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B Supplementary Mathematical Appendix

B.1 A Necessary and Sufficient Condition

Proposition B.1. In the specific model introduced in section 2, let m be odd and
∑

j dj =: l

be even. The sincere strategy profile σ̂ is an equilibrium if and only if the following conditions

hold.

1. If ∃i ∈ N with di = 0, then∑
x=1,3,...,m

(
p

m+x
2 (1− p)

m−x
2 − (1− p)

m+x
2 p

m−x
2

)
[ν(x, 1)− ν(−x, 1)] ≥ 0, where ν(x, 1)

denotes the number of “sub-multisets” of multiset {d1 + 1, ..., dm + 1} which are of size
m+x

2 and whose elements sum up to m+l+1
2 .2

2. ∀dj ∈ {d1, ..., dm} such that dj > 0 and for all ȳ ∈ {1, 2, dj , dj + 1, dj + 2, 2dj , 2dj +

1, 2dj + 2} the following holds:

(i) if ȳ even, then
∑

x=−m+2,−m+4,...,m

(
p

m+x
2 (1− p)

m−x
2 − (1− p)

m+x
2 p

m−x
2

)
·
∑

y=1,3,...,ȳ−1 ν(x, y|dj) ≥ 0, and

(ii) if ȳ odd, then
∑

x=−m+2,−m+4,...,m

(
p

m+x
2 (1− p)

m−x
2 − (1− p)

m+x
2 p

m−x
2

)
·
[∑

y=1,3,...,ȳ−2

(
ν(x, y|dj) + 1

2ν(x, ȳ|dj)
)]
≥ 0,

where ν(x, y|dj) denotes the number of “sub-multisets” of multiset {d1 + 1, ..., dm + 1}
which include element dj + 1, are of size m+x

2 , and whose elements sum up to m+l+y
2 .

Proof. Part I shows necessity; part II shows sufficiency.

1We start with B since there is already an appendix A following the main text.
2In a multiset the same numbers can occur several times. In full analogy to the notion of a subset, we call

a multiset that is contained in another multiset a “sub-multiset.”
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Part I. “ONLY IF”. Suppose σ̂ is an equilibrium. We show that the two conditions of

Prop. B.1 are satisfied.

1. Since σ̂ is an equilibrium, no player can beneficially deviate. In particular, if there is a

non-expert i ∈ N without a link, i.e., the qualification of the first condition of Prop. B.1

holds, then for any deviation σ′i ∈ Σ′i = {A,B}, we have EU(σ̂−i, σ̂i) ≥ EU(σ−i, σ
′
i).

W.l.o.g. suppose that σ′i = B. Letting y denote the outcome under σ̂ defined as the

number of votes for A minus the number of votes for B, we observe that the deviation

reduces the outcome y by one vote (because i votes for B instead of abstaining). The

deviation σ′i thus only affects the outcome if y = +1 and turns it into y′ = 0 (i.e., if

A wins by one vote under σ̂, while there is a tie under σ′ := (σ̂−i, σ
′
i)). Restricting

attention to these draws of nature, we must still have that the sincere strategy profile

leads to higher expected utility since it is an equilibrium by assumption:

EU|y=1(σ̂−i, σ̂i) ≥ EU|y=1(σ̂−i, σ
′
i) =

1

2
. (B.1)

The right-hand side (RHS) is 1
2 because this is the expected utility of a tie. Some more

notation is helpful. Let x denote a distribution of signals defined as the number of

A∗-signals minus the number of B∗-signals received by all experts. Let P (x|A) denote

the likelihood that the signals are x when the true state is A, and likewise for P (x|B).

Let P̂ (x, y) designate the probability that signals x lead to outcome y under σ̂. Then

we can rewrite inequality B.1 as

1
2

∑
x=−m,−m+2,...,m P (x|A)P̂ (x, 1)

1
2

∑
x=−m,−m+2,...,m

(
P (x|A)P̂ (x, 1) + P (x|B)P̂ (x, 1)

) ≥ 1

2
, (B.2)

since the expected utility under σ̂ when restricting attention to the draws of nature

that lead to a win of A by one vote equals the probability that A is true under these

conditions.

This simplifies to∑
x=−m,−m+2,...,m

P (x|A)P̂ (x, 1) ≥
∑

x=−m,−m+2,...,m

P (x|B)P̂ (x, 1) (B.3)

and further to ∑
x=−m,−m+2,...,m

(P (x|A)− P (x|B)) P̂ (x, 1) ≥ 0. (B.4)

Now, we split the sum into positive and negative values of x and finally rejoin them
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by using P (x|A) = P (−x|B):∑
x=−m,−m+2,...,m

(P (x|A)− P (x|B)) P̂ (x, 1) ≥ 0

⇔
∑

x=1,3,...,m

(P (x|A)− P (x|B)) P̂ (x, 1)

+
∑

x=−m,−m+2,...,−1

(P (x|A)− P (x|B)) P̂ (x, 1) ≥ 0

⇔
∑

x=1,3,...,m

(P (x|A)− P (x|B)) P̂ (x, 1)

+
∑

x=1,3,...,m

(P (−x|A)− P (−x|B)) P̂ (−x, 1) ≥ 0

⇔
∑

x=1,3,...,m

(P (x|A)− P (x|B)) P̂ (x, 1)

+
∑

x=1,3,...,m

(P (x|B)− P (x|A)) P̂ (−x, 1) ≥ 0

⇔
∑

x=1,3,...,m

(P (x|A)− P (x|B)) [P̂ (x, 1)− P̂ (−x, 1)] ≥ 0

⇔
∑

x=1,3,...,m

(P (x|A)− P (−x|A)) [P̂ (x, 1)− P̂ (−x, 1)] ≥ 0.

Independent of the strategy profile, P (x|A) =
(
m

m+x
2

)
p

m+x
2 (1 − p)

m−x
2 . For a draw

of signals with difference x (in numbers of A∗-signals and B∗-signals), the outcome

y = +1 is reached under σ̂ if there are exactly m+l+1
2 votes for A. All of the A-votes

under σ̂ can be partitioned such that each element of the partition is referred to an

expert j with signal A∗. Such an expert accounts for dj + 1 votes because there is

her vote and the votes of her audience. Hence, the probability that draw of nature x

leads to outcome y = +1 is determined by the frequency with which m+x
2 experts who

have received signal A∗ account for exactly m+l+1
2 votes. This frequency is given by

the number of “sub-multisets” of multiset {d1 + 1, ..., dm+ 1} which have size m+x
2 and

whose elements sum up to m+l+1
2 .

Considering all possible allocations of m+x
2 A∗-signals among m experts, there are(

m
m+x

2

)
possibilities (which is the number of all “sub-multisets” of multiset {d1+1, ..., dm+

1} of size m+x
2 ). Therefore, the probability that signals x lead to outcome y = +1 is

P̂ (x,+1) =
ν(x, 1)(

m
m+x

2

) ,
where ν(x, 1) denotes the number of “sub-multisets” of multiset {d1 + 1, ..., dm + 1} of

size m+x
2 and sum m+l+1

2 .
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Plugging the equations for P (x|A) and P̂ (x, 1) into the inequality derived above yields:

∑
x=1,3,...,m

((
m
m+x

2

)
p

m+x
2 (1− p)

m−x
2 −

(
m
m−x

2

)
(1− p)

m+x
2 p

m−x
2

)

·

[
ν(x, 1)(

m
m+x

2

) − ν(−x, 1)(
m

m−x
2

) ] ≥ 0.

(B.5)

Since
(
m

m−x
2

)
=
(
m

m+x
2

)
, these factors cancel out such that we get

∑
x=1,3,...,m

(
p

m+x
2 (1− p)

m−x
2 − (1− p)

m+x
2 p

m−x
2

)
[ν(x, 1)− ν(−x, 1)] ≥ 0. (B.6)

This shows that the first condition of Prop. B.1 is indeed implied by the assumption

that σ̂ is an equilibrium.

2. Let us turn to the second condition of Prop. B.1 by considering some expert j ∈M with

dj > 0. W.l.o.g. let her signal be A∗. Under the sincere strategy profile j will vote and

communicate her signal, i.e., A. Abstention reduces the outcome y by one vote, voting

the opposite reduces the outcome y by two votes. Sending no message reduces the

outcome by dj votes. Sending the opposite message reduces the outcome by 2dj votes.

Therefore, there are feasible deviations for j that reduce the outcome by a number of

votes ȳ which is in the following set {1, 2, dj , dj + 1, dj + 2, 2dj , 2dj + 1, 2dj + 2}.

By the assumption that σ̂ is an equilibrium, there is no beneficial deviation for j.

That is, for any deviation σ′j ∈ Σ′j , we have EU sj=A∗(σ̂−j , σ̂j) ≥ EU sj=A∗(σ̂−j , σ
′
j).

Considering some deviation σ′j and the corresponding reduction of the outcome by ȳ,

the implemented alternatives only differ for draws of nature such that y > 0 and y′ ≤ 0,

i.e for outcomes y such that 0 < y ≤ ȳ (because only then the reduction of support for

the received signal has any effect). Therefore, the inequality of expected utility must

also hold when focusing on these cases, i.e.

EU
sj=A∗

|0<y≤ȳ(σ̂−j , σ̂j) ≥ EU
sj=A∗

|0<y≤ȳ(σ̂−j , σ
′
j). (B.7)

(i) Suppose first that ȳ is even. Then the deviation σ′j turns all outcomes in which A

wins and 0 < y ≤ ȳ − 1 into a win of alternative B (outcomes y = ȳ are not possible

because y is odd). Therefore, the expected utility of strategy profile σ̂ (respectively,

σ′ := (σ̂−j , σ
′
j)), focusing on these cases, is the probability that A (respectively, B) is

true in these cases. Let Psj=A∗(x|ω = A) =: PA(x|A) denote the probability that the

signal distribution is x and that expert j has received signal A∗ when the true state is A,

and similarly for Psj=A∗(x|ω = B) =: PA(x|B). Moreover, let P̂sj=A∗(x, y) =: P̂A(x, y)

be the probability that the signals x lead to outcome y under σ̂, given that expert j

has received signal A∗. Note that P̂A(x, y) is not defined for x = −m because if all

experts have received signal B∗ it is not possible that expert j has received signal A∗.

4



Then we can rewrite inequality B.7 as∑
x=−m+2,−m+4,...,m

PA(x|A)
∑

y=1,3,...,ȳ−1

P̂A(x, y) ≥

∑
x=−m+2,−m+4,...,m

PA(x|B)
∑

y=1,3,...,ȳ−1

P̂A(x, y).
(B.8)

inequality B.8 incorporates that the likelihood of A being true is greater or equal than

the likelihood of B being true given that the deviation is effective and that expert j

has received signal A∗.3 This inequality simplifies to∑
x=−m+2,−m+4,...,m

(PA(x|A)− PA(x|B))

·
∑

y=1,3,...,ȳ−1

P̂A(x, y) ≥ 0.
(B.9)

Independent of the strategy profile, PA(x|A) =
(
m

m+x
2

)
p

m+x
2 (1 − p)

m−x
2 ·

m+x
2
m and

PA(x|B) =
(
m

m−x
2

)
p

m−x
2 (1 − p)

m+x
2 ·

m+x
2
m . The factor before the multiplication sign

is the probability that there are exactly m+x
2 A∗-signals. Given such a distribution,

the factor after the multiplication sign is the probability that expert j has received

signal A∗.

For a distribution of signals x, the outcome y is reached under σ̂ if there are exactly
m+l+y

2 votes for A. All of the A-votes under σ̂ can be partitioned such that each element

is referred to an expert k with signal A∗. Such an expert accounts for dk + 1 votes

(because there is her vote and the votes of her audience). By assumption, expert j has

received signal A∗ and thus there are at least dj+1 votes for A under σ̂. The probability

that draw of nature x leads to outcome y is determined by the frequency that the m+x
2

experts who have received signal A∗ account for exactly m+l+y
2 votes. Hence, this

frequency is given by the number of “sub-multisets” of multiset {d1 + 1, ..., dm + 1}
which include element dj + 1, are of size m+x

2 , and whose elements sum up to m+l+y
2 .

