewers, where we simulate

the real peer review process with peer grading. We evaluate the

effectiveness of peer grading by taking into account the grading as a

weight of the reviewers’ recommendation scores in the aggregation

and we show that the aggregated score is a better approximation of

the meta-decisions as compared to existing aggregation methods,

e.g., average or weighted average by self-reported confidence. The

number of expert grading is, however, not sufficient for evaluat-

ing proposed Bayesian framework. Inspired by the positive results

of worker performance in judging the relevance of both scientific

papers and search results to specific topics [8, 24], we conduct a

larger-scale crowdsourcing study where we collect worker grad-

ing to approximate expert grading. We then use worker grading

to evaluate our framework on the dataset we collected from the

ICLR conference over a three-year time period, which allows us to

observe the gradual model improvement over time.

In summary, we make the following key contributions:

• We propose a new dual-role mechanism called “peer grading

peer reviews” to lighten the review process. Our approach can

be easily integrated into current scholarly peer review systems;

• We introduce a Bayesian framework that integrates a machine

learning model with peer grading to collaboratively assess the

conformity of scholarly reviews while allowing the model to

improve over time;

• We conduct a longitudinal evaluation of our framework across

multiple years of a conference, showing that our method sub-

stantially improves the state of the art by 10.85% accuracy and

that the model improves by 6.67% accuracy over three years.

2 RELATEDWORK
In this section, we first discuss the state of the art in peer review-

ing, then review existing work methodologically related to our

framework in review assessment and peer grading.

2.1 Scientific Peer Review
In the following, we discuss two relevant topics: computational sup-

port for scientific peer review and biases in reviews. State-of-the-art

tools from artificial intelligence are making inroads to automate

parts of the peer-review process [37]. A typical example is auto-

matic paper assignment to appropriate reviewers. The problem has

been formulated as an information retrieval problem [13, 19, 22, 30],

where a paper to be assigned is a “query” and each review is repre-

sented as a document (e.g., an expertise statement or publications of

the reviewer). This problem has also been formulated as matching

problem, where the goal is to match a set of papers with review-

ers under a given set of constraints, like workload, interest, and

conflicts-of-interest [20, 21, 23, 27, 42]. Another important topic is

finding expert reviewers. The task generally relies on automatic con-

tent analysis of textual documents (e.g., academic publications) and

scientometrics (e.g., number of grants and patents), as well as link

analysis based on cross-references between documents [12, 15, 30].

Apart from those, work has also been devoted to developing meth-

ods for identifying sentiments in reviews [45] and for predicting re-

buttal results [17]. Recently, a pre-trained language model SciBERT

has been introduced for modeling text in scientific publications [6].

Compared to the large body of work on those problems, rela-

tively little effort can be found on developing automatic tools for

review conformity assessment. Recent discussions have pointed to

problems in low-conformity reviews, where reviewers can exhibit

bias or only support expected, simple results, or ask for unnecessary

experiments [2, 3, 5, 7, 14, 37].
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Among those problems, biases in reviews is the most exten-

sively studied topic. An important source of review biases comes

from the setup of the review process being single- or double-blind.

Snodgrass [40] reviews over 600 pieces of literature on reviewing,

summarizing the implications of single- and double-blind reviews

on fairness, review quality, and efficacy of blinding. In particular,

the author points out the significant amount of evidence showing

review biases in a single-blind setup, favoring high-prestigious in-

stitutions and famous authors. A more recent study by Tomikins et

al. [43] through a controlled experiment on the ACMWSDM con-

ference confirms such a finding. Another important source of bias

is varying standards of reviewers in providing recommendations. A

recent analysis by Shah et al. [39] over the reviews of the Neurips

conference finds that the fraction of papers receiving scores over a

threshold is not aligned with the meaning of the threshold defined

by the conference. For example, nearly 60% of scores were above

3 despite the fact that the reviewers were asked to give a score of

3+ only if the paper lies in the top 30% submissions. This leads to

the frustration of many authors whose papers get rejected despite

receiving good scores.

Compared to those studies on review biases, other aspects of

low-conformity reviews are much less discussed such as the lack of

justification for decisions and of arguments. We show in Section 4

through an online survey that the lack of justification for argu-

ments and decisions is most often due to low-conformity reviews,

which increases the complexity of the meta decisions and, if not

handled well, lower the authors’ trust in the venue. We envision

that automatic methods for low-conformity reviews detection can

significantly reduce this issue, similar to what automatic methods

for paper-reviewer assignment achieved in the past decades. Our

work makes a first attempt along this direction, providing a first-of-

it-kind human-in-the-loop AI method that leverages both human

and machine intelligence in determining review conformity.

2.2 Review Assessment and Peer Grading
In the design of our approach, we draw inspiration from existing

methods for review assessment and peer grading, developed in dif-

ferent domains. Methods for review assessment have been mainly

developed for e-commerce and online rating platforms. Olatunji

et al. [33] propose a convolutional neural network with a context-

aware encoding mechanism to predict the product reviews’ helpful-

ness based on the review text. Zhang et al. [47] study the problem of

predicting the helpfulness of answers to users’ questions on specific

product features. Their model is based on a dual attention mech-

anism to attend the important aspects in QA pairs and common

opinions reflected in the reviews. These methods rely in their core

on pre-trained language models such as Glove [35] or ALBERT [26].

These language models are trained on massive and heterogeneous

corpora to capture text semantics, which provide useful informa-

tion for review classification. Prediction for scholarly reviews is

more challenging than for other types of reviews due to both the

cognitive complexity of the task, the highly specialized topic, and

the lack of available datasets for model training. Unlike those fully

automatic methods, we consider the role of humans (i.e., peers) in

our approach as indispensable, as we show in our experiments.

Methods for peer grading have been mainly developed for (on-

line) education and crowdsourcing platforms. In the educational

context, Wang et al. [46] study the phenomenon of students divid-

ing up their time between their own homework and grading others

from a game theory perspective. Crowd workers have been used to

simulate the role of students and to assess homework quality. Mi et

al. [29] propose a probabilistic graphical model to aggregate peer

grading. Their method considers an online course setup and models

both the student and the grader’s reliability, imposing a probabilistic

relationship between the reliability of a student and the true grade.

Carbonara et al. [10] model the peer grading process in MOOCs

as an audit game where students play the role of attackers and the

course staff play defenders. In the context of crowdsourcing, Labu-

tov et al. [25] propose a framework that fuses both task execution

and grading. They adopt an Expectation Maximization algorithm

to aggregate the grading by inferring both worker’s reliability and

task difficulty. From a methodological perspective, our framework

is different from those aforementioned methods in that we take a

human-AI approach that integrates peer grading and a supervised

machine learning model, which is important for both improving

the accuracy of review conformity and for reducing manual efforts.

