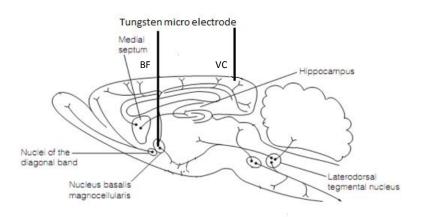


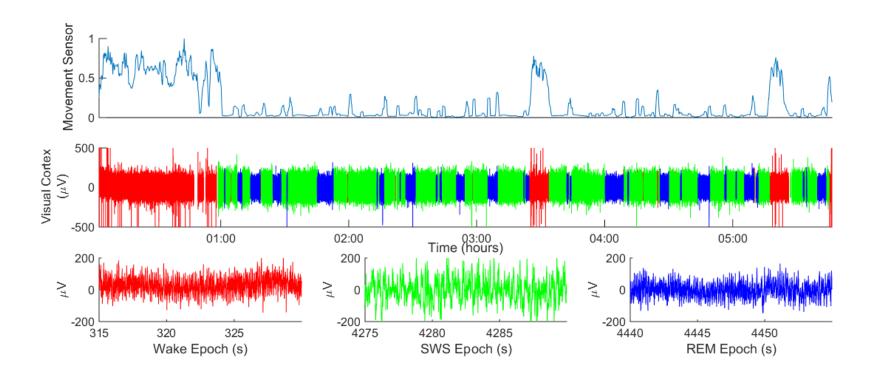
# Decoding behavioral state from local field potential recordings in basal forebrain and visual cortex

Jayakrishnan Nair

### Visual Cognition Laboratory, Department of Medicine University of Fribourg


Jayakrishnan Nair<sup>1</sup>, Jordan Poirot<sup>1</sup>, Arndt-Lukas Klaassen<sup>2,</sup> Alexei Vyssotski<sup>3</sup>, Björn Rasch<sup>2</sup>, Gregor Rainer<sup>1</sup>

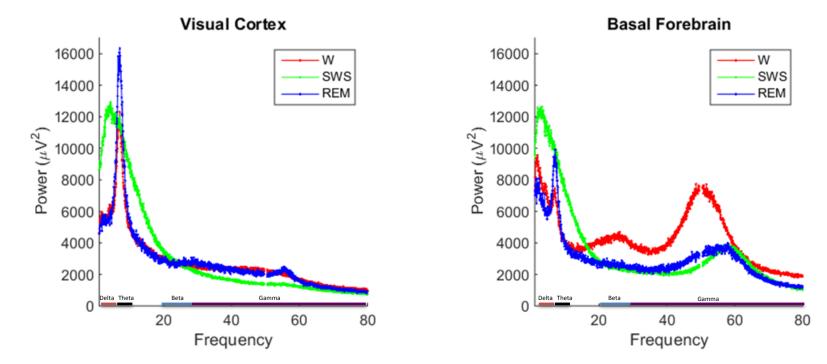
<sup>1</sup>Visual Cognition Laboratory, Department of Medicine, <sup>2</sup>Department of Psychology, University of Fribourg, Fribourg, Switzerland. <sup>3</sup>Institute of Neuroinformatics, University of Zurich, Switzerland


### Introduction

- The basal forebrain (BF) cholinergic system is a regulator of cerebral cortical function by providing the major source of cholinergic as well as non-cholinergic input to the neocortex.
- The BF projections play an important role in modulating neural network state, for example by enhancing cortical responsivity as well as contributing to wake/sleep regulation.
- Here, we study how electrical signals in BF and visual cortex (VC) vary with the behavioral state of rats (wake, slow-wave sleep, rapid eye movement sleep) using long-term recordings in animal's home cage with a miniature wireless recording device.
- We also examine how much information is present in these brain regions about behavioral state.