Considering all possible allocations of m+x
2 A∗-signals among m experts such that j

also receives signal A∗, there are
( m−1

m+x
2
−1

)
possibilities (which is the number of all “sub-

multisets” of multiset {d1 + 1, ..., dm + 1} which include element dj + 1 and are of size
m+x

2 ). Therefore, the probability that signals x lead to outcome y, given that expert j

has received signal A∗, is

P̂A(x, y) =
ν(x, y|dj)( m−1

m+x
2
−1

) ,
where ν(x, y|dj) denotes the number of “sub-multisets” of multiset {d1 + 1, ..., dm + 1}
which include element dj + 1, are of size m+x

2 , and whose elements sum up to m+l+y
2 .

3To get the absolute probabilities of A (respectively B) being true, we can divide the LHS (respectively
the RHS) of inequality B.8 by the sum of the LHS and the RHS.
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Hence, we can rewrite inequality B.9 as follows∑
x=−m+2,−m+4,...,m

(PA(x|A)− PA(x|B))
∑

y=1,3,...,ȳ−1

P̂A(x, y) ≥ 0

⇔
∑

x=−m+2,−m+4,...,m

(( m
m+x

2

)
p

m+x
2 (1− p)

m−x
2

m+x
2

m

−

(
m

m−x
2

)
(1− p)

m+x
2 p

m−x
2

m+x
2

m

) ∑
y=1,3,...,ȳ−1

ν(x, y|dj)( m−1
m+x

2
−1

) ≥ 0

⇔
∑

x=−m+2,−m+4,...,m

(
m

m+x
2

)
m+x

2

m

(
p

m+x
2 (1− p)

m−x
2 − (1− p)

m+x
2 p

m−x
2

)
·

∑
y=1,3,...,ȳ−1

ν(x, y|dj)( m−1
m+x

2
−1

) ≥ 0.

We have used that
(
m

m+x
2

)
=
(
m

m−x
2

)
. Finally, we observe that the factors

(
m

m+x
2

)
,

m+x
2
m ,

and 1

( m−1
m+x

2 −1
)

simplify to one because
( m
m+x

2
)

( m−1
m+x

2 −1
)

= m
m+x

2

such that we get

∑
x=−m+2,−m+4,...,m

(
p

m+x
2 (1− p)

m−x
2 − (1− p)

m+x
2 p

m−x
2

) ∑
y=1,3,...,ȳ−1

ν(x, y|dj) ≥ 0

(B.10)

We have shown that inequality B.10, which coincides with condition 2(i) of Prop. B.1,

holds for any ȳ ∈ {1, 2, dj , dj + 1, dj + 2, 2dj , 2dj + 1, 2dj + 2} even.

(ii) Suppose now that ȳ is odd. (Still, we keep the assumption that some expert

j ∈ M with dj > 0 has received signal A∗ and considers a deviation σ′j that reduces

the outcome by ȳ). Then the deviation σ′j turns all outcomes in which A wins and

0 < y ≤ ȳ into a win of alternative B for y = 1, 3, ..., ȳ − 2 and into a tie for y = ȳ.

Therefore,

EU
sj=A∗

|0<y≤ȳ(σ̂−j , σ
′
j) =∑

x=−m+2,−m+4,...,m(PA(x|B)(
∑

y=1,3,...,ȳ−2 PA(x,y)+ 1
2
P̂A(x,ȳ))+ 1

2
PA(x|A)P̂A(x,ȳ))∑

x=−m+2,−m+4,...,m(PA(x|A)+PA(x|B))
∑

y=1,3,...,ȳ P̂A(x,y)
.

The denominator is the probability that an outcome under σ̂ is reached such that

the deviation has some effect. The numerator consists of the probability that B is

true for the cases where the deviation leads to a win of alternative B and of half the

probabilities that A or B are true when the deviation leads to a tie.

The expected utility of the sincere strategy profile amounts to

EU
sj=A∗

|0<y≤ȳ(σ̂−j , σ̂j) =
∑

x=−m+2,−m+4,...,m PA(x|A)(
∑

y=1,3,...,ȳ−2 P̂A(x,y)+P̂A(x,ȳ))∑
x=−m+2,−m+4,...,m(PA(x|A)+PA(x|B))

∑
y=1,3,...,ȳ P̂A(x,y)

.

The numerator is the probability that A is true under the cases where the deviation has

some effect. Since the denominator is the same as above, we can rewrite inequality B.7

as∑
x=−m+2,−m+4,...,m

(
PA(x|A)

(∑
y=1,3,...,ȳ−2 P̂A(x, y) + P̂A(x, ȳ)

)
− PA(x|B)

·
(∑

y=1,3,...,ȳ−2 P̂A(x, y) + 1
2 P̂A(x, ȳ)

)
− 1

2PA(x|A)P̂A(x, ȳ)
)
≥ 0 and further simplify
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it to ∑
x=−m+2,−m+4,...,m

(PA(x|A)− PA(x|B))

·

 ∑
y=1,3,...,ȳ−2

P̂ (x, y|dj) +
1

2
P̂A(x, ȳ)

 ≥ 0.

(B.11)

Now, we plug in PA(x|A) =
(
m

m+x
2

)
p

m+x
2 (1−p)

m−x
2

m+x
2
m and PA(x|B) =

(
m

m−x
2

)
p

m−x
2 (1−

p)
m+x

2

m+x
2
m ; as well as P̂A(x, y) =

ν(x,y|dj)

( m−1
m+x

2 −1
)
. This yields:

∑
x=−m+2,−m+4,...,m

(
m
m+x

2

) m+x
2

m

(
p

m+x
2 (1− p)

m−x
2 − (1− p)

m+x
2 p

m−x
2

)

·

 ∑
y=1,3,...,ȳ−2

ν(x, y|dj)( m−1
m+x

2
−1

) +
1

2

ν(x, ȳ|dj)( m−1
m+x

2
−1

)
 ≥ 0.

(B.12)

Again, the factors
(
m

m+x
2

)
,

m+x
2
m , and 1

( m−1
m+x

2 −1
)

cancel out since their product is 1. Hence,

inequality B.12 becomes

∑
x=−m+2,−m+4,...,m

(
p

m+x
2 (1− p)

m−x
2 − (1− p)

m+x
2 p

m−x
2

)

·

 ∑
y=1,3,...,ȳ−2

ν(x, y|dj) +
1

2
ν(x, ȳ|dj)

 ≥ 0.

(B.13)

Inequality B.13 holds for any ȳ ∈ {1, 2, dj , dj + 1, dj + 2, 2dj , 2dj + 1, 2dj + 2} odd and

coincides with condition 2(ii) of Prop. B.1.

We have derived the implications for an arbitrary expert with degree dj > 0 and for

some arbitrary ȳ ∈ {1, 2, dj , dj + 1, dj + 2, 2dj , 2dj + 1, 2dj + 2}. The derived conditions

2(i) and 2(ii) must hence hold for any dj ∈ {d1, ..., dm} such that dj > 0. For the

case of the empty network, in which no single expert has an audience, the strategy

profile σ̂ is not interesting to study because communication is impossible, but formally

still Prop. B.1 applies. In this special case condition 2 is trivially satisfied. Thus, we

have shown that if σ̂ is an equilibrium, then the second condition of Prop. B.1 is also

satisfied.

Part II. “IF”. Suppose that the two conditions of Prop. B.1 are satisfied. We show that

σ̂ is an equilibrium by deriving the implications of these two conditions for every kind of

player.

• Non-experts without a link: Consider any non-expert i ∈ N with di = 0. The set of

strategies is {A,B, φ} and σ̂i = φ. Suppose condition 1 of Prop. B.1 holds, which is

7



inequality B.6. In part I of the proof we used a sequence of transformations to rewrite

inequality B.1 as inequality B.6. Since these were all equivalence transformations,

the assumption that inequality B.6 holds implies that inequality B.1 holds. Thus,

condition 1 of Prop. B.1 implies that for a non-expert without a link deviating from σ̂

does not increase expected utility, given that the outcome is y = +1, i.e., given that

the deviation has any effect on the outcome.

• Experts with an audience: Consider any expert j ∈ M with dj > 0. This expert

has (3 × 3)2 = 81 strategies because she chooses one of three messages and one of

three voting actions after receiving one of two signals. To evaluate different strategies

we can assume w.l.o.g. that the expert has received signal A∗ because neither the

utility function nor the strategy profile depends on the label of the alternatives. This

reduces the number of strategies to nine. Consider any deviation σ′j . This deviation

reduces the voting outcome y that is attained under σ̂ by a number ȳ ∈ {1, 2, dj , dj +

1, dj + 2, 2dj , 2dj + 1, 2dj + 2}. For each of these numbers conditions 2(i) and 2(ii)

of Prop. B.1 are equivalent to inequality B.7 since the conditions 2(i) and 2(ii) were

derived by equivalence transformations of inequality B.7. Thus, for any deviation of

an expert with an audience, the expected utility is weakly smaller than under σ̂, when

restricting attention to the cases where the deviation has some effect on the outcome

and hence in general as well.

• Experts without an audience: Consider any expert j ∈M with dj = 0. W.l.o.g. assume

that j has received signal A∗. Under σ̂ expert i would vote A. Alternatively, she can

vote B respectively abstain, which reduces the outcome y by two respectively by one

vote. (These deviations have already been considered for experts with an audience

when letting ȳ = 2, respectively, ȳ = 1.) These deviations are not increasing expected

utility since condition 2(i) of Prop. B.1 holds in particular for ȳ = 2 and condition 2(ii)

of Prop. B.1 holds in particular for ȳ = 1 such that inequality B.7 is satisfied.

• Non-experts with a link: Consider any non-expert i ∈ N with di = 1. W.l.o.g. assume

that i has received message A. Under σ̂ non-expert i votes A. Alternatively, he can

vote B respectively abstain, which reduces the outcome y by two respectively by one

vote. (The effect of these two deviations is as if an expert with signal A∗ would vote

for B respectively abstain.) Again, since condition 2(i) of Prop. B.1 holds in particular

for ȳ = 2 and condition 2(ii) of Prop. B.1 holds in particular for ȳ = 1, inequality B.7

is satisfied such that these deviations do not increase expected utility.

We have shown in part II of the proof that the conditions 1 and 2 provided in Prop. B.1

imply that no player can beneficially deviate from σ̂.

B.2 Equilibrium Analysis of Examples 1, 2, and 3

We define the concept of a transmission network g∗ ⊆ g as follows: A link g∗ij between non-

expert i ∈ N and expert j ∈ M exists if and only if j truthfully transmits her signal to i.
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Truthful transmission requires that (1) the expert sends a message m∗j ∈ {A,B, ∅} whenever

her signal is A∗ and sends a different message m∗
′
j ∈ {A,B, ∅} ,m∗

′
j 6= m∗j whenever her signal

is B∗; and that (2) the posterior belief of the non-expert, conditional on the message received,

equals the posterior belief of the expert, conditional on her signal. In equilibrium, (1) implies

(2). A transmission network g∗ arises in the communication stage on the equilibrium path.