3 THE PGPR FRAMEWORK
In this section, we introduce our proposed Bayesian PGPR frame-

work that learns to predict the conformity of reviews from a few

peer-graded reviews as well as from historical data (reviews and de-

cisions) of a given venue. We first formally define our problem and

then describe our overall framework, followed by our variational

inference algorithm for learning PGPR parameters.

3.1 Notations and Problem Formulation
3.1.1 Notations. Throughout this paper, we use boldface lowercase
letters to denote vectors and boldface uppercase letters to denote

matrices. For an arbitrary matrix M , we use Mi, j to denote the

entry at the i-th row and j-th column. We use capital letters (e.g.,

P) in calligraphic math font to denote sets and |P | to denote the

cardinality of a set P.

Table 1 summarizes the notations used throughout this paper.

We denote the set of reviews with I and the set of graders as G. We

restrict I to include only the graded reviews without ground truth

of conformity – our framework can be initialized with any number

of reviews with ground truth, thereby utilizing historical data (see

Section 3.4). For each review i ∈ I, we extract a set of features as

described in detail in Section 5.1.5 and denote the resulting vector

by xi . We useAi,д to denote the grade given by grader д ∈ G when

reviewing i ∈ I. Due to the fact that an individual grader can only

grade a limited number of reviews,A is a sparse matrix where only

a small proportion of the entries are known.

3.1.2 Problem Definition. Let I be the set of reviews, where each

review i ∈ I is represented by a feature vector xi . Let A be the

grader-review matrix where each element Ai,д is a grade given by

a grader д ∈ G to a review i . Our goal is to infer the conformity

score zi for all reviews i ∈ I using xi and A.
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Table 1: Notations.

Notation Description
I Set of reviews

G Set of graders

A Grader-Review matrix

xi Feature vector of a review

zi Review conformity distribution

rд Grader reliability distribution

bд Grader bias distribution

µi ,σi Parameters of the review conformity distribution

Aд ,Bд Parameters of the distribution of grader reliability

mд ,αд Parameters of the distribution of grader bias

3.2 PGPR as a Bayesian Model
PGPR is a unified Bayesian framework that integrates a machine

learning model –modeling review conformity from features– with

peer grading for predicting review conformity. Once trained, the

machine learning part of PGPR can be used alone to predict confor-

mity of reviews without peer grading.

The overall framework is depicted as a graphical model in Fig-

ure 1. It models review conformity from both the features (through

the machine learning model) and peer grading, which is modeled as

a process conditioned on the review conformity and grader proper-

ties (i.e., reliability and bias). In the following, we first describe how

amachine learning model is embedded into PGPR and then describe

the grading process and its integration into our framework.

3.2.1 Learning Conformity. We model review conformity zi with
a Gaussian distribution:

zi ∼ N(µi ,σi ), (1)

where µi and σi are the mean and the variance of the distribution,

respectively. µi is predicted from the review features xi through a

neural network of arbitrary architecture.

µi = softmax(f W (xi )), (2)

where the function fW (xi )models the output of the network layers

preceding the softmax layer, parameterized by W shared across

all reviews. The variance σi of the Gaussian distribution is auto-

matically learned through our inference algorithm (described in

Section 3.3). Unlike normal supervised settings, we do not have the

ground truth of review conformity µi ; instead, we are given a set

of review grades, which we model next.

3.2.2 Modeling Review Grades. We model the grading process by

considering two important properties of graders, namely reliability

and bias. In practice, we would like to have a measure of confidence
in estimating the reliability and bias of the graders grading different

numbers of reviews: we should be more confident in estimating

the reliability and bias of graders who grade 50 reviews than those

who grade 5 reviews only. To quantify the confidence in our infer-

ence, we adopt a Bayesian treatment when modeling both grader

properties by introducing prior distributions.

Specifically, we denote the grader reliability by rд (д ∈ G) and

model it with a Gamma distribution: a higher value indicates a

Ai,g

rgzi bg

Ag Bg αg

W

xi

Grader

Review

Figure 1: Graphical representation of PGPR. Double circles
represent observed variables, while single circles represent
latent variables. Squares representmodel parameters. Edges
represent conditional relationships in text classification. On
the left-hand side, a machine learningmodel parameterized
by W predicts the conformity zi of a review. Each review is
represented with a feature vector xi . On the right-hand side,
a grader is represented with her reliability distribution rд
with parametersAд and Bд and her bias bд with αд as a prior.
The grader assigns a review with grade Ai,д .

better ability to provide accurate grades.

rд ∼ Γ(A,B), (3)

We consider grader bias as the tendency of a grader to give high

or low conformity scores to reviews. We denote the grader bias by

bд (д ∈ G) and model it using a Gaussian distribution.

bд ∼ N(m,
1

α
). (4)

3.2.3 Integrating Machine Learning with Peer Grading. We define

the likelihood of a grader д giving a score Ai,д to review r as a

probability conditioned on the grader’s reliability rд , the bias bд ,
and the latent conformity of the review zi .

p(Ai,д |zi , rд ,bд) = N(zi + bд ,
1

rд
) (5)

The conditional probability in Eq. (5) formalizes the following in-

tuitions: i) a grader with a bias bд > 0 (or bд < 0) is likely to over-

estimate (or underestimate) the conformity of a review, whereas a

grader with a bias bд ≈ 0 has a more accurate estimation of review

conformity; and ii) a grader with a high reliability rд is likely to give

a conformity score with a small deviation from the true conformity.

3.3 Variational Inference for PGPR
Learning the parameters of PGPR resorts to maximizing the follow-

ing likelihood function:

p(A) =

∫
p(A,z,r ,b |X ;W)dz,r ,b, (6)

where z is the latent conformity scores for all the reviews, and r
and b are the latent reliability scores and biases for all graders. X
represents the feature matrix of all reviews and W is the set of

machine learning parameters.
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Since Eq. (6) contains more than one latent variable, it is compu-

tationally infeasible to optimize [44]. Therefore, we consider the

log of the likelihood function, i.e.,

logp(A) =

∫
q(z,r ,b)

p(A,z,r ,b |X ;W)

q(z,r ,b)
dz,r ,b︸                                            ︷︷                                            ︸

L(W,q)

+

∫
q(z,r ,b)

q(z,r ,b)

p(z,r ,b |A,X ;W)
dz,r ,b︸                                            ︷︷                                            ︸

KL(q | |p)

, (7)

where KL(·) is the Kullback Leibler divergence between two

distributions. The log likelihood function in Eq. (7) is composed

of two terms. Using the variational expectation-maximization al-

gorithm [44], we can optimize the objective function iteratively

in two steps: 1) the E-step, where we minimize the KL-divergence

to approximate p(z,r ,b |A,X ;W) with the variational distribution

q(z,r ,b); and 2) the M-step, where we maximize the first term

L(W,q) given the newly inferred latent variables. In the following,

we describe both steps.