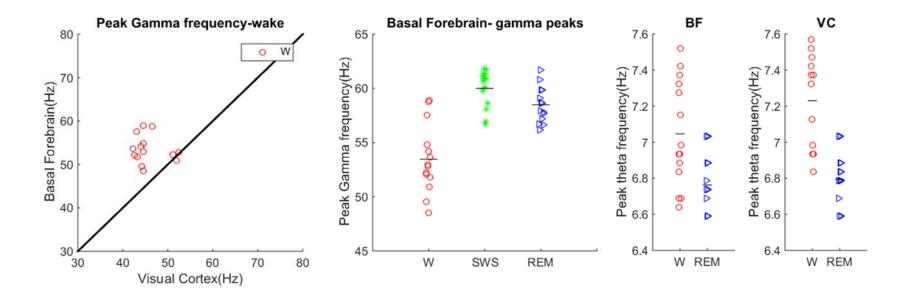
## Methods



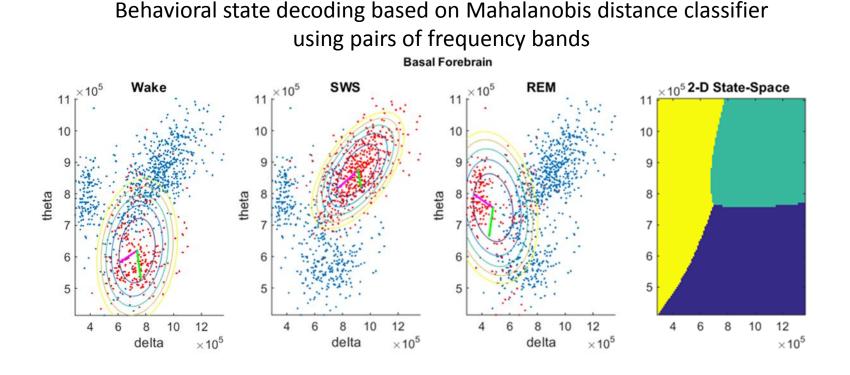





#### Intracranial local field potentials and behavioural states.

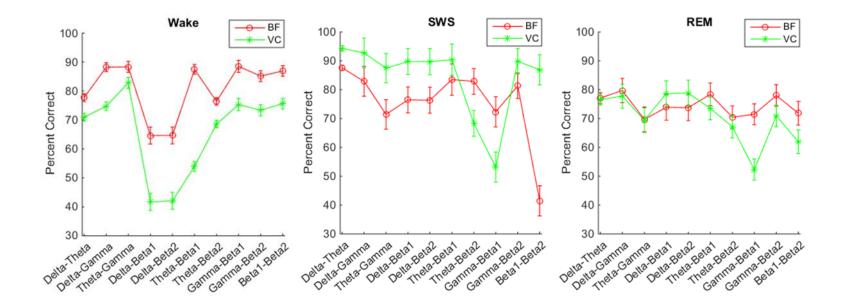

- W Wake
- SWS Slow Wave Sleep
- REM Rapid Eye Movement Sleep

#### Power Spectral distributions and behavioural states




- In Visual Cortex, during wake and REM sleep high frequency gamma(30-80Hz) activity is maximal along with theta(5-10Hz) which is most prominent in the cortex. During slow wave sleep gamma is minimal and irregular slow waves of delta frequency are prominent.
- > BF displays much stronger beta (20-30 Hz) and gamma oscillations during wakefulness than VC.
- In BF, the gamma is showing peaks in all the behavioral states which provides a signature for engagement of BF networks during all behavioural states.

### Brain region specific modulation of gamma and theta peak oscillation frequencies




- Peak gamma frequency during wake was significantly higher in BF (53 Hz) than in VC (46 Hz), suggesting independent local gamma generating networks in the two brain areas.
- ✓ Within the BF, peak gamma frequency was significantly lower for in wake (53Hz) than both SWS and REM (60 and 58Hz respectively), whereas gamma power showed the opposite relationship.
- ✓ Theta peak frequencies, while differing between REM and wake state, were similarly modulated in BF and VC, suggesting that theta is coordinated by long-range BF-VC interactions.



- We trained a classifier on a random 80% of neural data epochs (15s duration) from each behavioral state for pairs of frequency bands using mahalanobis distance measure, which generates a decision surface that allows classification of the remaining 20% of data epochs.
- The procedure is repeated 100 times with different training data selection, and classifier performance is assessed in terms of percent correct classification of the test data.

### Behavioral state decoding based on Mahalanobis distance classifier using pairs of frequency bands



- ✓ The BF signals allow more accurate classification of the wake state than VC signals, particularly when gamma band activity is considered.
- ✓ SWS state classification is more accurate based on VC signals
- ✓ REM state classification is possible to a similar degree using BF and VC signals, except that classifications involving the beta band are more accurate for BF data.

# Conclusion

- ✓ The variation of LFP signals in BF and VC display numerous characteristic differences, involving both low (delta, theta) and high (beta, gamma) frequency bands.
- Differences in peak oscillation frequencies are evident for gamma, but not theta bands, which can is suggestive of local generation and long-range oscillatory coordination respectively.
- These findings provide novel insights into frequency specific neural activations in basal forebrain and its cortical target region.

# Thank You!