Note that different communication strategies support a given g∗, e.g., sending message A

after signal A∗ and message B after signal B∗ transmits the same information as sending

message B after signal A∗ and message A after signal B∗. Since we are only interested in

the information transmission (and voting behavior) in equilibrium and not in the precise

“language” that transmits the information, we will not fully specify the communication

strategies but refer to the resulting transmission network instead. Hence, we can drop any

explicit reference to the full strategy profiles σ. Let v denote the strategy profile of all players

on the voting stage. Then, any type of equilibrium of our Examples 1,2, and 3 can be fully

characterized by g∗ and v. Note that any two equilibria that are characterized by a given g∗

and v are identical with respect to all equilibrium beliefs, voting strategies and outcomes.4

Let m̃i (sj) ∈ {A,B, ∅} denote the meaning that non-expert i ascribes to message m∗j if

g∗ij = 1 for some expert j who received signal sj ∈ {A∗, B∗}: i believes that the expert’s vote

recommendation is m̃i, with m̃i = A indicating a recommendation to vote for A, m̃i = B

indicating a recommendation to vote for B, and m̃i = ∅ indicating a recommendation to

abstain. Slightly abusing notation, we write vi (m̃i) ∈ {A,B, ∅} to denote the voting strategy

of non-expert i with g∗ij = 1 for some j. Analogously, the voting strategy of a non-expert i

with g∗ij = 0 for all j ∈M is denoted by vi (∅) ∈ {A,B, ∅}. Note that m̃i = ∅ implies g∗ij = 0

and gij = 1 in the three examples. Let s̃l denote either signal sl ∈ {A∗, B∗} received by

l ∈M or the meaning m̃l of the message received by l ∈ N . Then, we write vl (s̃l) ∈ {A,B, ∅}
to denote the voting strategy of l ∈M ∪N .

We now define the following four selection criteria that guide our equilibrium analysis:

1. Purity: The equilibrium is in pure strategies.

2. Symmetry: Any two experts, as well as any two non-experts, with the same degree

in the transmission network apply identical strategies.

3. Monotonicity: If vi
(
m̃i
′) = m̃i for some m̃i

′ ∈ {A,B, ∅}, then vi (m̃i) = m̃i; and if

m̃i

(
s′j

)
= sj for some s′j ∈ {A,B}, then m̃i (sj) = sj .

4. Neutrality: (i) Unbiased voting: Either vl (s̃l) = s̃l for all s̃l ∈ {A,B} or vl (s̃l) 6= s̃l

for all s̃l ∈ {A,B}; and vi (∅) = ∅. (ii) Unbiased information transmission: Either

m̃i (sj) = sj for all sj ∈ {A,B}, or m̃i (sj) = ∅ (i.e. g∗ij = 0) for all sj ∈ {A,B}.

We now define a voting strategy profile v for any transmission network g∗ as follows:

Order the experts according to their degrees d∗j in g∗ in decreasing order, indicate the experts

with the highest degree in the transmission network by the index δ∗1 and the experts with the

4We do not explicitly specify off-equilibrium beliefs; hence the equilibria of one type may differ in those.
However, equating the off-equilibrium belief with the priors for any non-expert who, surprisingly, finds himself
uninformed after an expert’s deviation from g∗ on the communication stage supports all selected equilibria.
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second-highest degree with the index δ∗2 , etc. Indicate the lowest degree of experts by index

δ∗M and the lowest possible degree of non-experts by index δ∗N = 0.5 Order the non-experts

according to their degrees d∗i in decreasing order, indicate the non-experts with degree one

in the transmission network by the index 1 and the non-experts with degree zero with the

index 0. Then, a strategy profile on the voting stage is given by

v =

{
vδ1 (A) , vδ1 (B) ; vδ2 (A) , vδ2 (B) ; ..., vδM (A) , vδM (B) ;

v1 (A) , v1 (B) ; v0 (A) , v0 (B) , v0 (∅)

}
.

Note that a deviation of some expert j from g∗ on the communication stage is either a

lie that cannot be identified as such (i.e. v0(A) = v1(A) and v0(B) = v1(B)) or an empty

message. Hence, in what follows we can drop v0(A) and v0(B) as elements of the strategy

profiles.

B.2.1 Example 1

In Example 1, we have two possibilities. Either the transmission network is empty due to a

babbling equilibrium. Then, the strategy profiles conforming to our selection criteria imply

that either all experts abstain or all experts vote their signal while all non-experts abstain.

The latter strategy profile is a “let the experts decide (LTED)” equilibrium. This is an

equilibrium in every game and we do not discuss it further in this analysis. The second

possibility is that r ∈ {1, 2, 3, 4} experts transmit their signal to the non-expert linked to

them, while the remaining experts do not. (Note that we fully characterize g∗ by r in this

example.) Hence, there are two possible types of experts and two types of non-experts: those

with degree d∗l = 1 and those with d∗l = 0. Hence, the strategy profiles on the voting stage

are of the form

v = {v1 (A) , v1 (B) ; v2 (A) , v2 (B) ; v1 (A) , v1 (B) ; v0 (∅)} .

The strategy profiles on the voting stage that conform to our selection criteria Purity, Sym-

metry, Monotonicity, and Neutrality are as follows:

v1 = {A,B;A,B;A,B; ∅} ,
v2 = {A,B;A,B; ∅, ∅; ∅} ,
v3 = {A,B; ∅, ∅;A,B; ∅} ,
v4 = {A,B; ∅, ∅; ∅, ∅; ∅} ,
v5 = {∅, ∅;A,B;A,B; ∅} ,
v6 = {∅, ∅;A,B; ∅, ∅; ∅} ,
v7 = {∅, ∅; ∅, ∅;A,B; ∅} , and

v8 = {∅, ∅; ∅, ∅; ∅, ∅; ∅} .
Checking deviation incentives for all types of players and all strategy profiles on both the

communication and the voting stage reveals the following result that we state without proof.6

5The lowest degree of non-experts is zero off equilibrium, even though it might be one on the equilibrium
path.

6The proof of this and all other propositions in this subsection can be obtained by the authors upon
request.
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Proposition B.2. Strategy profile v1 and r ∈ {3, 4} are (sincere) equilibria; v2 and r ∈
{1, 2, 3, 4} are (LTED) equilibria; v3 and r ∈ {1, 3} are equilibria (with sincere voting and

expert abstention); v4 and r ∈ {1, 3} are (“let some experts decide”) equilibria; v5 and

r ∈ {1, 2, 3, 4} are (delegation) equilibria and outcome-equivalent to σ∗; v6 and r ∈ {2, 4} are

(“let some experts decide”) equilibria; v7 and r ∈ {1, 3} are (delegation) equilibria.

The equilibria characterized in the above proposition are also depicted in Figure B.1.

B.2.2 Example 2

Again, we have two possibilities. Either the transmission network is empty due to a babbling

equilibrium and a LTED equilibrium exists. The second possibility is that the center of

the star (expert 1) transmits her signal to all non-experts. We now consider this second

possibility and refer to the resulting transmission network as g∗2. The strategy profiles on

the voting stage that conform to our selection criteria Purity, Symmetry, Monotonicity, and

Neutrality are as follows:

v1 = {A,B;A,B;A,B; ∅} ,
v2 = {A,B;A,B; ∅, ∅; ∅} ,
v3 = {A,B; ∅, ∅;A,B; ∅} ,
v4 = {A,B; ∅, ∅; ∅, ∅; ∅} ,
v5 = {∅, ∅;A,B;A,B; ∅} ,
v6 = {∅, ∅;A,B; ∅, ∅; ∅} ,
v7 = {∅, ∅; ∅, ∅;A,B; ∅} , and

v8 = {∅, ∅; ∅, ∅; ∅, ∅; ∅} .

Checking deviation incentives for all types of players and all strategy profiles on both the

communication and the voting stage reveals the following result.

Proposition B.3. Strategy profile v2 and g∗2 are (LTED) equilibria; v3 and g∗2 are equilib-

ria (with sincere voting and expert abstention); v4 and g∗2 are (“let some experts decide”)

equilibria; v7 and g∗2 are (delegation) equilibria.

The equilibria characterized in the above proposition are also depicted in Figure B.2.

B.2.3 Example 3

In this example we have three possibilities which reduce to two if we ignore the empty

transmission network whose only equilibrium LTED has been discussed above. These two

possibilities are the following: (1) Either gij = g∗ij for all i, j ∈ N ∪ M ; then, the two

experts with degree two in g are symmetric, the four non-experts are symmetric, and the

three experts with degree zero in g are symmetric. (2) Or degree dj = d∗j = 2 for exactly

one expert j and d∗j′ = 0 for the other expert j′ who has degree dj′ = 1 in g. Then, this

other expert j′ is symmetric to the experts with degree zero in g; the two non-experts i with

g∗ij = 1 are symmetric, and the two non-experts with g∗ij = 0 are symmetric.
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Figure B.1: All equilibria of Proposition B.2.
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Figure B.2: All equilibria of Proposition B.3.

Possibility (1). Let us first consider the case in which the transmission network equals

the exogenous network; and let g∗31 denote this network. Then, the profiles on the voting

stage that conform to our selection criteria Purity, Symmetry, Monotonicity, and Neutrality

are as follows:

v1 = {A,B;A,B;A,B; ∅} ,
v2 = {A,B;A,B; ∅, ∅; ∅} ,
v3 = {A,B; ∅, ∅;A,B; ∅} ,
v4 = {A,B; ∅, ∅; ∅, ∅; ∅} ,
v5 = {∅, ∅;A,B;A,B; ∅} ,
v6 = {∅, ∅;A,B; ∅, ∅; ∅} ,
v7 = {∅, ∅; ∅, ∅;A,B; ∅} , and

v8 = {∅, ∅; ∅, ∅; ∅, ∅; ∅} .

Checking deviation incentives for all types of players and all strategy profiles on both the

communication and the voting stage reveals the following result.

Proposition B.4. Strategy profile v1 and g∗31 are (sincere) equilibria; v2 and g∗31 are (LTED)

equilibria; v5 and g∗31 are (delegation) equilibria; v6 and g∗31 are (“let some experts decide”)

equilibria.

The equilibria characterized in the above proposition are also depicted in Figure B.3

below.

Possibility (2). Let us now consider the case in which the transmission network differs

from the exogenous network in that only one expert transmits his signal, and let us refer to

this transmission network as g∗32. Then, the profiles on the voting stage that conform to our

selection criteria Purity, Symmetry, Monotonicity, and Neutrality are as follows:

v1 = {A,B;A,B;A,B; ∅} ,
v2 = {A,B;A,B; ∅, ∅; ∅} ,
v3 = {A,B; ∅, ∅;A,B; ∅} ,
v4 = {A,B; ∅, ∅; ∅, ∅; ∅} ,
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v5 = {∅, ∅;A,B;A,B; ∅} ,
v6 = {∅, ∅;A,B; ∅, ∅; ∅} ,
v7 = {∅, ∅; ∅, ∅;A,B; ∅} , and

v8 = {∅, ∅; ∅, ∅; ∅, ∅; ∅} .

Checking deviation incentives for all types of players and all strategy profiles on both

the communication and the voting stage reveals the following result that we state without

proof.

Proposition B.5. Strategy profile v2 and g∗32 are (LTED) equilibria; v3 and g∗32 are equilibria

(sincere voting with some experts abstaining); v4 and g∗32 are (“let some experts decide”)

equilibria; v7 and g∗32 are (delegation) equilibria.

The equilibria characterized in the above proposition are also depicted in Figure B.3.
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Figure B.3: All equilibria of Propositions B.4 and B.5 .

B.3 Equivalence of Definitions 2.2 and A.1

Definitions 2.2 and A.1 both define the notions of strong and weak balancedness. We show

here that Definition A.1 of the general model introduced in section A.2 applied to the specific

model introduced in section 2 is indeed equivalent to Definition 2.2 and moreover that strong

balancedness implies weak balancedness.

Formally, we consider the general model introduced in section A.2 and make the assump-

tion that the set of voters V can be partitioned into a set of experts M who receive an
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informative signal of the homogenous quality pj = p > 0.5 and a set of non-experts N who

receive a non-informative signal of precision pi = 0.5. The network structure g is bipartite

such that there are only links between experts and non-experts. Moreover, audiences are

non-overlapping, i.e., each non-expert is linked to at most one expert.