E-step. Using the mean-field variational inference approach [9],

we assume that q(z,r ,b) factorizes over the latent variables:

q(z,r ,b) =
∏
i ∈I

q(zi )
∏
д∈G

q(rд)
∏
д∈G

q(bд). (8)

To minimize the KL divergence, we choose the following forms

for the factor functions:

q(zi ) = N(µi ,σi ),q(rд) = Γ(Aд ,Bд),q(bд) = N(mд ,
1

αд
), (9)

where µi ,σi ,Aд ,Bд ,mд ,αд are variational parameters used to per-

form the optimization and minimize the KL-divergence.

In the following, we give the update rules for each of the latent

variables. We first give the update rules for review conformity zi
by the following lemma.

1

Lemma 3.1. (Incremental Update for Review Conformity) The con-
formity distribution q(zi ) follows a Gaussian distribution and can be
incrementally computed using the grade, the grader reliability, and
the review conformity from the previous iteration:

q(zi ) ∼ N(
W

V
,
1

V
), (10)

where: 
W =

∑
д
Aд
Bд (Ai,д −mд) +

µi
σ 2

i
,

V = (
∑
д
Aд
Bд +

1

σ 2

i
).

Next, we show the updating rules of grader’s reliability and bias.

Lemma 3.2. (Incremental Update for Grader Reliability) The update
of the grader reliability q(rд) follows a Gamma distribution with
parameters that can be incrementally updated using the conformity

1
Proofs for all the lemmas are given in the appendix.

of reviews she graded, her bias and her reliability from the previous
iteration:

q(rд) ∼ Gamma(X ,Y ), (11)

where:{
X = Aд+

|Iд |

2
,

Y = Bд+
1

2
(
|Iд |

αд +
∑
i [A

2

i,д + σ
2

i + 2µi (mд −Ai,д) − 2Ai,дmд]).

Lemma 3.3. (Incremental Update for Grader Bias) The bias of the
graders q(bд) follows a Gaussian distribution with parameters that
can be incrementally updated using the review conformity, the grader
reliability and her bias from the previous iteration:

q(bд) ∼ N(
L

K
,
1

K
), (12)

where: 
K =

Aд |Iд |
Bд + αд ,

L = αдmд +
Aд
Bд

∑
i (Ai,д − µi ).

M-step. Given the conformity of a review, the grader reliability

and bias inferred in the E-step, the M-step maximizes the first term

of Eq. (7) to learn the parameterW of the machine learning model:

L(W,q)

=

∫
q(zi , rд ,bд) logp(Ai,д , zi , rд ,bд |xi ;W)dzi , rд ,bд +C

=

∫
q(zi , rд ,bд) log[p(Ai,д |zi , rд ,bд)p(zi |xi ;W)]dzi , rд ,bд +C

=

∫
q(zi , rд ,bд) logp(Ai,д |zi , rд ,bд)dzi , rд ,bд︸                                                       ︷︷                                                       ︸

M1

+

∫
q(zi ) logp(zi |xi ;W)dzi︸                              ︷︷                              ︸

M2

+C (13)

where C = Eq(zi ,rд,bд )loд(
1

q(zi ,rд,bд )
) is a constant. Only the sec-

ond part of L(W,q), i.e., M2, depends on the model’s parameters.

M2 is exactly the inverse of the cross-entropy between q(zi ) and
p(zi |xi ;W), which is widely used as the loss function for many

classifiers.M2 can, therefore, be optimized using back-propagation.

3.4 Algorithm
The overall optimization algorithm is given in Algorithm 1. We

start by initializing the parameters of each probability distribution

and of the machine learning model. Then, we iterate between the

E step (rows 3-7) and the M step (rows 8-9). The E step consists

of updating the variational distributions of the review conformity

q(zi ), the grader reliability q(rд) and her bias q(bд). The M step

consists of updating the parameters W of the machine learning

model using back-propagation. The convergence is reached when

the review conformity q(zi ) is no longer modified by the grader

reliability and bias. Note that when some reviews with ground

truth conformity are available, the machine learning model can

be trained first to obtain an initialization of W, which will then
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Algorithm 1: Learning PGPR Parameters

Input :Grader-Review matrix A, Review features matrix

X
Output :Parameters of the PGPR framework:

µi , σi , Aд , Bд ,mд , αд ,W

1 Initialize PGPR parameters ;

2 while logp(A) has not converged do
3 for i ∈ I do
4 update q(zi ) using Lemma 3.1;

5 for д ∈ G do
6 update q(rд) using Lemma 3.2;

7 update q(bд) using Lemma 3.3;

8 for i ∈ I do
9 Update W using back-propagation;

be updated further by Algorithm 1. Once the learning algorithm

terminates, the machine learning model of PGPR can be taken out

to assess the conformity of any review.

The iterations in rows 3-4 require a time complexity of |I | and

the iterations through all graders yield a time complexity of |G|.

The overall complexity of our algorithm is O(#iter (|I| + |G| +

CW ) where #iter is the total number of iterations needed until

convergence and CW is the complexity to learn the parameters of

the machine learning model.

4 TASK DESIGN FOR GRADING REVIEWS
In this section, we present our design for the review grading task,

which is used to collect data for evaluating our proposed framework.

Due to the privacy concern, submissions and review information in

most venues are not publicly available. Fortunately, we have access

to such an information in two venues, on which we conduct a small-

scale experiment with expert reviewers to evaluate the effectiveness

of peer grading in measuring review conformity. Evaluating our

proposed PGPR framework, however, requires more grading than

those we can collect from expert reviewers. We conduct a larger-

scale crowdsourcing study, in which we collect worker grading

to approximate the grading from expert reviewers and use those

grading for evaluating PGPR.

This section focuses on the task design of grading reviews for

both expert and crowd scenarios. We present an analysis on the

effectiveness of grading from both expert reviewers and crowd

workers in the next section. In the following, we first identify a set

of criteria for review conformity assessment and then describe the

setup of the grading task.

4.1 Criteria for Review Conformity
We compile a list of eight criteria for review conformity from the

literature, a set of review guidelines published by journals and

conferences [1, 18, 36], and guidelines from publishers such as

Springer [41] or Nature Research [32]. Those criteria are grouped

into the following three categories.

