

Visual form processing in primary and secondary visual cortex of the tree shrew

Paolo De Luna, Jordan Poirot, Gregor Rainer

Dept. of Medicine, University of Fribourg

DAY OF COGNITION 2015 @ UNIFR - 07/10/2015

VISUAL FORM PROCESSING

Polar

- ✓ Orientation tuning
- ✓ Spatial frequency preference
- ✓ Spatial phase modulation

- Visual information is processed in a hierarchical fashion. *How is information represented and transformed?*
- Investigation by means of Cartesian (parallel) gratings. Naturalistic scenes are rich and complex.
- Tree shrew as animal model for visual neuroscience. *Anatomical homology, and similar neurophysiology of the visual system.*

RESULTS 1/5

EXEMPLAR NEURAL RESPONSE

Cartesian	0	0	:	;;	00	-	00		0	0	""	""	00	00	11 11	11 11	0	0						111 111
Hyperbolic	⇔	* *	××	*	↔	\$	××	××	令 令	*	× ×	× ×	徐 徐	徐	× ×	<u>s</u>	徐 徐	徐 徐	× ×	<u>s</u>	徐 徐	徐 徐	國國	× ×
Polar	- 	*	9 9	9 9	s s	5 5	•	•	*	* *	* *	*	* *	* *	0 0	0 0	* *	* *	* *	* *	* *	* *	0	0
																					R	_{max} = 6	4 spike	es/s
Cartesian		•	:		-	•	1	\mathbf{O}	:	4	÷	÷		1	2	2		1	-	1	1		•	
Hyperbolic	-	•	:	:	:	÷	:		:	:	:	:		÷	:	:		:	2	:	Ê		:	1
Polar	•	:	•	1	:	:	:	:		1	-	:			:			•	:	:		:	:	÷

	Cartesian	Hyperbolic	Polar
Structure selectivity index	0.73	0.55	0.56
Polarity sensitivity index	0.23	0.30	0.02

- 1) Selective responses to a broad range of stimulus structures.
- Selectivity to complex patterns is not predictable on the basis of responses to Cartesian gratings.

GRATING PREFERENCE IN V1 AND V2

Preference for Cartesian gratings, but also specialization for non-Cartesian stimuli in both V1 and V2.

GRATING SELECTIVITY: SPATIAL FREQUENCY

V1

V2

- Borders extraction from visual scene
- Enhancement of figure-ground segregation

RESULTS 4/5

GRATING SELECTIVITY: FUNCTIONAL DOMAINS OF THE CORTEX

- 1) V1 neurons are organized in local domains which compute complex patterns of polar gratings.
- 2) V2 neurons receive converging tuned inputs onto individual neurons.

VEP: Visually evoked potentials.

STIMULUS POLARITY AFFECTS NEURAL SELECTIVITY

Cartesian

Hyperbolic

Polar

- ➢ In V2:
 - neurons retain similar levels of polarity sensitivity to V1;
 - no difference between grating classes.
- In V1, polarity sensitivity for hyperbolic gratings is higher than for the other classes.

Non-conventional stimuli provide useful insights into the functional organization of the

early visual cortices (structure of polar gratings, and polarity of hyperbolic stimuli).

V1 and V2 neurons are selective for a wide range of visual patterns.

Neurons in tree shrew's V2 exhibit emergent selectivity for polar-like stimuli.

REFERENCES

- Bosking *et al J Neurosci* (2000)
- Cloherty & Ibbotson *J Neurophys* (2014)
- Gallant et al Science (1993)
- Gallant et al J Neurophys (1996)

- Hegdé & van Essen J Neurosci (2000)
- Hegdé & van Essen Cereb Cortex (2007)
- Mahon & deValois Vis Neurosci (2001)
- von der Heydt *et al Perception* (1995)

ACKNOWLEDGEMENTS

- Visual Cognition laboratory (University of Fribourg)
- Animal caretakers and veterinarians at the Dept. of Medicine of the University of Fribourg