Notice that the neighborhood of an expert Vj consists of her audience of linked non-

experts (if any). The neighborhood of a non-expert Vi consists of the linked expert (if any).

Therefore, an expert j ∈M is a believer of a set S ⊆ V , i.e. j ∈ V +(S), if and only if j ∈ S;

and a non-expert i ∈ N is a believer of a set S ⊆ V , i.e. i ∈ V +(S), if and only if j ∈ S
for the linked expert j (with ij in g). Thus, for any set S ⊆ V , the set of believers V +(S)

consists of the experts who are in S and of their audiences of non-experts. Hence

|V +(S)| = |M ∩ S|+
∑

j∈(M∩S)

dj . (B.14)

Notice also that the expertise of a set of voters S ⊆ V is proportional to the number of

experts in the set since
∑

j∈S log(
pj

1−pj ) = |S ∩M | ∗ log( p
1−p). Thus, a set of voters S ⊆ V

is better informed than the complementary set V \ S if and only if S contains a majority of

experts. Formally,∑
j∈S

log(
pj

1− pj
) >

∑
k∈V \S

log(
pk

1− pk
) if and only if |M ∩ S| > |M \ S|, (B.15)

or equivalently ∏
j∈S

pj
1− pj

>
∏

k∈V \S

pk
1− pk

if and only if |M ∩ S| > m

2
. (B.16)

Strong balancedness. Strong balancedness according to Definition A.1 (a) is satisfied if

and only if ∀S ⊆ V ,∏
j∈S

pj
1− pj

>
∏

k∈V \S

pk
1− pk

implies |V +(S)| > |V −(S)|.

Since in the specific model pj = p for all j ∈ M and pi = 0.5 for all i ∈ N , and since

|V +(S)| = |M ∩ S|+
∑

j∈(M∩S) dj , this is equivalent to ∀S ⊆ V ,

|S ∩M | > m

2
implies |M ∩ S|+

∑
j∈(M∩S)

dj > |M \ S|+
∑

k∈(M\S)

dk.

Since in a set S the non-experts S ∩N do not matter for the above equations, the statement

above is equivalent to ∀M ′′ ⊆M ,

m′′ >
m

2
implies m′′ +

∑
j∈M ′′

dj > m−m′′ +
∑

k∈(M\M ′′)

dk. (B.17)

If equation B.17 holds for a given set M ′′, then it also holds for a superset of it. Hence, for

m odd, the condition above (which makes a requirement on all sets M ′′ ⊆M with m′′ > m
2 )
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is equivalent to ∀M ′′ ⊆M such that m′′ = m+1
2 ,

m+ 1

2
+
∑
j∈M ′′

dj >
m− 1

2
+

∑
k∈(M\M ′′)

dk,

which simplifies to

1 +
∑
j∈M ′′

dj >
∑

k∈(M\M ′′)

dk

and finally to ∑
j∈M ′′

dj ≥
∑

k∈(M\M ′′)

dk,

which is the definition of strong balancedness according to Definition 2.2.

Weak balancedness. Definition A.1 part (b) uses the following two notions. For a voter

i ∈ V , Si collects all sets of voters S, of which i is a believer, i.e. i ∈ V +(S), and which have

slightly more believers than non-believers, i.e. |V +(S)| − |V −(S)| ∈ {0, 1, 2}. Qi collects all

subsets of these sets that belong to i’s neighborhood, i.e. Qi := {Q ⊆ V |Q = (Vi ∪ i) ∩
S for some S ∈ Si}.

Under the specific assumptions (that nest the model of section 2 in the framework of

section A.2), these notions simplify as follows. For an expert j ∈ M , Sj collects all sets of

voters S, that include expert j, i.e. j ∈ S, and whose experts together with their audiences

have slightly more voters than the complementary set, i.e.

|M ∩ S|+
∑

k∈(M∩S)

dk − (|M \ S|+
∑

l∈(M\S)

dl) ∈ {0, 1, 2},

which is equivalent to ∑
k∈(M∩S)

(dk + 1)−
∑

l∈(M\S)

(dl + 1) ∈ {0, 1, 2}. (B.18)

Moreover, for an expert j ∈ M , Qj collects all subsets Q of these sets S that belong to i’s

neighborhood, which consists of the expert j herself and a (possibly emtpy) subset of her

audience of linked non-experts, i.e. j ∈ Q ⊆ {Vi ∪ j}. Hence, either Sj = ∅, then Qj = ∅; or

Sj 6= ∅, then {{j}} ∈ Qj .
For a non-expert i ∈ N , Si = ∅ if di = 0 because i /∈ V +(S) for any set S. If non-expert

i is linked to some expert j, then Si = Sj , i.e., the set Si coincides with the corresponding

set of the expert linked to non-expert i. Moreover, for a non-expert i ∈ N , Qi collects all

subsets of these sets that belong to i’s neighborhood, which consists only of the expert j

who is linked to i, i.e. Q = {{j}}. Hence, either Si = ∅ (e.g. because di = 0), then Qi = ∅;
or Si 6= ∅, then Qi = {{j}} with ij ∈ g.

On the other hand, Definition 2.2 part (b) uses the following notion. For an expert j ∈M ,

Mj is the set of expert sets M ′′ ⊆M that contain expert j and form a slight majority when
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adding their audiences of non-experts, i.e.∑
k∈M ′′

(dk + 1)−
∑

l∈M\M ′′
(dl + 1) ∈ {0, 1, 2}. (B.19)

Hence, there is a strong relation between the sets Sj and Mj . To every set S ∈ Sj there

corresponds one set M ′′ ∈ Mj simply by M ′′ = S ∩M , and equation B.18 above holds for

the set S if and only if equation B.19 holds for the set M ′′ = S ∩M .

Now, suppose a network is weakly balanced according to Definition A.1. We show weak

balancedness according to Definition 2.2, which requires that for every expert j ∈M ,Mj 6= ∅
implies that there is at least one element consisting of a weak majority of experts, i.e.

∃M ′′ ∈ Mj such that m′′ ≥ m+1
2 . If for some expert j ∈ M , Mj = ∅, then the condition

cannot be violated for this particular expert. Consider any expert j ∈ M with Mj 6= ∅.
Then Sj 6= ∅, because M ′ ∈Mj implies M ′ ∈ Sj and {{j}} ∈ Qj 6= ∅. By weak balancedness

according to Definition A.1, ∃S ∈ Sj with |M ∩ S| > m
2 . We construct M ′′ := S ∩M , which

satisfies M ′′ ∈Mj and m′′ ≥ m+1
2 .

Now, suppose a network is weakly balanced according to Definition 2.2. We show weak

balancedness according to Definition A.1, which requires that for every voter i ∈ V and for

every Q ∈ Qi, there is a corresponding set of agents S with Q ⊆ S ∈ Si, which is better

informed than the complementary set, i.e.
∏
j∈S

pj
1−pj ≥

∏
k∈V \S

pk
1−pk . For voters i ∈ V with

Qi = ∅, the condition cannot be violated for this particular voter i. Now, consider any expert

j ∈M with Qj 6= ∅ and hence Si 6= ∅. ThenMj 6= ∅, because S ∈ Sj implies (S∩M) ∈Mj .

By weak balancedness according to Definition 2.2, ∃M ′′ ∈ Mj with m′′ ≥ m+1
2 . M ′′ ∈ Mj

means that j ∈ M ′′ and that M ′′ satisfies equation B.19 and thus also equation B.18 for

S = M ′′. Hence, |V +(M ′′)|−|V −(M ′′)| ∈ {0, 1, 2} such that M ′′ ∈ Sj . Moreover, m′′ ≥ m+1
2

implies that
∏
j∈V ∩M ′′

pj
1−pj ≥

∏
k∈V \M ′′

pk
1−pk (because all experts j ∈ M have equal signal

precision pj). This holds for any Q ∈ Qi because all Q ∈ Qi satisfy Q ∩M ′′ = {j} and

non-experts do not affect the equations. Now, consider any non-expert i ∈ N with Qi 6= ∅.
Then Qi = {{j}} ⊆ Qj . Since for expert j linked to i there is a set S = M ′′ ∈ Sj with

S ⊇ {j} with
∏
j∈S

pj
1−pj ≥

∏
k∈V \S

pk
1−pk , this also holds for non-expert i.

Strong balancedness implies weak balancedness. We show that a violation of weak

balancedness implies a violation of strong balancedness.

Suppose weak balancedness is violated, i.e., there is a voter i ∈ V and a set Q ∈ Qi, such

that there is no corresponding set of agents S with Q ⊆ S ∈ Si, which is better informed

than the complementary set, i.e., which is not fulfilling
∏
j∈S

pj
1−pj ≥

∏
k∈V \S

pk
1−pk . Hence,

∀S ∈ Si, we have
∏
j∈S

pj
1−pj <

∏
k∈V \S

pk
1−pk . (Si 6= ∅ because Qi 6= ∅ by assumption.)

Then by strong balancedness, |V +(V \S)| > |V −(V \S)|, which implies |V +(S)| < |V −(S)|.
However, this contradicts S ∈ Si, which requires that |V +(S)| − |V −(S)| ∈ {0, 1, 2}.
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B.4 Simple Games: A Justification of Power

Proposition A.2 can be interpreted in terms of expert power as defined in the class of simple

games (cf., e.g., Roth, 1988). To see this, note that our model defines a non-cooperative game

under incomplete information which is specified by an exogenous network g and by signal

precisions pj . To each of these games Γ(g, p1, ..., pn) we will associate two cooperative games

of the form (V, υ), with the characteristic function υ : 2V → {0, 1}. In the first game (V, υ∗)

a coalition S is winning, i.e., υ∗(S) = 1, if and only if it has a larger expertise than the com-

plementary set as quantified by the log-odds rule, i.e.
∑

j∈S log(
pj

1−pj ) >
∑

k∈V \S log( pk
1−pk ).

(This is a so-called weighted majority game in which each voter j’s weight is log(
pj

1−pj ).) In

the second game (V, υ̂) a coalition S is winning, i.e., υ̂(S) = 1, if and only if there are more

believers than non-believers, i.e. |V +(S)| > |V −(S)|. This is a simple game which mimics

the outcome of the sincere strategy profile in the game Γ(g, p1, ..., pn). Indeed, if a set of

voters S has received signal A∗ and all others B∗, then under σ̂ all |V +(S)| will vote for A,

all |V −(S)| will vote for B, and all |V 0(S)| will abstain.

In simple games, a player’s power is measured by the Shapley value, which is then called

the Shapley-Shubik index, or alternatively, with the Banzhaf index. Both indices take into

account how often a player can “swing” a losing coalition into a winning coalition. In the

simple game (V, υ̂) corresponding to Example 1, for instance, all five experts are equally

powerful since the winning coalitions are those which have at least three expert members.

This is also true in the other game (V, υ∗) that corresponds to Example 1 because all experts

are equally well-informed. As a consequence, sincere voting is efficient in this example. The

upcoming corollary of Proposition 2.2 shows that this relation between power and efficiency

fully generalizes.

Definition B.1 (Power). For a weighted majority game (V, υ), define power of a player i ∈
V as her Banzhaf index βi(υ) or her Shapley-Shubik index φi(υ). The (raw) Banzhaf index of

a player i ∈ V is the fraction of swings she has, i.e., βi(υ) = 1
2n−1

∑
S⊆V \{i}[υ(S∪{i})−υ(S)];

the Shapley-Shubik index of a player i ∈ V is her marginal contribution averaged over all

orderings of the players, which can be written as φi(υ) =
∑

S⊆V \{i}
|S|!(|V |−|S|−1)!

|V |! [υ(S∪{i})−
υ(S)].