• Clarity. The clarity of a review resides in three main aspects. 1)

Structure: it is often imposed that the review should contain a
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Figure 2: Ranking of review criteria.

summary of the paper, the decision, and supporting arguments

for this decision. 2) Length: a review should be of adequate length

to provide sufficient information for the meta-reviewer to un-

derstand the reviewer’s recommendation [34]. 3) Justification: a
review should include supporting arguments of the decision, by

including pointers to prior work as well as references to specific

parts of the paper on which the score is based [18].

• Consistency. The consistency of a review is defined by three

aspects. 1) Score: the recommended score should be supported

by at least one or two justifications. 2) Claims: there should be

no contradiction between the summary and the stated weak or

strong claims. 3) Confidence: the reviewer should make a clear

acknowledgement when certain aspects of a paper are beyond

her expertise [18].

• Objectivity. A review should be fair and provide constructive

critiques. 1) Fairness: A review should not be biased towards

irrelevant factors such as assigning a low score because ofmissing

references from the reviewer’s own work only
2
. 2) Offensiveness:

A review should cover the technical work rather than giving

personal statements and/or offensive terms [18].

To understand the importance of those criteria, we initially con-

ducted an online survey with 38 expert reviewers from two inter-

national venues: SEMANTICS (SEM) (2019 edition) and the Inter-

national Workshop on Decentralizing the Semantic Web (DSW)

(2017 and 2018 editions). We asked the expert reviewers to rate the

importance of each individual criterion and the three categories on

a 5-point Likert scale and show the results in Figure 2. We observe

that clarity ranked the highest (by 28 expert reviewers) and, in

particular, that justification is viewed as the most important aspect

of a high-conformity review. Consistency is equally important to

objectivity. While many agree that objectivity is not a deterministic

aspect, half of the experts admit having received or read unfair

reviews while few have received offensive ones. In fact, 24 expert

reviewers rank fairness as equally or more important than offen-

siveness. These results indicate that the experts consider review

fairness as an important concern.

2
https://www.seas.upenn.edu/ nenkova/AreaChairsInstructions.pdf

be updated further by Algorithm 1. Once the learning algorithm

terminates, the machine learning model of PGPR can be taken out

to assess the conformity of any review.

The iterations in rows 3-4 require a time complexity of |I | and

the iterations through all graders yield a time complexity of |G|. The

overall complexity of our algorithm isO(#iter (|I|+|G|+CW )where

#iter is the total number of iterations needed until convergence

and CW is the complexity to learn the parameters of the machine

learning model.

4 TASK DESIGN FOR GRADING REVIEWS
In this section, we present our design for the review grading task,

which is used to collect data for evaluating our proposed framework.

Due to the privacy concern, submissions and review information in

most venues are not publicly available. Fortunately, we have access

to such an information in two venues, on which we conduct a small-

scale experiment with expert reviewers to evaluate the effectiveness

of peer grading in measuring review conformity. Evaluating our

proposed PGPR framework, however, requires more grading than

those we can collect from expert reviewers. We conduct a larger-

scale crowdsourcing study, in which we collect worker grading

to approximate the grading from expert reviewers and use those

grading for evaluating PGPR.

This section focuses on the task design of grading reviews for

both expert and crowd scenarios. We present an analysis on the

effectiveness of grading from both expert reviewers and crowd

workers in the next section. In the following, we first identify a set

of criteria for review conformity assessment and then describe the

setup of the grading task.

4.1 Criteria for Review Conformity
We compile a list of eight criteria for review conformity from the

literature, a set of review guidelines published by journals and

conferences [1, 18, 36], and guidelines from publishers such as

Springer [41] or Nature Research [32]. Those criteria are grouped

into the following three categories.

• Clarity. The clarity of a review resides in three main aspects. 1)

Structure: it is often imposed that the review should contain a

summary of the paper, the decision, and supporting arguments
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for this decision. 2) Length: a review should be of adequate length

to provide sufficient information for the meta-reviewer to un-

derstand the reviewer’s recommendation [34]. 3) Justification: a
review should include supporting arguments of the decision, by

including pointers to prior work as well as references to specific

parts of the paper on which the score is based [18].

• Consistency. The consistency of a review is defined by three

aspects. 1) Score: the recommended score should be supported

by at least one or two justifications. 2) Claims: there should be

no contradiction between the summary and the stated weak or

strong claims. 3) Confidence: the reviewer should make a clear

acknowledgement when certain aspects of a paper are beyond

her expertise [18].

• Objectivity. A review should be fair and provide constructive

critiques. 1) Fairness: A review should not be biased towards

irrelevant factors such as assigning a low score because ofmissing

references from the reviewer’s own work only
2
. 2) Offensiveness:

A review should cover the technical work rather than giving

personal statements and/or offensive terms [18].

To understand the importance of those criteria, we initially con-

ducted an online survey with 38 expert reviewers from two inter-

national venues: SEMANTICS (SEM) (2019 edition) and the Inter-

national Workshop on Decentralizing the Semantic Web (DSW)

(2017 and 2018 editions). We asked the expert reviewers to rate the

importance of each individual criterion and the three categories on

a 5-point Likert scale and show the results in Figure 2. We observe

that clarity ranked the highest (by 28 expert reviewers) and, in

particular, that justification is viewed as the most important aspect

of a high-conformity review. Consistency is equally important to

objectivity. While many agree that objectivity is not a deterministic

aspect, half of the experts admit having received or read unfair

reviews while few have received offensive ones. In fact, 24 expert

reviewers rank fairness as equally or more important than offen-

siveness. These results indicate that the experts consider review

fairness as an important concern.

4.2 Task Design
For each of the reviews we consider in our work, we ask participants

to provide ratings for each of the eight conformity criteria, grouped

in three sections corresponding to the three categories introduced

above. In the crowdsourcing scenario, we recruit from Amazon

2
https://www.seas.upenn.edu/ nenkova/AreaChairsInstructions.pdf
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MTurk workers with a “Master” qualification, i.e. workers who

have demonstrated high degree of success in performing a wide

range of tasks across a large number of requesters. The task starts

by explaining how a scholarly review is presented, the criteria (on a

category level), followed by a positive and a negative example. Then,

we show workers a review and ask them to rate each criterion from

1 to 4 with 4 being the best rating. We set the range to be 1-4 instead

of 1-5 as we found in a preliminary study that workers tend to favor

3 in the latter case. Each rating question is accompanied with an

information box that explains the aspect to rate. For questions

regarding justification, fairness and offensiveness, we ask workers

to provide a snippet from the review as a rationale justifying their

grading decision [28]. The rationale can be used as an explanation

for the conformity score assigned to the review. For attention check,

we ask workers to identify the recommendation decision from the

review; results of workers who fail at recognizing review decisions

are excluded. After getting their ratings, we ask the workers to

enter feedback in free text. Each review is rated by three different

workers. The task takes approximately 12 min to complete. Workers

who completed the task received a reward of 1.8 USD.