In the game (V, υ∗) power only depends on the signal qualities. There pi > pj implies

that voter i is at least as powerful as expert j. In the game (M, υ̂), power is also monotonic

in an agent’s expertise pi, in the sense that increasing a player’s signal precision pi cannot

reduce her power. Similarly, in that game power is monotonic in a player’s degree di in

the sense that adding a new link ij to g cannot decrease the power of the agents i and j.

However, a player’s power in (M, υ̂) is not a simple function of her degree and her expertise,

but depends on the network structure g as well as on the signal precisions. For every given

example, it can be computed.

Proposition B.6. Suppose there is no coalition S ⊂ V with
∑

j∈S log(
pj

1−pj ) =
∑

k∈V \S log( pk
1−pk ).7

7This assumption only rules out non-generic cases, in which after the realization of all signals still both
alternatives are equally likely. In terms of simple games, the assumption means that the simple game (V, υ∗)
is strong, i.e., for all coalitions S ⊂ V , υ∗(S) = 0 implies that υ∗(V \ S) = 1.
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If the network g is strongly balanced, then each player’s power is the same in the two corre-

sponding games, i.e. ∀j ∈ V, φj(υ̂) = φj(υ
∗), as well as βj(υ̂) = βj(υ

∗). For the special case

of homogenous signal quality among all experts, i.e. pj = p ∀j ∈ V with pj > 0.5, strong

balancedness means that each expert is equally powerful in (V, υ̂) and that all non-experts

(with pi = 0.5) have no power.

Proof. Recall that strong balancedness is defined as follows: ∀S ⊆ V ,
∏
j∈S

pj
1−pj >

∏
k∈V \S

pk
1−pk

implies |V +(S)| > |V −(S)|. By the definition of the games (V, υ∗) and (V, υ̂), strong bal-

ancedness is equivalent to the following: ∀S ⊆ V , υ∗(S) = 1 implies υ̂(S) = 1. Now,

consider a set S such that υ∗(S) = 0. By definition of υ∗, we have either
∑

j∈S log(
pj

1−pj ) <∑
k∈V \S log( pk

1−pk ) or
∑

j∈S log(
pj

1−pj ) =
∑

k∈V \S log( pk
1−pk ). The latter case is excluded by

assumption. Hence, υ∗(S) = 0 implies υ∗(V \ S) = 1, which further implies by strong bal-

ancedness that υ̂(V \ S) = 1, which finally implies that υ̂(S) = 0. This shows for any set S

that υ̂(S) = 1 if and only if υ∗(S) = 1, which means that υ̂ = υ∗. As a consequence, the

vectors of power coincide: φ(υ̂) = φ(υ∗), as well as β(υ̂) = β(υ∗).

We now turn to the special case of homogenous signal quality. Let M ⊆ V denote the set

of voters with an informative signal, which we call experts, i.e. ∀j ∈M , we have pj = p > 0.5.

Since v̂ = v∗, it is sufficient to show that all experts j ∈ M are equally powerful in (V, υ∗)

and that all non-experts i ∈ V \M (with pi = 0.5) have power φ(υ∗) = 0, respectively,

φ(υ∗) = β(υ∗) = 0, in that game (V, υ∗).

A non-expert i ∈ V \M contributes log( 0.5
1−0.5) = 0 to each coalition S such that he is

a so-called dummy player: ∀S ⊆ V \ {i} we have υ(S ∪ {i}) = υ(S). By definition of the

Shapley-Shubik index and the Banzhaf index, non-expert i’s power is thus zero: βi(υ) = 0,

respectively φi(υ
∗) = 0.

All experts j ∈ M contribute log( p
1−p) > 0 to each coalition S such that they are

symmetric in the game (V, υ∗).8 Consequently, all experts are equally powerful.

The proposition gives an interpretation to Proposition 2.2 by showing that strong bal-

ancedness means that there are the same winning coalitions in the two corresponding games.

When signal precisions are homogeneous, all experts are equally powerful in (V, υ∗) such

that it is intuitive that equal power of experts in (V, υ̂) means efficiency of σ̂. This can be

illustrated with Example 1, in which each expert is indeed equally powerful in the game

(V, υ̂) since the winning coalitions are those which have at least three members.

To illustrate a violation of strong balancedness, we consider an extreme case, in which

there is a dictator, i.e., a player j who has a swing in every coalition S ⊆ V \{j}. A dictator

has the maximal Banzhaf index and the maximal Shapley-Shubik index of one. Any player

following the dictator’s message is “cursed” in the sense that if the own vote is decisive under

σ̂, then the opposite of the message is more likely to be correct. An example illustrating this

8A pair of players i, j ∈ V is called symmetric if ∀S ⊆M \ {i, j} we have υ(S ∪ {i}) = υ(S ∪ {j}). If two
players i and j are symmetric, then they always have the same Banzhaf index βi(υ) = βj(υ), respectively the
same Shapley-Shubik index φi(υ) = φj(υ), by definition of the two indices.
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effect is given by the weighted majority game (V, υ̂) corresponding to Example 2, the star

network, in which expert 1 has dictatorial power.9

B.5 Complete Proof of Proposition A.3

We show existence of inefficient strategy profiles with the network introduced in Example 3

and extensions of it. For any t = 1, 2, ... we consider a network with two experts of degree 2t,

1 + 2t experts of degree zero and 4t non-experts of degree one. For t = 1 this is exactly the

network depicted in Figure 2. All experts have signal quality pj = p > 0.5, all non-experts

signal quality pi = 0.5. For any t = 1, 2, ..., denote the corresponding game by Γt and the

sincere strategy profile in that game by σ̂t.

Under σ̂t, 3 + 6t agents participate in the vote and a majority is reached with at least

2 + 3t votes. If the two senders receive the same signal, say A∗, then A is the outcome

since the two senders induce 2 ∗ (1 + 2t) ≥ 2 + 3t A-votes. If both senders receive different

signals, A∗ and B∗, then A wins if and only if A receives k ≥ 1 + t votes of the 1 + 2t experts

with degree zero. Supposing that A is the true state, the probability that the outcome is

A provides the general probability that the outcome coincides with the true state since σ̂t

treats A and B interchangeably. Thus, under σ̂t the probability that the outcome coincides

with the true state is

EU(σ̂t) = p2 ∗ 1 + 2p(1− p)
2t+1∑
k=t+1

(
2t+ 1

k

)
pk(1− p)2t+1−k + (1− p)2 ∗ 0. (A.6)

Inefficiency. We establish inefficiency of σ̂t for any t and also in the limit. (Recall that a

strategy profile is efficient if and only if for any draw of nature it selects the outcome that

maximizes the probability to match the true state.) Consider the draw of nature in which

both senders receive signal A∗ and all other experts receive signal B∗. An efficient strategy

profile would implement (the majority signal) B, but σ̂t leads to A.

For an efficient strategy profile σt the probability that the outcome coincides with the

true state is below one for finite t, but converges to one for growing t, i.e. limt→∞EU(σt) = 1

when σt efficient. Under σ̂t, when both senders happen to receive the incorrect signal, then

the outcome does not coincide with the true state. Thus, the probability of implement-

ing the incorrect outcome under σ̂t is at least (1 − p)2, which is independent of t. Hence,

limt→∞EU(σ̂t) ≤ 1− (1− p)2 < 1, i.e., inefficiency does not vanish for growing t.

Now, we establish that σ̂t is an equilibrium for any t. We show first that there is no

profitable deviation that occurs on the voting stage only. Then we show that there is no

profitable deviation that affects both stages voting and communication.

9The simple games corresponding to Examples 1 and 2 are extreme cases with minimal, respectively
maximal, inequality of expert power.
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Deviations on the voting stage only. Consider a voter i ∈ V who considers to deviate

from σ̂t by changing his voting strategy vi. This can be a non-expert who does not follow

the received message or an expert who does not vote the received signal, but chooses some

different strategy instead.

Suppose one sender (i.e., a voter with pj = p > 0.5 and dj = 2t) receives signal A∗ and

the other sender receives signal B∗. Then A receives more votes than B under σ̂t if and only

if more experts with degree zero (i.e., voters with pj = p > 0.5 and dj = 0) have received

signal A∗. Hence, when the two senders have not received the same signal, then σ̂t always

implements the majority signal and hence induces the outcome that is more likely to be true.

Hence, if there is a beneficial deviation, then it must also change outcomes in which both

senders have received the same signal.

Suppose that both senders have received the same signal, say A∗. Then the number of

A-votes under σ̂t is at least 2 + 4t (since two senders, and 2 ∗ 2t non-experts vote for A) and

the number of B-votes is hence at most 3 + 6t − (2 + 4t) = 1 + 2t. The number of A-votes

thus exceeds the number of B-votes by at least 2 + 4t− (1 + 2t) = 1 + 2t ≥ 3 votes. Hence, a

single agent who changes her vote cannot affect the outcome if the two senders have received

the same signal.

Taken together a deviation that only changes one vote is neither beneficial if both senders

have received the same signal nor if they have received different signals. This precludes

deviation incentives of non-experts, of experts with degree zero, as well as of senders who

consider to deviate in their voting behavior only, i.e., all deviations that happen on the voting

stage only. We now turn to deviations that also affect the communication stage, i.e., which

involve a sender who does not truthfully transmit her signal, and show that any of those is

neither beneficial.10

Deviations on both stages. Consider a sender j ∈ V with dj > 0. This expert has (3×
3)2 = 81 strategies because she chooses one of three messages and one of three voting actions

after receiving one of two signals.11 To evaluate different strategies we can assume w.l.o.g.

that the expert has received signal A∗ because neither the utility function nor the strategy

profile depends on the label of the alternatives. This reduces the number of strategies to the

following nine: (mj(A
∗), vj(A

∗)) ∈ {(A,A), (A,B), (A, ∅), (B,A), (B,B), (B, ∅), (∅, A), (∅, B), (∅, ∅)}.
The first strategy (A,A) is sincere and hence not a deviation. The strategies (A,B) and

(A, ∅) only involve deviations on the voting stage and are hence not beneficial by the para-

graph above. This leads to the following six remaining deviations σ̃ and their corresponding

expected utilities EU(σ̃t):12

10For large t this is simple to show. In the case in which the deviating agent receives the correct signal, say
A∗, and the other sender receives the incorrect signal, the probability that the outcome is A approaches zero
for growing t. Hence, the expected utility of any such deviation is bounded from above by limt→∞EU(σ̃t) ≤
1− p(1− p) < 1− (1− p)2 = limt→∞EU(σ̂t).

11In general, voters with positive degree di > 0 have more pure strategies. In this example, the senders
are linked to non-experts (i.e voters i with pi = 0.5) who are assumed by convention not to send a message
under σ̂t. Since a message of an uninformed voter is meaningless, a change of convention would not affect
the result.

12Deviations that involve to vote and/or communicate an alternative unconditionally, i.e., independent of
the signal, need not be considered here because of the symmetry between the alternatives. Indeed, if it is
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1. Sender j sends the opposite message and votes the signal.