In the expert scenario, the task is simplified to include only

the rating for each of the criteria. The peer grading of scholarly

reviews is implicit in the current peer review systems: each reviewer

is supposed to read the reviews from other reviewers and decide

whether to keep her original recommendation or not; however,

they are typically not required to express their opinion about other

reviews explicitly. We assume explicit peer grading can stimulate

reviewers to look into other reviews and promote the quality of

the discussions afterwards. We show in the next section through

an experiment with real expert reviewers that the peer grading

is effective when used to weight the reviewers’ recommendation

scores in score aggregation, which approximates meta-decisions

better than existing aggregation methods, e.g., weighted average

by reviewers’ self-indicated confidence.

5 EXPERIMENTAL RESULTS
This section presents the results of our empirical evaluation

3
. We

first conduct a preliminary analysis to understand the effectiveness

of expert and worker grading, then evaluate the performance of

our PGPR framework by comparing it against the state of the art.

Finally, we perform an in-depth analysis of PGPR’s main properties.

We answer the following questions:

• Q1: How effective is expert and worker grading in assessing

review conformity? (Section 5.2).

• Q2: How effective is our proposed human-AI approach in pre-

dicting review conformity? (Section 5.3).

• Q3: How effective is our framework in leveraging peer grading

compared to majority voting? (Section 5.4).

• Q4: How effective is peer grading in improving the conformity

prediction over time when more reviews with ground truth deci-

sions become available? (Section 5.5).

5.1 Experimental Setup
5.1.1 Datasets. We collect data from the ICLR conference, which

provides open access to reviews and evaluation scores for all

3
Source code and data are available at https://github.com/eXascaleInfolab/pgpr.

Table 2: Description of the ICLR Datasets. #Misalign. sub. is
the number of submissions towhich there is at least a review
with decision misaligned with meta-decision; #Misalign. re-
views is the overall number of not-aligned reviews.

Edition #sub. #Misalign. sub. #Misalign. reviews
2017 506 169 530

2018 846 355 1072

2019 1565 670 2060

submissions through OpenReview
4
. We collected reviews for all

submissions to the ICLR conference from 2017 until 2019. Our ICLR

dataset contains in total 2917 submissions and 8838 reviews. 1194

papers have at least one review that is misaligned with the meta-

decision. In our study, we are mainly interested in those cases as

they require some additional effort when reaching a final decision.

Key statistics on the collected dataset are reported in Table 2.

5.1.2 Active Selection of Reviews for Grading. We leverage active

learning to select a subset of the most informative reviews from the

ICLR-2018 and 2019 datasets for grading: for each year, we apply

the model trained in the previous year to all reviews in the current

year, and select the reviews on which the model prediction is most

uncertain (measured by the entropy of the predicted probability)

for crowdsourcing. We select the top-30% (321) reviews and top-

5% (103) reviews from ICLR-2018 and ICLR-2019, respectively, and

show in our experiments that those numbers are sufficient for the

model to converge to optimal performance. We refer to the selected

reviews as “uncertain” reviews and the rest as “certain” ones. We

investigate in our experiments the performance of PGPR on both

categories as well as the impact of the number of graded uncertain

reviews on model training. In total, we crowdsourced a subset of

444 reviews in 2018 and 2019 and collected 1093 grades from 64

crowd workers on those selected reviews.

5.1.3 Data Split. To simulate the real-world application of PGPR,

we evaluate it on different editions of the ICLR conference as fol-

lows: for each year (2018 or 2019), we assume the reviews and the

ground truth from previous years are known, while for the current

year only the reviews are available without the ground truth. For a

subset of the reviews in the current year, we collect grading from

workers. The training data, therefore, contains reviews and deci-

sions from the previous years, and some reviews with crowd labels

from the current year. We take reviews with the ground truth of

the current year and equally split it into validation and test sets.

5.1.4 Label Extraction. We consider the ground truth of a review

conformity as a binary variable indicated by the alignment between

a reviewer decision and the meta-reviewer decision: when both the

reviewer and the meta-reviewer decide to accept or reject a paper,

the ground truth for the review is set to 1, otherwise to 0. Our model

predicts for each review a value between 0 and 1 describing the

probability of the review being conform. The higher the value, the

higher the likelihood of the review to be conform. For the grades

collected from crowd workers, we map it to the interval [0, 1] using

the function t(x) = (x − 1)/4, so that the range of valid grading

matches the range of our model’s predictions.

4
https://openreview.net/
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5.1.5 Neural Architecture and Features. The inputs of our machine

learning model are hand-engineered features along with embed-

dings of the sentences in a review. For the hand-engineered features,

we extract for each review the decision score, the confidence score,

and their difference with the decision and confidence scores of the

other reviews on the same paper. We also compute the review’s

length, the number of citations within the review, and the number

of keywords referring to a paper’s content (e.g., equation, section,

figure). For the textual embeddings, we represent each sentence as

a fixed-size vector by leveraging the pre-trained language model

SciBERT [6]. These inputs are fed to the machine learning com-

ponent of our framework consisting of a multi-input model we

call “Mix-model”. It includes both an attention-based model for the

review’s embedding and a logistic regression for the review’s sta-

tistical features. We concatenate the output of the attention-based

model and logistic regression and use a fully connected layer with

tanh activation followed by a linear layer; the output is generated

by a softmax function (Eq. 2).

5.1.6 Comparison Methods. We compare our approach against the

most applicable techniques for review’s conformity assessment. We

first compare against classification methods designed for the schol-

arly domain: 1) MILNET [45], a Multiple Instance Learning (MIL)

neural model used to classify scholarly reviews (originally for sen-

timent analysis). 2) SciBERT [6], a self-attention-based neural lan-

guage model pre-trained on scientific text consisting of publications

from the computer science and biomedical domains. 3) DoesMR [17],

a Logistic Regression model that takes hand-engineered features

from scholarly reviews for prediction. In addition, we compare

against models developed for non-scholarly review tasks, includ-

ing a general-purpose language model and two models originally

developed for predicting the helpfulness of product reviews: 4) AL-

BERT [26], a pre-trained language model for various NLP tasks, tak-

ing into account inter-sentence coherence to capture fine-grained

information in documents including reviews. 5) PCNN [33], a con-

volutional neural model with context encoding. 6) RAHP [47], an

attention-based model relying on a bidirectional LSTM to capture

the sequential dependencies in text. For DoesMR, in addition to the

original features, we include all features used by our method, such

as the number of citations within the review and the number of

keywords referring to a paper’s content. All other methods use only

textual data and hence cannot leverage hand-engineered features.

We also compare PGPR with its variant Mix-model that only con-

sists of the machine learning component. Note that in Mix-model,

the attention-based model used for the review’s embedding is the

same model used to evaluate SciBERT and the logistic regression

used for the hand-engineered features is similar to DoesMR. All

the comparison methods are trained using the same training data,

i.e., historical reviews with decisions and new reviews with worker

grading, which are aggregated by majority voting.

5.1.7 Parameter Settings. For all the comparison methods, we tune

the hyperparameters on the validation set. This includes the learn-

ing rate searched in {1e-5, 1e-4, 1e-3, 1e-2, 1e-1}, and the batch size

in {8, 16, 32, 64}. For RAHP and PCNN, we vary the dimension of

the embedding vector in {50, 100, 200, 300}. We train the models

for a maximum of 500 epochs and take the versions that achieve

Table 3: Accuracy of approximating meta-decisions with av-
erage review scores and weighted average by self-reported
confidence, expert grading, and worker grading.

Method SEM DSW ICLR

Average 0.33 0.60 0.69

Confidence-weighted 0.50 NA 0.70

Grade-weighted (Experts) 0.83 0.80 NA
Grade-weighted (Workers) NA 0.80 0.73

the best performance on the validation set. For PGPR, after con-

catenating the output from the attention-based model and logistic

regression, we use a fully connected layer with tanh activation and

ten neurons.

5.1.8 Evaluation Metrics. We measure the effectiveness of expert

and worker grading in assessing review conformity by the accuracy

of approximating meta-decisions with the grading-weighted aver-

age of reviewers’ recommendation scores. Given a set of reviews

R on the same paper, we denote the recommendation score of a

review r ∈ R to the paper by sr and the average grading the review
receives by дr . The aggregated score of R is given by:

sR =

∑
r ∈R дr sr∑
r ∈R дr

. (14)

To measure the performance of PGPR and our baselines, we

use accuracy, precision, recall and F1-score over the positive class.

Higher values indicate better performance.

5.2 Preliminary Analysis on Peer Grading
We verify the effectiveness of peer grading on review conformity

by expert reviewers and by crowd workers. We use the grading to

weight reviewers’ recommendation scores in score aggregation, and

compare to other aggregation methods. We compute the accuracy

of approximating meta-decision with the aggregation result.

5.2.1 Grading Reviews by Experts. For our first experiments, we

select seven and five borderline papers from SEM and DSW, respec-

tively. We only consider the borderline papers on which reviewers

have some disagreement over their recommendations. Reviews

from DSW papers are publicly available through OpenReview. For

SEM, as the reviews are not publicly available, we contacted the

reviewers to get their consent before sharing them with their peers.

For both venues, we asked the original reviewers of the same paper

to grade each other’s reviews. 21 reviewers were involved for SEM

providing one review each and 12 reviewers were involved for the

DSW papers providing in total 16 reviews. Results are shown in

Table 3. We observe that the grade-weighted average of the re-

views’ recommendations is better at approximating meta-decisions

than other means of aggregating review scores. The result veri-

fies that peer grading is a better indicator of review conformity

than self-reported confidence scores and can be leveraged to better

approximate meta-decisions than existing aggregation methods.

5.2.2 Grading Reviews by Crowd Workers. For this experiment, we

use the DSW and ICLR datasets. We do not consider the reviews

from SEM since those reviews are not public. Results are shown
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Table 4: Performance (Accuracy, Precision, Recall and F1-score) comparison with baseline methods. The best performance is
highlighted in bold; the second best performance is marked by ‘*’.

Method ICLR-2018 ICLR-2019
Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

MILNET 0.533 0.580 0.770 0.660 0.528 0.560 0.860* 0.670

DoesMR 0.678* 0.710* 0.782 0.740* 0.747* 0.752* 0.838 0.792*

SciBERT 0.540 0.678 0.434 0.524 0.583 0.604 0.778 0.680

ALBERT 0.548 0.652 0.516 0.570 0.567 0.590 0.782 0.670

PCNN 0.523 0.624 0.508 0.562 0.516 0.570 0.645 0.605

RAHP 0.593 0.612 0.784* 0.688 0.501 0.570 0.515 0.540

PGPR 0.781 0.822 0.810 0.810 0.799 0.770 0.917 0.840

in Table 3. We observe that for both venues, the weighted aver-

age leveraging worker grading better approximates meta-decisions

than the weighted average by self-reported confidence scores or the

average without the weighting. Worker grading achieves compara-

ble results to expert grading on DSW reviews. To further compare

worker grading with expert grading in ICLR, we derive the peer

grading according to the agreement between the reviews’ recom-

mendation scores: the mutual grading between two reviewers is

set to 4 if they gave the same score; if two reviewers have the

same decision (e.g., an accept) with different scores, then we set

their mutual grading to 3; if two reviewers have different decisions

with a small difference between their scores (e.g., a weak accept

and a weak reject), we set their mutual grading to 2; otherwise

the mutual grading is set to 1. We calculate the average grading

to the same review by workers and experts and observe that on

67% of the reviews, worker grading is similar to expert grading

(difference < 1). We also observe that workers and experts have a

higher agreement on assigning high grades rather than low ones

and that workers tend to be more “generous" in grading reviews.

Overall, those results are aligned with related work showing that

crowd workers in carefully-designed tasks can provide satisfying

outcomes on domain-specific problems [8, 24].

5.3 Comparison with the State of the Art
Table 4 summarizes the performance of PGPR against all the compar-

ison methods on both ICLR-2018 and ICLR-2019. We make several

observations.

First, we observe that among the comparison methods, DoesMR

outperforms the other embedding or deep neural network mod-

els. Recall that DoesMR relies on hand-engineered features from

scholarly reviews. The result indicates the effectiveness of hand-

engineered features as compared to automatically-learned repre-

sentations in predicting review conformity. This is likely due to

the similarity of the vocabulary used in most reviews, making re-

view content alone not highly predictive of review conformity. In

contrast, we find through DoesMR that hand-engineered features

such as the relative strength of a review recommendation (and con-

fidence) with respect to other reviews on the same paper are highly

predictive of the review conformity. Second, we observe that meth-

ods developed for modeling scholarly reviews generally outperform

those for modeling non-scholarly reviews. In particular, deep neu-

ral networks for predicting the helpfulness of product reviews, i.e.,

PCNN and RAHP, generally reach the lowest performance. These

results indicate that models developed in other domains cannot be

easily transferred to assess review conformity. Among the two pre-

trained language models SciBERT and ALBERT, we observe that

SciBERT, which is pre-trained on corpora including computer sci-

ence publications, does not necessarily outperform ALBERT. Such

a result indicates that language models pre-trained on scientific

publications are not necessarily effective for modeling scholary

reviews.