EU(σ̃t) = p2
2t+1∑
k=t

(
2t+ 1

k

)
pk(1− p)2t+1−k + p(1− p) + (1− p)2

2t+1∑
k=t+2

(
2t+ 1

k

)
pk(1− p) (A.7)

2. Sender j sends the opposite message and votes the opposite.

EU(σ̃t) = [p2 + (1− p)2]
2t+1∑
k=t+1

(
2t+ 1

k

)
pk(1− p)2t+1−k + p(1− p) (A.8)

3. Sender j sends the opposite message and abstains.

EU(σ̃t) = p2

[
1

2

(
2t+ 1

t

)
pt(1− p)t+1 +

2t+1∑
k=t+1

(
2t+ 1

k

)
pk(1− p)2t+1−k

]

+ p(1− p) + (1− p)2

[
1

2

(
2t+ 1

t+ 1

)
pt+1(1− p)t +

2t+1∑
k=t+2

(
2t+ 1

k

)
pk(1− p)2t+1−k

]
,

which is equation A.9

4. Sender j sends the empty message and votes the signal.

EU(σ̃t) = p2 + p(1− p)p2t+1 + p(1− p)
2t+1∑
k=1

(
2t+ 1

k

)
pk(1− p)2t+1−k (A.10)

5. Sender j sends the empty message and votes the opposite.

EU(σ̃t) = p2
2t+1∑
k=1

(
2t+ 1

k

)
pk(1− p)2t+1−k + p(1− p) + (1− p)2p2t+1 (A.11)

6. Sender j sends the empty message and abstains.

EU(σ̃t) = p2[1− 1

2
(1− p)2t+1] + p(1− p)1

2
p2t+1 + p(1− p)[1− 1

2
(1− p)2t+1] + (1− p)2 1

2
p2t+1 (A.12)

The derivation of the expressions (A.7)-(A.12) is shown below. We can then compare the

expected utility EU(σ̃t) of each deviation, which is given by (A.7)-(A.12), with the expected

utility of the sincere strategy profile EU(σ̂t), which is given by (A.6).

Consider, for instance, the fifth deviation: Sender j sends the empty message and votes

the opposite of the signal. There are 3 + 4t votes and 2 + 2t is a majority. Denote by (sj , sk)

the signals of the two senders. There are four possibilities.

• (A∗, A∗): A wins if there are at least 2+2t− (1+2t) = 1 A∗-signals among the experts

of degree zero.

beneficial to vote B after receiving A∗, then it is also beneficial to vote A after receiving B∗, which is to vote
the opposite of the signal. Similarly, there is no need to consider strategies that involve the empty message
and/or to abstain only after one of the two signals. Indeed, if it is beneficial e.g. to abstain after having
received signal A∗, then it is also beneficial to abstain after having received signal B∗, which is to abstain
unconditionally. Hence, if none of the six symmetric deviations is an improvement over σ̂t, then neither is a
deviation that treats the alternatives A and B asymmetrically.
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• (A∗, B∗): A never wins since B receives at least 2 + 2t votes.

• (B∗, A∗): A wins since it receives at least 2 + 2t votes.

• (B∗, B∗): A wins if there are at least 2 + 2t− 1 = 2t+ 1 A∗-signals among the experts

of degree zero, i.e., all of them have signal A∗.

We now show that this deviation is not beneficial by considering the change in expert j’s

expected utility (which is the expected utility of every agent). Supposing that the true state

is A, the expected utility is the likelihood that A is indeed implemented. Hence,

EU(σ̃t) = p2
2t+1∑
k=1

(
2t+ 1

k

)
pk(1− p)2t+1−k + p(1− p) ∗ 0 + p(1− p) ∗ 1 + (1− p)2p2t+1,

which directly simplifies to (A.11).

For the upcoming simplifications we use the following two properties:

1.
∑2t+1

k=0

(
2t+1
k

)
pk(1− p)2t+1−k = 1 and

2.
(

2t+1
k

)
=
(

2t+1
2t+1−k

)
for any k = 0, ..., 2t+ 1.

Let ∆ := EU(σ̂t)− EU(σ̃t). Then

∆ = p2

[
1−

2t+1∑
k=1

(...)

]
+ p(1− p)

[
2

2t+1∑
k=t+1

(
2t+ 1

k

)
pk(1− p)2t+1−k − 1

]
− (1− p)2p2t+1

∆ = p2

[
2t+1∑
k=0

(...)−
2t+1∑
k=1

(...)

]
+ p(1− p)

[
2

2t+1∑
k=t+1

(
2t+ 1

k

)
pk(1− p)2t+1−k − 1

]
−(1− p)2p2t+1

∆ = p2(1− p)2t+1 + p(1− p)

[
2t+1∑
k=t+1

(...)−
2t+1∑
k=0

(...)

]
︸ ︷︷ ︸

=−
∑t

k=0(...)

+ p(1− p)
2t+1∑
k=t+1

(...)− (1− p)2p2t+1

︸ ︷︷ ︸
≥p(1−p)

∑2t
k=t+1(...)

To simplify the last part of the equation notice the following:

• First,
∑2t+1

k=t+1(pk(1− p)2t+1−k =
∑2t

k=t(p
k(1− p)2t+1−k +

(
2t+1
2t+1

)
p2t+1(1− p)0.

• Second,
(

2t+1
2t+1

)
p2t+1(1− p)0 = p2t+1.

• Third, p(1− p)p2t+1 − (1− p)2p2t+1 = [p(1− p)− (1− p2)]p2t+1 ≥ 0.
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Thus,

∆ ≥ p2(1− p)2t+1 − p(1− p)
t∑

k=0

(
2t+ 1

k

)
pk(1− p)2t+1−k + p(1− p)

2t∑
k=t+1

(...)

∆ ≥ p2(1− p)2t+1 − p(1− p)
(

2t+ 1

0

)
p0(1− p)2t+1︸ ︷︷ ︸

≥0

−p(1− p)
t∑

k=1

(...) + p(1− p)
2t∑

k=t+1

(...)

∆ ≥ p(1− p)︸ ︷︷ ︸
≥0

[
2t∑

k=t+1

(
2t+ 1

k

)
pk(1− p)2t+1−k −

t∑
k=1

(
2t+ 1

k

)
pk(1− p)2t+1−k

]

Hence, ∆ ≥ 0 if

2t∑
k=t+1

(
2t+ 1

k

)
pk(1− p)2t+1−k ≥

t∑
k=1

(
2t+ 1

k

)
pk(1− p)2t+1−k. (A.13)

To show that inequality A.13 holds, we substitute k in the first sum by l ≡ 2t + 1 − k

and consistently sum over l = 1, ..., t (instead over k = t + 1, ..., 2t). Moreover, we use(
2t+1
k

)
=
(

2t+1
2t+1−k

)
.

t∑
l=1

(
2t+ 1

l

)
p2t+1−l(1− p)l −

t∑
k=1

(
2t+ 1

k

)
pk(1− p)2t+1−k ≥ 0

t∑
l=1

(
2t+ 1

l

)(
p2t+1−l(1− p)l − pl(1− p)2t+1−l

)
≥ 0.

For every l = 1, ..., t, we have 2t + 1 − l > l. This implies for the expression in brackets

that the first product (p2t+1−l(1 − p)l) is larger than the second product (pl(1 − p)2t+1−l).

Hence, the inequality above holds, which implies inequality A.13. Thus, EU(σ̂t) ≥ EU(σ̃t)

and hence this deviation σ̃t is not beneficial.

Using the same techniques as for the deviation above, we will show for the other five

deviations σ̃t that EU(σ̃t) ≤ EU(σ̂t).

1. Sender j sends the opposite message and votes the signal. There are 3 + 6t votes and

2 + 3t is a majority.

• (A∗, A∗): A wins if there are at least 2 + 3t − (2 + 2t) = t A∗-signals among the

experts of degree zero.

• (A∗, B∗): A never wins since 1 + 1 + 2t < 2 + 3t.

• (B∗, A∗): A wins since 1 + 4t ≥ 2 + 3t.

• (B∗, B∗): A wins if there are at least 2 + 3t − 2t = 2 + t A∗-signals among the

experts of degree zero.

EU(σ̃t) = p2
2t+1∑
k=t

(
2t+ 1

k

)
pk(1−p)2t+1−k +p(1−p)∗0+p(1−p)∗1+(1−p)2

2t+1∑
k=t+2

(
2t+ 1

k

)
pk(1−p)

24



Let ∆ := EU(σ̂t)− EU(σ̃t).

∆ = p2[1−
2t+1∑
k=t

(...)] + p(1− p)

[
2

2t+1∑
k=t+1

(...)− 1

]
− (1− p)2

2t+1∑
k=t+2

(...)

∆ = p2

[
2t+1∑
k=0

(...)−
2t+1∑
k=t

(...)

]
+ p(1− p)

[
2t+1∑
k=t+1

(...)−
2t+1∑
k=0

(...)

]
+

p(1− p)
2t+1∑
k=t+2

(...)− (1− p)2
2t+1∑
k=t+2

(...)︸ ︷︷ ︸
≥0

+p(1− p)
(

2t+ 1

t+ 1

)
pt+1(1− p)t

∆ ≥ p2
t−1∑
k=0

(...)− p(1− p)
t∑

k=0

(...)︸ ︷︷ ︸
≥−p(1−p)(2t+1

t )pt(1−p)t+1

+p(1− p)
(

2t+ 1

t+ 1

)
pt+1(1− p)t

∆ ≥ p(1− p)
(

2t+ 1

t+ 1

)
pt+1(1− p)t − p(1− p)

(
2t+ 1

t

)
pt(1− p)t+1

Hence ∆ ≥ 0 if (
2t+ 1

t+ 1

)
pt+1(1− p)t ≥

(
2t+ 1

t

)
pt(1− p)t+1

pt+1(1− p)t ≥ pt(1− p)t+1

p ≥ 1− p,

which is true.

2. Sender j sends the opposite message and votes the opposite of the signal. There are

3 + 6t votes and 2 + 3t is a majority.

• (A∗, A∗): A wins if there are at least 2 + 3t − (1 + 2t) = 1 + t A∗-signals among

the experts of degree zero.

• (A∗, B∗): A never wins since 1 + 2t < 2 + 3t.

• (B∗, A∗): A wins since 2 + 4t ≥ 2 + 3t.

• (B∗, B∗): A wins if there are at least 2 + 3t− 1 + 2t = 1 + t A∗-signals among the

experts of degree zero.

EU(σ̃t) = p2
2t+1∑

k=t+1

(
2t+ 1

k

)
pk(1−p)2t+1−k +p(1−p)∗0+p(1−p)∗1+(1−p)2

2t+1∑
k=t+1

(
2t+ 1

k

)
pk(1−p)

EU(σ̃t) = [p2 + (1− p)2]
2t+1∑
k=t+1

(
2t+ 1

k

)
pk(1− p)2t+1−k + p(1− p)

25



Let ∆ := EU(σ̂t)− EU(σ̃t).

∆ = p2[1−
2t+1∑
k=t+1

(...)]− (1− p)2
2t+1∑
k=t+1

(...) + p(1− p)

[
2

2t+1∑
k=t+1

(...)− 1

]

∆ = [p(1− p)− (1− p)2]
2t+1∑
k=t+1

(...) + [p2 − p(1− p)[1−
2t+1∑
k=t+1

(...)] ≥ 0,

which is positive, since both summands are positive.

3. Sender j sends the opposite message and abstains. There are 2 + 6t votes and 1 + 3t

is a tie.

• (A∗, A∗): there is a tie if there are 1 + 3t − (1 + 2t) = t A∗-signals among the

experts of degree zero. For more, A wins.

• (A∗, B∗): A never wins since 1 + 2t < 1 + 3t.

• (B∗, A∗): A wins since 1 + 4t > 1 + 3t.

• (B∗, B∗): there is a tie if there are 1+3t−2t = 1+t A∗-signals among the experts

of degree zero. If there are k ≥= 2 + t A∗-signals A wins.

EU(σ̃t) = p2

[
1

2

(
2t+ 1

t

)
pt(1− p)t+1 +

2t+1∑
k=t+1

(
2t+ 1

k

)
pk(1− p)2t+1−k

]
+ p(1− p) ∗ 0

+p(1− p) ∗ 1 + (1− p)2

[
1

2

(
2t+ 1

t+ 1

)
pt+1(1− p)t +

2t+1∑
k=t+2

(
2t+ 1

k

)
pk(1− p)2t+1−k

]

Let ∆ := EU(σ̂t)− EU(σ̃t).