Most importantly, PGPR achieves the best performance on both

datasets. Overall, it improves the second best method by 15.19%

accuracy and 9.46% F1-score on ICLR-2018 and by 6.51% accuracy

and 6.06% F1-score on ICLR-2019. Such a result underlines the

effectiveness of our approach in integrating peer grading into model

training. The relatively lower improvement on ICLR-2019 compared

to that on ICLR-2018 is likely due to the larger historical data with

ground truth available for training, which we investigate latter in

our experiments.

5.4 Ablation Studies & Uncertain Reviews
The comparison between PGPR and machine learning baselines

is shown in Figure 3. The Mix-model, which consists of the ma-

chine learning component of PGPR, outperforms both DoesMr

and SciBERT by 11.5% and 40.9% accuracy and by 5.8% and 33.5%

F1-score, respectively. These results show the complementary pre-

dictive power of hand-engineered features and embeddings. We

observe that PGPR outperforms the Mix-model by 5.3% accuracy

and by 2.8% F1-score on average on both datasets. This result indi-

cates that using worker’s grading improves substantially the model

performance. We also observe that PGPR outperforms Mix-model

additionally trained with workers grading (aggregated by majority

voting), i.e., Mix-model+MV, by 4.8% accuracy and 2.47% F1-score.

These results show that PGPR is better at utilizing worker’s grading

for conformity prediction by taking into account worker reliability.

Table 5 shows a breakdown comparison between the perfor-

mance of Mix-model and PGPR using the uncertain (actively se-

lected) and certain reviews. We observe that PGPR outperforms

the Mix-model by 23.53% and by 5.63% on the uncertain reviews

from ICLR-2018 and ICLR-2019, respectively. We also observe that

PGPR has little improvement overMix-model on the certain reviews.

These results show that considering workers’ grading is important

in predicting the conformity of uncertain reviews accurately while
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Figure 3: Comparison between PGPR and machine learning
baselines measured by (a) Accuracy and (b) F1-score.

Table 5: Analysis of PGPR performance in terms of accuracy
on certain and uncertain reviews.

Method
Dataset

ICLR-18 ICLR-19
all certain uncertain all certain uncertain

Mix-model 0.752 0.845 0.510 0.793 0.801 0.764

PGPR 0.781 0.846 0.630 0.799 0.801 0.807

having little effect on certain ones. We also find that despite the

importance of worker’s grading in PGPR, the grading alone is not

sufficient to predict the conformity of reviews. Using a majority ag-

gregation of grading on the uncertain reviews leads to an accuracy

of 0.61 and 0.73 on ICLR-2018 and ICLR-2019, respectively; i.e., less

by 3.17% and 9.54% than our framework’s performance. This result

shows that combining workers grading with machine learning is

crucial for an accurate prediction of review’s conformity.

5.5 Grading Effect Over Time
The key advantage of our framework is leveraging peer grading

for conformity prediction. In what follows, we study the impact

of varying the amount of graded reviews on the performance of

our framework. We measure the impact on PGPR performance by

varying the percentage of the actively selected reviews. We split the

graded reviews by sact where we vary sact between 0% and 100%,

where sact = 50% means that we use 50% of the graded reviews in

addition to the historical data for training. The results are shown

in Figure 4 where we use the same y-scale for ICLR-2018 and ICLR-

2019 for ease of comparison.We observe that the performance of our

framework increases along with the increase of sact on the ICLR-

2018 dataset while it gradually stabilizes with the increase of sact
on the ICLR-2019 data. This on one hand, confirms the effectiveness

of integrating peer grading for model performance. On the other

hand, using PGPR in subsequent editions of the same conference

requires less grading from one year to the next, as it gradually

“learns" the conformity standards of the conference. This property

is highly desirable in real-world scenarios as with the increase of the

number of submissions (and consequently the number of reviews)

our model improves its prediction on the conformity of reviews

while requiring fewer reviews to be graded.
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Figure 4: Performance of PGPR over the two years (2018-
2019) with an increasing number of actively graded reviews.

6 CONCLUSION
In this paper, we presented a human-AI approach that estimates

the conformity of scholarly reviews by leveraging both human and

machine intelligence. We introduced peer grading mechanisms that

involve peer reviewers to grade each others’ reviews anonymously

and a Bayesian framework that seamlessly integrates peer grading

with a machine learning model for review conformity assessment.

The peer gradingmechanism can be easily incorporated into current

peer review systems without inducing much extra effort from the

reviewers. The machine learning model trained by the Bayesian

framework can continuously learn from new grading from peer

reviewers over time. Through a crowdsourced, longitudinal study

over a three years-worth dataset, we showed that our approach

substantially improves the state of the art and that the machine

learning in our framework can largely improve the performance

over three consecutive years.

In future work, we plan to study transfer learning for our pro-

posed framework such that it can be applied to detect low-conformity

reviews in other conferences and journals.
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A APPENDIX
In this section, we present the proofs for our lemmas. We apply the

same notational conventions as in the paper. We use the symbol ∝

to denote that two variables are proportionally related.

A.1 Proof of Lemma 3.1
Proof. To minimize the KL divergence, we assume the variational

distribution follows the same distribution as the latent variable [44].