∆ = p2[1− [
1

2
...]] + p(1− p)

[
2

2t+1∑
k=t+1

(...)− 1

]
− (1− p)2[

1

2
...]
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∆ = p2

[
t∑

k=0

(...)− 1

2

(
2t+ 1

t

)
pt(1− p)t+1

]
− p(1− p)

t∑
k=0

(...) + p(1− p)
2t+1∑
k=t+1

(...)−

(1− p)2 1

2

(
2t+ 1

t+ 1

)
pt+1(1− p)t − (1− p)2

2t+1∑
k=t+2

(...)

∆ = p2
t∑

k=0

(...)− p(1− p)
t∑

k=0

(...)︸ ︷︷ ︸
≥0

+ p(1− p)
2t+1∑
k=t+1

(...)− (1− p)2
2t+1∑
k=t+2

(...)︸ ︷︷ ︸
≥p(1−p)(2t+1

t+1 )pt+1(1−p)t

−p2 1

2

(
2t+ 1

t

)
pt(1− p)t+1 − (1− p)2 1

2

(
2t+ 1

t+ 1

)
pt+1(1− p)t

∆ ≥ p(1− p)
(

2t+ 1

t+ 1

)
pt+1(1− p)t − (1− p)2 1

2

(
2t+ 1

t+ 1

)
pt+1(1− p)t︸ ︷︷ ︸

≥ 1
2
p(1−p)(2t+1

t+1 )pt+1(1−p)t

−p2 1

2

(
2t+ 1

t

)
pt(1− p)t+1

∆ ≥ 1

2
p(1− p)

(
2t+ 1

t+ 1

)
pt+1(1− p)t − 1

2
p2

(
2t+ 1

t

)
pt(1− p)t+1

Hence ∆ ≥ 0 if

p(1− p)
(

2t+ 1

t+ 1

)
pt+1(1− p)t ≥ p2

(
2t+ 1

t

)
pt(1− p)t+1

p(1− p)pt+1(1− p)t ≥ p2pt(1− p)t+1

pt+2(1− p)t+1 ≥ pt+2(1− p)t+1,

which is true.

4. Sender j sends the empty message and votes the signal. There are 3 + 4t votes and

2 + 2t is a majority. If both senders receive the same signal, say A∗, A wins since there

are at least 2+2t A-votes. Hence, the outcome is not different from σ̂t. If both senders

receive different signals, then the outcome under σ̂t is optimal such that there cannot

be a beneficial deviation.

5. Sender j sends the empty message and votes the opposite of the signal. It has been

already shown above that this deviation is not beneficial.

6. Sender j sends the empty message and abstains. Then there are 2+4t votes and 1+2t

is just half of all votes.

• (A∗, A∗): there is a tie if there are 1 + 2t − (1 + 2t) = 0 A∗-signals among the

experts of degree zero. Otherwise, A wins.

• (A∗, B∗): there is a tie if there are 1+2t−0 = 1+2t A∗-signals among the experts

of degree zero. Otherwise, B wins.

• (B∗, A∗): there is a tie if there are 1 + 2t − (1 + 2t) = 0 A∗-signals among the

experts of degree zero. Otherwise A wins.

27



• (B∗, B∗): there is a tie if there are 1+2t−0 = 1+2t A∗-signals among the experts

of degree zero. Otherwise, B wins.

EU(σ̃t) = p2[1− 1

2
(1−p)2t+1]+p(1−p)1

2
p2t+1+p(1−p)[1− 1

2
(1−p)2t+1]+(1−p)2 1

2
p2t+1

Let ∆ := EU(σ̂t)− EU(σ̃t).

∆ = p2[
1

2
(1−p)2t+1]+p(1−p)

[
2

2t+1∑
k=t+1

(...)− 1 +
1

2
p2t+1 − 1

2
(1− p)2t+1

]
−(1−p)2 1

2
p2t+1

∆ = (p2 − p(1− p))1

2
(1− p)2t+1︸ ︷︷ ︸

≥0

+p(1− p)

[
2

2t+1∑
k=t+1

(...)− 1 +
1

2
p2t+1

]
− (1− p)2 1

2
p2t+1

∆ ≥ p(1− p)

[
2t+1∑
k=t+1

(...) +
2t+1∑
k=t+1

(...)−
2t+1∑
k=0

(...) +
1

2
p2t+1

]
− (1− p)2 1

2
p2t+1

∆ ≥ p(1− p)

[
2t+1∑
k=t+1

(...)−
t∑
l=0

(...)

]
︸ ︷︷ ︸

≥0

+ (p(1− p)− (1− p)2)︸ ︷︷ ︸
≥0

1

2
p2t+1

∆ ≥ p(1− p)

[
2t+1∑
k=t+1

(
2t+ 1

k

)
pl(1− p)2t+1−k −

t∑
l=0

(
2t+ 1

l

)
pl(1− p)2t+1−l

]

∆ ≥ p(1− p)

[
t∑
l=0

(
2t+ 1

l

)
p2t+1−l(1− p)l −

t∑
l=0

(
2t+ 1

l

)
pl(1− p)2t+1−l

]

∆ ≥ p(1− p)

[
t∑
l=0

(
2t+ 1

l

)(
p2t+1−l(1− p)l − pl(1− p)2t+1−l

)]
︸ ︷︷ ︸

≥0

For every l = 1, ..., t, we have 2t+ 1− l > l. This implies for the expression in brackets

that the first product (p2t+1−l(1−p)l) is larger than the second product (pl(1−p)2t+1−l).

Thus, the expression in brackets is positive.
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C Supplementary Experimental Appendix

C.1 Additional Tables

Table C.1.1. Individual sincere behavior of experts by position

never always strongly balanced weakly balanced star

empty: pos. 1-5 1.9% 59.1% 0.161 0.450 0.000
strongly balanced: pos. 5 12.6% 70.5% 0.353 0.715
weakly balanced: pos. 3-5 2.9% 61.9% 0.047
star: pos. 2-5 1.9% 52.4%

strongly balanced: pos. 1-4 4.8% 49.5% 0.039 0.003
weakly balanced: pos. 1-2 12.5% 43.3% 0.085
star: pos. 1 31.6% 43.2%

Table C.1.1: Individual behavior of experts by position: for each individual in each network position (she is
in) there is a variable capturing the frequency of sincere actions. The network positions refer to the upper
panel of Figure 3. The first block compares experts who are not senders across treatments. The second
block compares experts who are senders across treatments. Experts are at most ten times in each position.
Column 2 and 3 report the fraction of participants who never respectively always chose the sincere strategy
in the given position. Columns 4-6 of the table show the p-values of Wilcoxon matched-pairs signed-ranks
test.

Table C.1.2. Efficiency, expected payoff EP and success

treatment win lose EP success

empty 74.3% 11.9% 64.2 62.9%
strongly balanced 77.6% 13.3% 64.2 65.7%
weakly balanced 74.3% 14.8% 63.7 60.5%
star (N = 210) 68.6% 18.6% 60.8 60.5%
star with majority signal for position 1 (N = 132) 81.1% 9.1% 65.1 62.1%
star with minority signal for position 1 (N = 78) 47.4% 34.6% 53.5 57.7%

Total 73.7% 14.6% 63.2 62.4%

Table C.1.2: Efficiency, expected payoff EP , and success. ‘Win’ (respectively ‘lose’) means that the outcome
of voting is the majority signal (respectively the minority signal); in addition to the displayed categories
‘win’ and ‘lose’ the outcome can be a tie. EP can be interpreted as the likelihood in percent that the group
decision matches the true state. ‘Success’ is the fraction of group decisions which were actually correct. If we
consider reasonable values of EP to lie between the EP of a dictator who is chosen from the set of experts
and the EP of an efficient strategy profile, then the reasonable range is [60.0, 68.3].
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Table C.1.3. Dependent variable: Expected payoff EP

OLS 1 OLS 2
Variable Coefficient (Std. Err.) Coefficient (Std. Err.)

empty -0.231 (0.644)
strongly balanced -0.110 (1.489) -0.341 (1.196)
weakly balanced 0.231 (0.644)
star -1.356∗ (0.646) -1.587∗ (0.678)
uniform signal 33.309∗∗∗ (0.506) 33.309∗∗∗ (0.506)
almost uniform signal 18.202∗∗∗ (1.680) 18.202∗∗∗ (1.680)
Intercept 54.272∗∗∗ (0.567) 54.503∗∗∗ (0.424)

N 840 840
R2 0.534 0.534
p-value F-test 0.000 0.000
∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01

Table C.1.3: Estimation results: OLS with expected payoff EP as dependent variable. Robust standard
errors in parentheses adjusted for sessions. The first model uses the empty network as baseline category. The
second model uses the weakly balanced network as baseline category.

Table C.1.4. Avoidability of inefficiency

vote difference “wrong” experts “wrong” non-experts preventable

empty 0.74 2.26 1.11 51.9%
(N = 54)

strongly balanced 1.09 2.19 2.04 72.3%
(N = 47)

weakly balanced 1.24 2.22 1.87 59.3%
(N = 54)

star 1.41 2.15 2.05 60.6%
(N = 66)

Total 1.14 2.20 1.77 60.6%
(N = 221)

Table C.1.4: Avoidability of inefficiency. The variable ‘vote difference’ refers to the absolute difference of
the number of votes. A vote difference of, e.g., 2 means that the minority signal has received two more
votes than the majority signal; and a vote difference of 0 means that a tie has occurred. The label “wrong”
refers to an agent who voted for the minority signal. The table reports the mean of these variables over all
inefficient cases, i.e., for all groups where the majority signal did not receive a majority of votes. Column 5
‘preventable’ reports the fraction of groups that would have avoided an inefficient outcome if all “wrong”
non-experts abstained. On average the vote difference is 0.68, reflecting that most inefficient outcomes are
close calls such as ties (where the vote difference is zero) or wins of the minority signal by one vote (where
the vote difference is one). Comparing this number to the number of experts and the number of non-experts
who voted for the minority signal indicates who could have prevented the inefficiency. In the non-empty
networks, there are on average roughly two non-experts who voted for the minority signal. If they abstained,
the efficient outcome would have been reached in most of the cases.

C.2 Instructions

The original instructions are written in German and can be requested from the authors. On

the next pages we provide an English version which is a sentence-by-sentence translation of

the original instructions. The instructions are followed by the questions of comprehension.
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SVCnet rel. 

1 
 

Welcome to today’s experiment! 

Please note that no communication is allowed from now on and during the whole experiment. If you 

have a question please raise your hand from the cabin, one of the experimenters will then come to 

you. The use of cell phones, smart phones, tablets, or similar devices is prohibited during the entire 

experiment. Please note that a violation of this rule leads to exclusion from the experiment and from 

any payments. 

All decisions are taken anonymously, i.e. none of the other participants comes to know the identity 

of the others. The payoff is also conducted anonymously at the end of the experiment. 

 

Instructions 

 

In this experiment you will choose along with your group one out of two alternatives whereupon just 

one  alternative  is  correct  and  the  other  is wrong.  Only  the  correct  alternative  leads  to  a  positive 

payoff  for each member of  the group. Some members of  the group will  receive  information about 

the  correct  alternative.  This  information  is  accurate  in  60  out  of  100  cases.  The  group  decides  by 

voting  which  alternative  will  be  implemented.  The  group  is  furthermore  arranged  in  a 

communication network. Certain members of the group can – depending on the network structure – 

transmit a message to other members before the group ballots for the alternatives.  

The sequence of each individual round consists of the following 4 parts. 

 

1. Information 

You will receive the role of an Informed or an Uninformed at random (and you will keep it during the 

entire experiment). There are two alternatives: alternative “circle” and alternative “triangle”. At the 

beginning  of  each  round  one  of  the  two  alternatives  will  be  assigned  at  random  and  with  equal 

likelihood  as  the  correct  alternative.  The  “Informed”  receive  information  about  the  correct 

alternative which is accurate in 60 out of 100 cases. (The Informed will not necessarily all receive the 

same  information).  The  “Uninformed”  will  not  receive  any  information  about  what  the  correct 

alternative is. 
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2 
 

 

 

2. Communication 

You will randomly be divided into groups of 9 members. A group is composed of 5  Informed and 4 

Uninformed. All  group members  are  arranged  in  a  communication network. At  the beginning of  a 

round  you  get  to  know  the  network  structure  and  your  position  in  the  network.  You  can  see  the 

possible networks pictured in the figure below.  

                

5  Informed  receive  in  randomized  arrangement  the  positions  Above  1  to  5  in  the  network.  4 

Uninformed receive in randomized arrangement the positions Below 1 to 4 in the network. Everyone 

knows therefore that someone with an upper position is an Informed and that someone with a lower 

position  is an Uninformed.   The network structure  reveals who can communicate with whom. The 

Uninformed can be recipients but not senders of a message.  The Informed who are in the position of 

a sender send either the message “circle” or the message “triangle” or they don’t send any message 

to their recipient(s).  Each sender can send exactly one message to all of its (his/her) recipients. Not 

every  Informed  is  necessarily  a  sender.  This  depends  on  the  network  structure  and  the  network 

position. The connecting  lines between upper and  lower positions  in  the network display who can 

send a message to whom. 

 



SVCnet rel. 

3 
 

 

 

3. Voting 

You can decide to vote for “circle,” to abstain from voting, or to vote for “triangle.” The voting result 

in the group is the alternative (circle or triangle) with the most votes. In case of a tie the computer 

will pick one of the two alternatives at random and with the same probability. 

 

 

4. Outcome 

At the end of the round you will get to know the voting outcome as well as the right alternative. If 

they match, e.g. the voting outcome is triangle and the right alternative is triangle, you will receive 

100 points. Otherwise you will not receive any points. At the end of 40 rounds 3 rounds will be drawn 

randomly, which are then relevant for the payoffs. The rate of exchange between points and Euro is 

the  following:  20  points  correspond  to  1  Euro.  You  will  receive  5  Euro  additionally  for  your 

participation in the experiment.   
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Procedure of the experiment 

40 rounds will be played in total. The composition of the group changes from round to round. The 

network structure changes every 5 rounds. There will be a short questionnaire subsequent to the 40 

rounds  of  the  experiment.  Prior  to  the  40  rounds  of  the  experiment  4  sample  rounds  are  played. 

These are not payoff‐relevant. (In each sample round a different network is introduced.) 

Summary of the procedure of the experiment:  

1. Reading of the instructions 

2. Questions of comprehension concerning the instructions 

3. 4 sample rounds 

4. 40 EXPERIMENTAL ROUNDS 

5. Questionnaire 

6. Payoffs 

If you have a question, please raise your hand from the cabin, we will then come to you. 

 



 

Comprehension questions 

1. Which of the following statements is correct? (Please checkmark) 
a. The role of the Informed/Uninformed changes from round to round.  
b. The group affiliation changes from round to round. 
c. The network changes from round to round. 

 
2. Which of the following statements is correct? (Please checkmark) 

a. In each round either the alternative „circle” or the alternative „triangle“ is correct, namely with a 
probability of 50% no matter which alternative has been most frequently correct in the previous rounds. 

b.  If „triangle“ was 7 times correct in the previous 10 rounds and „circle“ only 3 times, then in the current 
round it is more likely that „circle“ is correct instead of „triangle“. 

c. If „circle“ was 7 times correct in the previous 10 rounds and „triangle“ only 3 times, then in the current 
round it is more likely that „circle“ is correct instead of „triangle“.  
 

3. Which of the following statements is correct? (Please checkmark) 
a. The „Informed“ in the group know for sure which alternative is correct. 
b. All „Informed“ in the group share the same opinion about what the correct alternative is. 
c. Each „Informed“ in the group receives some information about which alternative is correct and this 

information is accurate in 60 out of 100 cases. 
 

4. Which of the following statements is correct? (Please checkmark) 
a. Each „Informed“ is a sender. 
b. Each sender is an „Informed.“ 
c. A sender can be an „Informed“ or an “Uninformed.” 

 
5. Which of the following statements is correct? (Please checkmark) 

a. If the correct alternative is „circle“ and you vote for circle, you will always receive 100 points. 
b. If the correct alternative is „circle“ and a majority of the participants vote for circle, you will receive 100 

points. 
c. If the correct alternative is „circle“ and a majority of the participants vote for triangle, you will receive 

100 points. 

 



C.3 Partisans and Study II

In an earlier working paper version that is permanently available online (Buechel and Mecht-

enberg, 2017), we have relaxed the assumption that all agents have the same preferences,

i.e., that they all want the policy to match the state of the world. There, we introduce

agents who try to induce a specific policy regardless of the state of the world, e.g., due

to the expectation of personal perquisites. We call these trolls A-partisans or B-partisans

according to their preferred policy. When the number of A-partisans equals the number of

B-partisans our three results, Proposition 2.1-2.3, extend to this extended model set-up, as

we prove there.13 Hence, the model with partisans leads to fully analogous predictions.

We have tested this extended model in a second experiment, to which we refer to as

Study II. In the experimental implementation voter groups – i.e., subject groups interacting

in one network – consist of three experts, four computerized partisans, and four non-experts.

The four partisans divide into two A-partisans who always communicate and vote A and two

B-partisans who always communicate and vote B.

In the experimental design of Study II, we again implement the empty network as a

baseline, but add three other examples in order to study different network structures (see

Figure C.1). Comparing the networks in Study I with those in Study II, both studies

implement the empty network (in which information transmission is precluded), a weakly

balanced network (in which σ̂ is an inefficient equilibrium), and the star network (in which

σ̂ is not an equilibrium). While Study I accompanies the weakly balanced network with a

strongly balanced network to have an example in which σ̂ is efficient, Study II accompanies

the star network with another unbalanced network, which we call the unbalanced network

that features different sender degrees within one treatment.

Figure C.1: The four treatments in Study II. The empty network is the baseline treatment. The sincere
strategy profile σ̂ is an inefficient equilibrium in the weakly balanced network; it is not an equilibrium in the
unbalanced and the star network. LTED σ∗ is an efficient equilibrium in any network.

In the working paper (Buechel and Mechtenberg, 2017), we report the results of both

Study I and Study II in parallel and observe that they lead to the same conclusions. There

are two interesting differences between the results of the two studies that we recap here since

we refer to these differences in section 5 when addressing misinformation:

(1) A part of Result 2 (“Experts significantly more often play sincere [...] in the weakly

13In the current version, Proposition 2.3 is richer than it was in this earlier working paper version.
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balanced than in the star network.”) is not confirmed in Study II. This is revealed by

Tables C.3.1 and C.3.2 below.

(2) Results 4 and 5 about the relative inefficiency of the star network are stronger in

Study II. This is revealed by Tables C.3.3, C.3.4, and C.3.5 below.

These two observations suggest that the presence of troll senders (1) makes human senders

prone to pass on their signal to their audience regardless of the network structure, and (2)

makes the star network even less efficient, compared to balanced networks, mostly due to

followers of a troll sender in the center of the star.

Table C.3.1. Behavior of experts

vote signal vote opposite send signal send opposite sincere

empty 560 21 - - 560
(N = 600) 93.3% 3.5% - - 93.3%

weakly balanced 550 31 309 15 530
(N = 600) 91.7% 5.2% 89.1% 4.3% 88.3%

unbalanced 552 22 158 4 534
(N = 600) 92.0% 3.7% 88.8% 2.3% 89.0%

star 556 27 76 1 550
(N = 600) 92.7% 4.5% 91.6% 1.2% 91.7%

Total 2,218 101 543 20 2,174
(N = 2, 400) 92.4% 4.2% 89.3% 3.3% 90.6%

Table C.3.1: Behavior of experts by treatment in Study II. The action ‘vote (send) opposite’ means vote
(send message) A when signal is B∗ and vice versa. In addition to the displayed categories ‘vote signal’ and
‘vote opposite’ experts could abstain. In addition to the displayed categories ‘send signal’ and ‘send opposite’
experts could send an empty message. Experts without an audience are sincere if they vote their signal.
Experts with an audience are sincere if they vote their signal and also send it. This table corresponds to
Table 6 in Appendix A.1.

Table C.3.2. Sincere senders

Logit 1: Send Signal Logit 2: Sincere
Variable Coefficient (Std. Err.) Coefficient (Std. Err.)

unbalanced -0.029 (0.264) 0.080 (0.301)
star 0.289 (0.356) 0.506 (0.366)
Intercept 2.096∗∗∗ (0.320) 1.878∗∗∗ (0.235)

N 608 608
Log-likelihood -206.44 -226.34
Wald χ2

(2) 1.49 6.95

p-value Wald test 0.475 0.031
∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01

Table C.3.2: Estimation results for Study II: Logistic regression sincere senders by treatment. Senders are
experts with at least one link. Dependent variable in Model 1 is ‘send signal,’ which is 1 if the expert’s message
equals her signal (and zero otherwise). Dependent variable in Model 2 is sincere behavior, which equals 1 if
sender both sends and votes her signal. Robust standard errors in parentheses adjusted for sessions. Baseline
category is the weakly balanced network. Observe that Model 1 is not well-specified according to Wald test.
This table corresponds to Table 7 in Appendix A.1.
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Table C.3.3. Fisher exact tests on efficiency

weakly balanced unbalanced star

empty 0.323 0.022 0.002
weakly balanced 0.219 0.007
unbalanced 0.244

Table C.3.3: p-values of Fisher exact tests comparing efficiency of two treatments in Study II. Efficiency is 1
if majority signal wins, 0 in case of a tie, and −1 if majority signal loses. This table corresponds to Table 11
in Appendix A.1.

Table C.3.4. Dependent variable: Efficiency

ologit 1 ologit 2
Variable Coeff. (Std. Err.) Coeff. (Std. Err.)

empty -0.059 (0.140)
weakly balanced 0.059 (0.140)
unbalanced -0.276∗ (0.164) -0.335 (0.210)
star -0.711∗∗ (0.319) -0.770∗∗∗ (0.243)
uniform signal 2.027∗∗∗ (0.135) 2.027∗∗∗ (0.135)
Intercept cut 1 -1.611 (0.208) -1.670 (0.251)
Intercept cut 2 -0.572 (0.122) -0.631 (0.179)

N 800 800
Log-likelihood -513.262 -513.262
∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01

Table C.3.4: Estimation results for Study II: Ordered logit. Efficiency is 1 if majority signal wins, 0 in case
of a tie, and −1 if majority signal loses. Robust standard errors in parentheses adjusted for sessions. Less
clusters than parameters simply mean that joint significance (Wald test) cannot be tested. The first model
uses the empty network as baseline category. The second model uses the weakly balanced network as baseline
category. This table corresponds to Table 12 in Appendix A.1.

Table C.3.5. Dependent variable: Expected payoff EP

OLS 1 OLS 2
Variable Coefficient (Std. Err.) Coefficient (Std. Err.)

empty 0.754 (0.796)
weakly balanced -0.754 (0.796)
unbalanced -3.528∗∗ (0.997) -2.773∗∗ (0.915)
star -7.703∗ (2.847) -6.949∗∗ (2.219)
uniform signal 31.214∗∗∗ (0.844) 31.214∗∗∗ (0.844)
Intercept 64.411∗∗∗ (1.312) 63.656∗∗∗ (1.625)

N 800 800
R2 0.347 0.347
∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01

Table C.3.5: Estimation results for Study II: OLS with expected payoff EP as dependent variable. Robust
standard errors in parentheses adjusted for sessions. The first model uses the empty network as baseline
category. The second model uses the weakly balanced network as baseline category. This table corresponds
to Table C.1.3 in Appendix C.1.
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