For q(zi ), we obtain

q(zi ) ∝ hq(rд,bд )[p(zi , r ,b,Ai,∗,W)], (15)

wherehq(rд,bд ) denotes the exponential of expectation exp {Ex [log(·)]}

with x being a variational distribution. According to the mean field

approximation, the probability p(zi , r ,b,Ai,∗,W) factorizes over

Gi and Eq.(15) can be written as:

q(zi ) ∝
∏
д∈Gi

hq(rд,bд )[p(zi , rд ,bд ,Ar,д ,W)]. (16)

By applying the chain rule on the probability p(zi , r ,b,Ai,∗,W)

and keeping only the terms that depend on zi , we get:

q(zi ) ∝ p(zi |xi ,W)
∏
д∈Gi

hq(rд,bд )[p(Ar,д |zi , rд ,bд)]︸                              ︷︷                              ︸
T1

(17)

The term T1 can be expressed using the probability density function

of a Gaussian distribution of p(Ar,д |zi , rд ,bд) where the logarithm
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of the Gaussian distribution is given by

log(N(zi + bд ,
1

rд
) ∝

1

2

log rд −
rд

2

(Ai,д − zi − bд)
2

(18)

Then, we keep the terms dependent on zi and apply Erд,bд :

Erд ,bд [log(N(zi + bд,
1

rд
)]∝Erд ,bд [

rд
2

]×Erд ,bд [(Ai,д − zi − bд )2]

(19)

We expand the second term by the square factor and get:

(Ai,д − zi − bд )2 = A2

i,д + z
2

i + b
2

д + 2zibд − 2Ai,дzi − 2Ai,дbд (20)

We eliminate the terms independent from zi and apply Erд,bд :

Erд ,bд [(Ai,д − zi − bд )2] = Erд ,bд [z
2

i ] + 2Erд ,bд [zi ]Erд ,bд [bд ]

− 2Erд ,bд [Ai,д ]Erд ,bд [zi ] (21)

Using the properties of bд distribution and since Ai,д and zi do
not depend on bд , the terms in Eq.(21) are expressed as follows:

Ebд [Ai,д] = Ai,д ,Ebд [z
2

i ] = z2i ,Ebд [zi ] = zi ,Ebд [bд] =mд (22)

The first term in Eq.(19) is the mean of rд ’s distribution, i.e.,
Aд
Bд .

We replace the second term by the expressions in Eqs.(21)-(22):

Erд,bд [log(N(zi + bд ,
1

rд
)]∝

Aд

2Bд
×(z2i + 2zi (mд −Ai,д)) (23)

We now replace in Eq.(17) p(zi |xi ,W) by the probability density

function of zi and the term T1 by its simplification in Eq.(23).

q(zi ) ∝ N(µi , σi )
∏
д∈Gi

exp {
Aд
2Bд

×(z2i + 2zi (mд −Ai,д ))}

∝ exp {
−1

2

[(
∑
д

Aд
Bд
+

1

σ 2

i
)z2i − 2(

∑
д

Aд
Bд

(Ai,д −mд ) +
µi
σ 2

i
)]zi }

∝ N(
W
V

,
1

V
),

whereW =
∑
д
Aд
Bд (Ai,д −mд)+

µi
σ 2

i
andV = (

∑
д
Aд
Bд +

1

σ 2

i
), which

concludes the proof. □

A.2 Proof of Lemma 3.2
Proof. Following the reasoning in Eq.(15)-(17) for rд , we get:

q(rд ) ∝ p(rд |Aд, Bд )
∏
i∈Iд

hq(zi ,bд )[p(Ar ,д |zi , rд, bд )]︸                                 ︷︷                                 ︸
T2

(24)

To incrementally update the grader reliability, we simplify the term

T2 in Eq.(24). First, we use Eq.(20) to expand the term (Ai,д−zi−bд)
2

and apply the expectation Ezi ,bд (·). Then, using the properties of

the Gaussian distribution of zi and bд , we get:

Ezi ,bд [zi ]=µi , Ezi ,bд [z
2

i ]=σ
2

i , Ezi ,bд [bд ]=mд, Ezi ,bд [b
2

д ]=
1

αд
(25)

The term Ezi ,bд [(Ai,д − zi − bд)
2] can be simplified using the

expressions in Eq.(25). We denote the simplification withMi

Mi = A
2

i,д + σ
2

i +
1

αд
+ 2(µimд −Ai,д µi −Ai,дmд ) (26)

The expectation of Eq.(18) conditioned on zi and bд can be simpli-

fied using Eq.(26):

Ezi ,bд [log(N(zi + bд ,
1

rд
)] ∝

1

2

log rд −
rд

2

Mi (27)

Now, we can replace the term T2 in Eq.(24) by its expression in

Eq.(27) and the probability p(rд |Aд ,Bд) by its density function.

q(rд ) ∝ Γ(Aд, Bд )
∏
i∈Iд

exp {
1

2

log rд −
rд
2

Mi }

∝
1

Γ(Aд )
B
Aд
д r

Aд+
|Iд |

2
−1

д exp {−(bд +
1

2

∑
i∈Iд

Mi )rд }

∝ Gamma(X , Y )

whereX = Aд+
|Iд |

2
andY = Bд+

1

2
(
|Iд |

αд +
∑
i [A

2

i,д+σ
2

i +2µi (mд−

Ai,д) − 2Ai,дmд]) which concludes the proof. □

A.3 Proof of Lemma 3.3
Proof. Following the reasoning in Eq.(15)-(17) for bд , we get:

q(bд ) ∝ p(bд |mд, αд )
∏
i∈Iд

hq(zi ,rд )[p(Ar ,д |zi , rд, bд )]︸                                 ︷︷                                 ︸
T3

(28)

To incrementally update worker’s bias, we simplify the term T3
in Eq.(28). In order to do that, we use Eq.(20) to expand the term

(Ai,д−zi−bд)
2
and apply the expectationEzi ,rд (·). Then, we use the

properties of the Gaussian distribution of zi and the independence

property of bд with respect to zi and rд and get:

Ezi ,rд [zi ] = µi , Ezi ,rд [z
2

i ] = σ
2

i , Ezi ,rд [bд ] = bд, Ezi ,rд [b
2

д ] = b
2

д
(29)

Using the expressions in Eq.(29) and by eliminating the terms that

do not depend on bj , the expectation Ezi ,bд [(Ai,д − zi − bд)
2] can

be simplified as follows.

Ezi ,bд [(Ai,д − zi − bд)
2] = b2д + 2(µi −Ai,д)bд (30)

The expectation term Ezi ,rд [log(N(zi + rд ,
1

rд )] is given by:

Ezi ,rд [log(N(zi + rд,
1

rд
)] ∝ −

Aд
2Bд

(b2д + 2(µi −Ai,д )bд ), (31)

where

Aд
Bд is the mean of the reliability density function. We can

now replace the term T3 in Eq.(28) by its expression in Eq.(31) and

the probability p(bд |mд ,αд) by its density function.

q(bд ) ∝ N(mд, bд )
∏
i∈Iд

exp{−
Aд
2Bд

(b2д + 2(µi −Ai,д )bд ))}

∝ exp(−
1

2

((
Aд |Iд |
bд

+ αд )b2д − 2[αдmд +
Aд
bд

∑
i
(Ai,j − µi )]bд ))

∝ N(
L
K
,
1

K
)

where K =
Aд |Iд |
Bд + αд and L = αдmд +

Aд
Bд

∑
r (Ai,д − µi ) which

concludes the proof. □
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